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Abstract

Semidefinite programming, SDP, relaxations have proven to be extremely strong
for many hard discrete optimization problems. This is in particular true for the
quadratic assignment problem, QAP, arguably one of the hardest NP-hard discrete
optimization problems. There are several difficulties that arise in efficiently solving
the SDP relaxation, e.g., increased dimension; inefficiency of the current primal—dual
interior point solvers in terms of both time and accuracy; and difficulty and high
expense in adding cutting plane constraints. We propose using the alternating direc-
tion method of multipliers ADMM in combination with facial reduction, FR, to solve
the SDP relaxation. This first order approach allows for: inexpensive iterations, a
method of cheaply obtaining low rank solutions; and a trivial way of exploiting the
FR for adding cutting plane inequalities. In fact, we solve the doubly nonnegative,
DNN, relaxation that includes both the SDP and all the nonnegativity constraints.
When compared to current approaches and current best available bounds we obtain
robustness, efficiency and improved bounds.
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1 Introduction

The quadratic assignment problem, QAP, in the trace formulation [11] is

(QAP) p* := min (AXB — 2C, X), (1.1

Xell,

where A, B € S" are real symmetric n X n matrices, C is a real n X n matrix, (-, -)
denotes the trace inner product, i.e., (Y, X) = trace Y X T and I1,, denotes the set of
n X n permutation matrices. A typical application of the QAP s to assign n facilities
to n locations while minimizing total cost. This total cost uses the flow A;; between a
pair of facilities 7, j multiplied by the distance By; between their assigned locations
s, t, respectively. Included is the location cost C;s of placing facility i in location
s. The QAP was first introduced as a model for analyzing the location of economic
activities [17,18]. Further applications include: various layout problems, e.g., hos-
pitals, airports, circuit boards, VLSI keyboards; bandwith minimization of a graph;
image processing; molecular conformations in chemistry; scheduling; supply chains;
manufacturing lines. Moreover, many well known discrete optimization problems are
a special case of QAP, e.g., the traveling salesman problem and the maximum cut
problem; see e.g., [3,20,21].

It is well known that the QAP is an NP-hard problem and that problems with size
as moderate as n = 30 still remain difficult to solve, e.g., [1]. Solution techniques rely
on efficiently calculating lower and upper bounds. An important tool for finding lower
bounds is the work in [28] that provides a semidefinite programmming (SDP), relax-
ation of (1.1). In particular, this relaxation uses facial reduction (FR) to guarantee
strict feasibility for both the relaxation and its dual and thus providing robustness; and
FR greatly simplifies the constraints by making many of them redundant. The methods
of choice for SDP are based on a primal-dual interior-point, p—d i-p, approach. These
methods cannot solve large problems, have difficulty in obtaining high accuracy solu-
tions, and cannot properly exploit sparsity. Moreover, it is very expensive to add on
nonnegativity and other cutting plane constraints. The current state for finding bounds
and solving QAPis given ine.g., [1,2,6,9,23,24].

1.1 Contributions

In this paper we apply the alternating direction method of multipliers (ADMM) for
solving the facially reduced SDP relaxation of the QAP where we add additional ele-
mentwise nonnegativity constraints to the SDP constraints, i.e., an ADMM method for
solving a doubly nonnegative (DNN) problem. Our model takes particular advantage of
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the facial reduction by doubling the number of variables so that the ADMM approach
can take advantage of separate simplified subproblems for the semidefinite constraints
and the elementwise nonnegativity constraints. The recent papers [16,27] also present
algorithms for solving the DNNrelaxation of QAP, and their methods turn out to be
very efficient for finding strong lower bounds of many QAP instances. However, they
do not use the FR technique, and our lower bounds are stronger on many of our tested
instances.

