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In this work, the first min-max Game-Theoretic Differential Dynamic Programming (GT-DDP) algorithm in

continuous time is derived. A set of backward differential equations for the value function is provided, along with its

first- and second-order derivatives without assuming proximity of the initial nominal controls to the optimal controls.

The corresponding update laws for both the minimizing and maximizing controls are also derived. For comparison,

the derivation of the GT-DDP algorithm in discrete time is presented in order to better elucidate the differences

between the continuous and discrete time formulations. The effect of the game-theoretic formulation in the

feed-forward and feedback parts of the optimal control policies is analyzed, and the discrete and continuous time

GT-DDP algorithms are compared through numerical examples. Experimental results using a quadrotor demonstrate

the superiorityofGT-DDP inhandlingmodeluncertainties andexternaldisturbancesover the standardDDPalgorithm.

I. Introduction

D IFFERENTIAL game-theoretic or min-max formulations are
important extensions of optimal control havingdirect connections

to robust and H∞ nonlinear control theory [1,2], as well as risk-
sensitive control [3,4]. Despite the plethora of previous works in this
area, min-max algorithms for trajectory optimization have been scarce.
We are familiar only with the work of [5], where a min-max algorithm
was derived and was applied to a humanoid robotic control problem.
The approach in [5] is based on differential dynamic programming
(DDP) [6,7]. DDP uses dynamic programming ideas and attempts to
find a locally optimal control policy through the iterative improvement
of a nominal control and state trajectory. One attractive feature of DDP
is its second-order convergence [8,9]. The performance of DDP has
been compared with other local methods and was found to be, in
general, superior to them [10,11]. DDPhas also been applied to various
realistic problemswith notable success, such as robot locomotion [12],
helicopter acrobatic maneuvers [13], and biological nervous systems
[10]. Although the initial derivation of DDP was in continuous time,
most of the work on trajectory optimization, including the min-max
DDP formulation in [5], addresses either discrete time nonlinear
systems or discretized versions of systems that are originally expressed
in continuous time.
Many variations of the basic DDP algorithm have been derived

and applied to deterministic and stochastic systems in robotics,
autonomous systems, and computational neuroscience. In particular,
in [14] a discrete-time DDP algorithm was derived for nonlinear
stochastic systems with state and control multiplicative noise, and
was applied to biomechanical models. The resulting algorithm,
known as iterative Linear Quadratic Gaussian (iLQG) control, relies

on a first-order expansion of the dynamics. In [15], second-order
expansions of a stochastic dynamical system with state and control
multiplicative noise were considered. The resulting algorithm,
known as Stochastic Differential Dynamic Programming (SDDP),
is a generalization of iLQG. The DDP algorithm has been applied
in a receding horizon manner to account for complex dynamics
and alleviates the curse of dimensionality [16,17]. In [18], random
sampling techniques are proposed to improve the scalability of DDP.
An infinite-horizon version of the discrete time DDP is derived in
[19,20], where DDP is used for deterministic nonlinear systems with
control limits and is subsequently applied to control of a humanoid
robot in simulation. DDP with control and state constraints is
discussed in [21]. Finally, DDP is combined with machine learning
methods for systems with learned dynamics [22–24].
Although there has been a lot of work on several versions of DDP

algorithms and their application to engineering systems, most of the
work in the literature thus far has been on discrete time formulations
and for cases where there are no disturbances. Following up on this
existing amount of work, in this paper we present the derivation of a
min-max DDP (or Game-Theoretic Differential Dynamic Program-
ming [GT-DDP]) algorithm in continuous time that solves a two-
player zero-sum differential game. The basic outline of the proposed
GT-DDP algorithm was first reported in [25]. In the current paper all
the missing details and assumptions used in [25] for the derivation of
GT-DDP have been added and elaborated upon. Furthermore, and in
order to show the benefits of working directly in the continuous-time
domain, we compare the developed min-max DDP algorithm with a
similar, more standard, discrete time formulation. In particular, we
provide a set of backward differential equations for the continuous-
time case and difference equations for the discrete-time case,
respectively. From these, we subsequently derive the optimal policies
for the two players/controllers. We compare the continuous and
discrete time formulations in terms of their convergence and
numerical efficiency and, in particular, we investigate the effect of the
min-max formulation in the feed-forward and feedback parts of the
optimal control policies.
With respect to the initial treatment of DDP in [7], our analysis and

derivation of the GT-DDP follows [26] and avoids a restrictive
assumption of the initial derivation of DDP. Specifically, the
fundamental assumption in the derivation of continuous-timeDDP in
[7] is that the nominal control �u is close to the optimal controlu�. This
assumption was also discussed in [27]. This assumption allows the
expansion of the terms in the Hamilton–Jacobi–Bellman (HJB)
partial differential equation (PDE) around u� instead of �u and results
in the cancelation of terms that depend onHu � 0, whereHu stands
for the partial derivative of theHamiltonianwith respect to the control
input. GT-DDP, on the other hand, does not rely on this assumption,
and therefore the quadratic expansions of the terms in the HJB PDE
are computed around the nominal controls �u, �v and not around the
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optimal controlsu�,v�. In this case, the neglected termsHu andHv in
the standard DDP problem formulation may not necessarily be equal
to zero. More details on this issue are given in Sec. II.E.
The rest of the paper is organized as follows. In Sec. II the game-

theoretic problem is formulated and the backward differential equations
in continuous time are derived. In Sec. III the derivation of the game-
theoretic DDP in discrete time is presented, and a comparison between
the two formulations is given in Sec. IV. Simulation and experimental
results are shown in Sec. V. Finally, Sec. VI provides a summary of the
results and suggests some possible future research directions.

II. Game Theoretic Differential Dynamic Programming
in Continuous Time

A. Notation

The notation used throughout this paper is quite standard, but is
repeated here for the sake of completeness. Specifically, R denotes
the set of real numbers, R� denotes the set of all positive real
numbers, Rn denotes the set of n × 1 real column vectors, and Rn×m

denotes the set of n ×m real matrices. For single-variable functions,
C1�R� denotes the set of functions having domain R that are
continuously differentiable and C2�R� denotes the set of functions
whose second-order derivative exists and is continuouswithdomainR.
Given amultivariable function of two argumentsg:Rn × Rm → R, we
write g ∈ Ck;l�Rn × Rm� if g has continuous derivatives up to order k
with respect to the first argument and continuous derivatives up to
order lwith respect to the second argument.We alsowrite �⋅�T for the
transpose operator and �⋅�−1 for the inverse operator of a matrix.
Given a function ψ :Rn× �0;tf�→R, we let ψx�x;t�≔

��∂ψ�x;t�∕∂x1�; :::;�∂ψ�x;t�∕∂xn��T denote the partial derivative of
ψ with respect to x, and

ψxx�x; t� ≔

2
66664

∂2ψ�x;t�
∂2x1

; · · · ; ∂2ψ�x;t�
∂x1xn

..

. . .
. ..

.

∂2ψ�x;t�
∂x1∂xn

; · · · ; ∂2ψ�x;t�
∂2xn

3
77775

to denote the Hessian of ψ with respect to x. Given the vector-valued
functionω:Rn×R�→Rn defined byω�x;t���ω1�x;t�; :::;ωn�x;t��T,
the notation

ωx�x; t� ≔

2
66664

∂ω1�x;t�
∂x1

; · · · ; ∂ω1�x;t�
∂xn

..

. . .
. ..

.

∂ωn�x;t�
∂x1

; · · · ; ∂ωn�x;t�
∂xn

3
77775

denotes the Jacobian matrix of ω with respect to x.

