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The problem of air-to-surface trajectory optimization for a low-altitude skid-to-turn vehicle is con-
sidered. The objective is for the vehicle to move level at a low altitude for as long as possible and
perform a rapid bunt (negative sensed-acceleration load) maneuver near the final time in order to attain
terminal target conditions. The vehicle is modeled as a point mass in motion over a flat Earth, and the
vehicle is controlled using thrust magnitude, angle of attack, and sideslip angle. The trajectory opti-
mization problem is posed as a two-phase optimal control problem using a weighted objective function.
The work described in this paper is the first part of a two-part sequence on trajectory optimization and
guidance of a skid-to-turn vehicle. In both cases, the objective is to minimize the time taken by the
vehicle to complete a bunt maneuver subject to the following constraints: dynamic, boundary, state,
path, and interior-point event constraints. In the first part of this two-part study, the performance of the
vehicle is assessed. In particular, the key features of the optimal reference trajectories and controls are
provided. The results of this study identify that as greater weight is placed on minimizing the height
of the bunt maneuver or as the maximum altitude constraint is raised, the time of the bunt maneuver
decreases and the time of the problem solution increases. Also, the results of this study identify that as
the allowable crossrange of the vehicle is reduced, the time and height of the bunt maneuver increases
and the time of the problem solution decreases.

Nomenclature

a = Speed of Sound

CA = Axial Force Aerodynamic Coefficient

CN = Normal Force Aerodynamic Coefficient

CY = Side Force Aerodynamic Coefficient

g0 = Standard Acceleration Due to Gravity, m·s−2

h = Altitude Over Flat Earth

M = Mach Number

q = Dynamic Pressure

S = Vehicle Reference Area

t = Time

T = Thrust

v = Speed

x = Downtrack Displacement

y = Crosstrack Displacement
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z = Down Displacement

α = Pitch Angle

β = Sideslip Angle

γ = Flight Path Angle

ψ = Azimuth Angle

ρ = Atmospheric Density

I. Introduction

Optimal control problems arise frequently in many engineering applications due to the need to optimize
performance of a controlled dynamical system. In general, optimal control problems do not have analytic
solutions and, thus, must be solved numerically. Numerical methods for optimal control fall into two broad
categories: indirect methods and direct methods. In an indirect method, the first-order variational optimal-
ity conditions are derived, and the optimal control problem is converted to a Hamiltonian boundary-value
problem (HBVP). The HBVP is then solved numerically using a differential-algebraic equation solver. In
a direct method, the state and control are approximated, and the optimal control problem is transcribed
into a finite-dimensional nonlinear programming problem1 (NLP). The NLP is then solved numerically us-
ing well developed software for solving NLPs.2–4 Even in cases where an accurate approximation to the
solution of an optimal control problem can be computed, disturbances in the actual system along with
measurement errors lead to suboptimal performance and constraint violations in the actual system. If the
difference between the motion of the reference system and that of the actual system is large, it may be neces-
sary to re-solve the optimal control problem (that is, perform an optimal midcourse correction) in real-time
based on the current state of the actual system. When re-solving the optimal control problem is necessary,
it is desirable that the re-optimized solution be obtained sufficiently quickly so that this new solution can
be implemented in the actual system. Because most optimal control problems must be solved numerically,
in order to realize real-time optimal control in a constrained nonlinear dynamical system, it is necessary to
develop computational methods.

A problem of current interest within the optimal control community is the optimal trajectory generation
and guidance of air-to-surface missiles where the goal is to minimize the time required to reach a target from
an initial state while performing a rapid maneuver toward the end of flight to attain the target condition.
This research focuses on minimum-time trajectory and control generation for a low-altitude skid-to-turn
air-to-surface missile. A particular problem that falls within the aforemetioned application realm are air-
to-surface missiles where the goal is to minimize the time required to reach a target from an initial state.
The problem of interest is one where the vehicle starts in a level flight configuration and is guided to
terminal constraints on the position and velocity of the vehicle while being subject to additional altitude and
crosstrack constraints during flight. The approach used in this paper is to employ the recently developed
class of direct Gaussian quadrature orthogonal collocation methods.5–19 In particular, the hp–adaptive Gaussian
quadrature collocation approach is employed where it is possible to design a mesh that has the potential
to provide equivalent or greater accuracy using a significantly smaller mesh than would be required using
a traditional fixed-order collocation method. As a result, the computational efficiency of an hp method is
potentially much greater when compared to that of a fixed-order method.

