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In this work, the first min-max Game-Theoretic Differential Dynamic Programming (GT-DDP) algorithm in
continuous time is derived. A set of backward differential equations for the value function is provided, along with its
first- and second-order derivatives without assuming proximity of the initial nominal controls to the optimal controls.
The corresponding update laws for both the minimizing and maximizing controls are also derived. For comparison,
the derivation of the GT-DDP algorithm in discrete time is presented in order to better elucidate the differences
between the continuous and discrete time formulations. The effect of the game-theoretic formulation in the
feed-forward and feedback parts of the optimal control policies is analyzed, and the discrete and continuous time
GT-DDP algorithms are compared through numerical examples. Experimental results using a quadrotor demonstrate
the superiority of GT-DDP in handling model uncertainties and external disturbances over the standard DDP algorithm.

I. Introduction

IFFERENTIAL game-theoretic or min-max formulations are

important extensions of optimal control having direct connections
to robust and H, nonlinear control theory [1,2], as well as risk-
sensitive control [3,4]. Despite the plethora of previous works in this
area, min-max algorithms for trajectory optimization have been scarce.
We are familiar only with the work of [5], where a min-max algorithm
was derived and was applied to a humanoid robotic control problem.
The approach in [5] is based on differential dynamic programming
(DDP) [6,7]. DDP uses dynamic programming ideas and attempts to
find a locally optimal control policy through the iterative improvement
of a nominal control and state trajectory. One attractive feature of DDP
is its second-order convergence [8,9]. The performance of DDP has
been compared with other local methods and was found to be, in
general, superior to them [10,11]. DDP has also been applied to various
realistic problems with notable success, such as robot locomotion [12],
helicopter acrobatic maneuvers [13], and biological nervous systems
[10]. Although the initial derivation of DDP was in continuous time,
most of the work on trajectory optimization, including the min-max
DDP formulation in [5], addresses either discrete time nonlinear
systems or discretized versions of systems that are originally expressed
in continuous time.

Many variations of the basic DDP algorithm have been derived
and applied to deterministic and stochastic systems in robotics,
autonomous systems, and computational neuroscience. In particular,
in [14] a discrete-time DDP algorithm was derived for nonlinear
stochastic systems with state and control multiplicative noise, and
was applied to biomechanical models. The resulting algorithm,
known as iterative Linear Quadratic Gaussian (iLQG) control, relies
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on a first-order expansion of the dynamics. In [15], second-order
expansions of a stochastic dynamical system with state and control
multiplicative noise were considered. The resulting algorithm,
known as Stochastic Differential Dynamic Programming (SDDP),
is a generalization of iLQG. The DDP algorithm has been applied
in a receding horizon manner to account for complex dynamics
and alleviates the curse of dimensionality [16,17]. In [18], random
sampling techniques are proposed to improve the scalability of DDP.
An infinite-horizon version of the discrete time DDP is derived in
[19,20], where DDP is used for deterministic nonlinear systems with
control limits and is subsequently applied to control of a humanoid
robot in simulation. DDP with control and state constraints is
discussed in [21]. Finally, DDP is combined with machine learning
methods for systems with learned dynamics [22-24].

Although there has been a lot of work on several versions of DDP
algorithms and their application to engineering systems, most of the
work in the literature thus far has been on discrete time formulations
and for cases where there are no disturbances. Following up on this
existing amount of work, in this paper we present the derivation of a
min-max DDP (or Game-Theoretic Differential Dynamic Program-
ming [GT-DDP]) algorithm in continuous time that solves a two-
player zero-sum differential game. The basic outline of the proposed
GT-DDP algorithm was first reported in [25]. In the current paper all
the missing details and assumptions used in [25] for the derivation of
GT-DDP have been added and elaborated upon. Furthermore, and in
order to show the benefits of working directly in the continuous-time
domain, we compare the developed min-max DDP algorithm with a
similar, more standard, discrete time formulation. In particular, we
provide a set of backward differential equations for the continuous-
time case and difference equations for the discrete-time case,
respectively. From these, we subsequently derive the optimal policies
for the two players/controllers. We compare the continuous and
discrete time formulations in terms of their convergence and
numerical efficiency and, in particular, we investigate the effect of the
min-max formulation in the feed-forward and feedback parts of the
optimal control policies.

With respect to the initial treatment of DDP in [7], our analysis and
derivation of the GT-DDP follows [26] and avoids a restrictive
assumption of the initial derivation of DDP. Specifically, the
fundamental assumption in the derivation of continuous-time DDP in
[7]is that the nominal control « is close to the optimal control #*. This
assumption was also discussed in [27]. This assumption allows the
expansion of the terms in the Hamilton—Jacobi—Bellman (HJB)
partial differential equation (PDE) around u* instead of u and results
in the cancelation of terms that depend on H,, = 0, where H,, stands
for the partial derivative of the Hamiltonian with respect to the control
input. GT-DDP, on the other hand, does not rely on this assumption,
and therefore the quadratic expansions of the terms in the HIB PDE
are computed around the nominal controls #, v and not around the
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optimal controls u*, v*. In this case, the neglected terms H, and H,, in
the standard DDP problem formulation may not necessarily be equal
to zero. More details on this issue are given in Sec. ILE.

The rest of the paper is organized as follows. In Sec. II the game-
theoretic problem is formulated and the backward differential equations
in continuous time are derived. In Sec. III the derivation of the game-
theoretic DDP in discrete time is presented, and a comparison between
the two formulations is given in Sec. IV. Simulation and experimental
results are shown in Sec. V. Finally, Sec. VI provides a summary of the
results and suggests some possible future research directions.

II. Game Theoretic Differential Dynamic Programming
in Continuous Time
A. Notation

The notation used throughout this paper is quite standard, but is
repeated here for the sake of completeness. Specifically, R denotes
the set of real numbers, R, denotes the set of all positive real
numbers, R” denotes the set of n X 1 real column vectors, and R
denotes the set of n X m real matrices. For single-variable functions,
C'(R) denotes the set of functions having domain R that are
continuously differentiable and C?>(R) denotes the set of functions
whose second-order derivative exists and is continuous with domain R.
Given a multivariable function of two arguments g: R” X R" — R, we
write g € CK7(R" x R™) if g has continuous derivatives up to order k
with respect to the first argument and continuous derivatives up to
order # with respect to the second argument. We also write (-)7 for the
transpose operator and (-)~! for the inverse operator of a matrix.

Given a function y:R"x[0,7;]=>R, we let w,(x.0):=
[(Ow(x,1)/0x,),...,(0w(x,t)/ox,)]" denote the partial derivative of
w with respect to x, and

Py (x.0) 1))
’x; ’ oxx,
l/’xx(xs t) = . :
Py (x.1) . Py (x.1)
ox ox, ° ’ dzx,,

to denote the Hessian of y with respect to x. Given the vector-valued
function w:R" xR, — R" defined by w(x,1) =[w, (x,1),...,w,(x,1)],
the notation

dwy (x,1) . dwy (x,1)
ox, ’ ox,
W, (x,1) =
0w, (x,1) . ow, (x,1)
ox, ’ ox,

denotes the Jacobian matrix of @ with respect to x.