B. Problem Formulation

We consider a min-max differential game problem where the
dynamics of the system can be described by

dx�t�
dt

� F�x�t�; u�t�; v�t�; t�; x�t0� � x0 (1)

where x�t� ∈ Rn is the state of the dynamic system at t ∈ �t0; tf�,
and u�t� ∈ U1 ⊂ Rmu and v�t� ∈ U2 ⊂ Rmv denote the conflicting
controls, whereU1 andU2 are open and convex constraint sets of the
controls u and v, respectively. We seek nonanticipative feedback
strategies for both players; that is, we wish to find maps γu: �t0; tf� ×
Rn → U1 and γv: �t0; tf� × Rn → U2 such that one of the players
minimizes the cost function

J�γu; γv� � ϕ�x�tf�; tf� �
Z

tf

t0

L�x�t�; γu�t; x�t��; γv�t; x�t��; t� dt

(2)

while the other player maximizes Eq. (2). In Eq. (2) γu�t; x�t�� �
u�t� and γv�t; x�t�� � v�t� are the feedback strategies of the players,

tf is a fixed terminal time of the game, L:Rn × Rmu × Rmv ×
�t0; tf� → R� denotes the running cost, and ϕ:Rn × �t0; tf� → R�
denotes the terminal cost.
Standard regularity assumptions on the functions F, L, and ϕ will

be assumed throughout the paper to ensure existence and uniqueness
of solutions of the differential Eq. (1). Accordingly, it will be assumed
that γu�t; x� and γv�t; x� are piecewise continuous functions in t and
Lipschitz continuous functions in x.
We assume that the playermanipulatingu attempts tominimize the

cost function, whereas the player manipulating v aims to maximize
the cost function. The function describing the minimax value of the
cost function at t0 and x0 is then given by

V�x0; t0� � min
γu

max
γv

�
ϕ�x�tf�; tf�

�
Z

tf

t0

L�x�t�; γu�t; x�t��; γv�t; x�t��; t� dt
�

(3)

which is known as the value function.
For the derivation of the continuous time GT-DDP we will need

additional conditions on the smoothness of the dynamics and the cost
function, as well as some additional assumptions on the differential
game (1) and (3). In particular, we will assume that
(A1) The dynamics F ∈ C1;1;1;1�Rn × Rmu × Rmv × R��.
(A2) The running cost L ∈ C2;2;2;1�Rn × Rmu × Rmv × R��.
(A3) For any fixed tf, the terminal cost ϕ ∈ C2�Rn�.
(A4) The value V ∈ C2;1�Rn × R��.
(A5) Both the minimizer and maximizer have perfect knowledge

of the dynamics of the system given by Eq. (1), the constraint setsU1

and U2, the cost function, and the current state x.
(A6) Only (nonanticipative) state feedback strategies for both

players are considered.
(A7) The Isaacs condition [28]

min
u∈U1

max
v∈U2

fL�x; u; v; t� � Vx�x; t�TF�x; u; v; t�g

� max
v∈U2

min
u∈U1

fL�x; u; v; t� � Vx�x; t�TF�x; u; v; t�g (4)

holds for all x, u, v and t ≥ 0.
Assumptions (A1) through (A4) ensure that all derivatives in the

subsequent derivations exist, whereas (A5) is a standard assumption
for games with complete information [28]. Assumption (A6) comes
from the fact that as long as a saddle point in feedback strategies
exists, it is not necessary to consider other classes of strategies (see
Theorem 6.9 in [29]). The Isaacs’s condition in assumption (A7)
ensures that the min and max operators can be interchanged without
affecting the outcome and thus ensures the existence of the value of
the game. Note that the Isaacs’s condition holds when the controls are
separable in both dynamics and cost [28], which is the case for many
problems in practice.
The derivation of themin-maxDDP is similar to the standard DDP

case, in the sense that it consists of twomain steps. In the first step the
optimal policy update is derived. This policy update is a function of
the zero, first, and second order of terms of the value function
expansion along the nominal trajectory. The second step of the
derivation results in the equations of the backward propagation of the
value function along the nominal trajectory. Next, we start our
analysis with the derivation of the optimal policy update.

C. Optimal Policy Update

In continuous time, it is known that the value function satisfies
the Hamilton–Jacobi–Bellman–Isaacs (HJBI) PDE. Specifically, we
have for the value of the game in (3)

−
∂V�x; t�

∂t
� min

u
max
v

fL�x; u; v; t� � Vx�x; t�TF�x; u; v; t�g (5)

with boundary condition

V�x�tf�; tf� � ϕ�x�tf�; tf� (6)
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Given an initial/nominal trajectory of the state and control histories
( �x, �u, �v), and letting δx � x − �x, δu � u − �u, δv � v − �v, one obtains

dx

dt
� F� �x� δx; �u� δu; �v� δv; t� (7)

which leads to the linearized dynamics around ( �x, �u, �v) as follows:

dδx

dt
� �Fxδx� �Fuδu� �Fvδv (8)

where �Fx, �Fu, and �Fv stand for Fx� �x; �u; �v; t�, Fu� �x; �u; �v; t�, and
Fv� �x; �u; �v; t�, respectively. Henceforth, the arguments for the
functions V, F, and so on, will be omitted for brevity unless specified
otherwise, and an overbar will denote that the corresponding quantity
is evaluated along the nominal trajectory ( �x, �u, �v).
The main idea is to take expansions of the terms in both sides of

Eq. (5) around the nominal state and control trajectories ( �x, �u, �v) to
derive the update laws for the minimizing control, maximizing
control, and backward differential equations for the zeroth-, first-,
and second-order approximation terms of the value function. After
somemathematical manipulations, we obtain the expansion equation
as follows. Please refer to AppendixA for a detailed derivation of this
equation.

−
d �V

dt
−δxT

d �Vx

dt
−
1

2
δxT

d �Vxx

dt
δx�min

δu
max
δv

�
�L� �LT

x δx� �LT
uδu� �LT

v δv

�1

2

2
664
δx

δu

δv

3
775

T
2
664
�Lxx

�Lxu
�Lxv

�Lux
�Luu

�Luv

�Lvx
�Lvu

�Lvv

3
775
2
664
δx

δu

δv

3
775� �VT

x
�Fxδx� �VT

x
�Fuδu

� �VT
x
�Fvδv�δxT �Vxx

�Fxδx�δxT �Vxx
�Fuδu�δxT �Vxx

�Fvδv

�

�min
δu

max
δv

�
�L�δxT �Qx�δuT �Qu�δvT �Qv�

1

2
δxT �Qxxδx

�1

2
δuT �Quuδu�

1

2
δvT �Qvvδv�δuT �Quxδx�δvT �Qvxδx�δuT �Quvδv

�
(9)

where

�Qx � �FT
x
�Vx � �Lx (10a)

�Qu � �FT
u
�Vx � �Lu (10b)

�Qv � �FT
v
�Vx � �Lv (10c)

�Qxx � �Lxx � �Vxx
�Fx � �FT

x
�Vxx (10d)

�Quu � �Luu (10e)

�Qvv � �Lvv (10f)

�Qux � �FT
u
�Vxx � �Lux (10g)

�Qvx � �FT
v
�Vxx � �Lvx (10h)

�Quv � �Luv (10i)

To find the optimal control δu� and δv�, we compute the gradients
of the expression inside the brackets in Eq. (9) with respect to δu and
δv, respectively, and make them equal to zero to obtain:

δu� � − �Q−1
uu� �Quxδx� �Quvδv

� � �Qu� (11a)