Previous work on trajectory optimization of air-to-surface missiles includes Refs. 20–22. Specifically,
Ref. 20 studied the problem of trajectory optimization of a skid-to-turn air-to-surface missile with seeker
angle constraints using a direct shooting method. Ref. 21 studied a problem similar to that of Ref. 20 using
a bank-to-turn vehicle. Finally, Ref. 22 studied the problem of trajectory regulation using a linear quadratic
follower approach to calculate a closed-loop in-flight control. In addition, Ref. 22 employed a preview term
in order to predict the future trajectory from the current state. The approaches developed in Refs. 20–22
employed a shooting method for trajectory optimization and tracked the computed reference trajectory
using a neighboring optimal control approach.23

Different from the research described in Refs. 20–22, in this paper, the problem of performance op-
timization of a skid-to-turn air-to-surface missile is investigated using a Legendre-Gauss-Radau colloca-
tion method.6–14 The research described in this paper is the first part of a two-part sequence on trajectory
optimization and guidance of a skid-to-turn vehicle. The trajectory optimization problem is posed as a
two-phase optimal control problem using a weighted objective function. The objective function to be min-
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imized is a combination of the first and second phases’ terminal times and a penalty used to reduce the
overall height and duration of the bunt maneuver. Because it is important that the maneuver to the target
occur as late in the trajectory as possible with minimal height above a preselected altitude constraint, the
objective function contains two terms: one term that minimizes the time of the maneuver and the overall
time of the solution and one weighted penalty term that minimizes the overall height of the bunt maneuver.
Furthermore, state constraints are imposed on the maximum altitude and the crossrange capability of the
vehicle during the first phase of the maneuver. The altitude constraint ensures that the vehicle remains
at a sufficiently low altitude until the terminal maneuver to the target is required, while the crossrange
constraint ensures that the vehicle does not execute the terminal maneuver until necessary. Solutions are
obtained as a function of the cost function’s second term weight, the maximum allowable altitude, and the
maximum allowable crossrange to examine the effect on the bunt maneuver.

This paper is organized as follows. Section II provides the equations of motion, vehicle model, and
vehicle constraints. Section III provides a description of the optimal control problem. Section IV provides
computational results obtained from solving the optimal control problem using various weighting factors,
maximum allowable altitudes in phase one, and allowable crosstracks in phase one. Finally, Section V
provides conclusions on this research.

II. Vehicle Model and Constraints

The goal of this research is to characterize the performance of a low-altitude skid-to-turn vehicle subject
to constraints on altitude and crossrange. The problem under consideration is to perform a maneuver from
an initial state to a target state such that the vehicle spends as much time as possible in near-steady and
near-level flight while the time required to perform the bunt maneuver is as small as possible. In order to
accomplish this combination of objectives, the flight of the vehicle is divided into two phases. In the first
phase, the vehicle is subject to the aforementioned altitude and crossrange constraints. These constraints
are removed in the second phase in order to enable the vehicle to attain the required terminal boundary
conditions by performing a bunt maneuver. This section is divided into two parts. Section A provides the
equations of motion and the vehicle model, while Section B provides the constraints imposed on the vehicle
during flight.

A. Equations of Motion

Consider a vehicle modeled as a point mass in flight over a flat Earth subject to the forces of thrust, drag,
lift, and gravity. The three degree-of-freedom equations of motion for the vehicle are given as

ẋ = v cos γ cosψ,

ẏ = v cos γ sinψ,

ż = −v sin γ,

mv̇ = (T −A) cosα cosβ − Y sinβ −N sinα cosβ −mg sin γ,

mvψ̇ cos γ = (T −A) cosα sinβ + Y cosβ −N sinα sinβ,

mvγ̇ = (T −A) sinα+N cosα−mg cos γ,

(1)

where x, y, and z are the displacements in the downtrack, crosstrack, and down directions, γ is the flight
path angle (measured from the horizontal plane), ψ is the azimuth angle (measured clockwise from the
downtrack direction), β is the sideslip angle, and α is the pitch angle. During flight, the vehicle is subject to
the forces of gravity,mg, thrust, T (where T is the magnitude of the thrust), and aerodynamic axial, normal,
and side forces, A, N , and Y , respectively. The three components A, N , and Y of the aerodynamic force are
given, respectively, as

A = qSCA,

N = qSCN ,

Y = qSCY ,

(2)

where q = ρv2/2 is the dynamic pressure, ρ is the atmospheric density, S is the vehicle reference area,
and CA, CN , and CY are the coefficients of axial force, normal force, and side force, respectively. The
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aerodynamic force coefficients are obtained as