We compare our upper and lower bounds with: the best known results given in [24];
the best known bounds found at SDPLIB [7]; and with a p—d i-p methods based on the
so-called HKM direction. We tested all symmetric instances from QAPLIB [7] with
sizes up to n = 100. We find that our bounds strictly improve on the existing bounds
in the literature and provably solve many instances to optimality. Moreover, we see
that the ADMM method is significantly faster, and can often easily obtain medium-
accuracy solutions, that are sufficient to provide strong lower bounds for QAP . This
is partly due to the ability of obtaining low rank SDP solutions, as well as being able
to solve the subproblems within the ADMM method fast and accurately. Finally, by
exploiting low rank projections, we also obtain strong upper bounds.

1.2 Related works

A survey for various eigenvalue and SDP type lower bounds for QAPis given in
[1]. Included are exact solution techniques as well. A copositive program, CP, is
formulated in [23] and is shown to be equivalent to the QAP . Although the CPis
convex, it is still intractable. Starting with the CP, several relaxations of QAP are
presented in [23]. A review and a comparison with several other SDP relaxations is
included.

Since the submission of our paper, we have become aware of the results in
[15,16,27]. The work [15] studies optimization over permutation matrices. It shows
that a penalized problem with the £( seminorm can recover the solution to the original
one if the penalty parameter is sufficiently large. Based on that observation, [15] uses
an £, p € (0, 1) seminorm to replace the £y term. In addition, an £, regularization
algorithm is used to find KKT points of a sequence of smoothed £, regularized prob-
lems. The algorithm is guaranteed to return a permutation matrix in a finite number of
steps. Applied to the QAP, it will give a feasible solution and thus provide an upper
bound.

General quadratic optimization with linear and also binary constraints is studied in
[16]. This includes QAP as a special case. A Lagrangian-DNN relaxation is solved.
Based on a formulation given in [23], lower bounds for some QAP instances are
reported in [16]. It is demonstrated that the Lagrangian-DNN approach can be signifi-
cantly faster than a Newton-CG SDP method (SDPNAL) [29], and comparable lower
bounds are obtained. In contrast, our method yields the same or even better lower
bounds on all the common tested instances except for Char20c, even though a small
tolerance 10™!2 was set in [16]. This is most likely due to the fact that FR was not
used.
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An improved version of SDPNAL, called SDPNAL+, is given in [27]. Using a good
initial point found with an ADMM type method, SDPNAL+ applies a semismooth
Newton-CG to subproblems in the augmented Lagrangian method framework. It is
shown to be superior to several other SDP solvers and can solve many difficult SDPs
from QAP instances to tolerance of order 10~%. When compared to our approach, [27]
obtains a better lower bound only on the instance Tai25a, and for many other tested
instances, our results turn out to be strictly better. As noted above, this is possibly due
to the use of FR.

More recently, [13] introduced a MATLAB based software package BBCPOP, that
appears to improve further on [27] for solving the DNN relaxation of QAP . It applies
the solver on the same relaxation used in [16]. It obtained a stronger lower bound than
our approach on the single instance Char20c, while our lower bounds were strictly
better on many tested instances.

We note that previous success of ADMM for solving SDP is presented in e.g., [26].
Convincing results on a few combinatorial optimization problems were obtained. A
detailed survey for ADMM can be found in [5].

1.3 Outline

We continue in Sect. 2 with a new derivation of the facially reduced SDP relaxation
of the QAP from [28]. This derivation is novel in that it directly includes the so-called
gangster constraints. The new ADMM approach is presented in Sect. 3, where details
of the ADMM subproblems are included, as well as details for obtaining the lower
bounds from possibly inaccurate solutions of the SDP, and obtaining the upper bounds
efficiently. Our numerics are presented in Sect. 4 with several tables. We conclude in
Sect. 5.

2 A new derivation for the SDP relaxation

In this section we present a new derivation of the facially reduced SDP relaxation of
the QAP obtained in [28]. The derivation is new in that the gangster constraints are
obtained directly. We first briefly introduce FR and then derive the SDP relaxation
from the dual of the Lagrangian dual.