δv� � − �Q−1
vv � �Qvxδx� �Qvuδu

� � �Qv� (11b)

where we have used the fact that �Qvu � �QT
uv. Solving Eq. (11) yields

the final expressions for δu� and δv� as follows:

δu� � lu � Kuδx and δv� � lv � Kvδx (12)

with the feed-forward gains lv, lu and feedback gains Kv, Ku

defined as:

lu � −� �Quu − �Quv
�Q−1
vv

�Qvu�−1� �Qu − �Quv
�Q−1
vv

�Qv� (13)

lv � −� �Qvv − �Qvu
�Q−1
uu

�Quv�−1� �Qv − �Qvu
�Q−1
uu

�Qu� (14)

Ku � −� �Quu − �Quv
�Q−1
vv

�Qvu�−1� �Qux − �Quv
�Q−1
vv

�Qvx� (15)

Kv � −� �Qvv − �Qvu
�Q−1
uu

�Quv�−1� �Qvx − �Qvu
�Q−1
uu

�Qux� (16)

D. Backward Propagation of the Value Function

The next step is to substitute the optimal control (11a) and
disturbance (maximizing control) (11b) to theHJBIEq. (5) in order to
find the update law of the value function and its first- and second-
order partial derivatives. We present the result in the following
proposition.
Proposition II.1: In the continuous time formulation, the value

function and its first- and second-order partial derivatives with
respect to x can be determined by the backward ordinary differential
equations as follows:

−
d �V

dt
� �L� lTu �Qu � lTv �Qv �

1

2
lu �Quulu � lTu �Quvlv �

1

2
lTv �Qvvlv

(17a)

−
d �Vx

dt
� �Qx � KT

u
�Qu � KT

v
�Qv � �QT

uxlu � �QT
vxlv � KT

u
�Quulu

�KT
u
�Quvlv � KT

v
�Qvulu � KT

v
�Qvvlv (17b)

−
d �Vxx

dt
� KT

u
�Qux � �QT

uxKu � KT
v
�Qvx � �QT

vxKv �KT
v
�QvuKu

�KT
u
�QuvKv � KT

u
�QuuKu � KT

v
�QvvKv � �Qxx (17c)

under terminal conditions

�V�tf� � ϕ� �x�tf�; tf� (18a)

�Vx�tf� � ϕx� �x�tf�; tf� (18b)

�Vxx�tf� � ϕxx� �x�tf�; tf� (18c)

Proof: See Appendix B.
In many engineering applications the cost function is designed

such that Lvu � LT
uv � 0. In this case, the differential equations for
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the backward propagation of the value function along the nominal

trajectory are simplified as follows:

−
d �V

dt
� �L� lTu �Qu � lTv �Qv �

1

2
lu �Quulu �

1

2
lTv �Qvvlv (19a)

−
d �Vx

dt
� �Qx � KT

uQu � KT
v
�Qv � �QT

uxlu � �QT
vxlv � KT

u
�Quulu

� KT
v
�Qvvlv (19b)

−
d �Vxx

dt
� KT

u
�Qux � �QT

uxKu � KT
v
�Qvx � �QT

vxKv � KT
u
�QuuKu

� KT
v
�QvvKv � �Qxx (19c)

Remark 1: It is worth pointing out that our approach requires that

the value function be twice differentiable [see assumption (A4)].

In general, V may not be twice differentiable [30]. Indeed, many

Hamilton–Jacobi equations have solutions only in a relaxed sense,

namely, viscosity solutions [31], which are continuous but not

necessarily differentiable everywhere. However, it is known that

linear-quadratic problems, in which the system has linear dynamics

and a quadratic cost function, have smooth value functions [32].

Beyond linear-quadratic problems, the same is true for nonlinear

problems that have a controllable linearization at every point and

their cost function can be locally approximated by a nondegenerate

quadratic cost. In this case, the HJB equation reduces to a matrix

Riccati equation of the type encountered in H∞ problems [1]. The

theory of solutions of such matrix Riccati equations has been

investigated extensively in the literature. So, for such problems

locally, the problem can be approximated by a twice differentiable

value function. Each iteration in the GT-PPD algorithm performs a

first-order approximation of the dynamics model and a second-order

approximation of the cost function along a nominal trajectory,

resulting in a linear-quadratic problem at each iteration, for which the

value function is twice continuously differentiable.

E. Comparison to the Derivation of Original DDP

It is worth comparing the basic steps of GT-DDP with the steps of

the minimax DDP extended from the original derivation of the

continuous-time DDP in [7]. The major differences between the

derivation of continuous-time DDP in [7] and our approach were

mentioned briefly in Sec. I. In this subsection, wewill elaborate more

on the similarities and differences between the two derivations. First,

we present an extension of the original DDP and explain how this can

be applied to solve problems with conflicting controls.
To this end, let the HamiltonianH�x; u; v; Vx; t� � L�x;u; v; t��

VT
xF�x; u; v; t�. The derivation of the originalDDP startswith theHJB

equation. Accordingly, the HJBI equation given in Eq. (5) is used for

the case of conflicting controls. By letting x � �x� δx, u � �u� δu,
v � �v� δv, and after some mathematical manipulations, Eq. (5) is

expanded up to second order to yield

−
∂ �V
∂t

−
∂a
∂t

−
∂ �Vx

∂t

T

δx −
1

2
δxT

∂ �Vxx

δ
x

� min
δu

max
δv

�
H� �x� δx; �u� δu; �v� δv; �Vx; t�

�
�
�Vxxδx�

1

2
�Vxxxδxδx

�
T

F� �x� δx; �u� δu; �v� δv; t�
�

(20)

where all the terms whose arguments are unspecified are evaluated at

( �x, �u, �v), anda is the difference between the cost obtained by evaluating
it along ( �x, u⋆, v⋆) and the nominal cost �V obtained at ( �x, �u, �v), where
u⋆ and v⋆ are given by Eqs. (21) and (22). The term �Vxxxδxδx denotes
the vector �δxT �V�1�

xxxδx; : : : ; δxT �V�n�
xxxδx�T.

Instead of finding the optimal δu and δvwith respect to �u and �v, in
the original DDP approach the intermediate optimal controls u⋆ and
v⋆ are obtained (analytically or numerically) by solving the problems

u� � arg min
u
H� �x; u; v⋆; �Vx; t� (21)

v� � arg max
v

H� �x; u⋆; v; �Vx; t� (22)

Note that u⋆ and v⋆ are only intermediate optimal controls as they
are evaluated along �x and they would eventually converge to the
true optimal controls when �x converges to x⋆. The corresponding
backward propagation equations with respect to the value function
and its first- and second-order partial derivatives are then found by
equating the left-hand side of Eq. (20) with the second-order
expansion of

min
δu

max
δv

�
H� �x� δx; u⋆ � δu; v⋆ � δv; �Vx; t�

�
�
�Vxxδx�

1

2
�Vxxxδxδx

�
T

F� �x� δx; u⋆ � δu; v⋆ � δv; t�
�
(23)

Since u⋆ minimizes the Hamiltonian while v⋆ maximizes the
Hamiltonian, the necessary conditionsHu� �x; u⋆; v⋆; �Vx; t� � 0 and
Hv� �x; u⋆; v⋆; �Vx; t� � 0 are satisfied. After expansion of Eq. (23)
and collection of similar terms, the backward differential equations
that describe the propagation of the value function are presented
as follows:

−
da

dt
� H −H� �x; �u; �v; �Vx; t� (24a)

−
d �Vx

dt
� Hx � βTH�0

u � ηTH�0
v � �Vxx�F − F� �x; �u; �v; t�� (24b)