B. Problem Formulation

We consider a min-max differential game problem where the
dynamics of the system can be described by

dx(r)

—2 = F(x(1),u(t),v(?), 1),

a x(t) = xp (D

where x(¢) € R" is the state of the dynamic system at ¢ € [ty, /],
and u(t) € U; C R™ and v(t) € U, C R™ denote the conflicting
controls, where U; and U, are open and convex constraint sets of the
controls u# and v, respectively. We seek nonanticipative feedback
strategies for both players; that is, we wish to find maps y,,: ¢y, /] X
R" — U, and y,:[ty, t;] X R" — U, such that one of the players
minimizes the cost function

J(}/u, yv) = ¢(x(tf)’ [f) + /:f E(x(t),yu(t,x(t)), y,,(l,x(l)), l) dr
2

while the other player maximizes Eq. (2). In Eq. (2) y,(z,x(7)) =
u(tr) and y,(t, x(t)) = v(¢) are the feedback strategies of the players,

ty is a fixed terminal time of the game, L:R" X R™« X R"™ x
[to. 7] = Ry denotes the running cost, and ¢: R" X [£y, t;] = R
denotes the terminal cost.

Standard regularity assumptions on the functions F, £, and ¢ will
be assumed throughout the paper to ensure existence and uniqueness
of solutions of the differential Eq. (1). Accordingly, it will be assumed
that y, (¢, x) and y,(¢, x) are piecewise continuous functions in ¢ and
Lipschitz continuous functions in x.

We assume that the player manipulating u attempts to minimize the
cost function, whereas the player manipulating v aims to maximize
the cost function. The function describing the minimax value of the
cost function at #; and x, is then given by

V(xy, 1)) = min max{q’)(x(tf), tr)
Yu Tv :

+ /[fﬁ(x(l)’}’u(hx(f)),}’u(t,x(l))’f) dl} 3

0

which is known as the value function.

For the derivation of the continuous time GT-DDP we will need
additional conditions on the smoothness of the dynamics and the cost
function, as well as some additional assumptions on the differential
game (1) and (3). In particular, we will assume that

(A1) The dynamics F € C''B(R" x R™ x R™ x R,).

(A2) The running cost £ € C>221(R" x R™« x R™ x R_).

(A3) For any fixed t, the terminal cost ¢ € C2(R™).

(A4) The value V € C>'(R" x R ).

(AS5) Both the minimizer and maximizer have perfect knowledge
of the dynamics of the system given by Eq. (1), the constraint sets U
and U,, the cost function, and the current state x.

(A6) Only (nonanticipative) state feedback strategies for both
players are considered.

(A7) The Isaacs condition [28]

min max{L(x,u,v,t) + V. (x,)TF(x,u,v, 1)}

uel, vel,

= max min{L(x,u,v,1) + V. (x,)TF(x,u,v,1)} (4)

velU, uel,

holds for all x, u, v and t > 0.

Assumptions (A1) through (A4) ensure that all derivatives in the
subsequent derivations exist, whereas (A5) is a standard assumption
for games with complete information [28]. Assumption (A6) comes
from the fact that as long as a saddle point in feedback strategies
exists, it is not necessary to consider other classes of strategies (see
Theorem 6.9 in [29]). The Isaacs’s condition in assumption (A7)
ensures that the min and max operators can be interchanged without
affecting the outcome and thus ensures the existence of the value of
the game. Note that the Isaacs’s condition holds when the controls are
separable in both dynamics and cost [28], which is the case for many
problems in practice.

The derivation of the min-max DDP is similar to the standard DDP
case, in the sense that it consists of two main steps. In the first step the
optimal policy update is derived. This policy update is a function of
the zero, first, and second order of terms of the value function
expansion along the nominal trajectory. The second step of the
derivation results in the equations of the backward propagation of the
value function along the nominal trajectory. Next, we start our
analysis with the derivation of the optimal policy update.

C. Optimal Policy Update

In continuous time, it is known that the value function satisfies
the Hamilton—Jacobi—Bellman—Isaacs (HIBI) PDE. Specifically, we
have for the value of the game in (3)

oV(x,1)
ot

= minmax{L(x,u,v,t) + V,(x, )" F(x,u,v,t)} (5)

with boundary condition

V(x(ts), ty) = ¢(x(ts), tr) (6)
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Given an initial/nominal trajectory of the state and control histories
(x,u,v),andletting 6x = x — x,0u = u — u,5v = v — v, one obtains

dx _ _ _
a:F(x—f—&x,u—i—éu,v—i—év,t) @)

which leads to the linearized dynamics around (x, u, v) as follows:

déx - - .
de = F x4+ F,u + F,6v (8)

where F,, F,, and F, stand for F (x,u,d,t), F,(%,@,v,¢), and
F,(x,u,v,t), respectively. Henceforth, the arguments for the
functions V, F, and so on, will be omitted for brevity unless specified
otherwise, and an overbar will denote that the corresponding quantity
is evaluated along the nominal trajectory (x, u, v).

The main idea is to take expansions of the terms in both sides of
Eq. (5) around the nominal state and control trajectories (X, u, v) to
derive the update laws for the minimizing control, maximizing
control, and backward differential equations for the zeroth-, first-,
and second-order approximation terms of the value function. After
some mathematical manipulations, we obtain the expansion equation
as follows. Please refer to Appendix A for a detailed derivation of this
equation.

av av, 1_ ,dv,, : - - -

i d[x—Eéxrd—;”&x:rt;;nngx{ﬁ—l—ﬁf&x—i—ﬁﬁ&u—l—ﬁf&v
r Z:’CX ZXM Z:XU 6x

ou | +VIF 6x+VIF bu

v Z"vx Z"vu ['uv v

VTR S04 86TV, et oxTV, Fyou +5vanﬁv5v}
_ - _ -1 -
= nginn}sax {E +6xTQ,+6u’Q,+5v7Q, +§5xTQxx6x
u v

Lo 15 Lo 15 TH TH TH
—|—§6u Quuéu—i—zév Onov+ou' Q,.0x+0ov' Q,.0x+du’ Q,,ov

©

where
O, =FV,+L, (10a)
0,=FIV.+L, (10b)
0,=FIV .+ L, (10c)
Ou = Lo+ Vi by + FIV,, (10d)
Ouu = Lo (10e)
O =Ly, (10f)
Que = FiVi + Ly, (10g)
O = FlVo + Ly (10h)
Ouw = Ly (10i)