2.1 Original FR for SDP relaxation of QAP

The SDP relaxation of the QAP in [28] begins with a set of quadratic constraints that
represent the permutation matrices. Then, the Lagrangian relaxation (Lagrangian dual)
is formed and shown to be equivalent to an SDP. The dual of this Lagrangian dual
is then the SDP relaxation of the QAP. However, it is then shown in [28] that strict
feasibility fails for this SDPrelaxation. But one can find the barycenter, Y, of the
feasible set and use the spectral decomposition
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to obtain the facial reduction, minimal face F, of all feasible Y for the SDP relaxation,
o~ 2 o~
Y € Fi= VSOTUHIPT ggrt+

where < denotes face. Using the substitution ¥ = VRVT results in a smaller dimen-
sional problem and, moreover, this substitution and the addition of the gangster
constraints, makes many of the original constraints redundant. The result is an elegant,
much simplified, stable SDP relaxation.

2.2 The new derivation

We now provide the new derivation of the facially reduced SDP relaxation in [28].
We start with the following equivalent quadratically constrained quadratic problem
for QAP

Irgn(AXB—ZC, X)
s.t. X Xix = 0, XjiXpi = 0, Vi, Vj #k,
Xlzj - X;j =0,Vi,j,

n n
le?j—1=0, Vj,ZX,?j—1=o, Vi. 2.1)
i=1 j=1

Remark 2.1 Note that the quadratic orthogonality constraints XX = I, XX '
= I, and the linear row and column sum constraints Xe = ¢, X 'e = e, can all
be represented using linear combinations of those in (2.1). This observation avoids the
need for adding all the redundant quadratic constraints and then removing redundant
linear constraints in the SDP. Here e is the vector of all ones.

In addition, the first set of constraints, the elementwise orthogonality of the row
and columns of X, are referred to as the gangster constraints. They are particularly
strong constraints and enable many of the other constraints to be redundant. In fact,
after the FR is done, many of these gangster constraints also become redundant.

The Lagrangian for (2.1) is

Lo(X,U,V,W,u,v)

n n
= (AXB—2C, X)+ Y Y UQXiXu+ Y Y VI XjiXui
i=1 j#k i=1 j#k

n n n n
+ZWij(Xl»2j—Xij)+Zuj(ZX%—I)-FZU[ le?j_l
j=1 i=1 =1 \j=I

i,j
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The dual problem is a maximization of the dual functional dj,

max do(U,V,W,u,v) .= Irgnﬁo(X, U,vV,W,u,v). 2.2)

To simplify the dual problem, we homogenize £y by multiplying the degree-one
terms in X by a scalar variable xo and adding the single constraint xg = 1 to the dual
functional. We add the additional dual variable wq and let

L1(X,x0, U, V,W,wo, u,v)

n n
= (AXB —2x0C. X) + Y > U XijXue + Y >V Xji X
i=1 j#k i=1 j#k

n n
S0 -t + 3 (1)
ij j=1 i=1

n n
—|—Zvi inzj—l —|—wo(x§—l).
i=1 =1

This homogenization technique is the same as that in [28]. The new dual problem is

max d\(U,V,W, wo, u,v) = r;linﬁl(X,xo, U,V,W,wg, u,v). 2.3)
s X0

Note that the dual functionals satisfy d; < dp. Hence, our relaxation still yields a
lower bound to (2.1). In fact, the relaxations give the same lower bound. This follows
from strong duality of the trust region subproblem as shown in [28].