−
d �Vxx

dt
� Hxx �Hxuβ� βTHux �Hxvη� ηTHvx � βTHuuβ

� ηTHvvη� βTHuvη� ηTHvuβ� FT
x
�Vxx � �VxxFx � βTFT

u
�Vxx

� �VxxFuβ� ηTFT
v
�Vxx � �VxxFvη�

1

2
�F − F� �x; �u; �v; t��T �Vxxx

� 1

2
�Vxxx�F − F� �x; �u; �v; t�� (24c)

where

β � −�Huu −HuvH−1
vvHvu�−1�Hux � FT

u
�Vxx −HuvH−1

vv

× �Hvx � FT
v
�Vxx��;

η � −�Hvv −HvuH−1
uuHuv�−1�Hvx � FT

v
�Vxx −HvuH−1

uu

× �Hux � FT
u
�Vxx��

where all quantities are evaluated at ( �x,u⋆,v⋆) unless otherwise stated.
The corresponding update laws are u � u⋆ � δu � u⋆ � βδx
and v � v⋆ � δv � v⋆ � ηδx.
It is worth mentioning here that the step to obtain u⋆ and v⋆ from

Eqs. (21) and (22) may be computationally expensive if a numerical
approach is adopted, because one needs to perform this optimization
at each instant during the propagation of the value function. In our
method, δu� and δv� can be computed analytically following
Eq. (11).Note that inEq. (24) the terms βTHu and η

THv become zero,
sinceHu � 0 andHv � 0when evaluated with the optimal controls
u⋆ andv⋆ fromEqs. (21) and (22). In contrast, we expand the terms in
theHJBI equation around the nominal controls �u, �v instead of u⋆, v⋆.
Another observation is that the term �Vxxx shows up in Eq. (24c),

which was not present in the backward differential equations (17).
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This term is neglected in the original derivation of DDP in order to
integrate Eq. (24). However, the terms �1∕2��F� �x; u⋆; v⋆; t�−
F� �x; �u; �v; t��T �Vxxx and �1∕2� �Vxxx�F� �x; u⋆; v⋆; t� − F� �x; �u; �v; t��
can be omitted only when �u is relatively close to u⋆, and �v is relatively
close to v⋆.

III. Game-Theoretic Differential Dynamic
Programming in Discrete Time

An alternative to the previous continuous-time formulation is to
apply GT-DDP in a discrete setting. In this section, we derive the
discrete-time game theoretic DDP algorithm and compare it with the
discrete min-max DDP derived in [5]. In the discrete-time approach,
the problem is first discretized along the given time interval [t0, tf].
Let the time discretization be 0 � t0 < t1 < : : : < tM � tf, and let
xk � x�tk�, uk � u�tk� and vk � v�tk�. Starting from xk�1 � xk�
F�xk; uk; vk; tk�δt, where δt � tk�1 − tk, the linearized dynamics
model around �xk, �uk, �vk in discrete time can be written as

δxk�1 � �A�tk�δxk � �Bu�tk�δuk � �Bv�tk�δvk (25)

where �A�tk� � I�Fx� �xk; �uk; �vk; tk�δt, �Bu�tk� �Fu� �xk; �uk; �vk; tk�δt
and �Bv�tk� � Fv� �xk; �uk; �vk; tk�δt. Here δxk � xk − �xk, δuk � uk −
�uk and δvk � vk − �vk are defined as the deviations from the nominal
trajectory at time tk. The state-dependent arguments in �A�tk�, �Bu�tk�,
�Bv�tk� are evaluated at ( �xk, �uk, �vk), and are omitted for abbreviation.
Henceforth, all the values at tk are evaluated at ( �xk, �uk, �vk),
unless otherwise specified. Similarly, values at tk�1 are evaluated at
( �xk�1, �uk�1, �vk�1).
Similarly to the HJBI equation in the continuous-time case, our

analysis for the discrete time case startswith the discreteHJBI equation
with minimizing and maximizing controls uk and vk, namely,
V�xk; tk� � minuk maxvkfL�xk;uk; vk; tk� � V�xk�1; tk�1�g, where
L�xk; uk; vk; tk� � L�x�tk�; u�tk�; v�tk�; tk�δt. Let Θ�xk;uk; vk� �
L�xk; uk; vk; tk� � V�xk�1; tk�1� We construct a quadratic local
model of the value function by expanding the functionΘ up to second
order as follows:

Θ� �xk � δxk; �uk � δuk; �vk � δvk� ≈ �Θ� �Θxδxk � �Θuδuk � �Θvδvk

� 1

2

2
664
δxk

δuk

δvk

3
775

T
2
664

�Θxx
�Θxu

�Θxv

�Θux
�Θuu

�Θuv

�Θvx
�Θvu

�Θvv

3
775
2
664
δxk

δuk

δvk

3
775 (26)

where all the �Θ-related terms are given as

�Θx � �Vx�tk�1�T �A�tk� � �Lx�tk� (27a)

�Θu � �Vx�tk�1�T �Bu�tk� � �Lu�tk� (27b)

�Θv � �Vx�tk�1�T �Bv�tk� � �Lv�tk� (27c)

�Θxx � �A�tk�T �Vxx�tk�1� �A�tk� � �Lxx�tk� (27d)

�Θuu � �Bu�tk�T �Vxx�tk�1� �Bu�tk� � �Luu�tk� (27e)

�Θvv � �Bv�tk�T �Vxx�tk�1� �Bv�tk� � �Lvv�tk� (27f)

�Θxu � �A�tk�T �Vxx�tk�1� �Bu�tk� � �Lxu�tk� (27g)

�Θxv � �A�tk�T �Vxx�tk�1� �Bv�tk� � �Lxv�tk� (27h)

�Θuv � �Bu�tk�T �Vxx�tk�1� �Bv�tk� � �Luv�tk� (27i)

�Θvu � �ΘT
uv; �Θux � �ΘT

xu; �Θvx � �ΘT
xv (27j)

To find the optimal policies for δuk and δvk such that the second-

order expansion of the function �Θ is optimized,we take thegradients of

Eq. (26) with respect to δuk and δvk and set them to zero to obtain

δu�k � − �Θ−1
uu� �Θuxδxk � �Θuvδv

�
k � �Θu� (28a)

δv�k � − �Θ−1
vv � �Θvxδxk � �Θvuδu

�
k � �Θv� (28b)

Solving the system of equations (28) results in the expressions

δu�k � lu � Kuδxk and δv�k � lv � Kvδxk (29)

where

lu � −� �Θuu − �Θuv
�Θ−1
vv

�Θvu�−1� �Θu − �Θuv
�Θ−1
vv

�Θv� (30)

lv � −� �Θvv − �Θvu
�Θ−1
uu

�Θuv�−1� �Θv − �Θvu
�Θ−1
uu

�Θu� (31)

Ku � −� �Θuu − �Θuv
�Θ−1
vv

�Θvu�−1� �Θux − �Θuv
�Θ−1
vv

�Θvx� (32)

Kv � −� �Θvv − �Θvu
�Θ−1
uu

�Θuv�−1� �Θvx − �Θvu
�Θ−1
uu

�Θux� (33)

By substituting the optimal control updates δu�k and δv�k from

Eq. (29) into the value function, we can split the value function into

zeroth-, first-, and second-order terms in δxk, such that �V� �xk � δxk� �
�V�tk� � �Vx�tk�Tδxk � �1∕2�δxTk �Vxx�tk�δxk, where �V�tk�, �Vx�tk�,
and �Vxx�tk� are computed from

