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Abstract

Recent several years have witnessed the surge of asynchronous (async-) parallel com-
puting methods due to the extremely big data involved in many modern applications
and also the advancement of multi-core machines and computer clusters. In opti-
mization, most works about async-parallel methods are on unconstrained problems
or those with block separable constraints. In this paper, we propose an async-parallel
method based on block coordinate update (BCU) for solving convex problems with
nonseparable linear constraint. Running on a single node, the method becomes a
novel randomized primal-dual BCU for multi-block affinely constrained problems.
For these problems, Gauss—Seidel cyclic primal-dual BCU is not guaranteed to con-
verge to an optimal solution if no additional assumptions, such as strong convexity, are
made. On the contrary, assuming convexity and existence of a primal—dual solution,
we show that the objective value sequence generated by the proposed algorithm con-
verges in probability to the optimal value and also the constraint residual to zero. In
addition, we establish an ergodic O (1/k) convergence result, where k is the number of
iterations. Numerical experiments are performed to demonstrate the efficiency of the
proposed method and significantly better speed-up performance than its sync-parallel
counterpart.

Keywords Asynchronous parallel - Block coordinate update - Primal—dual method

Mathematics Subject Classification 90C06 - 90C25 - 68W40 - 49M27

This work is partly supported by NSF Grant DMS-1719549.

B Yangyang Xu
xuy21@rpi.edu

1 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-018-0037-8&domain=pdf
http://orcid.org/0000-0002-4163-3723

88 Y. Xu

1 Introduction

Modern applications in various data sciences and engineering can involve huge amount
of data and/or variables [43]. Driven by these very large-scale problems and also
the advancement of multi-core computers, parallel computing has gained tremendous
attention in recent years. In this paper, we consider the affinely constrained multi-block
structured problem:

m m
min f (X1 X) + ) g, st ) Aix; =D, e
i=1 i=1
where the variable x is partitioned into multiple disjoint blocks X1, .. ., X;,, f is a con-

tinuously differentiable and convex function, and each g; is a lower semi-continuous
extended-valued convex but possibly non-differentiable function. Besides the non-
separable affine constraint, (1) can also include certain block separable constraint by
letting part of g; be an indicator function of a convex set, e.g., nonnegativity constraint.

We will present a novel asynchronous (async-) parallel primal-dual method (see
Algorithm 2) towards finding a solution to (1). Suppose there are multiple nodes (or
cores, CPUs). We let one node (called master node) update both primal and dual
variables and all the remaining ones (called worker nodes) compute and provide block
gradients of f to the master node. We assume each g; is proximable (see the definition
in (5) below). When there is a single node, our method reduces to a novel serial
primal—dual BCU for solving (1); see Algorithm 1.

1.1 Motivating examples

Problems in the form of (1) arise in many areas including signal processing, machine
learning, finance, and statistics. For example, the basis pursuit problem [8] seeks a
sparse solution on an affine subspace through solving the linearly constrained program:

min ||x]|1, s.t. Ax =b. 2)
X

Partitioning x into multiple disjoint blocks in an arbitrary way, one can formulate (2)
into the form of (1) with f(x) = 0 and each g;(x;) = [|x;||1.

Another example is the portfolio optimization [29]. Suppose we have a unit of
capital to invest on m assets. Let x; be the fraction of capital invested on the ith asset
and &; be the expected return rate of the ith asset. The goal is to minimize the risk
measured by v/xT Xx subject to total unit capital and minimum expected return c,
where X = (x1;...; x;;) and X is the covariance matrix. To find the optimal x, one
can solve the problem:

) 1 m m ‘
mxm EXTEX, s.t. Zx,- <1, Zﬁ;‘ixi >c, x; >0,Vi. 3)

i=1 i=1
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Introducing slack variables to the first two inequalities, one can easily write (3) into
the form of (1) with a quadratic f and each g; being an indicator function of the
nonnegativity constraint set.

In addition, (1) includes as a special case the dual support vector machine
(SVM) [10]. Given training data set {(x;, yi)}lN:1 with y; € {—1,+ 1}, Vi, let
X = [x1,...,xyl and y = [y1;...; yn]. The dual form of the linear SVM can
be written as

1
moin EOTDiag(y)XTXDiag(y)O —e'0, sty 0=00<6,<C,Vi, (4

where @ = [0y;...;0y], and C is a given number relating to the soft margin size.
It is easy to formulate (4) into the form of (1) with f being the quadratic objective
function and each g; the indicator function of the set [0, C].

Finally, the penalized and constrained (PAC) regression problem [22] is also one
example of (1) with f(x) = % Z;V=1 fj(x) and linear constraint of J equations. As
N > J (that often holds for problems with massive training data), the PAC regression
satisfies Assumption O below. In addition, if m > 1and N > 1, both (3) and (4) satisfy
that assumption, and thus the proposed async-parallel method will be efficient when
applied to these problems. Although Assumption 0 does not hold for (2) as p > 1,
our method running on a single node can still outperform state-of-the-art non-parallel
solvers; see the numerical results in Sect. 4.1.

1.2 Block coordinate update

The block coordinate update (BCU) method breaks possibly very high-dimensional
variable into small pieces and renews one at a time while all the remaining blocks are
fixed. Although the problem (1) can be extremely large-scale and complicated, BCU
solves a sequence of small-sized and easier subproblems. As (1) owns nice structures,
e.g., coordinate friendly [31], BCU can not only have low per-update complexity
but also enjoy faster overall convergence than the method that updates the whole
variable every time. BCU has been applied to many unconstrained or block-separably
constrained optimization problems (e.g., [21,30,34,36,40,41,45,46]), and it has also
been used to solve affinely constrained separable problems, i.e., in the form of (1)
without f term (e.g., [12,13,17-19]). However, only a few existing works (e.g., [14,15,
20]) have studied BCU on solving affinely constrained problems with a nonseparable
objective function.

