
Adversarial Training for Probabilistic Spiking
Neural Networks

Alireza Bagheri
†ECE Department

New Jersey Institute of Technology
Newark, NJ 07102, USA

Email: ab745@njit.edu

Osvaldo Simeone†
Department of Informatics

King’s College London
London, WC2R 2LS, UK

Email: osvaldo.simeone@kcl.ac.uk

Bipin Rajendran
ECE Department

New Jersey Institute of Technology
Newark, NJ 07102, USA

Email: bipin@njit.edu

Abstract—Classifiers trained using conventional empirical risk
minimization or maximum likelihood methods are known to
suffer dramatic performance degradations when tested over
examples adversarially selected based on knowledge of the clas-
sifier’s decision rule. Due to the prominence of Artificial Neural
Networks (ANNs) as classifiers, their sensitivity to adversarial
examples, as well as robust training schemes, have been recently
the subject of intense investigation. In this paper, for the first
time, the sensitivity of spiking neural networks (SNNs), or
third-generation neural networks, to adversarial examples is
studied. The study considers rate and time encoding, as well as
rate and first-to-spike decoding. Furthermore, a robust training
mechanism is proposed that is demonstrated to enhance the
performance of SNNs under white-box attacks.

Index Terms—Spiking Neural Networks (SNNs), adversarial
examples, adversarial training, Generalized Linear Model (GLM)

I. INTRODUCTION

The classification accuracy of Artificial Neural Networks

(ANNs) trained over large data sets from the problem domain

has attained super-human levels for many tasks including

image identification [1]. Nevertheless, the performance of clas-

sifiers trained using conventional empirical risk minimization

or Maximum Likelihood (ML) is known to decrease dramat-

ically when evaluated over examples adversarially selected

based on knowledge of the classifier’s decision rule [2]. To

mitigate this problem, robust training strategies that are aware

of the presence of adversarial perturbations have been shown

to improve the accuracy of classifiers, including ANNs, when

tested over adversarial examples [2]–[4].

ANNs are known to be energy-intensive, hindering their

implementation on energy-limited processors such as mobile

devices. Despite the recent industrial efforts around the pro-

duction of more energy-efficient chips for ANNs [5], the gap

between the energy efficiency of the human brain and that

of ANNs remains significant [6], [7]. A promising alternative

paradigm is offered by Spiking Neural Networks (SNNs), in

which synaptic input and neuronal output signals are sparse

asynchronous binary spike trains [5]. Unlike ANNs, SNNs are

hybrid digital-analog machines that make use of the temporal

dimension, not just as a neutral substrate for computing, but

as a means to encode and process information [7].

Training methods for SNNs typically assume deterministic
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Fig. 1. Two-layer SNN for supervised learning.

non-linear dynamic models for the spiking neurons, and are

either motivated by biological plausibility, such as the spike-

timing-dependent plasticity (STDP) rule [5], [8], or by an

attempt to mimic the operation of ANNs and associated learn-

ing rules (see, e.g., [9] and references therein). Deterministic

models are known to be limited in their expressive power,

especially as it pertains prior domain knowledge, uncertainty,

and definition of generic queries and tasks. Training for

probabilistic models of SNNs has recently been investigated in,

e.g., [10]–[13] using ML and variational inference principles.

In this paper, for the first time, the sensitivity of SNNs

trained via ML is studied under white-box adversarial attacks,

and a robust training mechanism is proposed that is demon-

strated to enhance the performance of SNNs under adversarial

examples. Specifically, we focus on a two-layer SNN (see

Fig. 1), and consider rate and time encoding, as well as rate

and first-to-spike decoding [13]. Our results illuminate the

sensitivity of SNNs to adversarial example under different

encoding and decoding schemes, and the effectiveness of

robust training methods.

The rest of the paper is organized as follows. In Sec. II,

we describe the architecture of the two-layer SNN with Gen-

eralized Linear Model (GLM) neuron, as well as information

encoding and decoding mechanisms. The design of adversarial

perturbations is covered in Sec. III, while a robust training is

presented in Sec. IV. Sec. V presents numerical results, and

closing remarks are given in Sec. VI.
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II. SNN-BASED CLASSIFICATION

In this section, we introduce the classification task and the

SNN architecture under study.