To find the optimal control su* and 6v*, we compute the gradients
of the expression inside the brackets in Eq. (9) with respect to du and
ov, respectively, and make them equal to zero to obtain:

ou* = =071 (0,0 + 0,u00* + 0,) (11a)

50" = ~07 (Qbx + Qybu” + Q) (11b)

where we have used the fact that 0,,, = Q7. Solving Eq. (11) yields
the final expressions for su* and 6v* as follows:

ou*=1,+K,6x and o6v*=1,+ K, 6x (12)

with the feed-forward gains [,, I, and feedback gains K,, K,
defined as:

lu = _(Quu - QMUQ;L} Qvu)_l(Qu - quQ;vl Qv) (13)

lu = _(qu - QUMQ;L: qu)_] (Qv - Qqu;L}Qu) (14)

Ku = _(Quu - quQ;UI Qvu)_l (qu - QIAUQJUI va) (15)

Kv = _(vi - QL’MQ;; qu)_l (va - Qqu;Ll qu) (16)

D. Backward Propagation of the Value Function

The next step is to substitute the optimal control (11a) and
disturbance (maximizing control) (11b) to the HIBI Eq. (5) in order to
find the update law of the value function and its first- and second-
order partial derivatives. We present the result in the following
proposition.

Proposition 11.1: In the continuous time formulation, the value
function and its first- and second-order partial derivatives with
respect to x can be determined by the backward ordinary differential
equations as follows:

v - _ -1 - - 1.
-——=L + ngu + I{Qv + 7luQuulu + nguvlv + 71{vilv
dt 2 2
(17a)
av

dlx = Qx + KZQM + KgQU + Qleu + Q[xlv + KZQuulu

+ KOl + K{Qul, + K(Qul, (17b)
av, - - . - -
_TM = KZ;QMX + szKu + Kngx + QZ)-XKU + KZ'-QUMKM
+ KgQuqu + KgQuuKu + KZ:QUUKU + Qxx (17¢)

under terminal conditions

V(ty) = p(E(ty). 17) (18)
Voltp) = ¢ (x(tp). t7) (18b)
Vxx(tf) = ¢xx(i(tf)v tf) (18C)

Proof: See Appendix B.
In many engineering applications the cost function is designed
such that £,, = LI, = 0. In this case, the differential equations for
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the backward propagation of the value function along the nominal
trajectory are simplified as follows:

v .=
d[ - ‘C’+luQu +vav +21uQuulu +2vavvlv (193)

d\7

dt Q’( + Kz;Qu + KTQU + qulu + val + K QMLI u

+ K70,1, (19b)
dv

S = Kl + 01K, + KOy + OLK, + KIO,K,

+K70,.,K, + 0., (19¢)

Remark 1: 1t is worth pointing out that our approach requires that
the value function be twice differentiable [see assumption (A4)].
In general, V may not be twice differentiable [30]. Indeed, many
Hamilton—Jacobi equations have solutions only in a relaxed sense,
namely, viscosity solutions [31], which are continuous but not
necessarily differentiable everywhere. However, it is known that
linear-quadratic problems, in which the system has linear dynamics
and a quadratic cost function, have smooth value functions [32].
Beyond linear-quadratic problems, the same is true for nonlinear
problems that have a controllable linearization at every point and
their cost function can be locally approximated by a nondegenerate
quadratic cost. In this case, the HJB equation reduces to a matrix
Riccati equation of the type encountered in H, problems [1]. The
theory of solutions of such matrix Riccati equations has been
investigated extensively in the literature. So, for such problems
locally, the problem can be approximated by a twice differentiable
value function. Each iteration in the GT-PPD algorithm performs a
first-order approximation of the dynamics model and a second-order
approximation of the cost function along a nominal trajectory,
resulting in a linear-quadratic problem at each iteration, for which the
value function is twice continuously differentiable.

E. Comparison to the Derivation of Original DDP

It is worth comparing the basic steps of GT-DDP with the steps of
the minimax DDP extended from the original derivation of the
continuous-time DDP in [7]. The major differences between the
derivation of continuous-time DDP in [7] and our approach were
mentioned briefly in Sec. I. In this subsection, we will elaborate more
on the similarities and differences between the two derivations. First,
we present an extension of the original DDP and explain how this can
be applied to solve problems with conflicting controls.

To this end, let the Hamiltonian H(x,u, v, V,,f) = L(x,u, v, 1)+
VIF(x,u, v, ). The derivation of the original DDP starts with the HIB
equation. Accordingly, the HIBI equation given in Eq. (5) is used for
the case of conflicting controls. By letting x = x + 6x, u = u + éu,
v = v + 6v, and after some mathematical manipulations, Eq. (5) is
expanded up to second order to yield

oV da avT v,

ot ot 5

= rr(%inrréax{H(i +6x, 0+ 6u, v+ 60,V 1)
u v
_ 1- r oo _
+ (vmax +3 V,m.éxéx) F(% + ox, @ + du, v + ov, z)} (20)

where all the terms whose arguments are unspecified are evaluated at
(*,u,v),and a is the difference between the cost obtained by evaluating
it along (.72 u*, v*) and the nominal cost V obtained at (x, it, v), where
u* and v* are glven by Eqs (21) and (22). The term V. 5x8x denotes
the vector [ox” V{éx, ..., oxT V.x]’.

Instead of finding the optimal éu and v with respect to # and v, in
the original DDP approach the intermediate optimal controls #* and
v* are obtained (analytically or numerically) by solving the problems

* = arg minH(X, u, v*, V,, 1) 21)

v* = arg maxH(x,u*, v, Vx, 1) 22)
v

Note that u* and v* are only intermediate optimal controls as they
are evaluated along x and they would eventually converge to the
true optimal controls when x converges to x*. The corresponding
backward propagation equations with respect to the value function
and its first- and second-order partial derivatives are then found by
equating the left-hand side of Eq. (20) with the second-order
expansion of

m1nmax{H(x+5x u* 4 bu,v* 460,V 1)

ou ov
. 1- T
+ (Vxxéx + 3 Vxxxéxﬁx) F(x + 6x,u* + du, v* + v, t)}
(23)

Since u* minimizes the Hamiltonian while v* maximizes the
Hamiltonian, the necessary conditions H,, (X, u*, v*, V,,t) = 0 and
H,(x,u*,v*, V,, 1) = 0 are satisfied. After expansion of Eq. (23)
and collection of similar terms, the backward differential equations
that describe the propagation of the value function are presented
as follows:

—% =H-HE4,v.V,.1) (24a)
d‘;x T724=0 T24=0 7 S0 n
ar =H, +pH +n"H + Vo (F-F(x,u,v,1) (24b)
av,, . ,
- dr Hxx + quﬂ +ﬂ Hux + Hrvr] + n Hvx +ﬂ Huuﬂ

+ 0" Hount + BT Hot + 1" Houp + FIV o + Vo F 4+ BTFIV,,

_ _ _ 1 _o_ _
+ VxxFuﬂ + nTFIY;Vxx + Vxvan + E(F - F(x,u, v, t))TVxxx

1= oo
+§Vxxx(F_F(xvuvvvl)) (24¢)

where

B =—Mu = HiwHos Ho) ™ (Mo + FLV oo = Hin Hiy
X (Hye + FIV0)),

n=—Hw—HuHasHu) ™ (Hox + FIV o = HyHid
X (Hyx + FiV )

where all quantities are evaluated at (x, u*, v*) unless otherwise stated.
The corresponding update laws are u = u* + du = u* + poéx
and v = v* + v = v* + nbx.