1.3 Asynchronization

Parallel computing methods distribute computation over and collect results from mul-
tiple nodes. Synchronous (sync) parallel methods require all nodes to keep in the same
pace. Upon all nodes finish their own computation, they altogether proceed to the next
step. This way, the faster node has to wait for the slowest one, and that wastes a lot
of waiting time. On the contrary, async-parallel methods keep all nodes continuously
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working and eliminate the idle waiting time. Numerous works (e.g., [27,28,32,35])
have demonstrated that async-parallel methods can achieve significantly better speed-
up than their sync-parallel counterparts.

Due to lack of synchronization, the information used by a certain node may be
outdated. Hence the convergence of an async-parallel method cannot be easily inher-
ited from its non-parallel counterpart but often requires a new tool of analysis. Most
existing works only analyze such methods for unconstrained or block-separably con-
strained problems. Exceptions include [4,5,42,48] that consider separable problems
with special affine constraint.

1.4 Related works

Recent several years have witnessed the surge of async-parallel methods partly due to
the increasingly large scale of data/variable involved in modern applications. However,
only a few existing works discuss such methods for affinely constrained problems.
Below we review the literature of async-parallel BCU methods in optimization and
also primal-dual BCU methods for affinely constrained problems.

It appears that the first async-parallel method was proposed by Chazan and
Miranker [6] for solving linear systems. Later, such methods have been applied in
many others fields. In optimization, the first async-parallel BCU method was due to
Bertsekas and Tsitsiklis [1] for problems with a smooth objective. It was shown that
the objective gradient sequence converges to zero. Tseng [39] further analyzed its con-
vergence rate and established local linear convergence by assuming isocost surface
separation and a local Lipschitz error bound on the objective. Recently, Liu et al. [28]
and Liu and Wright [27] developed async-parallel methods based on randomized BCU
for convex problems with possibly block separable constraints. They established con-
vergence and also rate results by assuming a bounded delay on the outdated block
gradient information. The results have been extended to the case with unbounded
probabilistic delay in [33], which also shows convergence of the async-parallel BCU
methods for nonconvex problems. On solving problems with convex separable objec-
tive and linear constraints, Wei and Ozdaglar [42] proposed to apply the alternating
direction method of multipliers (ADMM) in an asynchronous and distributive way.
Assuming a special structure on the linear constraint, it established O (1/k) ergodic
convergence result, where & is the total number of iterations. In [2,4,5,48], the async-
ADMM is applied to distributed multi-agent optimization, which can be equivalently
formulated into (1) with f = 0 and consensus constraint. Among them, Bianchi et
al. [2] proved an almost sure convergence result, Zhang and Kwok [48] showed sub-
linear convergence of the async-ADMM for convex problems, and [5] established its
linear convergence for strongly convex problems. Besides convex problems, Chang et
al. [4] also considered nonconvex cases. Assuming certain structure on the problem
and choosing appropriate parameters, it showed that any limit point of the iterates
satisfies first-order optimality conditions. The works [9,32] developed async-parallel
BCU methods for fixed-point or monotone inclusion problems. Although these settings
are more general (including convex optimization as a special case), no convergence
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rate results have been shown under monotonicity assumption! (similar to convexity
in optimization).

Running on a single node, the proposed async-parallel method reduces to a serial
randomized primal-dual BCU. In the literature, various Gauss—Seidel (GS) cyclic
BCU methods have been developed for solving separable convex programs with linear
constraints. Although a cyclic primal-dual BCU can empirically work well, in general
it may diverge [7,13,44]. By an example of 3 x 3 linear system, Chen et al. [7]
showed that the direct extension of ADMM could diverge on solving problems with
more than 2 blocks. The works [13,44] showed that even with proximal terms, the
cyclic primal-dual BCU can still diverge. Hence, to guarantee convergence, additional
assumptions besides convexity must be made, such as strong convexity on part of the
objective [3,11,16,23,25,26] and orthogonality properties of block matrices in the
linear constraint [7]. Assuming strong convexity of each block component function
and choosing the penalty parameter within a region, Han and Yuan [16] showed the
convergence of ADMM to an optimal solution for solving problems with multiple
blocks. For 3-block problems, Cai etal. [3], Lietal. [23], Davis and Yin [11] established
the convergence of ADMM and/or its variant by assuming strong convexity of one
block component function. For general m-block problems, Lin et al. [26] showed
that if m — 1 block component functions are strongly convex, then ADMM with
appropriate penalty parameter is guaranteed to converge. Without these assumptions,
modifications to the algorithm are necessary for convergence. For example, He et
al. [18,19] performed a correction step after each cycle of updates. On solving linear
system or quadratic programming, Sun et al. [38] proposed, at each iteration, to first
randomly permute all block variables and then perform a cyclic update. Jacobi-type
update together with proximal terms was used in [12,17] to ensure the convergence of
the algorithm, which turns out to be a linearized augmented Lagrange method (ALM).
In addition, a hybrid Jacobi-GS update was performed in [24,37,44]. Different from
these modifications, our algorithm simply employs randomization in selecting block
variable and can perform significantly better than Jacobi-type methods. In addition,
convergence is guaranteed with convexity assumption and thus better than those results
for GS-type methods.

1.5 Contributions

The contributions are summarized as follows.

— We propose an async-parallel BCU method for solving multi-block structured
convex programs with linear constraint. The algorithm is the first async-parallel
primal-dual method for affinely constrained problems with nonseparable objec-
tive. When there is only one node, it reduces to a novel serial primal-dual BCU
method.