�V�tk� � �V�tk�1� � lTu �Θu � lTv �Θv �
1

2
�lTu �Θuulu � lTv �Θvvlv

� lTu �Θuvlv � lTv �Θvulu� (34)

�Vx�tk� � �Θx � KT
u
�Θu � KT

v
�Θv � �Θxulu � �Θxvlv � KT

u
�Θuulu

� KT
v
�Θvvlv � KT

u
�Θuvlv � KT

v
�Θvulu (35)

�Vxx�tk� � �Θxx � KT
u
�Θux � �ΘxuKu � KT

v
�Θvx � �ΘxvKv � KT

u
�ΘuuKu

� KT
v
�ΘvvKv � KT

u
�ΘuvKv � KT

v
�ΘvuKu (36)

Since the optimal cost-to-go is computed backward in time,

boundary conditions need to be given at t � tf. These boundary

conditions are given by

�V�tf� � ϕ� �x�tf�; tf� (37a)

�Vx�tf� � ϕx� �x�tf�; tf� (37b)

�Vxx�tf� � ϕxx� �x�tf�; tf� (37c)
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In contrast to the backward difference equations (34) the
corresponding equations in [5] lack all the terms involving �Θuv.
Remark 2: Note that in order to find the optimal policies for δu�k

and δv�k fromEqs. (28a) and (28b), we need to invert thematrices �Θuu

and �Θvv given by Eqs. (27e) and (27f), respectively. Therefore, it is
required that �Θuu and �Θvv are invertible. Moreover, in order for uk to
be a minimizer of the value function, the matrix �Θuu must be positive
definite. Likewise, �Θvv must be negative definite so that vk is a
maximizer. In the following,wepresent a technique to findnewmatrices
~Θuu and ~Θvv that are positive and negative definite, respectively, while
resembling the original �Θuu and �Θvv, using the following regularization
scheme [14]. For ~Θuu, we first compute the eigenvalue decomposition
VuDuV

T
u � �Θuu andwe replace all elements of the diagonal matrixDu

that are smaller than ξu with ξu to obtain a new diagonal matrix ~Du,
where ξu > 0 is a prescribed small constant, and set ~Θuu � Vu

~DuV
T
u .

Similarly, ~Θvv can be computed by ~Θvv � Vv
~DvV

T
v , whereVvDvV

T
v �

�Θvv is the eigenvalue decomposition of �Θvv, and ~Du is generated by
replacing all elements of the diagonal matrixDu that are larger than−ξv
with −ξv, where ξv > 0 is a small constant.

IV. Comparison Between Continuous and
Discrete GT-DDP

In this section, we discuss the differences between the continuous
and discrete formulations of GT-DDP and explain why the continuous
version may be preferable for most engineering applications. Besides
the form of the backward differential equations, one of the major
differences between the discrete and continuous time formulations lies
in the specification of the terms �Quu and �Qvv (continuous formulation)
and �Θuu and �Θvv (discrete formulation). In the continuous case, these
terms are specified by �Luu and �Lvv from Eqs. (10e) and (10f), and
therefore they are completely determined by the user. This is not the
casewith thediscrete time formulationof theGT-DDP.To see the effect
of the cost function in the feed-forward and feedback gains on
continuous time GT-DDP, we recall that �Quu � �Luu and �Qvv � �Lvv.
Moreover, since �Luu,

�Lvv are design parameters, we can choose them
such that �Luu > 0 and �Lvv < 0. Note also that the positive definiteness
of �Luu andnegative definiteness of

�Lvv are required since the role of the
first controller/player is to minimize the cost while the role of the
second controller/player is tomaximize it.Given �Quu > 0 and �Qvv < 0
we have the following expressions:

�Quu − �Quv
�Q−1
vv

�Qvu > 0 ⇒ � �Quu − �Quv
�Q−1
vv

�Qvu�−1 > 0 (38)

�Qvv − �Qvu
�Q−1
uu

�Quv < 0 ⇒ � �Qvv − �Qvu
�Q−1
uu

�Quv�−1 < 0 (39)

Thematrix inequalities (38) and (39) show that the feed-forward and
feedback parts of the control policies of the two players will operate
such that the first player aims to reduce the costwhile the secondplayer
aims to increase it.
On the other hand, in the discrete time GT-DDP case, we have

�Θuu � �BT
u
�Vxx

�Bu � �Luu (40)

�Θvv � �BT
v
�Vxx

�Bv � �Lvv (41)

Hence, there is no guarantee that �Θuu is positive definite and �Θvv

is negative definite at the same time since they depend on the sign
definiteness of �Vxx, which is not known in advance. The modification
proposed inRemark 2 can be implemented tomaintain the definiteness
of �Θuu and �Θvv. Nonetheless, the convergence of the discrete time
GT-DDP may not be easy to achieve.
In terms of running time, the continuous-time GT-DDP requires

the usage of differential equation solvers, whereas only arithmetic
calculations are needed in discrete time GT-DDP. Therefore, the time
cost per iteration is less in the discrete timeGT-DDP case, where each
iteration is given by an update of the controls.

Thecontinuous-timeGT-DDPalgorithm isprovided inAlgorithm1.
The discrete-time GT-DDP algorithm follows a similar approach and
thus it is omitted for the sake of brevity.
An interesting characteristic of trajectory optimization methods

such as DDP is that they provide the locally optimal state trajectory,
optimal feed-forward control, and locally optimal feedback gains. In
Sec. V we demonstrate the effect of the cost function on the feed-
forward and feedback parts of the minimizing control policy for
different choices of �Lvv.

V. Numerical Examples and Experimental Validation

In this section,we apply our algorithm to severalmin-maxproblems
to test its performance. First, we apply the discrete and continuous
time GT-DDP algorithms to the inverted pendulum problem under
conflicting controls to compare between these two methods. We then
apply the continuous time GT-DDP to a quadrotor system with
conflicting controls. Afterward, we use the gains we obtain from the
previous min-max problems to bring the inverted pendulum and the
quadrotor to their respective desired states under the presence of
stochastic disturbances in the control channel. Although the proposed
GT-DDP algorithm is not designed for systems subject to stochastic
disturbances, the numerical examples below reveal that the min-max
formulation leads to feedback controllers that respond well to
stochastic disturbances as well.

A. Min-Max Problems

1. Inverted Pendulum Problem

We first apply the proposed discrete and continuous time
algorithms on a simple inverted pendulum with conflicting controls
to get a better insight on the impact of the conflicting control in the
overall system performance. The dynamics are given by

I �θ� b_θ −mgl sin θ � u� v (42)

where the parameters in the simulations are chosen as m � 1 kg,
l � 0.5 m, b � 0.1 �N ⋅ s�∕m, I � ml2, g � 9.81 �kg ⋅m�∕s2.
The goal is to bring the pendulum from the initial state �θ; _θ� � �π; 0�
to �θ; _θ� � �0; 0�.