CA = Cb
A + Cw

A + Ct
A,

CN = Cw
N + Ct

N + Cb
N + Cm

N + Cde
N ,

CY = Cw
Y + Ct

Y + Cb
Y + Cm

Y + Cdr
Y ,

(3)

where

Cw
A = 1

πrw

(

[Cw
N ]

2
+ [Cw

Y ]
2
)

,

Ct
A = 1

πrt

(

[

Ct
N + Cde

N

]2
+
[

Ct
Y + Cdr

Y

]2
)

,
(4)

and
Cw

N = Cwa
N α/M, Ct

N = Cta
N α/M,

Cb
N = Cba

N α2, Cn
N = Cna

N α,

Cw
Y = −Cwa

N β/M, Ct
Y = −Cta

N β/M,

Cb
Y = −Cba

N β2, Cn
Y = −Cna

N β,

Cw
M = r1C

w
N , Ct

M = r2C
t
N ,

Cb
M = r3C

b
N , Cn

M = r4C
n
N ,

Cw
P = r1C

w
Y , Ct

P = r2C
t
Y ,

Cb
P = r3C

b
Y , Cn

P = r4C
n
Y ,

C0
M = Cw

M + Ct
M + Cb

M + Cn
M , C0

P = Cw
P + Ct

P + Cb
P + Cn

P ,

Cdr
Y = −C0

P /r2, Cde
N = −C0

M/r2.

(5)

The atmospheric density is given as

ρ(h) =

{

ρ10 exp(−h/H1) , 0 ≤ h ≤ hρ,

ρ20 exp(−h/H2) , hρ < h < ∞,
(6)

where h = −z. Next, the speed of sound given as

a(h) =











c1h+ c0 , 0 ≤ h ≤ ha1
d0 , ha1 < h < ha2
e1h+ e0 , ha2 ≤ h < ∞.

(7)

The Mach number is given as

M =

√

v2

a2
− 1. (8)

Finally, the coefficients corresponding to the aerodynamic model given in Eqs. (2)–(8) are given in Table 1.

B. Constraints

The problem considered consists of two phases, and the following constraints are imposed on the vehicle
during flight in each of the two phases. In the first phase, the altitude and crosstrack are constrained in
order to delay the time at which a bunt maneuver by the vehicle is completed in order to attain the target
conditions. Thus, in the first phase, the altitude is constrained as

h
(1)
min ≤ h(1) ≤ h(1)max, (9)

and the crosstrack is constrained as
y
(1)
min ≤ y(1) ≤ y(1)max. (10)

Next, the components of the state and the components of the control are constrained to remain within the
following limits during both phases of flight:

(xmin, ymin, zmin, vmin, γmin, ψmin) ≤ (x, y, z, v, γ, ψ) ≤ (xmax, ymax, zmax, vmax, γmax, ψmax),

(αmin, βmin, Tmin) ≤ (α, β, T ) ≤ (αmax, βmax, Tmax),
(11)
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Table 1: Vehicle Model Constants.

Quantity Value

S 0.0730 m2

rw 2.0833

rt 6.25

Cwa
N 61.1155

Cta
N 20.3718

Cba
N 36.3064

Cna
N 2

Cb
A 0.1522

g 9.81 m · s−2

m 453.2268 kg

r1 -1.2

r2 -9.5

r3 -0.4966

r4 8

ρ10 1.2256 kg · m−3

ρ20 1.7523 kg · m−3

H1 9144 m

H2 6705.6 m

c0 340.2940 m · s−1

c1 -0.004 s−1

d0 295.0464 m · s−1

e0 281.9370 m · s−1

e1 0.0007 s−1

hρ 9144 m

ha1 11277.6 m

ha2 19507.2 m

where the minimum and maximum allowable values corresponding to the state and control components
given in Eqs. (9)–(11) are given in Table 2. Furthermore, the Mach number is constrained

Mmin ≤M ≤Mmax, (12)

where the values (Mmin,Mmax) are given in Table 2. In addition, the state and time at the terminus of the
first phase are connected to the state and time at the start of the second phase through interior-point event
constraints. The interior point event constraints are given as

t
(p)
f − t

(p+1)
0 = 0,

x(t
(p)
f )− x(t

(p+1)
0 ) = 0,

y(t
(p)
f )− y(t

(p+1)
0 ) = 0,

z(t
(p)
f )− z(t

(p+1)
0 ) = 0,

v(t
(p)
f )− v(t

(p+1)
0 ) = 0,

γ(t
(p)
f )− γ(t

(p+1)
o ) = 0,

ψ(t
(p)
f )− ψ(t

(p+1)
0 ) = 0,

p ∈ [1]. (13)
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Finally, the boundary conditions imposed on the vehicle at the start of the first phase and the terminus of
the second phase are given as

x
(

t
(1)
0

)