It is worth mentioning here that the step to obtain #* and v* from
Eqgs. (21) and (22) may be computationally expensive if a numerical
approach is adopted, because one needs to perform this optimization
at each instant during the propagation of the value function. In our
method, éu* and 6v* can be computed analytically following
Eq. (11). Note thatin Eq. (24) the terms 7 H,, and T H,, become zero,
since H,, = 0 and H,, = 0 when evaluated with the optimal controls
u* and v* from Eqgs. (21) and (22). In contrast, we expand the terms in
the HIBI equation around the nominal controls &, v instead of u*, v*

Another observation is that the term V., shows up in Eq. (24c),
which was not present in the backward differential equations (17).
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This term is neglected in the original derivation of DDP in order to
integrate Eq. (24). However, the terms (1/2)(F(x,u*,v*, 1)—
F(x,u,0,0)) Vo and (1/2)V o (F(x,u*,v*, 1) — F(x,u, ,1))
can be omitted only when # is relatively close to u*, and v is relatively
close to v*.

III. Game-Theoretic Differential Dynamic
Programming in Discrete Time

An alternative to the previous continuous-time formulation is to
apply GT-DDP in a discrete setting. In this section, we derive the
discrete-time game theoretic DDP algorithm and compare it with the
discrete min-max DDP derived in [5]. In the discrete-time approach,
the problem is first discretized along the given time interval [#y, #/].
Let the time discretization be 0 =, < #; < ... <ty = tf, and let
x, = x(1;), u, = u(ty) and v, = v(1y). Starting from x| = x;+
F(xy,uy, vy, t,)0t, where 6t = t,1 — t;, the linearized dynamics
model around x,, u;, v, in discrete time can be written as

8xy1 = A(tp)0x; + B, (1p)0u; + B, (1)v; (25)

Wherg A(tk) =1+ Fx('flwﬁkﬂ 5k7 tk)(st’ Bu([k) = Fu('flwﬁkﬁ 6k7 tk)(st
and Bv(tk) = Fv(.i'k,ﬁk, 1_)k, tk)5t Here 5xk = X _ik7 5uk =Uup—
u; and 6v; = v, — v, are defined as the deviations from the nominal
trajectory at time #;. The state-dependent arguments in A (z;), B, (¢;),
B, (t;) are evaluated at (x;, uy, v;), and are omitted for abbreviation.
Henceforth, all the values at #, are evaluated at (xj, u;, v;),
unless otherwise specified. Similarly, values at #;; are evaluated at
Fpr1s Upy 15 Vg 1)-

Similarly to the HIBI equation in the continuous-time case, our
analysis for the discrete time case starts with the discrete HIBI equation
with minimizing and maximizing controls #; and v, namely,
V(x. 1) = min,, max, {LO, uy, v, 1) + V(Xppr, fg1)}, Where
L(xkv Uy, Uy, tk) = ['(x(tk)’ u(tk)7 v(’k)? tk)(s[' Let ®(xk7 U, vk) =
L(xg,up, vi, 1) + V(xepr, 1) We construct a quadratic local
model of the value function by expanding the function ® up to second
order as follows:

@(.fk + (3xk, l;k + 5uk, ﬁk + 5vk) ~ é + C:)stxk + @H(Suk + (:)U(Svk
0y, ! éxx (:)xu (:)xv oy
ouy, @ux éuu é)uv ouy, (26)

8 évx (:)vu évv 8

+

N =

where all the ©-related terms are given as

0, = V(i) TA(t) + Ly(1) (27a)

0, = V. (tr))" B, (1) + L, (1) (27b)

0, = V(i) By(1) + Ly (1) (27¢)

O = A1) V(i DA () + Ly (1) (27d)

Ous = Bu(1)"V (1141 B (1) + L (1) (27¢)
Ou = By (1) V o (t45:1) Bu (1) + Ly (12) 279

®xu = A(tk)TVxx(thrl)Eu(tk) + L_xu(tk) (27g)

(:)xv = A_(tk)Tvxx(tk-%—l)Bv(tk) + l_‘xv(tk) (27h)
@uv = Bu([k)TVxx(tk+l)Bv(tk) + l:uv(tk) (271)
(:)vu = (:)Z;v’ C:)ux = é){u’ évx = @Zu (27])

To find the optimal policies for éu; and 6v; such that the second-
order expansion of the function @ is optimized, we take the gradients of
Eq. (26) with respect to du; and dv, and set them to zero to obtain

suf = —0,1(8,,6x; + 0,,6vf +0,) (28a)

ov; = -0, (0,,x; + 0,,du; + 6,) (28b)
Solving the system of equations (28) results in the expressions
oui =1, + K, ox, and ov;=1[,+ K,0x; (29)
where

lu = _(c:)uu - (:)uvé;v] (:)vu)_1 (éu - éuvc:)t_vvl (:)v) (30)
lu = _(C:)vv - évué;l: C:)uv)_l (éu - évué;zléu) (31)
Ku = _(éuu - éuvé;vl (:)vu)_l ((:)ux - éuué;vl (:)vx) (32)

KU = _((:)vv - (:)Uu(:);ll (:)uv)_l ((:)vx - C:)vuéLi (:)ux) (33)

By substituting the optimal control updates éu; and 6v; from
Eq. (29) into the value function, we can split the value function into
zeroth-, first-, and second-order terms in dx,, such that V_(ik +0x;) =
V(lk)_ + Vx(tk)Téxk + (1 /2)5xZV“(tk)§xk, where V(tk), Vx(tk)v
and V., (#;) are computed from

_ _ - — 1 — _
V(tk) = V(tk+1) + 15®u + 15(91) + 5 (lz(auulu + lfgvvlv

+110,,1, + 110,,1,) (34)

Vx(tk) = (:)x + Kg(:)u + Kfév + (:)xulu + éxvlv + Kz;(:)uulu
+ KO0, + KiO,l, + KOy, (35)

va(tk) = éXX + Kz;éux + éXIAKM + Kf(:)ux + éXUI(U + Kg‘(:)MLIKIA
+K[0,K, + K[0,,K, + K[0,,K, (36)
Since the optimal cost-to-go is computed backward in time,

boundary conditions need to be given at ¢ = t;. These boundary
conditions are given by

V(ty) = ¢x(17). 17) (37a)
Voltp) = go(x(tp). 17) (37b)
Vlty) = o (X(tp). 1) (37¢)
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In contrast to the backward difference equations (34) the
corresponding equations in [5] lack all the terms involving ®,,,,.