— With convexity and existence of a primal-dual solution, convergence of the pro-
posed method is guaranteed. We first establish convergence of the serial BCU
method. We show that the objective value converges in probability to the opti-

! In[32], alinear convergence result is established under strong monotonicity assumption, which is similar
to strong convexity in optimization.
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mal value and also the constraint residual to zero. In addition, we establish an
ergodic convergence rate result. Then through bounding a cross term involving
delayed block gradient, we prove that similar convergence results hold for the
async-paralle]l BCU method if a delay-dependent stepsize is chosen.

— We implement the proposed algorithm and apply it to the basis pursuit, quadratic
programming, and also the support vector machine problems. Numerical results
demonstrate that the serial BCU is comparable to or better than state-of-the-art
methods. In addition, the async-parallel BCU method can achieve significantly
better speed-up performance than its sync-parallel counterpart.

1.6 Notation and outline

We use bold small letters X, y, A, ... for vectors and bold capital letters A, L, P, . ..
for matrices. [m] denotes the integer set {1, 2, ..., m}. U;x represents a vector with
x; for its ith block and zero for all other m — 1 blocks. blkdiag(P1, ..., P,) denotes
a block diagonal matrix with Py, ..., P,, on the diagonal blocks. We denote ||x|| as
the Euclidean norm of x and ||x||p = +/x " Px for a symmetric positive semidefinite
matrix P. We reserve I for the identity matrix, and its size is clear from the context.
[E;, stands for the expectation about iy conditional on previous history {i1, ..., ix—1}.

We use £ LS & for convergence in probability of a random vector sequence & Ftok.
For ease of notation, we let g(x) = > /', gi(x;), F = f + g, and A =
[A1, ..., A, ] Denote

O, x,A) = F(X) — F(x) — (A, AX — b).

Then (x*, 1*) is a saddle point of (1) if Ax* = b and ®(x, x*, 1*) > 0, Vx.
The proximal operator of a function v is defined as

1
prox, (x) = argminy (y) + >[I — y[I* )
y

If prox,, (x) has a closed-form solution or is easy to compute, we call Y proximable.
Outline The rest of the paper is organized as follows. In Sect. 2, we present the serial
and also async-parallel primal-dual BCU methods for (1). Convergence results of
the algorithms are shown in Sect. 3. Section 4 gives experimental results, and finally
Sect. 5 concludes the paper.

2 Algorithm

In this section, we propose an async-parallel primal-dual method for solving (1). Our
algorithm is a BCU-type method based on the augmented Lagrangian function of (1):

Lpx,X) = f(x)+g(x) — (A, Ax—b) + gllAX —b|?,
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where A is the multiplier (or augmented Lagrangian dual variable), and 8 is a penalty
parameter.

2.1 Non-parallel method

For ease of understanding, we first present a non-parallel method in Algorithm 1. At
every iteration, the algorithm chooses one out of m block uniformly at random and
renews it by (6) while fixing all the remaining blocks. Upon finishing the update to
X, it immediately changes the multiplier A. The linearization to possibly complicated
smooth term f greatly eases the x-subproblem. Depending on the form of g;, we can
choose appropriate P; to make (6) simple to solve. Since each g; is proximable, one
can always easily find a solution to (6) if P; = »;I. For even simpler g; such as €;-
norm and indicator function of a box constraint set, we can set P; to a diagonal matrix
and have a closed-form solution to (6). Note that the algorithm is a special case of
Algorithm 1 in [14] with only one group of variables. We include it here for ease of
understanding our parallel method.

Randomly choosing a block to update has advantages over the cyclic way in both
theoretical and empirical perspectives. We will show that this randomized BCU has
guaranteed convergence with convexity other than strong convexity assumed by the
cyclic primal-dual BCU. In addition, randomization enables us to parallelize the algo-
rithm in an efficient way as shown in Algorithm 2.

Algorithm 1: Randomized primal—dual block update for (1)

1 Initialization: choose x¥ and A9 = 0; let > =Ax —bandk = 0; set 8, p and P;’s.
2 while the stopping conditions not satisfied do
3 Pick iy from [m] uniformly at random.

4 For any i # iy, keep xf’“ = X{F, and for i = iy, update x; by

i

. 1
X e argmin(V £ () — AT AR = g xi) + g + S Ix - xfl,. (6)
4

i

Update residual r and multipliers A by

pktl — +A, (xf.‘;rl - x{-‘k), @)
lk+1 — )‘k _ prk+1. (8)

| Letk < k+1.

2.2 Async-parallel method
Assume there are p nodes. Let the data and variables be stored in a global memory

accessible to every node. We let one node (called master node) update both primal
variable x and dual variable A and the remaining ones (called worker nodes) compute
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block gradients of f and provide them to the master node. The method is summarized
in Algorithm 2.
To achieve nice practical speed-up performance, we make the following assumption:

Assumption 0 The cost of computing V; f(x) is roughly at least p — 1 times of that of
updating x;, r, and A respectively by (9), (7) and (8) for all i, where p is the number
of nodes.

Note that our theoretical analysis does not require this assumption. Roughly speaking,
the above assumption means that the worker nodes compute block gradients no faster
than the master node can use them. When it holds, the master node can quickly digest
the block gradient information fed by all worker nodes. Without this assumption,
Algorithm 2 may not perform well in terms of parallel efficiency. For example, if
p > 2, and computing V; f(x) takes similar time as updating x;, r and A, then until
the kth iteration, there would be roughly k(p — 2) partial gradients that have been sent
to but not used by the master node. In this case, a lot of computation will be wasted.
We make a few remarks on Algorithm 2 as follows.

— Special case If there is only one node (i.e., p = 1), the algorithm simply reduces
to the non-parallel Algorithm 1. In this case, Assumption O trivially holds.

— Iteration number Only the master node increases the iteration number k, which
counts the times A is updated and also the number of used block gradients. The
sync-parallel method (e.g., in [14]) chooses to update multiple blocks every time,
and the computation is distributed over multiple nodes. It generally requires larger
weight in the proximal term for convergence. Hence, even if vk = Vi f (Xk ), Vk,
Algorithm 2 does not reduce to its sync-parallel counterpart.