= x0 , x
(

t
(2)
f

)

= xf ,

y
(

t
(1)
0

)

= y0 , y
(

t
(2)
f

)

= yf ,

z
(

t
(1)
0

)

= z0 , z
(

t
(2)
f

)

= zf ,

v
(

t
(1)
0

)

= v0 , v
(

t
(2)
f

)

= vf ,

γ
(

t
(1)
0

)

= γ0 , γ
(

t
(2)
f

)

= γf

ψ
(

t
(1)
0

)

= ψ0 , ψ
(

t
(2)
f

)

= Free,

(14)

where the initial and terminal values of the state components are given in Table 2.

Table 2: Lower and upper limits on state bounds and path constraints along with boundary conditions on
the state and control.

Quantity Value

(xmin, xmax) (0, 46000) m

(ymin, ymax) (−77000, 77000)m

(y
(1)
min, y

(1)
max) (−50000, 50000)m

(zmin, zmax) (−15300, 0) m

(h
(1)
min, h

(1)
max) (10, 170) m

(vmin, vmax) (16, 1220) m/s

(γmin, γmax) (−89, 89) deg

(ψmin, ψmax) (−180, 180) deg

(αmin, αmax) (−6, 6) deg

(βmin, βmax) (−6, 6) deg

(Tmin, Tmax) (2225, 8900) N

(Mmin,Mmax) (2, 4.5)

t
(1)
0 0 s

(x0, xf ) (0, 30500) m

(y0, yf) (0, 6100) m

(z0, zf) (−31, 0) m

(v0, vf ) (915, 915) m·s−1

(γ0, γf ) (0,−85) deg

ψ0 0 deg

III. Optimal Control Problem

Using the vehicle model and contraints given in Section II, the optimal control problem is stated as fol-

lows. Determine the state (x(t), y(t), z(t), v(t), γ(t), ψ(t)), control (α(t), β(t), T (t)), and final time (t
(1)
f , t

(2)
f )

in each phase that minimizes the objective function

J = t
(2)
f

(

t
(2)
f − t

(1)
f

)2

+W

∫ t
(2)
f

t
(1)
0

|h− h(1)max|dt (15)

subject to the dynamic constraints given in Eq. (1), the limits on the components of the state and control
given in Eqs. (9)–(11), the path constraint given in Eq. (12), the interior point event constraints given in
Eq. (13), and the boundary conditions given in Eq. (14). The objective function in Eq. (15) combines the
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desire to shorten the duration of phases one and two while reducing the overall height and duration of the
maneuver in phase two. Using an objective function of this form enables delaying the maneuver necessary
to attain the target condition for as long as possible, thereby allowing the vehicle to move for as long as
possible along a path where the altitude changes are reduced. The weighting factor, W , is used to penalize
a solution that produces a higher and longer bunt maneuver in phase two.

IV. Results and Discussion

All results shown in this paper were obtained using the MATLAB R© optimal control softwareGPOPS− II24

with the nonlinear programming problem (NLP) solver IPOPT,4 where IPOPT was employed in full New-
ton (second derivative) using the default NLP solver tolerance of ǫNLP = 10−7. Any necessary mesh refine-
ment was performed using the mesh refinement method described in Ref. 14 using a minimum of three and
maximum of fourteen allowable collocation points per interval and a mesh refinement relative-error accu-
racy tolerance of ǫmesh = 10−5. The initial mesh size of each phase is ten mesh intervals with five collocation
points each. In order to employ IPOPT in full Newton mode, all required first and second derivatives were
obtained using the algorithmic differentiation software ADiGator.25 Finally, all computations shown in this
section were on a 3.1 GHz Intel Core i7 MacBook Pro running Mac OS-X version 10.12.6 (Sierra) with 16GB
1867MHz DDR3 RAM and MATLAB R© Version R2016a (build 9.0.0.341360).