Remark 2: Note that in order to find the optimal policies for du;;
and 6v;; from Egs. (28a) and (28b), we need to invert the matrices ©,,,,
and ©,, given by Egs. (27e) and (27f), respectively. Therefore, it is
required that ®,,, and ©,, are invertible. Moreover, in order for u; to
be a minimizer of the value function, the matrix ©,,, must be positive
definite. Likewise, ®,, must be negative definite so that v, is a
maximizer. In the following, we present a technique to find new matrices
©,, and ©,, that are positive and negative definite, respectively, while
resembling the original ®,,,, and ©,,,, using the following regularization
scheme [14]. For ®©,,,, we first compute the eigenvalue decomposition
vV.D,VTI = ©,, and we replace all elements of the diagonal matrix D,
that are smaller than &, with &, to obtain a new diagonal matrix D,,,
where £, > 0 is a prescribed small constant, and set ®,, = V,D,VT.

Slmllarly, (E)w can be computed by G)w =V, D VT where V,D, VI =
0,, is the eigenvalue decomposition of @,,, and DL, is generated by
replacing all elements of the diagonal matrix D, that are larger than —&,

with —&,, where £, > 0 is a small constant.

IV. Comparison Between Continuous and
Discrete GT-DDP

In this section, we discuss the differences between the continuous
and discrete formulations of GT-DDP and explain why the continuous
version may be preferable for most engineering applications. Besides
the form of the backward differential equations, one of the major
differences between the discrete and continuous time formulations lies
in the specification of the terms Q... and Q,,, (continuous formulation)
and G)” « and ©,, (discrete formulation). In the continuous case, these
terms are specified by £, and £,, from Egs. (10e) and (10f), and
therefore they are completely determined by the user. This is not the
case with the discrete time formulation of the GT-DDP. To see the effect
of the cost function in the feed-forward and feedback gains on
continuous time GT-DDP, we recall that Ouu = L,m and Q,, = L,,.
Moreover, since L,,, L,, are design parameters, we can choose them
such that £, > 0and £, < 0. Note also that the positive definiteness
of £, and negative definiteness of £, are required since the role of the
first controller/player is to minimize the cost while the role of the
second controller/player is to maximize it. Given Q,,, > Oand O, <0
we have the following expressions:

Q_uu - QMUQ;L} Q_vu >0= (Quu - QMUQ;L} Q_uu)_1 >0 (38)

vi - Qqu;ul qu <0=> (vi - Qqu;leuv)_l <0 (39)

The matrix inequalities (38) and (39) show that the feed-forward and
feedback parts of the control policies of the two players will operate
such that the first player aims to reduce the cost while the second player
aims to increase it.

On the other hand, in the discrete time GT-DDP case, we have

®,,=BIV. B, + L, (40)

©,,=B!V.B,+L, (41)

Hence, there is no guarantee that ®,,, is positive definite and ©,,
is negative definite at the same time since they depend on the sign
definiteness of V., which is not known in advance. The modification
proposed in Remark 2 can be implemented to maintain the definiteness
of ®,, and ©,,. Nonetheless, the convergence of the discrete time
GT-DDP may not be easy to achieve.

In terms of running time, the continuous-time GT-DDP requires
the usage of differential equation solvers, whereas only arithmetic
calculations are needed in discrete time GT-DDP. Therefore, the time
cost per iteration is less in the discrete time GT-DDP case, where each
iteration is given by an update of the controls.

Algorithm1  GT-DDP Algorithm

Input: Initial condition of the dynamics x, initial minimizing control # and
maximizing control v, final time 7, multiplier y, a large integer N, and a small
constant e.

Output: Optimal minimizing control #*, optimal maximizing control v*, and
the corresponding optimal gains I, K,,, [, K.

1:  procedure Update_Control x, &, v, #5
2: fori = 1to N do
3: while |5u| 4 |6v| > e do
4: Get the initial trajectory X by integrating dynamics (1) forward with
X, U, V;
5: Compute the value of V, V., V, at ¢, according to Eq. (18);
6: Integrate backward the Egs. (17);
7: Compute /,,, K,,, 1,,, K, from Egs. (13) to (16);
8: Integrate Eq. (8) forward by replacing éu and v with
(0, + K,6x) and (I, + K,6x), respectively, to get 6x(1);
9: Compute ou = I, + K,0x and 6v = [, + K, 0x;
10: Update control# = u + yéu and v = v + yév, wherey € [0, 1];
11: Setu* = u and v* = v;
12: end while
13: end for
14: returnu*, v*, 1, K, 1, K,.

15:  end procedure

The continuous-time GT-DDP algorithm is provided in Algorithm 1.
The discrete-time GT-DDP algorithm follows a similar approach and
thus it is omitted for the sake of brevity.

An interesting characteristic of trajectory optimization methods
such as DDP is that they provide the locally optimal state trajectory,
optimal feed-forward control, and locally optimal feedback gains. In
Sec. V we demonstrate the effect of the cost function on the feed-
forward and feedback parts of the minimizing control policy for
different choices of £,,.

V. Numerical Examples and Experimental Validation

In this section, we apply our algorithm to several min-max problems
to test its performance. First, we apply the discrete and continuous
time GT-DDP algorithms to the inverted pendulum problem under
conflicting controls to compare between these two methods. We then
apply the continuous time GT-DDP to a quadrotor system with
conflicting controls. Afterward, we use the gains we obtain from the
previous min-max problems to bring the inverted pendulum and the
quadrotor to their respective desired states under the presence of
stochastic disturbances in the control channel. Although the proposed
GT-DDP algorithm is not designed for systems subject to stochastic
disturbances, the numerical examples below reveal that the min-max
formulation leads to feedback controllers that respond well to
stochastic disturbances as well.

A. Min-Max Problems
1. Inverted Pendulum Problem

We first apply the proposed discrete and continuous time
algorithms on a simple inverted pendulum with conflicting controls
to get a better insight on the impact of the conflicting control in the
overall system performance. The dynamics are given by

Ié—i—bé—mgfsin@:u—i—v 42)

where the parameters in the simulations are chosen as m = 1 kg,
¢£=05m, b=0.1(N-s)/m, [ =me? g=981 (kg-m)/s’
The goal is to bring the pendulum from the initial state [0, 8] = [z, 0]
to [0, 6] = [0, 0].

‘We cast this problem as a trajectory optimization problem with two
conflicting controls. The cost function is given by

1
J= /f(xTQx +u"R,u—v'R,v)dt (43)
0

where x = [0, 0]7, Q = diag[l,0.1], R, = 0.01, and R, = 1. Note
that we are more interested about cases where R, is not too large
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compared with R,,. When R, is relatively too large compared with R,
the maximizing control is negligible. In the extreme case, when
R, — o0, we obtain an optimal control problem.