Let x = vec(X), y = [xo; x], and w = vec(W), where vec(X) denotes the colum-
nwise vectorization of X. Then

L1(X,x0, U, V,W,wo,u,v)=y" [Lo + Bi(U) + B2(V) + Arrow(w, wo)
+ K1) + Ko@)y — e (u+v) — wo,

where

K1 (u) = blkdiag(0, u ® I), Ko (v) = blkdiag(0, I ® v),
B1(U) = blkdiag(0, U), B»(V) = blkdiag(0, V),

. 0 —vec(C)T ) —%wT
LQ_|:—vec(C) B® A i|’ AHOW(w’wO)_[—%wDiag(w) '

Here, ® denotes the Kronecker product, and U and V are n x n block matrices. U
has zero diagonal blocks and the (j, k)-th off-diagonal block is the diagonal matrix

Diag(U;.,l{), ey U;Z)), for all j # k. V has zero off-diagonal blocks and the i-th
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0 (i) Vl(é) - Vl?%
1 1
. . V21 0 e V2n .
diagonal block is ) ) . We use blkdiag(Aj, Az) to denote the
Vil Vg - 0

block diagonal matrix with principal diagonal blocks A1, A3, cf. the same command
in MATLAB. Hence, the dual problem (2.3) is equivalent to the SDP

max —eT(u + v) — wo
s.t. Lo + Bi(U) + Ba(V) + Arrow(w, wo) + K1 (u) + K2 (v) > 0. 2.4

To obtain the SDP relaxation of (2.1), we further take the dual of (2.4). Before pre-
senting the relaxation, we give a few definitions.

Definition 2.2 [block matrix ¥ GNS”Z‘H] _Given n? matrices ?ij fori =1,...,nand
J =1,..., n that satisfy ¥;; = Y]—'l— let Y be the n x n block matrix with ¥;; as the
(i, j)-th block. We form the symmetric block matrix
T
Yoo Y
Y = [ 0 } , 2.3)
Yo Y

. . . 2
where yq is a scalar, and y is a vector in R"".

Definition 2.3 (Gangster index set) The gangster index set, J is defined to be the
union of the top left index (00) and the set of indices i < j in the matrix Y in (2.5)
corresponding to:

1. the off-diagonal elements in the n diagonal blocks;
2. the diagonal elements in the off-diagonal blocks.

Definition 2.4 (Gangster operator) The gangster operator, Gj : s+l gt g
defined by

vy itG jyedor(i)eld
Gs(¥)ij = {O otherwise.

By abuse of notation, we let the same symbol denote the projection onto RI”!, and
thus for y € RV, the adjoint yields Y = G%(y) € S™*+1 obtained by symmetrization
and filling in the missing elements with zeros.

Now, taking the dual of (2.4), we have the SDP relaxation of (2.1):
min (Lo, Y)

s.t. gJ(Y)_Z Eyo
diag(Y) = yo

trace(Y~,-,') =1,Vi (2.6)
Yic Yi=1
Y >0,

@ Springer



D.E. Oliveira et al.

where Ego= epeo? is the outer product of the first unit vector, the block matrix Y is

defined in Definition 2.2 and the gangster index set J and the gangster operator G

are defined in Definitions 2.3 and 2.4. Note that the variable Y in (2.6) is in a higher

dimensional space compared to the original variable X in (2.1). This can be motivated
T

from the lifting Y = (Vecl( x )> <vec1( X)) . We apply ADMM to an equivalent, more

succinct, modification of (2.6). (See (3.1) and Theorem 3.1, below.)

Remark 2.5 If one more feasible quadratic constraint ¢ (X) can be added to (2.1), and
q(X) cannot be linearly represented by those in (2.1), the relaxation following the
same derivation as above can be tighter. We conjecture that no more such g (X) exists,
and thus (2.6) is the tightest among all Lagrange dual relaxations from a quadratically
constrained program like (2.1). However, this does not mean that more linear inequality
constraints cannot be added, i.e., linear cuts.

2.3 Strict feasibility by FR

As above, let e be the vector of all ones of appropriate dimension, and let V e R"*(*—1
be full column rank with V7 e = 0, and

~ [1 0
V_|:%e V®V]. 2.7)

FRis applied in [28] by using the substitution
Yy =VRVT e HL. 2.8)
This way, it is shown that (2.6) is equivalent to
Pl = min (VTLoV,R)

S.t. g](VR?T) = Enyo
R >0, 2.9

a greatly simplified SDP. This simplification arising from FR allows for the ADMM to
be applied efficiently for the DNN problem, i.e., we use the equivalence in (2.8) to
relate Y, R and apply the gangster constraints and nonnegativity on Y while applying
the semidefinite constraint on R.