We cast this problem as a trajectory optimization problemwith two
conflicting controls. The cost function is given by

J �
Z

tf

0

�xTQx� uTRuu − vTRvv� dt (43)

where x � �θ; _θ�T , Q � diag�1; 0.1�, Ru � 0.01, and Rv � 1. Note
that we are more interested about cases where Rv is not too large

Algorithm 1 GT-DDP Algorithm

Input: Initial condition of the dynamics x0, initial minimizing control �u and
maximizing control �v, final time tf, multiplier γ, a large integerN, and a small
constant ϵ.
Output: Optimal minimizing control u�, optimal maximizing control v�, and
the corresponding optimal gains lu, Ku, lv, Kv.
1: procedure Update_Control x0, �u, �v, tf
2: fori � 1 to N do
3: while jδuj � jδvj > ϵ do
4: Get the initial trajectory �x by integratingdynamics (1) forwardwith

x0, �u, �v;
5: Compute the value of V, Vx, Vxx at tf according to Eq. (18);
6: Integrate backward the Eqs. (17);
7: Compute lu, Ku, lv, Kv from Eqs. (13) to (16);
8: Integrate Eq. (8) forward by replacing δu and δv with

(lu �Kuδx) and (lv �Kvδx), respectively, to get δx�t�;
9: Compute δu � lu �Kuδx and δv � lv �Kvδx;
10: Update control �u � �u� γδu and �v � �v� γδv, where γ ∈ �0; 1�;
11: Set u� � �u and v� � �v;
12: end while

13: end for
14: return u�, v�, lu, Ku, lv, Kv.
15: end procedure
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comparedwithRu.WhenRv is relatively too large comparedwithRu,
the maximizing control is negligible. In the extreme case, when
Rv → ∞, we obtain an optimal control problem.
We set the initial control to be u ≡ 0, v ≡ 0 and the terminal time to

be tf � 1. The step multiplier γ � 0.8 for the continuous case. Initial
controls and the corresponding initial trajectories of the states are
identical in both cases. We ran the algorithms for 20 iterations and
convergence was achieved in both cases. Figures 1a and 1b present
the optimal controls of u and v for the discrete and continuous time
cases, respectively, as well as the corresponding optimal trajectories
of the states θ, _θ. The two algorithms yield the same results, as
expected.
As can be seen in Fig. 2, the cost converges in 11 iterations in the

discrete-time case. On the other hand, the continuous-time GT-DDP
converges in 4 iterations.
We also performed simulations with different choices of Rv for

both continuous-time and discrete-time GT-DDP, and we altered the
discretization step to see how it affects the outcome. It was observed
that in the continuous GT-DDP case, Rv can be chosen to be Rv ≥
0.011 and the convergence is sustained, whereas in the discrete
GT-DDP case, Rv can only be chosen to be Rv ≥ 0.31 for the
algorithm to converge when dt � 0.05. Once we set dt � 0.01, then
Rv � 0.53 would cause the algorithm to diverge. These numerical
observations seem to indicate that the continuous version of GT-DDP
allows for a larger range of Rv than the discrete version, and that the
discrete GT-DDP is somewhat sensitive to the choice of the
discretization step, which essentially adds another tuning parameter
and makes the algorithm harder to apply. Further investigation is
needed, however, to better assess the impact of the discretization step
to the convergence of the discrete GT-DDP.

2. Quadrotor

In this section we apply the GT-DDP algorithm to a more
complicated and realistic example, namely, a quadrotor system. In the
next sectionwepresent the results fromanexperimental implementation
of the algorithm. The dynamic model of the quadrotor includes
16 states: 3 for the position (r � �x; y; z�T), 3 for the Euler angles
(Φ � �ϕ; θ;ψ�T), 3 for the velocity (_r � � _x; _y; _z�T), 3 for the body
angular rates ( _Φ � �p; q; r�T), and 4 for the motor speeds
(Ω � �ω1;ω2;ω3;ω4�T). The coordinate systems and free body
diagram for the quadrotor are presented in Fig. 3. The inertial frame is
defined by axes xI , yI, and zI , where zI points upward. The body frame
B is attached to the quadrotor with xB coinciding with the forward
direction and zB perpendicular to the plane of rotors pointing upward
duringperfect hover. The correspondingdynamics of thequadrotorwith
conflicting controls is given as follows:

dx

dt
� f�x� �G�u� v� (44)

where x � �r;Φ; _r; _Φ;Ω�T ∈ R16. The form of f�x� and the matrix
G ∈ R16×4 can be found in [33].

The minimizing control is u � �u1; u2; u3; u4�T ∈ R4. Here u1
results in a net force along the zB axis and u2, u3, u4 generate roll,
pitch, and yaw moments, respectively, whereas v ∈ R4 denotes the
maximizing control. The corresponding cost function is defined as
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Fig. 1 Comparison between discrete and continuous time GT-DDP.
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Fig. 2 Cost per iteration under continuous GT-DDP in dashed red and
discrete GT-DDP in blue.
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Fig. 3 Coordinate systems and forces/moments acting on a quadrotor.
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J � 1

2

Z
tf

0

��x − xf�TQ�x − xf� � uTRuu − vTRvv�

� 1

2
�x − xf�TQf�x − xf� (45)

where xf ∈ R16 denotes the desired terminal states. The goal of this

task is to steer the quadrotor to turn 180 deg about the yI axis. The
state-dependent running cost is included for better convergence. In

the simulations, we set xf5 � 2π and xfi � 0 otherwise, and

�Qf�i;i �

8>><
>>:
107; i � 1; 2; 3; 5;
106 i � 4; 6; 7; 8; 9;
105 i � 10; 11; 12;
0 otherwise

(46)

and all the off-diagonal terms are assigned to zero. We also chose

Q � 0.01Qf, Ru � 0.0001I, and Rv � 0.0005I. Finally, we let

γ � 0.5.

The desired terminal state xf is chosen such that the quadrotor
changes its pitch angle by 2π and returns to its original hovering
position. Fifty iterations were performed to ensure convergence. The
cost per iteration is shown in Fig. 4a. A snapshot of the quadrotor
along the optimal trajectory is depicted in Fig. 4b. The corresponding
optimal state trajectories are shown in Fig. 5.

B. Experimental Results

The continuous version of the GT-DDP algorithm was also
implemented on a Parrot AR.Drone 2.0 quadrotor. Two path-tracking
flight testswere performed tovalidate the theory, especially the ability of
GT-DDP to deal with disturbances. In the first test we employed a sling
load (Fig. 6) and in the second test we applied an external wind field to
create model discrepancies and external disturbances unknown to the
system.We then compared theGT-DDPcontrollerwith a standardDDP
controller to validate the robustness of the GT-DDP controller.
We first solved for the optimal trajectory that minimizes the

tracking error from some nominal trajectory along with the control
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a) Cost per iteration
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b) Snapshots of the quadrotor along the trajectory
Fig. 4 Cost and snapshot of the quadrotor with conflicting controls.
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Fig. 5 Optimal trajectories of the states and corresponding goal states.
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effort, and then used theDDPorGT-DDP solutions as reference state,

input, and feedback gain trajectories in our low-level controllers.

For the controller implementation we had to translate the low-level

inputs obtained via theDDP/GT-DDP to the high-level control inputs

(e.g., attitude) tailored to the system operating frequency. The

dynamics of the four propeller rotors are much faster than the

dynamics of the quadrotor main body, and direct rotor control

requires significantly higher frequency operating rate to stabilize the

full-state of the drone [34]. We thus relied on the onboard attitude

controller of AR.Drone 2.0 to command the high-level inputs from

the DDP/GT-DDP controller to the individual rotor commands.

The system architecture consists of three main units: the path

planner, the state estimator, and the GT-DDP unit, as shown in Fig. 7.

The interconnection among these three unitswas done using theRobot

Operating System (ROS) framework. The control command in the

GT-DDPunit is calculated in the ground control source (GCS) running

on an Intel Xeon W-2135 6-core processor with 32 GB RAM and

commanded toAR.Drone2.0 throughWi-Fivia the ardrone_autonomy

ROS driver package [35]. We used a VICON motion capture system

and themocap_vicon ROS package [36] to estimate the full state of the

drone at 100 Hz for direct feedback.

Within the GT-DDP controller block the workload is divided into

three subunits: the controller node, the optimizer, and the controller.