We set the initial control to be# = 0, v = 0 and the terminal time to
be t; = 1. The step multiplier y = 0.8 for the continuous case. Initial
controls and the corresponding initial trajectories of the states are
identical in both cases. We ran the algorithms for 20 iterations and
convergence was achieved in both cases. Figures 1a and 1b present
the optimal controls of # and v for the discrete and continuous time
cases, respectively, as well as the corresponding optimal trajectories
of the states €, 0. The two algorithms yield the same results, as
expected.

As can be seen in Fig. 2, the cost converges in 11 iterations in the
discrete-time case. On the other hand, the continuous-time GT-DDP
converges in 4 iterations.

We also performed simulations with different choices of R, for
both continuous-time and discrete-time GT-DDP, and we altered the
discretization step to see how it affects the outcome. It was observed
that in the continuous GT-DDP case, R, can be chosen to be R, >
0.011 and the convergence is sustained, whereas in the discrete
GT-DDP case, R, can only be chosen to be R, > 0.31 for the
algorithm to converge when dz = 0.05. Once we set dr = 0.01, then
R, = 0.53 would cause the algorithm to diverge. These numerical
observations seem to indicate that the continuous version of GT-DDP
allows for a larger range of R, than the discrete version, and that the
discrete GT-DDP is somewhat sensitive to the choice of the
discretization step, which essentially adds another tuning parameter
and makes the algorithm harder to apply. Further investigation is
needed, however, to better assess the impact of the discretization step
to the convergence of the discrete GT-DDP.

5 ¢
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Sr \\___—” - - .0 [deg/s]
goal states
-10 . L L : )
0.2 0.4 0.6 0.8 1
Time [sec]
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[;] -10 vV o041
N
-20 NI 0
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a) Discrete GT-DDP case
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b) Continuous GT-DDP case
Fig.1 Comparison between discrete and continuous time GT-DDP.
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1 . . . ,
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lterations

Fig.2 Cost per iteration under continuous GT-DDP in dashed red and
discrete GT-DDP in blue.

2. Quadrotor

In this section we apply the GT-DDP algorithm to a more
complicated and realistic example, namely, a quadrotor system. In the
next section we present the results from an experimental implementation
of the algorithm. The dynamic model of the quadrotor includes
16 states: 3 for the position (r = (x,y,z)7), 3 for the Euler angles
(@ = (¢, 0,y)D), 3 for the velocity (- = (x,y,2)"), 3 for the body
angular rates (® = (p,q,r)7), and 4 for the motor speeds
(Q = (w,,®,, w3, w4)T). The coordinate systems and free body
diagram for the quadrotor are presented in Fig. 3. The inertial frame is
defined by axes x;, y;, and z;, where z; points upward. The body frame
B is attached to the quadrotor with xp coinciding with the forward
direction and zp perpendicular to the plane of rotors pointing upward
during perfect hover. The corresponding dynamics of the quadrotor with
conflicting controls is given as follows:

% =f(x)+Gu+v) (44)
where x = [r, D, F, o, Q]T € R!®, The form of f(x) and the matrix
G € R!%** can be found in [33].

The minimizing control is u = (u;, uy, us, us)" € R*. Here u,
results in a net force along the zp axis and u,, us, u, generate roll,
pitch, and yaw moments, respectively, whereas v € R* denotes the
maximizing control. The corresponding cost function is defined as

A<
ip F3
F,
Fy
M3
F, = B
\/J @ C
= M =
My 2
\‘/_ﬁ[
5 / mg

Ar

Fig.3 Coordinate systems and forces/moments acting on a quadrotor.
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b) Snapshots of the quadrotor along the trajectory

Fig. 4 Cost and snapshot of the quadrotor with conflicting controls.
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Fig. 5 Optimal trajectories of the states and corresponding goal states.

1 [t
J= 5/ lx —x)T0(x —x;) +u"R,u —v'R,v]
0

1
+ 5 (x - xf)TQf(x - xf) (45)

where x, € R!6 denotes the desired terminal states. The goal of this
task is to steer the quadrotor to turn 180 deg about the y; axis. The
state-dependent running cost is included for better convergence. In
the simulations, we set Xs = 2z and x;, = 0 otherwise, and

107, i=1,2,3,5;
_ )10 i=4.67.8.9;
9= 1105 i=10.11012; “6)
0 otherwise

and all the off-diagonal terms are assigned to zero. We also chose
0 =0.01Qs, R, =0.0001/, and R, = 0.0005/. Finally, we let
y =0.5.

The desired terminal state x is chosen such that the quadrotor
changes its pitch angle by 27 and returns to its original hovering
position. Fifty iterations were performed to ensure convergence. The
cost per iteration is shown in Fig. 4a. A snapshot of the quadrotor
along the optimal trajectory is depicted in Fig. 4b. The corresponding
optimal state trajectories are shown in Fig. 5.

B. Experimental Results

The continuous version of the GT-DDP algorithm was also
implemented on a Parrot AR.Drone 2.0 quadrotor. Two path-tracking
flight tests were performed to validate the theory, especially the ability of
GT-DDP to deal with disturbances. In the first test we employed a sling
load (Fig. 6) and in the second test we applied an external wind field to
create model discrepancies and external disturbances unknown to the
system. We then compared the GT-DDP controller with a standard DDP
controller to validate the robustness of the GT-DDP controller.

We first solved for the optimal trajectory that minimizes the
tracking error from some nominal trajectory along with the control
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Fig. 6 Sling load generates significant model error and pendulous oscillation disturbance in flight.

effort, and then used the DDP or GT-DDP solutions as reference state,
input, and feedback gain trajectories in our low-level controllers.

For the controller implementation we had to translate the low-level
inputs obtained via the DDP/GT-DDP to the high-level control inputs
(e.g., attitude) tailored to the system operating frequency. The
dynamics of the four propeller rotors are much faster than the
dynamics of the quadrotor main body, and direct rotor control
requires significantly higher frequency operating rate to stabilize the
full-state of the drone [34]. We thus relied on the onboard attitude
controller of AR.Drone 2.0 to command the high-level inputs from
the DDP/GT-DDP controller to the individual rotor commands.

The system architecture consists of three main units: the path
planner, the state estimator, and the GT-DDP unit, as shown in Fig. 7.
The interconnection among these three units was done using the Robot
Operating System (ROS) framework. The control command in the
GT-DDP unit is calculated in the ground control source (GCS) running
on an Intel Xeon W-2135 6-core processor with 32 GB RAM and
commanded to AR.Drone 2.0 through Wi-Fi via the ardrone_autonomy
ROS driver package [35]. We used a VICON motion capture system
and the mocap_vicon ROS package [36] to estimate the full state of the
drone at 100 Hz for direct feedback.