Note that after FR, many constraints in (2.6) become redundant, and also we can
remove redundant indices in J: the diagonal (zero) constraints in the last column of
off-diagonal blocks and in the (n — 2, n — 1) off-diagonal block. By abuse of notation,
we use the same notation J and G after removing these indices. Another advantage
of (2.9) is that strict feasibility holds, i.e., there exists a feasible R > 0, as shown in
Lemma 2.6. In addition, strict feasibility holds for its dual problem, see Lemma 2.7.
Both lemmas are from [28].
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Lemma 2.6 The matrix R defined by

—~ 1 0 2
R:= s¢
[0 Tl —E, 1) Q (nl,_ | — Enl)} € S+t

n2(n—1)

is (strictly) feasible for (2.9). O

We note that the gangster operator is self-adjoint, G} = G,. Therefore, the dual of
(2.9) can be written as the following:

dy = max (Eoo, Y) (= Yoo0)

~ PO (2.10)
st. VIG, V)V <VTLyV.

Again by abuse of notation, using the same symbol twice, we get the two equivalent
dual constraints:

Vg,V <=VTLyV; VIgimV <VTLgV.

As above, the dual variable for the first formis Y € S”Z‘H and for the second form is
y € RIVI. We have used G* for the second form to emphasize that only the first form
is self-adjoint.

Lemma 2.7 Define matrices Y, Z, withM > 0 sufficiently large, by

- n 0 -0 5 _5T; T 0T (T e gD

Y =M S , 2=V LoV -V Y)VeS .
[0 1,1@@(1”—1:"”)}e + 0 1V €50y

Then they are (strictly) feasible variable and slack for (2.10). O

3 A new ADMM algorithm for the SDP relaxation
We can write (2.9) equivalently as

min (Lo, ¥) st.Gy(Y) = Eg, ¥ = VRV', R>0. (3.1)

The following theorem from [28] shows the equivalence between (2.6) and (3.1).

Theorem 3.1 A matrix Y is feasible for (2.6) if, and only if, it is feasible for
3.1). O

Therefore we can work with (3.1). The augmented Lagrange of (3.1) is

B

La(R.Y,Z)=(Lo.Y)+(Z, Y —VRV') + Sy - VRVTIZ. (32
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Recall that (R, Y, Z) are the primal reduced, primal, and dual variables respectively.
We denote (R, Y, Z) as the current iterate. Our new algorithm, an application of
ADMM, uses the augmented Lagrangian in (3.2) and performs the following updates
to obtain a new iterate (R4, Y4+, Z4):

Ry =argmin L4 (R, Y, Z), (3.3a)
RES+

Yy =argminL4(R+, Y, Z), (3.3b)
YeP;

Zi=Z+y By — VRV, (3.3¢)

where the simplest case for the polyhedral constraints P; is the linear manifold from
the gangster constraints:

Pr={Y eS"H : G, (¥) = Eqo).

We use this notation as we add additional simple polyhedral constraints. The second
case is the polytope:

Py=PiN{0<Y <1}

Let V be normalized such that VTV = I. Then the R-subproblem can be explicitly
solved by

Ry = argming, o(Z,Y — VRVT) + £y = VRVT|3

~ o~ 1 2
= arg ming, g HY —VRVT + FZHF

_ P (3.4)
= arg mingy [R = VT (¥ + 52)V|

= Ps, (VT(Y + %Z)V) :

where S denotes the SDP cone, and Ps, is the orthogonal projection onto S . For
any symmetric matrix W, we have

Ps, (W) =UyB4 U],
where (U4, X) contains the positive eigenpairs of W; we let (U—, X_) be for the

negative eigenpairs.
If i = 11in (3.3b), the Y-subproblem also has a closed-form solution:

Yy = argmin (Lo, Y)+(Z, Y — VR, V') + é||Y —~ VR VT2
Gy ()=Eno 2
" Lo+ Z|?
= arg min Y—VR+VT+L
Gy (¥)=Epo B F
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- Lo+Z
=Eop + Gye (vzewT - QT) . (3.5)

One major advantage of using ADMM is that the complexity increases marginally
when we add constraints to (2.9) and tighten the SDP relaxation. If 0 < VRVT <1
is added in (2.9), then we simply add the constraints 0 < Y < 1 to (3.1). This yields
the new problem

Pry =min{(Lo.Y): G;(Y) = Eop. 0<Y <1, Y =VRV', R > 0}. (3.6)

The ADMM for solving (3.6) has the same R-update and Z-update as those in (3.3).
The Y-update is changed to

~~ o~ L Z
Y, = Epo + min <1, max <0, gjc(VR+VT - Q; ))) . 3.7

The nonnegativity constraint means that the < 1 constraint is redundant. But the
inclusion makes the algorithm converge faster and avoid roundoff error. We empha-
size again that it is the FR that allows for the splitting into polyhedral and semidefinite
constraints. The update for Ry is a nearest semidefinite problem and we can effi-
ciently cheat and reduce the number of eigenvalues we allow to be positive by using
the Eckart—Young Theorem, [10]. The update for Y, is a projection onto a simple
polyhedral set and is very efficient and accurate.

3.1 Lower bound

If we solve (3.6) to high accuracy, we get alower bound for the original QAP. However,
the problem size of (3.6) can be extremely large, and it would be very expensive to
obtain a highly accurate solution. In the following, we provide an inexpensive way to
get a valid lower bound from the output of our algorithm that solves (3.6) to a moderate
accuracy. Our method is to find a feasible solution of the dual problem of (3.6). The
lemma below shows that any feasible dual solution provides a valid lower bound to
(3.6) and thus the original QAP.

Lemma 3.2 (Lagrangian dual problem) Let
R:={R:R>0}, YV:={Y:G,(Y)=Ep, 0<Y <1}, Z:={Z:V'ZV <0}
Define
Z) :=min{Lp + Z,Y).
8(Z) y€y< 0 )

Then the dual problem of (3.6) is d% = I%lag g(2), and the weak duality holds, i.e,
€

d; < pry, where py is the optimal objective value of (3.6).
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Proof The dual problem of (3.6) can be derived as

o~

d%:=max min (Lo,Y)+(Z, Y —VRV'
z ZXRGRYGJJ( Q ) ( >

= max min(Lg,Y) 4+ (Z,Y) + min(Z, —VRV ")
Z Ye)y ReR

=maxmin(Lg,Y)+(Z,Y) + min("/\TZ"/\, —R)
Z Ye)y ReR

=maxmin(Lg + Z,Y)
ZeZYe)

= maxg(Z)
ZeZ

where the fourth equality holds because if Z ¢ Z, then mingcR ( VTzV, —R) = —o0.
Weak duality follows in the usual way by exchanging the max and min. O

For any Z € Z, we have g(Z) < d}. Hence, from the above lemma, it follows that
g(2) is a lower bound of (3.6) and thus of the original QAP. In addition, note that
g(Z) is easy to evaluate. Let (R, Y°U! | Z°"") be the output of the ADMM for (3.6).
We use the dual function value at the projected point 732 (Z°""y, namely g (733 (zout ))

as the lower bound. Below we show how to get Pz (Z ) for any symmetric matrix Z.
Let V | be the orthonormal basis of the null space of V. Then V = (V Vv J_) is an
orthogonal matrix. Given any Z € Z,let W = VT ZV, and we write W into the 2 x 2

Wi Wi
block matrix . We have
[ War Wa ]

ZeZaVZV<0a V' ZV=V VWVTV =W <0.