— Delayed information Since all worker nodes provide block gradients to the master

node, we cannot guarantee every computed block gradient will be immediately
used to update x. Hence, in (9), vF may not equal V; £ (x*) but can be a delayed
(i.e., outdated) block gradient. The delay is usually in the same order of p and can
affect the stepsize, but the affect is negligible as the block number m is greater
than the delay in an order (see Theorem 3.8).
Because x-blocks are computed in the master node, the values of r and A used in
the update are always up-to-date. One can let worker nodes compute new X;’s and
then feed them (or also the changes in r) to the master node. That way, r and A
will also be outdated when computing x-blocks.

— Load balance Under Assumption 0, if (9) is easy to solve (e.g., P; = n;I) and all
nodes have similar computing power, the master node will have used all received
block gradients before a new one comes. We let the master node itself also compute
block gradient if there is no new one sent from any worker node. This way, all nodes
work continuously without idle wait. Compared to its sync-parallel counterpart
that typically suffers serious load imbalance, the async-parallel can achieve better
speed-up; see the numerical results in Sect. 4.3.
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Algorithm 2: Async-parallel randomized primal—dual block update for (1)

1 Initialization: choose x0 and A9 = 0; let r® = AxY — b and k = 0 set B, p and P;’s.
2 while the stopping conditions not satisfied do

3 if worker node then
4 Pick j from [m] uniformly at random.
5 Read x from the memory as X.
6 | Compute V; f (%) and send it together with the block j to master node
7 if master node then
8 if received one new pair (j, V; f(f()) then
9 | Letiy = jand vk =V; f(%)
10 else
1 L Pick iy from [m] uniformly at random and let vk = Vig f (xk )
12 For any i # iy, keep xf“ = x{f, and for i = iy, update x; by
. 1
xi“rl € a_rgl’nln(vk _ A;r(xk _ ﬂrk)’ X;)+ gi (xj) + EHX[ — x{-‘ll%i, 9)
X;
Update residual r and multipliers A by (7) and (8).
13 | Letk < k+1.

3 Convergence analysis

In this section, we present convergence results of the proposed algorithm. First, we
analyze the non-parallel Algorithm 1. We show that the objective value F (x¥) and the
residual Ax¥ — b converge to the optimal value and zero respectively in probability.
In addition, we establish a sublinear convergence rate result based on an averaged
point. Then, through bounding a cross term involving the delayed block gradient, we
establish similar results for the async-parallel Algorithm 2.

Throughout our analysis, we make the following assumptions.

Assumption 1 (Existence of a solution) There exists one pair of primal-dual solution
(x*, A*) such that Ax* = b and ®(x, x*, A*) > 0, Vx.

Assumption 2 (Gradient Lipschitz continuity) There exist constants L;’s and L, such
that for any x and y,

IVifx+Uy) = Vi f®I < Lillyill, i = 1,...,m,
and
IVfx+Uiy) = VIl < Lelyill, i =1,...,m.

Denote L = diag(L1, ..., L;;). Then under the above assumption, it holds that
Li 2 .
Fx+Uy) < fx) +(Vifx),yi) + 7||y1'|| , Vi, Vx,y. (10)
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3.1 Convergence results of Algorithm 1

Although Algorithm 1 is a special case of the method in [14], its convergence analysis
is easier and can be made more succinct. In addition, our analysis for Algorithm 2 is
based on that for Algorithm 1. Hence, we provide a complete convergence analysis
for Algorithm 1. First, we establish several lemmas, which will be used to show our
main convergence results.

Lemma 3.1 Let {x*} be the sequence generated from Algorithm 1. Then for any x
independent of iy, it holds that

1
B, (Vi S X = x) = = (1 - ;) LF &) = )]
+ B [f ) — ) - SRk xkni] .
Proof We write (V;, f(xK), xk+1 Xi,) = (Vi, f(x), xffk —xi) + (Vi F(xK), XZH _

X, ). For the first term, we use the uniform distribution of iy on [m] and the convexity
of f to have

1 1
Eiy (Vi f ), Xj, = %3.) = — (VA% —x) > —[f(x) = f®)],

and for the second term, we use (10) to have

Vi f&O) X —xb ) > p ) — i) - || i — x|
= f&h - fx) - || X (1D
Combining the above two inequalities gives the desired result. O

Lemma 3.2 For any X independent of iy such that Ax = b, it holds

Ei (AL AF = prf), xIH —x;,)

— <1 — l) (_(xk’ l'k) + ,3||rk||2> _ Eik (A.k+l, rk+l> + (13 _ Io)Eik ”rk-‘rl”2

m
B
— B I — e 1 =, ]
Proof LetyK = —AT (A% — Br¥). Then
Ei (vh . x0T —xi) = B (vh . xf —x;) + By (v xi ! —xf)

1
— —<yk,Xk —X) +]Etk(y ,Xk+1 —Xk>
m
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1
=_ (1 — E) oy , xF —x) + B, (vF, T —x). (12)
Note yk — —ATA,k—H +(B _p)ATrk+1 —,BAT(rkH _rk) and rk 1 —pk = A(Xk+1 _
x¥). In addition, from Ax = b, we have A (x**! — x) = r**!. Hence,

<yk7 Xk-‘rl _ X) — (—ATX’H'I, Xk-‘rl _ X>

+ (B = p)IrF T2 — pAGHT! —x), AT — %)) (13)

Noting
1
(A —x0, AT =) = [ = e I = xR, ]

we complete the proof by plugging (13) into (12). O

Lemma 3.3 For any X independent of iy, it holds
- 1
B (Vi GEF D x0T = xi) = By [s ) — g 0] - (1 - ;) [s(x") — gx)],

k+1

where 6gik (ijl) denotes a subgradient of g;, at X;,

Proof From the convexity of g;, and definition of subgradient, it follows that

3

Ei (Vi D X = i) 2 B g ) — g ()] (14)

Writing gi, (] ) — g, (x;,) = gi, (5) — g1, (xip) + g, (x71) — g3, (%) and taking

the conditional expectation give

1
Ei [i ) — gi (xi0] = — o) — g @] + By [g ) — (9],

We obtain the desired result by plugging the above equation into (14). O

Using the above three lemmas, we show an inequality after each iteration of the
algorithm.