Network Architecture: We consider the problem of clas-

sification using the two-layer SNN illustrated in Fig. 1. The

SNN is fully connected and has NX presynaptic neurons in

the input, or sensory layer, and NY neurons in the output

layer. Each output neuron is associated with a class. In order

to feed the SNN, an input example, e.g., a gray scale image,

is encoded into a set of NX discrete-time spike trains, each

with T samples. The input spike trains are fed to the NY

postsynaptic GLM neurons, which output discrete-time spike

trains. A decoder then selects the image class on the basis of

the spike trains emitted by the output neurons.

Information Encoding: We consider two encoding mech-

anisms.

1) Rate encoding: With the conventional rate encoding

method (see, e.g., [14]), each entry of the input signal is

converted into a discrete-time spike train by generating an

independent and identically distributed (i.i.d.) Bernoulli vec-

tor. The probability of generating a “1”, i.e., a spike, is

proportional to the value of the entry. In the experiments

in Sec. V, we use gray scale images of USPS dataset with

pixel intensities normalized between 0 and 1 that yield a

proportional spike probability between 0 and 1/2.

2) Time encoding: With the time encoding method, each

entry of the input signal is converted into a spike train having

only one spike, whose timing depends on the entry value. In

particular, assuming intensity-to-latency encoding [14]–[16],

the spike timing in the time interval [1, T ] depends linearly on

the entry value, such that the maximum value yields a spike at

the first time sample t = 1, and the minimum value is mapped

to a spike in the last time sample t = T .

GLM Neuron Model: The relationship between the input

spike trains from the NX presynaptic neurons and the output

spike train of any postsynaptic neuron i follows a Bernoulli

GLM with canonical link function (see, e.g., [13], [17]). To

elaborate, we denote as xj,t and yi,t the binary signal emitted

by the j-th presynaptic and the i-th postsynaptic neurons,

respectively, at time t. Also, we let xb
j,a = (xj,a, ..., xj,b) be

the vector of samples from spiking process of the presynaptic

neuron j in the time interval [a, b]. Similarly, the vector

yb
i,a = (yi,a, ..., yi,b) contains samples from the spiking

process of the neuron i in the interval [a, b]. The membrane

potential of postsynaptic neuron i at time t is given by

ui,t =

NX∑
j=1

αT
j,ix

t−1
j,t−τy

+ βT
i y

t−1
i,t−τ ′

y
+ γi, (1)

where αj,i ∈ R
τy is a vector that defines the synaptic kernel

(SK) applied on the {j, i} synapse between presynaptic neuron

j and postsynaptic neuron i; βi ∈ R
τ ′
y is the feedback kernel

(FK); and γi is a bias parameter. Note that τy and τ ′y denote

the lengths of the SK and FK, respectively. The vector of

variable parameters θi includes the bias γi and the parameters

that define the SK and FK filters, which are discussed below.

According to the GLM, the log-probability of the output spike

train yi = [yi,1, ..., yi,T ]
T

conditioned on the input spike trains

x = {xj}NX

j=1 can be written as

log pθi(yi |x ) =
T∑

t=1

[yi,t log g (ui,t) + ȳi,t log ḡ (ui,t)], (2)

where g (·) is an activation function, such as the sigmoid

function g (x) = σ (x) = 1/ (1 + exp (−x)), and we defined

ȳi,t = 1 − yi,t and ḡ (ui,t) = 1 − g (ui,t). As per (2), each

sample yi,t is Bernoulli distributed with spiking probability

g (ui,t).
As in [13], we adopt the parameterized model of [17] for

the SK and FK filters. Accordingly, we write the SK αj,i and

the FK βi as

αj,i =

Kα∑
k=1

wj,i,kak = Awj,i, (3)