The controller node takes care of the communication with the other

units by publishing and subscribing to ROS messaging, while

managing the optimizer and the controller units to perform their own

tasks.Once the target state trajectory xd from the path planner is fed to

the controller node, the node assigns the optimizer, the current state,

and the target state trajectory to obtain the optimal state x�, input u�,
and gainKu histories based on the current state and the pre-assigned

cost matrix.

The major functionality of the controller block is to compute the

feedback control policy throughout the execution of the program.

The controller stores the reference state x�, reference input u�, and
gain Ku, which are updated at ROS timer call over the time horizon.

Once the optimal state, input, and gain trajectories are computed from

the optimizer, we use the ROS timer to update the controller’s internal

data at each time segment. Specifically, the trajectories are stored as a

function of time data type (e.g., using splines), and the timer callback

generates a time t to compute the state, the input, and the gain

from these trajectories. Concurrently, the controller node calls the

controller’s function to compute the corrective policy, that is,

u � u� � Ku�x − x��, after receiving the latest state estimate x. This
multithread controller structure is adopted from the rotors_simulator

ROS package [37].

One important aspect of the controller architecture used, already

briefly mentioned earlier, is that we need tomap the low-level control

inputs obtained with the DDP/GT-DDP algorithm to high-level

Fig. 6 Sling load generates significant model error and pendulous oscillation disturbance in flight.

STATE ESTIMATION UNITPATH PLANNER UNIT

GT-DDP 
CONTROLLER

STATE 
ESTIMATOR

GT-DDP
OPTIMIZER

MAIN

PATH
PLANNER

target trajectory
xd

odometry
x

reference trajectory control
v

GT-DDP 
CONTROLLER

NODE

AR.DRONE

VICON

GTDDP UNIT

x*, u*, Ku

Fig. 7 System architecture.
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control inputs to be fed to the onboard attitude controller.

Specifically, the AR.Drone 2.0 only accepts (ϕ, θ, r, _z) as inputs, that
is, roll, pitch, yaw rate, and vertical speed. We obtain these by

integrating the equation of motion. Namely, we find the high-level

input command ν � �ϕ; θ; r; _z� to the quadrotor by numerically

integrating the dynamics model of the AR. Drone using the current

state estimate x and the computed feedback control u � u��
Ku�x − x��.Wedenote this operation as ν � h�x; u;Δt� and yields the
predicted four state variablesΔt seconds ahead. The prediction window
Δt can be adjusted according to the controller operating frequency.
We use proportional� derivative loop around ν with the VICON

state estimate to ensure that the quadrotor follows the high-level

command. The schematic of the interconnection of the various

signals within the controller is shown in Fig. 8.

The GT-DDP optimizer program was coded in C/C++ to perform

the tasks listed in Algorithm 1.We used the boost odeint C++ library

to numerically integrate the quadrotor dynamics forward and the

value function equations backward it time with the Dormand-Prince

fifth-order method. The program stores and manages the state, the

input, and the gain trajectories using the Spline class provided in the

Eigen C++ library.

Two different trajectories, namely, a figure-eight and an inclined

circle, were tested to validate the GT-DDP controller tracking

performance. To help convergence, the initial trajectory was given in

the differential flat output space σ � �x; y; z;ψ �T , which was then

used to obtain νd � �ϕ; θ; r; _z�T as proposed in [38]. By introducing

the intermediate inputs u � �up; uψ �T where up � � �σ1; �σ2; �σ3 � g�T
and uψ � _σ4, we map the flat outputs σ to the inputs of interest νd.
This mapping is restricted to twice differentiable trajectories with ϕ
lying within �−π∕2; π∕2�, while not free-falling, that is, �z � −g.
Although not necessary, we use the target state trajectory xd as σ, _σ,
and νd to accelerate the convergence of the DDP/GT-PPD optimizer.

The figure-eight trajectory was given as �x; y; z;ψ � �
�α cos�ω∕2t�; β sin�ωt�; γ; 0�, where α and β are the amplitude of the

figure-eight and γ is the height. The test results with α � 0.8 m,

β � 0.6 m, and γ � 1.0 mwithω � 1.256 rad∕s are shown inFig. 9.
In our second tracking test, the target trajectory was an inclined circle,

such that σd � �x;y;z;ψ �T � �αcos�ωt�;β sin�ωt�;γ cos�ωt�� 2;0�T ,
whereα, β, and γ are the amplitude in the x, y, z directions accordingly.
We setα� 0.9 m,β � 0.8 m, and γ � 0.45 mwithω � 0.98 rad∕s.
The tracking results for the inclined circular trajectory are shown

in Fig. 10.

Fig. 8 GT-DDP controller signal flow schematic.
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Fig. 10 GT-DDP (dash-dot) and DDP (solid) path tracking flight result for target path inclined circle (dash) with sling load (left) and with external wind
field (right).
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(right).
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Two different types of external disturbances were investigated: the
addition of a sling load and the effect of an external wind field. In the
first case, we attached a 100 gmass 57 cm below the quadrotor center
of mass with a flexible string to create nonnegligible model error and
pendulous oscillation during the flight. The load adds 21% to the total
mass of the quadrotor, and it freely swings during the flight. During
the second test case, we applied a lateral windwith constant airspeed,
using a 30-inch blade fan capable of 12,750 CFM. The approximate
wind speed at the center of the trajectory is about 9.8 mph, as provided
by the manufacturer.
The results for both cases are shown in Figs. 9 and 10. In both cases

the GT-DDP performed better than the DDP. Error plots quantify
the difference in performance but for the sake of brevity are not
shown here, especially because the difference in performance is even
noticeable when plotting the corresponding trajectories recorded by
the VICON system.

VI. Conclusions

In this paper, a differential game problem with two conflicting
controls has been considered. The problem has been formulated in
continuous time by first considering a first-order expansion of the
dynamics and a quadratic expansion of the cost function. By taking
the Taylor series expansion of the associated Hamilton–Jacobi–
Bellman–Isaacs equation around a nominal trajectory, the update law
of bothminimizing andmaximizing controls, aswell as the backward
propagation equations of the zeroth-, first-, and second-order
approximation terms of the value function, has been derived. By
discretizing along the nominal trajectory, the derivation of the
Game-Theoretic Differential Dynamic Programming (GT-DDP)
algorithm in discrete time is then also presented. The advantages of
the continuous-time GT-DDP over its discrete-time counterpart are
discussed, and the performance of the two formulations is compared
using several examples with conflicting controls. Specifically, it has
been shown that the continuous-time formulation enjoys improved
convergence properties compared with its discrete-time counterpart.
The continuous-time GT-DDP algorithm is tested on a nonlinear
control problem, namely, a quadrotor flight steering. The example
showcases the ability of the GT-DDP algorithm to handle relatively
high-degree-of-freedom systems. Lastly, GT-DDPon a quadrotor has
been implemented with a sling load attached to it and subject to wind
disturbances, and the superior performance of theGT-DDP algorithm
compared with the standard DDP algorithm in terms or robustness
has been shown, validating the benefits of a min-max formulation for
handling disturbances.