Within the GT-DDP controller block the workload is divided into
three subunits: the controller node, the optimizer, and the controller.
The controller node takes care of the communication with the other

units by publishing and subscribing to ROS messaging, while
managing the optimizer and the controller units to perform their own
tasks. Once the target state trajectory x,; from the path planner is fed to
the controller node, the node assigns the optimizer, the current state,
and the target state trajectory to obtain the optimal state x*, input u*,
and gain K, histories based on the current state and the pre-assigned
cost matrix.

The major functionality of the controller block is to compute the
feedback control policy throughout the execution of the program.
The controller stores the reference state x*, reference input #*, and
gain K,,, which are updated at ROS timer call over the time horizon.
Once the optimal state, input, and gain trajectories are computed from
the optimizer, we use the ROS timer to update the controller’s internal
data at each time segment. Specifically, the trajectories are stored as a
function of time data type (e.g., using splines), and the timer callback
generates a time ¢ to compute the state, the input, and the gain
from these trajectories. Concurrently, the controller node calls the
controller’s function to compute the corrective policy, that is,
u = u* + K,(x — x*), after receiving the latest state estimate x. This
multithread controller structure is adopted from the rotors_simulator
ROS package [37].

One important aspect of the controller architecture used, already
briefly mentioned earlier, is that we need to map the low-level control
inputs obtained with the DDP/GT-DDP algorithm to high-level

PATH PLANNER UNIT STATE ESTIMATION UNIT
PATH STATE
PLANNER ESTIMATOR VICOW
target trajectory odometry
Xg P
GT-DDP GTDDP UNIT
CONTROLLER
NODE
OPGTTI-l\I/)H%};R GT-DDP
MAIN CONTROLLER
reference trajectory control AR.DRONE

x* u* K,

v

Fig.7 System architecture.
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control inputs to be fed to the onboard attitude controller.
Specifically, the AR.Drone 2.0 only accepts (¢, 0, r, z) as inputs, that
is, roll, pitch, yaw rate, and vertical speed. We obtain these by
integrating the equation of motion. Namely, we find the high-level
input command v = (¢, 0, r,z) to the quadrotor by numerically
integrating the dynamics model of the AR. Drone using the current
state estimate x and the computed feedback control u = u*+
K, (x — x*). We denote this operation as¥ = h(x, u, Ar) and yields the
predicted four state variables At seconds ahead. The prediction window
At can be adjusted according to the controller operating frequency.

We use proportional + derivative loop around v with the VICON
state estimate to ensure that the quadrotor follows the high-level
command. The schematic of the interconnection of the various
signals within the controller is shown in Fig. 8.

The GT-DDP optimizer program was coded in C/C++ to perform
the tasks listed in Algorithm 1. We used the boost odeint C++ library
to numerically integrate the quadrotor dynamics forward and the
value function equations backward it time with the Dormand-Prince
fifth-order method. The program stores and manages the state, the
input, and the gain trajectories using the Spline class provided in the
Eigen C++ library.

Two different trajectories, namely, a figure-eight and an inclined
circle, were tested to validate the GT-DDP controller tracking
performance. To help convergence, the initial trajectory was given in
the differential flat output space ¢ = [x, y, z,w]’, which was then
used to obtain v; = [¢, 0, r, z]7 as proposed in [38]. By introducing
the intermediate inputs u = [u,, u,]” where u, = [5,5,,65 + g]"
and u,, = 6,4, we map the flat outputs ¢ to the inputs of interest v,,.
This mapping is restricted to twice differentiable trajectories with ¢
lying within [—z/2, /2], while not free-falling, that is, Z = —g.
Although not necessary, we use the target state trajectory x, as o, 6,
and v, to accelerate the convergence of the DDP/GT-PPD optimizer.

The figure-eight trajectory was given as [x,y,z,y]=
[acos(w/2t), fsin(wt), y, 0], where a and f are the amplitude of the
figure-eight and y is the height. The test results with a = 0.8 m,
p = 0.6 mandy = 1.0 mwithw = 1.256 rad/s are showninFig. 9.
In our second tracking test, the target trajectory was an inclined circle,
such thate,; = [x,y,z,w]T = [acos(wt), Bsin(wt), y cos(wt) +2,0],
where a, f#, and y are the amplitude in the x, y, z directions accordingly.
Weseta = 0.9 m,f = 0.8 m,andy = 0.45 mwithw = 0.98 rad/s.
The tracking results for the inclined circular trajectory are shown
in Fig. 10.

GT-DDP u* + u v, + v
OPTIMIZER ~———()——+ & O AR.DRONE
MAIN + -
$.6
Ku PDA s
¢.6
x* + | = x
)
U

Fig. 8 GT-DDP controller signal flow schematic.
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— — Target

Fig.9 GT-DDP (dash-dot) and DDP (solid) path tracking flight result for target path figure eight (dash) with sling load (left) and with external wind field

(right).

— — Target
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0
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Fig.10 GT-DDP (dash-dot) and DDP (solid) path tracking flight result for target path inclined circle (dash) with sling load (left) and with external wind

field (right).
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Two different types of external disturbances were investigated: the
addition of a sling load and the effect of an external wind field. In the
first case, we attached a 100 g mass 57 cm below the quadrotor center
of mass with a flexible string to create nonnegligible model error and
pendulous oscillation during the flight. The load adds 21% to the total
mass of the quadrotor, and it freely swings during the flight. During
the second test case, we applied a lateral wind with constant airspeed,
using a 30-inch blade fan capable of 12,750 CFM. The approximate
wind speed at the center of the trajectory is about 9.8 mph, as provided
by the manufacturer.

The results for both cases are shown in Figs. 9 and 10. In both cases
the GT-DDP performed better than the DDP. Error plots quantify
the difference in performance but for the sake of brevity are not
shown here, especially because the difference in performance is even
noticeable when plotting the corresponding trajectories recorded by
the VICON system.

VI. Conclusions

In this paper, a differential game problem with two conflicting
controls has been considered. The problem has been formulated in
continuous time by first considering a first-order expansion of the
dynamics and a quadratic expansion of the cost function. By taking
the Taylor series expansion of the associated Hamilton—Jacobi—
Bellman-Isaacs equation around a nominal trajectory, the update law
of both minimizing and maximizing controls, as well as the backward
propagation equations of the zeroth-, first-, and second-order
approximation terms of the value function, has been derived. By
discretizing along the nominal trajectory, the derivation of the
Game-Theoretic Differential Dynamic Programming (GT-DDP)
algorithm in discrete time is then also presented. The advantages of
the continuous-time GT-DDP over its discrete-time counterpart are
discussed, and the performance of the two formulations is compared
using several examples with conflicting controls. Specifically, it has
been shown that the continuous-time formulation enjoys improved
convergence properties compared with its discrete-time counterpart.
The continuous-time GT-DDP algorithm is tested on a nonlinear
control problem, namely, a quadrotor flight steering. The example
showcases the ability of the GT-DDP algorithm to handle relatively
high-degree-of-freedom systems. Lastly, GT-DDP on a quadrotor has
been implemented with a sling load attached to it and subject to wind
disturbances, and the superior performance of the GT-DDP algorithm
compared with the standard DDP algorithm in terms or robustness
has been shown, validating the benefits of a min-max formulation for
handling disturbances.