Theorem 3.4 (Fundamental result) Let {(xk, ¥, )J‘)} be the sequence generated from
Algorithm 1. Then for any X such that Ax = b, it holds

E;, [F(x"“) — F(x) — A eb 1y (8 — py[Ief )2 — §||r"+1 ﬂ

1
+ 3B [ = XU+ I xRy
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1 1
= (1= = ) [F&9 = Foo = by + g ] - 2112 + 5 1 — I3,
m 2 2
(15)
where P = blkdiag(Py, ..., Pp,).
Proof Since xf.‘kH is one solution to (6), there is a subgradient @gik (xf-‘:l) of g, at
xf.‘k“ such that
Vie f () — A V= Brt) + Ve T + P (T —xp) =0,

Hence,

B (Vi £ 8) — AT = ) + Vi, () + P ek — xb), b — i, ) = 0.
(16)

In the above equation, using Lemmas 3.1 through 3.3 and noting

k+1 k k+1
(Pik(x + —x,-k),x + —Xik>=

k+1 2 k 2 k+1 k2
A A 1% = xI — It = xp + 1% = X3

(17
we have the desired result. O

N =

Now we are ready to show the convergence results of Algorithm 1.

Theorem 3.5 (Global convergence in probability) Ler {(xX, r*, AK)} be the sequence
generated from Algorithm 1. If 0 < p < % and P; = L;1 + /3A1TA,', Vi, then

Fx') & Fx*), and |r¥| 2 o.

Before proving the theorem, we make a remark here. The dual stepsize p can be up
to %, so it could be much smaller than 8 as m is big. However, note that A is renewed
more frequently than x. It is updated once immediately after one change to x. Hence,
if p = % after one epoch of x-update, the dual variable A has been updated m times
and moved a step of size 8. That is why we can still observe fast convergence of the
algorithm to the optimal solution even though a small p is used; see the numerical
results in Sect. 4.

Proof Note that
Fx5 — Fx) — 05, rfy = oxF, x, &) + (A — AK, rhy.

Hence, taking expectation over both sides of (15) and summing up from k = 0 through
K yield
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E[dme+ﬂx,k)+wx——XK+HrK+U]

1 X k K+12
+E§E[<b(x XA 4 (0 — Ak, >]+(ﬂ—p)E||r I

+

Eltx

)ankn2 Prpek+1)2

1 1
+§Emﬁ4_“@+§§:EWHJ_XW§¢4AM
k=0

< (1_i> [F<x°>—F(x)—<x°,r°>+ﬂ||r°||2]+1|| O —xif- £
m

02
x) — x5 — = |rV|%
3 Ip 2|| l

(18)

Since AKX+ = 1K — prK+1 it follows from Young’s inequality that

B
O A A ()] | ||2—5||r’<+‘||2 Y ||>~ A5 120 19)

In addition,
K

K
1

B B [ A P
P

k=1

k=1
+ I = aK17]

K
1
i L e L S 1 ) T CAE0
P 2 k=1

Plugging (19) and (20) into (18) and using A° = 0, we have

Ed KT x,0) + — ZECI)(X x, A+ (ﬁ +—— )Z]Enr 112
1 1

+ (— — — )E» =252

2mp 2B

1 1 &

K+1 2 k+1 k2

+ SEIX =Xt ,;)E”X X I3 _paTa
<(1-L [F(x%) — F(x) + BlIr° ||2]+ 10— >3 = Zpeopr + L Epe
- m P 2mp '

2D

Letting (x, A) = (x*, ™) in the above equality, we have from P; > L; 1+ ﬂAiTAi
and B > mp that
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m ' 2m

1 K B K
— > Bt x* 1) + ( + 2 p) > Elrf|® < oo, VK,
" k=1 k=1

which together with [E&|> < E£2 implies that

lim E®xF, x*,A%) =0, (22a)
k—o00
lim E|r*| = 0. (22b)
k—00

For any € > 0, it follows from the Markov’s inequality that

Ellr||

Prob(|r¥|| > €) < — 0, ask — oo,
and

Prob(|F (x) — F(x*)| > €)
= Prob(F (x) — F(x*) > €) + Prob(F(x*) — F(x*) < —¢)

IA

Prob (F(xk) —F(XY) — (A%, ) > %) + Prob ((k*, k) > %) + Prob(— (A", I} > €)
= £+ Prob (I3[ - x| = 5 ) + Prob("] - 1] = )
— 0, ask — oo, (23)

IA

Prob (F(xk) — F(x*) — (0, 15

where in the firstinequality, we have used the fact F (x)— F (x*)—(AL*, Ax—b) > 0, Vx,
and the last equation follows from (22) and the Markov’s inequality. This completes
the proof. O

Given any € > 0 and o € (0, 1), we can also estimate the number of iterations for
the algorithm to produce a solution satisfying an error bound € with probability no
lessthan 1 — 0.

Definition 3.1 ((¢, o)-solution) Given ¢ > 0 and 0 < o < 1, a random vector X is
called an (¢, o)-solution to (1) if Prob(| F (x) — F (x*)| > €) < o and Prob(]|]Ax—b|| >
€)<o.