Appendix A: Derivation of the Expansion
of the HJB Equation

Starting with the left-hand side of Eq. (5) we have:

∂V�x; t�
∂t

� ∂V� �x� δx; t�
∂t

≈
∂ �V
∂t

� ∂ �VT
x

∂t
δx� 1

2
δxT

∂ �Vxx

∂t
δx (A1)

We also have

d �V

dt
� ∂ �V

∂t
� �VT

x

dx

dt
� ∂ �V

∂t
� �VT

x
�F (A2)

Thus, we get the expression

∂ �V
∂t

� d �V

dt
− �VT

x
�F (A3)

Similarly,

∂ �Vx

∂t
� d �Vx

dt
− �Vxx

�F (A4)

Finally, the partial time derivative of the Hessian of the value
function takes the form:

∂ �Vxx

∂t
� d �Vxx

dt
−
Xn
i�1

�V�i�
xxx �F�i� (A5)

where �V�i�
xxx denotes the Hessian matrix of the ith element of �Vx and

�F�i� denotes the ith element of �F. Using the expressions (A2–A4),

the left-hand side of Eq. (5) thus becomes

−
∂V�x; t�

∂t
≈ −

d �V

dt
−
d �VT

x

dt
δx −

1

2
δxT

d �Vxx

dt
δx� �VT

x
�F� δxT �Vxx

�F

� 1

2
δxT

 Xn
i�1

�V�i�
xxx �F�i�

!
δx (A6)

Wenow turn our attention to the expansionof the right-hand side of

Eq. (5). We start by writing

L�x; u; v; t� � L� �x� δx; �u� δu; �v� δv; t�
≈ �L� �LT

x δx� �LT
uδu� �LT

v δv

� 1

2

2
6664
δx

δu

δv

3
7775

T
2
6664

�Lxx
�Lxu

�Lxv

�Lux
�Luu

�Luv

�Lvx
�Lvu

�Lvv

3
7775
2
664
δx

δu

δv

3
775 (A7)

By expanding Vx around �x we have

Vx�x; t� � Vx� �x� δx; t� ≈ �Vx � �Vxxδx�
1

2
�W (A8)

where �W ∈ Rn is defined as

�W�i� � δxT �V�i�
xxxδx; i � 1; : : : ; n

The system Eq. (1) is also expanded up to the first order, that is,

F�x;u; v; t� � F� �x� δx; �u� δu; �v� δv; t�
≈ �F� �Fxδx� �Fuδu� �Fvδv (A9)

Therefore, the right-hand side of Eq. (5) can be approximated as

min
u

max
v

fL�x; u; v; t� � VT
xF�x; u; v; t�g

≈min
δu

max
δv

�
�L� �LT

x δx� �LT
uδu� �LT

v δv

� 1

2

2
664
δx

δu

δv

3
775

T
2
664

�Lxx
�Lxu

�Lxv

�Lux
�Luu

�Luv

�Lvx
�Lvu

�Lvv

3
775
2
664
δx

δu

δv

3
775� �VT

x
�F� �VT

x
�Fxδx

� �VT
x
�Fuδu� �VT

x
�Fvδv� δxT �Vxx

�F� δxT �Vxx
�Fxδx

� δxT �Vxx
�Fuδu� δxT �Vxx

�Fvδv� 1

2
�WT �F

�
(A10)

Next, note that the term �1∕2� �WT �F can be written as follows:

1

2
�WT �F � 1

2

Xn
i�1

�
δxT �V�i�

xxxδx �F�i�
�
� 1

2
δxT

 Xn
i�1

�V�i�
xxx �F�i�

!
δx

After equating Eq. (A6) with Eq. (A10), and canceling repeated

terms, one obtains
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−
d �V

dt
− δxT

d �Vx

dt
−
1

2
δxT

d �Vxx

dt
δx

� min
δu

max
δv

�
�L� �LT

x δx� �LT
uδu� �LT

v δv

� 1

2

2
664
δx

δu

δv

3
775

T
2
664

�Lxx
�Lxu

�Lxv

�Lux
�Luu

�Luv

�Lvx
�Lvu

�Lvv

3
775
2
664
δx

δu

δv

3
775

� �VT
x
�Fxδx� �VT

x
�Fuδu� �VT

x
�Fvδv� δxT �Vxx

�Fxδx

� δxT �Vxx
�Fuδu� δxT �Vxx

�Fvδv

�

� min
δu

max
δv

�
�L� δxT �Qx � δuT �Qu � δvT �Qv �

1

2
δxT �Qxxδx

� 1

2
δuT �Quuδu� 1

2
δvT �Qvvδv� δuT �Quxδx� δvT �Qvxδx

� δuT �Quvδv

�
(A11)

where

�Qx � �FT
x
�Vx � �Lx (A12a)

�Qu � �FT
u
�Vx � �Lu (A12b)

�Qv � �FT
v
�Vx � �Lv (A12c)

�Qxx � �Lxx � �Vxx
�Fx � �FT

x
�Vxx (A12d)

�Quu � �Luu (A12e)

�Qvv � �Lvv (A12f)

�Qux � �FT
u
�Vxx � �Lux (A12g)

�Qvx � �FT
v
�Vxx � �Lvx (A12h)

�Quv � �Luv (A12i)

Appendix B: Proof of Proposition II.1

Proof:To find the update law of the value function and its first- and
second-order partial derivatives,we substitute theminimizing control
(11a) and maximizing control (11b) to the HJBI Eq. (5).
Specifically, we have

−
d �V

dt
− δxT

d �Vx

dt
−
1

2
δxT

d �Vxx

dt
δx � �L� δxT �Qx � δu�T �Qu

� δv�T �Qv � δu�TQuxδx�
1

2
δu�T �Quuδu

� � δu�T �Quvδv
�

� 1

2
δv�T �Qvvδv

� � δv�T �Qvxδx�
1

2
δxT �Qxxδx

� �L� δxT �Qx � �lu �Kuδx�T �Qu � �lv � Kvδx�T �Qv

� �lu � Kuδx�T �Quxδx� �lv � Kvδx�T �Qvxδx

� 1

2
δxT �Qxxδx� �lu � Kuδx�T �Quv�lv � Kvδx�

� 1

2
�lu � Kuδx�T �Quu�lu �Kuδx�

� 1

2
�lv � Kvδx�T �Qvv�lv � Kvδx� (B1)

After collecting terms in the right-hand side of Eq. (B1) as zeroth-,
first-, and second-order expressions of δx, we can equate the
coefficients of δx in the left-hand side and right-hand side of Eq. (B1)
and readily obtain the backward propagation equations with respect
to the value function and its first- and second-order partial derivatives
as follows:

−
d �V

dt
� �L� lTu �Qu � lTv �Qv �

1

2
lu �Quulu � lTu �Quvlv �

1

2
lTv �Qvvlv

(B2a)

−
d �Vx

dt
� �Qx � KT

u
�Qu � KT

v
�Qv � �QT

uxlu � �QT
vxlv � KT

u
�Quulu

�KT
u
�Quvlv � KT

v
�Qvulu � KT

v
�Qvvlv (B2b)

−
d �Vxx

dt
� KT

u
�Qux � �QT

uxKu � KT
v
�Qvx � �QT

vxKv �KT
v
�QvuKu

�KT
u
�QuvKv � KT

u
�QuuKu � KT

v
�QvvKv � �Qxx (B3c)

At the final time,wehave the boundary condition (6). By taking the
Taylor series expansion around �x�tf� we get the expressions

ϕ�x�tf�; tf� � ϕ� �x�tf� � δx�tf�; tf�
≈ ϕ� �x�tf�; tf� � δx�tf�Tϕx� �x�tf�; tf�
� δx�tf�Tϕxx� �x�tf�; tf�δx�tf� (B4)

Therefore, the boundary conditions at t � tf for the backward
differential equations (19) are

�V�tf� � ϕ� �x�tf�; tf� (B5a)

�Vx�tf� � ϕx� �x�tf�; tf� (B5b)

�Vxx�tf� � ϕxx� �x�tf�; tf� (B5c)
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