Hence,

PZ(Z)—argmlnHZ Z||F VWV T,
ZeZ

where

W* = argmin [VWV ' — ZH%

Wi1<0
= arg min |W — \_/Tf\_/HzF
W11 =<0
_ | Ps_(W11) Wiz
Wa  Wp |°

Here S_ denotes the negative semidefinite cone, and we have assumed V' Z ZV =

Wi Wi
~ ~'“ | Note that Ps_ (W11) = —Ps. (—Wq1).
|:W21 W22:| s_(W11) s, (=Wi11)
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3.2 Upper bound from feasible solution

Let (RO, you! 7y be the output of the ADMMfor (3.6). Assume the largest
eigenvalue and the corresponding eigenvector of Y are A and v, respectively. Then
Avv T is a best rank-one approximation of Y. We let X% be the square matrix reshaped
from the second through the last elements of the first column of Avv . This is our
approximation to (a multiple of) the optimal permutation matrix. Note that for any
permutation matrix X we have trace X7 X = n. This implies that

”Xout _ X||%: — —Dtrace X T xout -+ constant.

Thus to find the nearest permutation matrix to our approximation, we can take advan-
tage of the Birkoff—-von Neumann Theorem e.g., [4], that the permutation matrices are
the extreme points of the doubly stochastic matrices. We only need to solve the linear
program

m)a(lx[(Xo’”,X) Xe=e, X'e=e, X 20] (3.8)

by a simplex method that gives a basic feasible optimal solution, i.e., a permutation
matrix.

3.3 Low-rank solution

Instead of finding a feasible solution with (3.8), we can directly get one by restricting R
to a rank-one matrix, i.e., rank(R) = 1 and R > 0. With this constraint, the R-update
can be modified to

Ry =Ps,nr, (VT(Y + %)V) : 3.9)

where R = {R : rank(R) = 1} denotes the set of rank-one matrices. For a symmetric
matrix W with largest eigenvalue A > 0 and corresponding eigenvector w, we have

Ps,ar, = rww!.

Despite of the nonconvexity of the rank-one constraint, we observed empirically that

our algorithm almost always converged to a solution satisfying all the constraints in
(3.6). Therefore, we obtained a permutation matrix from the lower bound.

3.4 Different choices for V, v
The matrix V is essential in the steps of the algorithm, see e.g., (3.4). A sparse v helps
in the projection if one is using a sparse eigenvalue code. We have compared several.

One is based on applying a QR algorithm to the original simple V from the definition
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of Vin (2.7). The other two are based on the approach in [22] and we present the most
successful here. The orthogonal V' we use is

1

1 1
v = [m@ﬂ_ﬂ W@ | 2| | )
O—2(5]).14] -1
Ou—al2]).12] —_—

i.e., the block matrix consisting of ¢ blocks formed from Kronecker products along
with one block V to complete the appropriate size so that V'V =1, 1, Ve = 0.
We take advantage of the 0, 1 structure of the Kronecker blocks and delay the scaling
for the normalization till the end. The main work in the low rank projection part of the
algorithm is to evaluate one (or a few) eigenvalues of W = VT Y + %Z ) V to obtain
the update R. Here

We let

1 X1
K:=VQV, a=1/V2, v=—o¢, x=<_>.
/ Ton

X

The structure for V in (2.7) means that we can evaluate the product for Wx as

onT/ow—r a0 _otOT/ow—r ax]
v K wWwllvk|* T vk w W | \xjv+ Kx
. o v’ ,oax1+w_—'—(x1v+K)_c)

oK | \axiw+ Wxiv+ KX)

,001 xi+oaw! (xjv+Kx)+ov' ((xxlw+W(x1v+Ki))
KT (ax1w+W(x1v+Kx))

po xl—i—(aw —i—vTW) (xw—i—Kx)—l—v (axjw)
KT (ax1w+W(x1v+Kx))

We emphasize that V @ V = (V ® V)(D ® D)~!, where V denotes the unscaled
V, and D is the diagonal matrix of scale factors to obtain the orthogonality in V.
Therefore, we can evaluate