The results in this section are divided into four sections. Section A is the solution to the optimal control

problem in Section III for one maximum altitude constraint, h
(1)
max = 170 m, in the first phase using the

objective function in Eq. (15) with a weighting factor of W = 0.5. This is highlighted to show how the
state and control in each phase behave. Section B is the solutions to the optimal control problem for a
set of weighting factors, W = (0, 0.25, 0.50, 0.75, 1), using the objective function in Eq. (15) and one set

altitude constraint, h
(1)
max = 170 m. Section C is the solutions to the optimal control problem for a set of

maximum altitude constraints, h
(1)
max = (50, 90, 130, 170, 210 m), with a weighting factor of W = 0.5 using

the objective function in Eq. (15). The altitude constraint is set such that the vehicle can maneuver in the

h-direction from h
(1)
min = 10 m to h

(1)
max in phase one. Section D is the solutions to the optimal control

problem for a set of minimum and maximum crosstrack constraints
[

(y
(1)
min = −10,−20,−30,−40,−50 km),

(y
(1)
max = 10, 20, 30, 40, 50 km)

]

using one set altitude constraint, h
(1)
max = 170 m, with a weighting factor of

W = 0.5 in the objective function of Eq. (15). The crosstrack constraint is set such that the vehicle can

maneuver in the y-direction from y
(1)
min to y

(1)
max in phase one.

A. Initial Problem Solution

The state and control solution to the optimal control problem described in Section III with a weighting factor
of W = 0.5 is shown in Figs. 1–3. The path constraint over the solution set is shown in Fig. 4. Figure 1a
shows the three-dimensional trajectory to the optimal control problem. It can be seen in Fig. 2 that the
altitude, h = −z, in the first phase consists of an initial ascent to a constant altitude that is equivalent to the

state component’s constraint, h
(1)
max = 170 m. In addition, the first phase terminates with a slight decrease

in altitude followed by an increase in altitude as the vehicle prepares to execute a bunt maneuver. In the
second phase, as seen in Fig. 1, the bunt maneuver starts as the vehicle climbs to its maximum altitude and
then descends in order to meet the terminal constraints. The total time of the two phases is 119.89 s, and the
vehicle spends 46.85 s in phase two. It is seen from the solution in Fig. 1c that the vehicle never attains the
maximum allowable speed, vmax = 1220 m · s−1; however, the thrust is at its maximum, Tmax = 8900 N, for
the entire solution as seen in Fig. 3c. Next, Fig. 4 shows the Mach number as a function of time. It is seen
that the Mach number path constraint, given in Eq. (12), is never active.
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Figure 1: State solution, (x(t), y(t), h(t), v(t), γ(t), ψ(t)), vs. t of the optimal control problem described in

Section III with a weighting factor of W = 0.5 and an altitude constraint of h
(1)
max = 170 m.
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Figure 2: Phase one of altitude solution, h(t), vs. t of the optimal control problem described in Section III

with a weighting factor of W = 0.5 and an altitude constraint of h
(1)
max = 170 m.
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Figure 3: Control solution, (α(t), β(t), T (t)), vs. t of the optimal control problem described in Section III

with a weighting factor of W = 0.5 and an altitude constraint of h
(1)
max = 170 m.
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Figure 4: Mach number, M(t), vs. t on solution to the optimal control problem described in Section III with

a weighting factor of W = 0.5 and an altitude constraint of h
(1)
max = 170 m.
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B. Study 1: Varying Weights in Objective Function

The optimal control problem described in Section III is solved using the objective function in Eq. (15) with

a set of weighting factors,W = (0, 0.25, 0.50, 0.75, 1), and an altitude constraint in phase one, h
(1)
max = 170 m.

Figs. 5–8 show the solutions to the optimal control problem for the range of weighting factors. It is seen
from Fig. 6 and Table 3 that the overall time of the solution increases while the time and height of the bunt
maneuver in phase two decreases as the weighting factor increases.

It is important to note that the solution when W = 0 is significantly different than the solutions when
W 6= 0. The objective function in Eq. (15) consists of two terms: one a function of time and one a function
of altitude. When W = 0, the objective function is reduced to one term, which is only a function of time.
Because the objective function is reduced and the cost of the solution is not impacted by the altitude of
the vehicle, the solution to the optimal control problem takes a different form where the bunt maneuver
is much longer and higher than the solutions that have a nonzero W . Figure 7 magnifies the altitude
solution in phase one, showing that the vehicle increases altitude until it reaches the altitude constraint,

h
(1)
max = 170 m, for all solutions where the objective function has the second penalty term. When W = 0, the

vehicle does not spend much time in phase one; therefore, the vehicle does not maintain level flight at the
maximum altitude constraint for any period of time. To reduce the time and height of the bunt maneuver
when the objective function has a nonzero weighting factor, W 6= 0, it can be seen in Fig. 6b that the vehicle
has a greater crossrange in phase one of the solution. When W = 0, the bunt maneuver occurs over a much
smaller downtrack and crosstrack regime; the vehicle has a more direct trajectory between the initial and
terminal conditions in the downtrack-crosstrack plane. Table 3 shows the time of the bunt maneuver in
phase two, the total time of the solution, the maximum height of the bunt maneuver in phase two, and the
objective value of each solution to the optimal control problem.