and

βi =

Kβ∑
k=1

vi,kbk = Bvi, (4)

respectively, where we have defined the fixed basis matrices

A = [a1, ...,aKα ] and B =
[
b1, ...,bKβ

]
and the vectors

wj,i = [wj,i,1, ..., wj,i,Kα ]
T

and vi =
[
vi,1, ..., vi,Kβ

]T
; Kα

and Kβ denote the respective number of basis functions;

ak = [ak,1, ..., ak,τy ]
T and bk = [bk,1, ..., bk,τ ′

y
]T are the

basis vectors; and {wj,i,k} and {vi,k} are the learnable weights

for the kernels αj,i and βi, respectively. For the experiments

discussed in Sec. V, we adopt the raised cosine basis functions

introduced in [17, Sec. Methods].

Information Decoding: We also consider two alternative

decoding methods, namely rate decoding and first-to-spike

decoding. 1) Rate decoding: With rate decoding, decoding is

carried out by selecting the output neuron with the largest

number of spikes. 2) First-to-spike decoding: With first-to-

spike decoding, the class that corresponds to the neuron that

spikes first is selected.

ML training: Conventional ML training is performed dif-

ferently under rate and first-to-spike decoding methods, as

briefly reviewed next.

1) Rate decoding: With rate decoding, the postsynaptic

neuron corresponding to the correct label c ∈ {1, ..., NY } is

assigned a desired output spike train yc containing a number

of spikes, while an all-zero vector yi, i �= c, is assigned to the

other postsynaptic neurons. Using the ML criterion, one hence

maximizes the sum of the log-probabilities (2) of the desired

output spikes y (c) = {y1, ...,yNY
} for the given NX input

spike trains x = {x1, ...,xNX
}. The log-likelihood function

for a given training example (x, c) can be written as

Lθ (x, c) =

NY∑
i=1

log pθi
(yi|x), (5)

where the parameter vector θ = {W,V,γ} includes the

parameters W = {Wi}NY

i=1, V = {vi}NY

i=1 and γ = {γi}NY

i=1.
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The sum in (5) is further extended to all examples in the

training set. The negative log-likelihood (NLL) −Lθ is convex

with respect to θ and can be minimized via SGD [13].

2) First-to-spike decoding: With first-to-spike decoding, the

class that corresponds to the neuron that spikes first is selected.

The ML criterion hence maximizes the probability to have the

first spike at the output neuron corresponding to the correct

label. The logarithm of this probability for a given example

(x, c) can be written as

Lθ (x, c) = log

(
T∑

t=1

pt (θ)

)
, (6)

where

pt (θ) =

NY∏
i=1,i �=c

t∏
t′=1

ḡ (ui,t′)g (uc,t)
t−1∏
t′=1

ḡ (uc,t′), (7)

is the probability of having the first spike at the correct neuron

c at time t. In (7), the potential ui,t for all i is obtained from

(1) by setting yi,t = 0 for all i and t. The minimization of the

log-likelihood function Lθ in (6), which is not concave, can

be tackled via SGD as proposed in [13].

III. DESIGNING ADVERSARIAL EXAMPLES

In this work, we consider white-box attacks based on full

knowledge of the model, i.e., of the parameter vector θ, as

well as of the encoding and decoding strategies. Accordingly,

given an example (x, c), an adversarial spike train xadv is

obtained as a perturbed version of the original input x, where

the perturbation is selected so as to cause the classifier to be

more likely to predict an incorrect label c′ �= c, while being

sufficiently small.

We consider the following types of perturbations: (i) Re-
move attack: one or more spikes are removed from the input

x; (ii) Add attack: one or more spikes are added to the input x;

and (iii) Flip attack: one or more spikes are added or removed.

The size of the disturbance is measured for all attacks by the

number of spikes that are added and/or removed. Mathemati-

cally, this can be expressed as the Hamming distance

dH
(
x,xadv

)
=

NX∑
j=1

T∑
t=1

1
(
xj,t �= xadv

j,t

)
, (8)

where 1 (·) is the indicator function, i.e., 1 (a) = 1 if condition

a is true and 1 (a) = 0 otherwise.