Theorem 3.6 (Ergodic convergence rate) Let {(x*, r*, AX)} be the sequence generated
from Algorithm 1. Assume 0 < p < % and P; = L;1+ ﬂAiTAi, Vi. Ler xK+1 =

XK+1+Z£(=1 Xk+l/m
1+K/m

1 1
Co = (1 - E) [FOO) = Fe)] + 51 = x I + <§ - %) %11,

and

Then

1 2 C
- (Co + —||x*||2) <EBI[FERKT) - F(x*)] < —— —
mp 1+

. (2
14+ K/m K/m
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1 1
EAXS T — b < ——— [ Co+ —— (1 + A D? ). 25
|AX ”—1+1</m 0+2mp( + 1A 1D (25)

In addition, given any € > 0and 0 <o < 1, if

Co + 5= (1 + [IA*])? 5C0 + 7= |A%)|?
KZm-max( Zmp —1 mp ~1), (@6

El

€0 €0

then XX*1 is an (e, o)-solution to (1).

Proof Since F is convex, it follows from (21) that

Ed &K, x,2) < _ Co + LJEHAHZ (27)
U T 14+ K/m 2mp ’
which with x = x* and A = 0 implies the second inequality in (24). From

®(x, x*, 1*) > 0, Vx and Cauchy—Schwarz inequality, we have that

F(x) — F(x*) > —||]A"|| - [Ax — b, Vx. (28)
Letting x = x* and A = —%(Ai"“ — b) in (27) and using (28) give (25),

where we have used the convention 8 = 0. By Markov’s inequality,

E|AXK+T — b
€ b

Prob(J[AX¥ ™! —b|| > ¢) <

and thus to have Prob(||Ai(KJrl —b|| > €) < o, it suffices to let

Co + ~—(1 + |A*|)?
_ Cotmp 0+ IR

K > m —m. 29)
€0
Similarly, letting x = x* and A = —%(Ai’( +1 _b) in (27) and using (28)

give

1 2
IV - EJAXEH — b < ———— ( Co + — 1717 ),
1+ K/m mp

which together with (28) implies the first inequality in (24). Through the same argu-
ments that show (23), we have

Prob(|F (XK1 — F(x*)| > €)
SK+1 _x 4% i . gK+1 _ E
< Prob (®® 1 x*" 1% = 5 ) + Prob (I3 - [AXF* —b| = 7)

+ Prob <||x*|| JARKF —p) > e)
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Ed (XK1 x* A%)  a*) - EJARKH — b 2] - EJARKH! — b
+ + .
€/2 €/2 €

<

(30)

Hence, to have Prob(|F(iK+1) — F(x*)| > €) < o, it suffices to let

5Co + 5= ||A%)|?
> 2mp m—m,
€0

which together with (29) gives the desired result and thus completes the proof. O

3.2 Convergence results of Algorithm 2

The key difference between Algorithms 1 and 2 is that v used in (9) may not equal
the block gradient of f at x¥ but another outdated vector, which we denote as %¥. This
delayed vector may not be any iterate that ever exists in the memory, i.e., inconsistent
read can happen [27]. Besides Assumptions 1 and 2, we make an additional assumption
on the delayed vector.

Assumption 3 (Bounded delay) The delay is uniformly bounded by an integer 7, and
%% can be related to x* by the equation

ff = xF 4+ Z x4 — x4t (31)

deJ (k)
where J(k)isasubsetof (k — 7,k —7t+1,...,k—1}.

The boundedness of the delay holds if there is no “dead” node. The relation between
x¥ and %% in (31) is satisfied if the read of each block variable is consistent, which can
be guaranteed by a dual memory approach; see [32].

Similar to (16), we have from the optimality condition of (9) that

B (Vi f R = AT OF = Br) + Vi, ) + Py e = xE). X = i) =0,
(32)

where we have used v¢ = Vikf(f(k). Except E;, (V,-kf(f(k), Xf.‘kH — X, ), all the other
terms in (32) can be bounded in the same ways as those in Sect. 3.1. We first show
how to bound this term and then present the convergence results of Algorithm 2.
Lemma 3.7 Under Assumptions 2 and 3, we have for any o > 0 that

Eif (Vi f &), 0 — xy,)

1 1
> B [f ) — f0] - (1 - E) L& = £OOT =SBy X =XM1 g1
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X —

k—1
R R D D AR U EE)
=k—1 d=k=t

d
where L, = max; L; > 0, and k = % denotes the condition number.
c

Proof We split E; (V;, f(X5), xk“ — x;,) into four terms:

lk Vlkf(ik)v Xk_H - Xik)
=By (Vi f ), x{ T —xf ) — By (Vi £ (5 = Vi fEO) x0T = x)

+ i (Vi fR), xE — %8 ) + By (Vi FE), 2D —xi,), (34)
and we bound each of the four cross terms in (34). The first is bounded in (11).

Secondly, from the convexity of f, we have

~Aky Ak 1 ok 1 ok
Ei (Vi f(X0), X;, —X;) = (Vf(x )R —x) > —[f&H - @] (39)

S

For the other two terms, we use the relation between X* and x¥ in (31). From the
result in [28, pp. 306], it holds that

IVFE) = V&I <L, D Ix —x9). (36)

deJ (k)
Hence by Young’s inequality, we have for any o > 0 that

B, (Vi £ (5) — Vi, £ G5, xEF = xb)

1 . oL,
> —— B [ Vi f (&) = Vi, fEO P — =B Ix} T — x|

- 2ul. 2
1 . L
= = IV = VE P = 2R X =)
2mo 2
39 L2|J(k)| A+ 2 ol k+1 _ k2
T Do I P =R T — ), (37)

del (k)
Let 74 = |J (k)| and order the elements in J (k) as di < d» < ... < dy,. Define
{60 =K and ®F7 = %K + Y/ (x4 —x%), j =1,..., 7. Then we have
Ei (Vi f&Y).xf —F)