Given the results in Table 3, it is necessary to have the second term in the objective function in Eq. (15)
to ensure the vehicle remains in level, steady flight for an extended period of time before executing the
maneuver in phase two. Also, as seen in Figs. 6e and 8a, the flight path angle and angle of attack of each
solution are most influenced by the variation in the weighting factor. More specifically, the flight path
angle and angle of attack profiles are shifted in time as a result of the second phases starting at a later
time. Also, the flight path angle, azimuth angle, and sideslip angles all have similar solutions, with the
solutions associated with W = 0 being earlier and longer as the bunt maneuver occurs earlier and longer in
comparison to the other solutions. The speed and pitch angle, as seen in Figs. 6d and 8a, are most affected
by the addition of the second term in the objective function. The Mach number path constraint is never
active as seen in Fig. 9 for solutions where W 6= 0. The lower Mach number path constraint is active on
two arcs when W = 0, as the vehicle is ascending towards its maximum altitude and as the vehicle is at its
maximum altitude. The thrust, as seen in Fig. 8c, is still at its maximum throughout the problem, regardless
of the weighting factor.

Table 3: Time of bunt maneuver, (t
(2)
f − t

(1)
f ), time of total solution, t

(2)
f , maximum height of vehicle in phase

two, h
(2)
max, and objective value, J , obtained from the optimal control problem solutions evaluated at the

various weighting factors, W = (0, 0.25, 0.50, 0.75, 1).

Weighting factor, W (t
(2)
f

− t
(1)
f

) , s t
(2)
f

, s h
(2)
max , km J × 105

0 60.92 62.46 13.06 2.32

0.25 48.04 111.87 10.18 3.31

0.50 46.85 119.89 9.99 4.02

0.75 46.15 125.91 9.88 4.71

1 45.67 130.96 9.80 5.37
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Figure 5: Three-dimensional trajectories obtained from the solution of the optimal control problem de-
scribed in Section III for a range of weights in the cost function of Eq. (15) and an altitude constraint of

h
(1)
max = 170 m.
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(a) Downtrack, x(t), vs. t. (b) Crosstrack, y(t), vs. t.

(c) Altitude, h(t), vs. t. (d) Speed, v(t), vs. t.

(e) Flight path angle, γ(t), vs. t. (f) Azimuth angle, ψ(t), vs. t.

Figure 6: State solution, (x(t), y(t), h(t), v(t), γ(t), ψ(t)), vs. t of the optimal control problem described in
Section III for a range of allowable weights in the cost function of Eq. (15) and an altitude constraint of

h
(1)
max = 170 m.
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Figure 7: Altitude, h(t), vs. t on solution to the optimal control problem described in Section III for a range
of allowable weights in the cost function of Eq. (15) in phase one.

(a) Pitch angle, α(t), vs. t. (b) Slip angle angle, β(t), vs. t.

(c) Thrust magnitude, T (t), vs. t.

Figure 8: Control solution, (α(t), β(t), T (t)), vs. t of the optimal control problem described in Section III for

a range of weights in the cost function of Eq. (15) and an altitude constraint of h
(1)
max = 170 m.
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Figure 9: Mach number, M(t), vs. t on solution to the optimal control problem described in Section III for a

range of weights in the cost function of Eq. (15) and an altitude constraint of h
(1)
max = 170 m.

C. Study 2: Varying Maximum Altitude Constraints

The optimal control problem described in Section III is solved with a set of altitude constraints in phase one,

h
(1)
max = (50, 90, 130, 170, 210)m, using the objective function in Eq. (15) with a weighting factor of W = 0.5.

Figures 10–13 show the solutions to the optimal control problem for the range of altitude constraints. It can
be seen that the change in maximum altitude allowed during phase one of the problem does not create a
significant change in the solutions. Figure 12 magnifies the altitude in phase one and shows that the vehicle
increases altitude until it reaches the maximum altitude constraint for the first phase. At the end of phase
one for each solution, there is a decrease in altitude as the vehicle prepares to begin the bunt maneuver. It is
also noted that although the maximum allowable altitudes in phase one are different, the time at which the
bunt maneuvers are initially executed are very similar. As the solutions being nearly identical, the Mach
number path constraint is also never active, as seen in Fig. 14, and the thrust is at its maximum throughout
the entire solution, as seen in Fig. 13c. Table 4 shows the time of the bunt maneuver in phase two, the total
time of the solution, the maximum height of the bunt maneuver in phase two, and the objective value of
each solution to the optimal control problem.