In order to select the adversarial perturbation of an input

x, we consider the maximization of the likelihood of a given

incorrect target class c′ �= c. According to [18], an effective

way to choose the target class c′ is to find the class cLL �= c that

is the least likely under the given model θ. Mathematically,

for a given training example (x, c), the least likely class is

obtained by solving the problem

cLL = argmin
c′ �=c

Lθ (x, c
′), (9)

where the log-likelihood Lθ (x, c
′) is given by (5) for rate

decoding and (6) for first-to-spike decoding.

Algorithm 1 Greedy Design (θ, TA, ε)

Input: x, θ, TA, ε
1: Compute cLL from (9)

2: Initialize: xadv (0) ← x
3: for i = 1 to �εNXT � do
4: xadv (i) ← xadv (i− 1) + p, where p is obtained by

solving problem (10) with xadv (i− 1) in lieu of x and

pj,t = 0 for all t > TA.

5: end for
Output: xadv

Algorithm 2 Adversarial Training (TA, εA)

Input: Training set, basis functions A and B, learning rate

η, TA, and εA
Initialize: θ

1: for each iteration do
2: Choose example (x, c) from the training set

3: Compute xadv and cLL from Algorithm 1 with input θ,

TA and εA
4: Update θ: θ ← θ + η∇θLθ

(
xadv, c

)
5: end for

Output: θ

Then, in order to compute the adversarial perturbation p,

we maximize the likelihood of class cLL under model θ by

tackling the following optimization problem

max
p∈C

Lθ

(
x+ p, cLL

)
s.t. ‖p‖0 ≤ εNXT ,

(10)

where ‖p‖0 denotes the number of non-zero elements of

p. In (10), the perturbation ε > 0 controls the adversary

strength. In particular, the adversary is allowed to add or

remove spikes from a fraction ε of the NXT input samples,

i.e., T samples for each input neuron. The constraint set C
in problem (10) is given by the set of binary perturbations,

i.e., C = {0, 1}NXT
, for add attacks, since spikes can

only be added; C = {0,−1}NXT
for remove attacks; and

C = {0,±1}NXT
for flip attacks.

The exact solution of problem (10) requires an exhaustive

search over all possible perturbations of εNXT samples. In

the worst case of flip attacks, the resulting search space is

hence exponential in NX and T . Therefore, here we resort to

a greedy search method. As detailed in Algorithm 1, at each

of the �εNXT � steps, the method looks for the best spike to

add, remove or flip, depending on the attack type. We further

reduce complexity by searching only among the first TA ≤ T
samples across all input neurons. As a results, the complexity

of each step of Algorithm 1 is at most NXTA.

IV. ROBUST TRAINING

In order to increase the robustness of the trained SNN to

adversarial examples, in this section, we propose a robust

training procedure. Accordingly, in a manner similar to [4],

during the SGD-based training phase, each training example
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Fig. 2. Test accuracy for ML training under adversarial and random
changes versus ε with rate encoding for both rate and first-to-spike
decoding rules (T = K = 16).

(x, c) is substituted with the adversarial example xadv obtained

from Algorithm 1 for the current iterate θ. The training

algorithm is detailed in Algorithm 2. Note that, the robust

training algorithm is parameterized by TA and εA, which

determine the parameters of the assumed adversary during

training.

V. NUMERICAL RESULTS

In this section, we numerically study the performance of the

described probabilistic SNN under the adversarial attacks. We

use the standard USPS dataset as the input data. As a result,

we have NX = 256, with one input neuron per pixel of the

16×16 images. Unless stated otherwise, we focus solely in the

classes {1, 5, 7, 9} and we set T = K = 16. We assume the

worst-case TA = T for the adversary during the test phase. For

rate decoding, we use a desired spike train with one spike after

every three zeros. SGD is applied for 200 training epochs and

early stopping is used for all schemes. Holdout validation with

20% of training samples is applied to select between 10−3 and

10−4 for the constant learning rate η. The model parameters

θ are randomly initialized with uniform distribution between

-1 and 1.