= 1<Vf(ﬁ"), xk — &k
m

T —1

1 . .
= — ) (VG R -0
m

Jj=0
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—1
= l Z [(Vf(f(lﬁj)’ ﬁk,j+l _ ﬁk’j> _ (Vf(ﬁk’j) . Vf(f{k), ﬁk,jJr] _ )A(k’j):l .
m
=0
(33)

Since %5/ — gk = xdi+1tl — xdit1 it follows from (10) that
. . . . . 1
ok jy okl ok ok, j+1 ok dig+1  odiey 2
(VE),ZT =35 = fETH = fE) = SIxY = xB . (39)

Note V f (&%1) — Vf (&%) = Y/, (Vf(f(k t+1y — v £(&F1)). Thus, by the Cauchy—
Schwarz inequality and the Young s inequality, we have

(VFRM) = VRN, &5 —2h)
j—1

~.

IV fEETD — v &R |- R8T - g5

~
Il
S

Z ok,t+1 "k[” ”"k NE "k,j”

| /\

L=
2

=

A

<||Xk Jgt+1 "k,T”Z + ”ﬁk,j-l—l _ ’\k,j||2> . (40)

(=)

Plugging (39) and (40) into (38) gives

Ei (Vi f &5, x}, —%F)

1
> — | f(xF) - gL Ix+ —x4|1f
mn deXJ(:k) -
n—1 [j—1
_ L Z Z”Ak AL gkt 2 4 gkl gk 2 41)
j=0 t=0

Noting 13 < 7, we have the desired result by plugging (11), (35), (37), and (41) into
(34). i

From Lemmas 3.2, 3.3, and 3.7, and also the Eq. (17), we can easily have the
following result.

1
E;, [F(x"*‘) — F(x) — AT ek 4 (8 — p)lIef 12 — gur“l 1%+ 5 Ix*+t — xué]

k—1

d+1 d 2
> I x|
=k—

T

1 kL ‘L’/Ol +2L,t
+ EEfk X — Xk”f’—L—aLLI—/SATA

d
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1 k—1
d+1 d2
=5 2 I =X

d=k—t
<(-) [Fed) = P — 050 + gt ] - P12+ 51— xi3 (42)
Y om ' 2 2 P
Regard xk = x0, Vk < 0. Hence,
K k-1 K—1
Z Z x4+ —xd)2 < ¢ Z I — Xk )2,
k=0 d=k—1 k=0

Using (42) and following the same arguments in the proofs of Theorems 3.5 and 3.6,
we obtain the two theorems below.

Theorem 3.8 (Global convergence in probability) Ler {(x¥, r*, A¥)} be the sequence
generated from Algorithm 2 with 0 < p < % and P;’s satisfying

L; 2)L, 72
P, > (Li+aLC+2+M)I+ﬂAIAi,i= Lom  @3)
m m
for o > 0, then
Fx* & Fx), |Irf 2 o.

Theorem 3.9 (Ergodic convergence rate) Under the assumptions of Theorem 3.8, let

K
iK—‘rl _ XK+I+Zk:le+l/m and
= 1+K/m

1 1
Co = (1 - n—1> [F&O) = Foc) |+ S1x0 =1 + <§ - nﬂ;) eI,

Then we have the same results as those in (24) and (25). In addition, given any € > 0
and 0 < o < 1, if K satisfies (26), then XX 1 is an (e, o)-solution to (1).

Remark 3.1 Comparing the settings of P;’s in Theorems 3.5 and 3.8, we see that they
are only weakly affected by the delay if T = o(y/m), which holds for problems
involving extremely many variables. If all p nodes compute at the same rate, t is in
the same order of p [33], and thus Theorem 3.8 indicates that nearly linear speed-up
can be achieved on O(4/m) nodes. Even without the nonseparable affine constraint,
this quantity is better than that required in [27]. In addition, as T = 0, Algorithm 2
reduces to Algorithm 1, and their convergence results coincide.

4 Numerical experiments
In this section, we test the proposed methods on the basis pursuit problem (2), the

nonnegativity constrained quadratic programming, and also the dual SVM (4). We
demonstrate their efficacy by comparing to several other existing algorithms.
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4.1 Basis pursuit

The tests in this subsection compare Algorithm 1 to the linearized augmented
Lagrangian method (LALM) and the open-source solver YALL1 [49] on the basis
pursuit problem (2). Putting all variables into a single block, we can regard LALM as
a special case of Algorithm 1 with m = 1, and YALLI is a linearized ADMM with
penalty parameter adaptively updated based on primal and dual residuals.

The matrix A € R7%190 jn (2) was randomly generated with ¢ varying among
{200, 300, 400}, and its entries independently follow standard Gaussian distribution.
We normalized each row of A. A sparse vector X’ was then generated with 30 nonzero
entries that follow standard Gaussian distribution and whose locations are chosen
uniformly at random. The vector b = Ax°. We evenly partitioned the variable x into
100 blocks, and we set p = ]% and P; = BIIA; |21, i = 1,...,100, where ||A;]||
denotes the spectral norm of A;. For LALM, we treated it as a special case of Algorithm
1 with a single block and set p = 8 and P = 8| A ||>I. The same values of 8 were used
for both Algorithm 1 and LALM. The parameters of YALLI were set to the default
values.

To compare the performance of the three algorithms, we plot their values of
|F(x") — F(x*)| and || Ax" —b|| with respect to #, where ¢ denotes the epoch number.?
Since the three algorithms have roughly the same per-epoch complexity, the plot in
terms of running time will be similar. In Fig. 1, we fixed ¢ = 300 and varied 8 among
{1, 10, 100}. From the results, we see that the proposed algorithm performed signifi-
cantly better than LALM and comparably as well as YALL1. In addition, the parameter
B affected both Algorithm 1 and LALM but the former was only weakly affected. In
Fig. 2, we set B = ,/q and varied g among {200, 300, 400}. Again we see that the
proposed algorithm is significantly better than LALM. For ¢ = 200, Algorithm 1 is
slightly better than YALL1, and for ¢ = 300 and 400, they perform equally well.