Table 4: Time of bunt maneuver, (t
(2)
f − t

(1)
f ), time of total solution, t

(2)
f , maximum height of vehicle in phase

two, h
(2)
max, and objective value, J , obtained from the optimal control problem solutions evaluated at the

various maximum altitudes, h
(1)
max = (50, 90, 130, 210, 250)m.

h
(1)
max , m (t

(2)
f

− t
(1)
f

) , s t
(2)
f

, s h
(2)
max , km J × 105

50 48.05 119.00 10.01 4.18

90 47.55 119.45 10.01 4.12

130 47.17 119.76 10.00 4.07

170 46.85 119.89 9.99 4.02

210 46.54 120.24 9.98 3.98
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Figure 10: Three-dimensional trajectories obtained from the solution of the optimal control problem de-
scribed in Section III for a range of maximum allowable altitudes in the first phase with the cost function in
Eq. (15) and a weighting factor W = 0.5.
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(f) Azimuth angle, ψ(t), vs. t.

Figure 11: State solution, (x(t), y(t), h(t), v(t), γ(t), ψ(t)), vs. t of the optimal control problem described in
Section III for a range of maximum allowable altitudes in the first phase with the cost function in Eq. (15)
and a weighting factor W = 0.5.
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Figure 12: Altitude, h(t), vs. t on solution to the optimal control problem described in Section III for a range
of maximum allowable altitudes in the first phase with the cost function in Eq. (15) and a weighting factor
W = 0.5.

0 20 40 60 80 100 120 140

t (s)

-6

-4

-2

0

2

4

6

α
(t
)
(d
eg
)

h
(1)
max = 210 m

h
(1)
max = 170 m

h
(1)
max = 130 m

h
(1)
max = 90 m

h
(1)
max = 50 m

(a) Pitch angle, α(t), vs. t.

0 20 40 60 80 100 120 140

t (s)

-6

-4

-2

0

2

4

6

β
(t
)
(d
eg
)

h
(1)
max = 210 m

h
(1)
max = 170 m

h
(1)
max = 130 m

h
(1)
max = 90 m

h
(1)
max = 50 m

(b) Slip angle angle, β(t), vs. t.

0 20 40 60 80 100 120 140

t (s)

3000

4000

5000

6000

7000

8000

T
(t
)
(N

)

h
(1)
max = 210 m

h
(1)
max = 170 m

h
(1)
max = 130 m

h
(1)
max = 90 m

h
(1)
max = 50 m

(c) Thrust magnitude, T (t), vs. t.

Figure 13: Control solution, (α(t), β(t), T (t)), vs. t of the optimal control problem described in Section III for
a range of maximum allowable altitudes in the first phase with the cost function in Eq. (15) and a weighting
factor W = 0.5.
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Figure 14: Mach number, M(t), vs. t on solution to the optimal control problem described in Section III for
a range of maximum allowable altitudes in the first phase with the cost function in Eq. (15) and a weighting
factor W = 0.5.

D. Study 3: Varying Maximum Crossrange Constraints

The optimal control problem described in Section III is solved with a set of crosstrack ranges in phase

one,
[

y
(1)
min = (−10,−20,−30,−40,−50) km, y

(1)
max = (10, 20, 30, 40, 50) km

]

, a constant altitude constraint,

h
(1)
max = 170 m, and a weighting factor of W = 0.5, using the objective function in Eq. (15). Figures 15–18

show the solutions to the optimal control problem for the range of crosstrack constraints. Figure 15 shows
the three-dimensional trajectories to the optimal control problem for the range of minimum and maximum
allowable crossranges in the first phase. As the crosstrack range decreases, phase two begins sooner which
results in a higher maximum bunt altitude and a longer bunt maneuver, as seen in Fig. 16 and Table 5. Also,
as seen in Figs. 16a–16b, the greater restriction in crossrange produces a solution where the vehicle moves
over a small regime between the initial and terminal conditions in the downrange-crossrange plane. As the
crosstrack range is relaxed, the solution deviates from this small regime between the initial and terminal

conditions. This can especially be seen in the solutions where y
(1)
min ≤ −30 km. In these solutions, the vehicle

moves past the target in the downrange direction and doubles back in phase two to meet the terminal con-
ditions (as seen in Figs. 15 and 16a). As a result, as the crossrange constraints are relaxed, the overall time
of the solution increases while the time and height of the bunt maneuver in phase two decreases, as seen in
Table 5. It is worth noting that the solution to the optimal control problem in Section A is the solution to this
problem with the most relaxed crosstrack range. As a result, the solution to the optimal control problem

does not change as the crossrange constraints are relaxed past y
(1)
min ≤ −50 km and y