We first evaluate the sensitivity of different encoding and de-

coding schemes to adversarial examples obtained as explained

in Sec. III. For reference, we consider also perturbations

obtained by randomly and uniformly adding, removing and

flipping spikes. Fig. 2 illustrates the test accuracy under ad-

versarial and random perturbations when performing standard

ML training. The accuracy is plotted versus the adversary’s

power ε assuming rate encoding and both rate and first-to-spike

decoding rules. The results highlight the notable difference in

performance degradation caused by random perturbations and

adversarial attacks. In particular, adversarial changes can cause

a significant drop in classification accuracy even with small

values of ε, particularly when the most powerful flip attacks

are used.
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Fig. 3. Test accuracy for ML training under adversarial attacks versus
ε with both rate and time encoding rules for first-to-spike decoding
(T = K = 16).

First-to-spike decoding is seen to be more resistant to

add and flip attacks, while it is more vulnerable than rate

decoding to remove spike attacks. The resilience of first-to-

spike decoding can be interpreted as a consequence of the

fact that the log-likelihood (6), unlike (5) for rate decoding,

associates multiple outputs to the correct class, namely all

of those with the correct neuron spiking first. Nevertheless,

removing properly selected spikes can be more deleterious to

first-to-spike decoding as it may prevent spiking by the correct

neuron.

The comparison between rate and time encoding in terms of

sensitivity to adversarial examples is considered in Fig. 3 un-

der the assumption of first-to-spike decoding. Time encoding is

seen to be significantly less resilient than rate encoding. This is

due to the fact that time encoding, in the form considered here

of intensity-to-latency encoding, which associated a single

spike per input neuron [14], can be easily made ineffective

by removing selected spikes.

We then evaluate the impact of robust adversarial training

as compared to standard ML. To this end, in Fig. 4, we plot

the test accuracy for the case of flip and remove attacks for

both ML and adversarial training when T = K = 8. Here

we also focus solely on the two classes {5, 7}. We recall

that the adversarial training scheme is parametrized by the

time support TA of the attacks considered during training,

here TA = 8, and by its power εA, here εA = 5/2048 and

εA = 10/2048. It is observed that robust training can signifi-

cantly improve the robustness of the SNN classifier, even when

εA is not equal to the value ε used by the attacker during the

test phase. Furthermore, increasing εA enhances the robustness

of the trained SNN at the cost of a higher computational

complexity. For instance, for an attacker in the test phase

with ε = 10/2048, i.e., with 10 bit flips, conventional ML

achieves an accuracy of 45%, while adversarial training with

εA = 10/2048 (i.e., 10 bit flips) achieves an accuracy of 87%.

Finally, the results show that the classifier remains resilient
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Fig. 4. Test accuracy under adversarial attacks versus ε with
rate encoding and rate decoding with ML and adversarial training
(T = K = 8).

against other type of attacks, despite being trained assuming

the flip attack.

Finally, under the same conditions as in Fig. 5, we study the

effect of limiting the power of the adversary assumed during

training by considering TA = 1 and TA = 8 with the same

εA = 5/2048. We assume time encoding and rate decoding. It

is observed that robust training can still improve the robustness

of the SNN classifier, even when TA 
 T during training. For

instance, for an attacker in the test phase with ε = 5/2048, i.e.,

5 bit flips, conventional ML achieves an accuracy of 34.2%,

while adversarial training with εA = 5/2048 and TA = 1 and

8 achieves accuracy levels of 60.3% and 77.5%, respectively.

VI. CONCLUSIONS

In this paper, we have studied for the first time the sensitivity

of a probabilistic two-layer SNN under adversarial perturba-

tions. We considered rate and time encoding, as well as rate

and first-to-spike decoding. We have proposed mechanisms

to build adversarial examples, as well as a robust training

method that increases the resilience of the SNN. Additional

work is needed in order to generalize the results to multi-layer

networks.
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