4.2 Quadratic programming

In this subsection, we simulate the performance of Algorithm 2 with different delays
on solving the nonnegativity constrained quadratic programming (NCQP):

1
min ixTQx + ch, st.Ax =b,x >0, 44)
X

where Q is a positive semidefinite matrix. We set Q = HH' with H e R2000x2000
randomly generated from standard Gaussian distribution, and the vector ¢ was gener-
ated from Gaussian distribution. The matrix A = [B, I] € R200%2000 ith the entries
of B independently following standard Gaussian distribution, and b was generated
from uniform distribution on [0, 1]. This way, we guarantee the feasibility of (44).
We partitioned x into 2000 blocks, namely, every coordinate was treated as one
block. To see how the algorithm is affected by delayed block gradients, T + 1 most
recent iterates were kept, and % was set to one of these iterates that was chosen

2 Each epoch is equivalent to updating m x-blocks.
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Fig. 1 Results by three different algorithms on solving the basis pursuit problem (2) with A € [R300> 1000
The parameter 8 varies among {1, 10, 100} for Algorithm 1 and LALM
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Fig. 2 Results by three different algorithms on solving the basis pursuit problem (2) with A € R7*1000
and ¢ varying among {200, 300, 400}. The parameter 8 was set to ,/q for Algorithm 1 and LALM

uniformly at random. We varied t among {0, 5, 10, 20, 40}. § was tuned to ﬁ, p =
5600 Was used, and P;’s were set in two different ways. Figure 3 plots the results by
Algorithm 2 with P;’s set according to (43) with @ = 1. Note that for this instance, we
have L; = Qj;, i.e., the ith diagonal entry of Q for each i, and L, = max; ||q; || where
q; denotes the ith column of Q. From the figure, we see that the convergence speed
of the algorithm is affected by the delays. Larger t gives smaller stepsize and leads
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Fig. 3 Results by Algorithm 2 on solving the quadratic programming (44). The matrices P;’s are set
according to (43) witha = 1
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Fig.4 Results by Algorithm 2 on solving the quadratic programming (44). The same matrices P;’s are used
for different delays, i.e., P; = Q;; + Blla; 12, vi according to Theorem 3.5, where a; is the ith column of
A

to slower convergence. However, the algorithm is hardly affected by delayed block
gradient if the same P;’s were used, as shown in Fig. 4. Practically, the maximum delay
T is unknown, but the results in Fig. 4 indicate that we can simply set P;’s according
to Theorem 3.5 regardless of the delay. This implies that our analysis may not be tight.

4.3 Support vector machine

In this subsection, we compare the performance of the async-parallel Algorithm 2 and
its sync-parallel counterpart on solving the dual SVM (4). Another way of parallel
computing on solving (4) is to directly distribute computation of an algorithm (that
may not be BCU type) over multiple nodes, such as the method in [47]. In the test, we
used two LIBSVM datasets®: rcvl and news2 0, whose characteristics are listed in
Table 1.

3 The data can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Table 1 Characteristics of two

Name #samples #features #nonzeros
LIBSVM datasets P
revl 20,242 47,236 1,498,952
news20 19,996 1,355,191 9,097,916
0
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Fig.5 Results by the sync-parallel (top) and async-parallel (bottom) algorithms on solving the dual SVM
(4). The dataset rcv1 is used

We partitioned the variable into blocks of size 50 or 51. For both sync and async-
parallel methods, § = 0.1 and p = % were set, where m is the number of blocks. As
suggested in Sect. 4.2, for the async-parallel method, we set P; = (L; + B|A; |91, Vi
according to Theorem 3.5. For the sync-parallel method, if there are p cores, we
selected a set S of p blocks at every iteration and set P; = ZjeS(Lj + BlA; 151 for
alli € S. We also used P;’s the same as those by the async-parallel method but noticed
that the sync-parallel method diverged. The larger weight matrices are also suggested
in [14] to be proportional to the number of blocks. Note that in the dual SVM (4),
if we let X; and y; contain the data points and labels corresponding to the ith block
variable, then L; equals the spectral norm of the matrix diag(yi)X;rXidiag(y;). Since
every block only has 50 or 51 coordinates, it is easy to compute L;’s.

We ran the tests on a machine with 20 cores. Figure 5 plots the results by the sync
and async-parallel algorithms on the rcvl dataset. From the figure, we see that in
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Fig.6 Results by the sync-parallel (top) and async-parallel (bottom) algorithms on solving the dual SVM

(4). The dataset news20 is used
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Fig.7 Speed up of the sync and async-parallel algorithms for solving the dual SVM (4) on different number

of cores

terms of epoch number, the sync-parallel method converges slower if more cores are
used, while the async-parallel one converges almost the same with different number of
cores. As shown in Fig. 6, similar results were observed for the news20 dataset. We
also measured the speed-up of the two parallel methods in terms of running time. The
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results are plotted in Fig. 7. From the results, we see that the async-parallel method
achieves significantly better speed-up than the sync-parallel one, and that is because
synchronization at every iteration wastes much waiting time.

5 Conclusions

We have proposed an async-parallel primal-dual BCU method for convex program-
ming with nonseparable objective and arbitrary linear constraint. As a special case on
a single node, the method reduces to a randomized primal-dual BCU for multi-block
linearly constrained problems. Convergence and also rate results in probability have
been established under convexity assumption. We have also numerically compared the
proposed algorithm to several existing methods. The experimental results demonstrate
the superior performance of our algorithm over other ones.
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