(1)
max ≥ 50 km. Figure 17

magnifies the altitude in phase one, showing that the vehicle increases altitude until it reaches the altitude

constraint in phase one, h
(1)
max = 170 m. At the end of phase one for each solution, there is a decrease in

altitude as the vehicle prepares to begin the bunt maneuver. Also, as a result, the flight path angle and
angle of attack profiles are shifted in time as a result of the second phases starting at an earlier time, as
seen in Figs. 16e and 18a. The Mach number path constraint is almost active, as seen in Fig. 19, when the
crosstrack is at its smallest range; however, the Mach number path constraint is never active throughout
the other problem solutions. The thrust is at its maximum for the entire solution as seen in Fig. 18c.
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Table 5: Time of bunt maneuver, (t
(2)
f − t

(1)
f ), time of total solution, t

(2)
f , maximum height of vehicle in phase

two, h
(2)
max, and objective value, J , obtained from the optimal control problem solutions evaluated at the

various crossranges
[

y
(1)
min = (−10,−20,−30,−40,−50) km, y

(1)
max = (10, 20, 30, 40, 50) km

]

.

y
(1)
min , km y

(1)
max , km (t

(2)
f

− t
(1)
f

) , s t
(2)
f

, s h
(2)
max , km J × 105

−10 10 59.55 75.14 11.96 4.84

−20 20 55.65 84.08 11.22 4.50

−30 30 50.46 100.44 10.48 4.14

−40 40 46.96 119.13 10.01 4.02

−50 50 46.85 119.89 9.99 4.02
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Figure 15: Three-dimensional trajectories obtained from the solution of the optimal control problem de-
scribed in Section III for a range of minimum and maximum allowable crossrange in the first phase with

the cost function in Eq. (15) with an altitude constraint of h
(1)
max = 170 m and a weighting factor of W = 0.5.
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Figure 16: State solution, (x(t), y(t), h(t), v(t), γ(t), ψ(t)), vs. t of the optimal control problem described in
Section III for a range of minimum and maximum allowable crossranges in the first phase with the cost

function in Eq. (15) with an altitude constraint of h
(1)
max = 170 m and a weighting factor of W = 0.5.
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Figure 17: Altitude, h(t), vs. t on solution to the optimal control problem described in Section III for a range
of minimum and maximum allowable crossranges in the first phase with the cost function in Eq. (15) with

an altitude constraint of h
(1)
max = 170 m and a weighting factor of W = 0.5.
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(c) Thrust magnitude, T (t), vs. t.

Figure 18: Control solution, (α(t), β(t), T (t)), vs. t of the optimal control problem described in Section III
for a range of minimum and maximum allowable crossranges in the first phase with the cost function in

Eq. (15) with an altitude constraint of h
(1)
max = 170 m and a weighting factor of W = 0.5.
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Figure 19: Mach number, M(t), vs. t on solution to the optimal control problem described in Section III for a
range of minimum and maximum allowable crossranges in the first phase with the cost function in Eq. (15)

with an altitude constraint of h
(1)
max = 170 m and a weighting factor of W = 0.5.

V. Conclusions

In the first part of this two-part study, the performance of a skid-to-turn vehicle is assessed. The optimal
control problem is posed as a two-phase, bunt maneuver problem. To produce a bunt maneuver, additional
altitude and crosstrack constraints are added to the first phase of the optimal control problem. The studies
create an array of solutions to showcase how the state and control of the skid-to-turn vehicle model is
affected by the added constraints in the first phase and the weight in the objective function. The two-phase
optimal control problems are solved using GPOPS− II.24 The results of this study identify that adding
a second term that penalizes a higher bunt maneuver is effective in reducing the time and height of the
vehicle in phase two during the bunt maneuver. Also, the maximum altitude constraint does not affect the
solution of the optimal control problem greatly; however, a greater restriction on the crossrange flight of
the vehicle produces a higher and longer bunt maneuver.
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