Appendix A: Derivation of the Expansion
of the HJB Equation

Starting with the left-hand side of Eq. (5) we have:

V(X 4 6x,1) oV av,{ %

W) _ 5% + > 5 ! a:X‘Sx (A1)

ot ot o T

We also have

dv. oV  _.dx oV
— vt _ A2
dt ot Vs dr ot +V (A2)

Thus, we get the expression

oV dv o
— —VIF A3
or  dt o (A3)
Similarly,
v, dv, - -
L= X_Vy_F A4
at d[ XX ( )

Finally, the partial time derivative of the Hessian of the value
function takes the form:

oV

”= Ve Zviizx FO (AS)

vyhere Vi;’x denotes the Hessian matrix of the ith element of VX and
F® denotes the ith element of F. Using the expressions (A2—A4),
the left-hand side of Eq. (5) thus becomes

oV(x,r) dv dv? 1. ..dv, - o
- ~ bx — —oxT S sy 4 VTF 4 5xTV, F
or ar @ T g Ao

1 n_
+ EéxT (Z V)(C’QXF(’)) ox (A6)

i=1

‘We now turn our attention to the expansion of the right-hand side of
Eq. (5). We start by writing

Lx,u,v,t) = L(X+ 6x,u+ u,v+ 6v,1)
~L+ Zféx + Zgéu + zfév

Tr - _ _
"N\ Ly L Lo|[ox
1 - - -
+5 ou ‘Cux ‘Cuu ‘Cuv ou (A7)
Sv va zvu ‘Zvv v

By expanding V, around x we have

_ _ _ 1 .-
V.x, )=V .(x+x,t)mV,+V bx + 5 74 (A8)

where W € R” is defined as
WO =sx"Visx, i=1,...,n
The system Eq. (1) is also expanded up to the first order, that is,

F(x,u,v,t) = F(x + éx,u + bu,v + év, 1)
~F + F.6x + F,6u + F,6v (A9)

Therefore, the right-hand side of Eq. (5) can be approximated as
minmax{L(x,u,v,t) + VIF(x,u,v, 1)}
u v

~ min maX{L‘ + £T6x + L‘Téu Zf&v

Su v
5x ’ zxx Z"xu Z"xv 5x
+5 | ou Low Luw Luw || 0w |+VIF+VIF6x

=7
<
Yl
=
o
g
o
I~¢
<

v

+ VIF,6u+ VIF,6v 4 6xTV F + 6xTV  F 6x

o - 1 - -
+6xTV  F,6u+ 6xTV  F,6v + 3 WTF} (A10)

Next, note that the term (1/2)W” F can be written as follows:

o . _ . 1 noo_
W F= Z(éxTVi’)?xéxF“)) = ox (Z VSEXF(’))éx

i=1 i=1

After equating Eq. (A6) with Eq. (A10), and canceling repeated
terms, one obtains
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v _,dv, 1 ,dv,,
—E—éx ar —Eéx 4 ox

= minmax] £ + Zf&x + Zgéu + E{év

Su Sv
ox "Ly Lo Ly || ox
+—| ou Zux EW Euv ou
ov Loy [_jw Ly ov
+ VIF.8x + VIF,6u + VIF,60 + 6xTV . .F 6x

+&xTV F,6u + 5x7\7xxﬁu5v}
ou  ov

_ - - I T
= min max{E +6xTQ, +6u"Q, +5v7Q, + EéxTQxxéx

Lo g Lo rs TH TH
+ §5u Q,.0u + Eév 0,0V +dou’ Q,,.06x + ov' Q,,0x

+5uTQMv5v} (A1)
where

0,=FlV,+ L, (A12a)

0,=FIV .+ L, (A12b)

Q,=FIV,+ L, (Al12¢)

Ou =L+ Vo F +FV,, (A12d)

Oui = L (Al2e)

Ouw =Ly (A12f)

Oue = FiVi + Ly, (A12g)

O = FlVo + Ly (A12h)

Ou =Ly (A12i)

Appendix B: Proof of Proposition II.1

Proof: To find the update law of the value function and its first- and
second-order partial derivatives, we substitute the minimizing control
(11a) and maximizing control (11b) to the HIBI Eq. (5).

Specifically, we have

av v, 1 _,dv

S T X _ - S T XX

a % a2 T

5x = L+ 6x7Q, + suTQ,
+ 60T Q, + surT Q. 6x + %(m*TQW(su* + 6u*? Q,,,6v*
+ %év*TQw(Sv* + 5v¥TQ,,.6x + %5xTQm5x
=L+&xT0,+ (I, + K,5x)70, + (I, + K,6x)7 0,

+ (I, + K,60)70,.6x + (I, + K,6x)7 Q,.6x

+ %5xTQXX5x + 1, + K,6x)" 0, (1, + K,6x)

1 _
+ 5 (lu + Kuax)TQuu(lu + Kuﬁx)

1 _
+ 5 (lv + Kvéx)TQvu(lv + Kvax) (Bl)

After collecting terms in the right-hand side of Eq. (B1) as zeroth-,
first-, and second-order expressions of dx, we can equate the
coefficients of dx in the left-hand side and right-hand side of Eq. (B1)
and readily obtain the backward propagation equations with respect
to the value function and its first- and second-order partial derivatives
as follows:

v - - -1, - - 1.
_E =L + llQu + l{Qv + EluQuulu + nguvlv + Engvvlv
(B2a)
av, - - -~ - -
- dtx = Qx + KgQu + Kng + nglu + Qz:xlv + KZQLlulu
+ KOl + K[Qul, + KO0, (B2b)
d‘;,\:x — K7 A AT K KT A AT K KT 2 K
_7 - uqu + qu u + v va + va v + v Qvu u
+ KZquKv + KgQuuKu + KZ:QUUKU + Qxx (B3C)

Atthe final time, we have the boundary condition (6). By taking the
Taylor series expansion around x(#;) we get the expressions

d(x(tp), 1r) = d(x(tp) + 6x(ts), tf)
~Px(ty), t) + x(tp) o (X(17), 17)
+ 6x(tp) o (X(17). 17)6x(t7) (B4

Therefore, the boundary conditions at ¢ = ¢, for the backward
differential equations (19) are

V(’f) = p(x(ts). ty) (B5a)
Vilty) = do(E(tp). 1) (B5b)
V.xx(tf) = ¢xx('i'(tf)’ [f) (BSC)
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