K'WEK=(vVeV) WveV)=VeW [(DeD)'WbheD) '[(VeV).
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4 Numerical experiments

In this section we present the results of extensive numerical tests using our proposed
methods. We used MATLAB version 2018a. All QAP symmetric instances from [7,8]
with size up to n = 100 were used in our tests, while the instances bur26a—bur26h
are not symmetric and not used. We divided them into two sets: QAPLIB instances I
and QAPLIB instances II. All the instances were tested on an Intel Xeon Gold 6130
2.10 Ghz PC with 32 cores and 64 Gigabyte memory and running on 64-bit Ubuntu
system.

4.1 Parameter settings

The parameters 8 and y in the updates (3.3) play important roles on the speed of the
ADMM method. Running the algorithm on a few small-sized problems, we heuris-
tically set y = 1.618 and p = 7. Unless specified, the algorithm was terminated
if it reached a maximum number of iterations or the following conditions hold in 5
consecutive iterations:

(nYk — VRV r
ma. _—

T BIYH! — Y"n) < tol, 4.1

where “tol” is a specified tolerance. In (4.1), the first term on the left hand side measures
the residual of primal feasibility while the second term measures the dual feasibility;
see [5, Sect. 3.3]. Although we have the rank-1 constraint, the stopping conditions in
(4.1) were still met for most instances.

4.2 Results on QAPLIB instances |

Two stopping tolerances 107> and 10~!2 were used for ADMM on QAPLIB instances
I, and the maximum number of iterations was set to 40,000. Solving the SDP to the
higher accuracy rarely improved the bounds. The results of lower and upper bounds
are listed in Table 1; and the CPU times and iteration numbers of the algorithm for
both tolerances are in Table 2. Failure of an algorithm is marked by —1111.

e In Table 1 the columns are:

0. Instance name;

1. Opt value: the globally optimal value of each instance, except for problem
Tai30a, where optimality of the value is still not known;

2. Bundle LowBnd: current best known lower bound from [24];

3. HKM-FR LowBnd: the lower bound found using the p—d i-p approach with
facial reduction and the HKM search direction and the code SDPT3 [25];!

' We do not include the times as they were much greater than those by the ADMM approach, e.g., hours
instead of minutes and a day instead of an hour.
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D.E. Oliveira et al.

Table 2 CPU times (in seconds) and iteration numbers by different approaches on QAPLIB Instances 1.
Failure of an algorithm is marked by —1111

1 Tol5 2Tol5 3 HKM 4 Tol5 5 Tol5 6 Tol12 7 Tol12 8 Tol12

cpusec cpusec  cpuratio iterations iterations iterations  residual iterations

HighRk LowRk Tol9 HighRk LowRk HighRk HighRk LowRk
Escl6a 20.14 2.64 9.37 2053 280 7309 9.87e—13 305
Escl6b 3.10 2.93 8.08 338 311 641 3.94e—13 334
Escl6c 8.44 3.68 4.88 961 403 3751 9.69e—13 592
Escléd 17.39 2.18 10.22 1889 236 7812 9.87e—13 270
Escl6e 24.04 2.63 8.79 2719 288 11784 9.93e—13 310
Escl6g 33.54 2.61 8.63 3839 285 9096 9.87e—13 304
Escl6h 4.01 2.73 10.60 433 300 886 8.47e—13 354
Escl6i 100.79 2.26 8.76 11653 290 27,106 9.96e—13 323
Escl6j 56.90 2.67 7.93 6898 306 29,743 9.95e—13 338
Hadl2 8.39 0.53 5.91 2682 157 2845 8.64e—13 178
Hadl4 23.07 0.99 10.46 3919 169 4747 2.35e—13 181
Had16 111.92 1.88 12.51 14,179 210 14,362 6.80e—13 228
Had18 268.58 3.57 13.28 18,068 259 40,000 2.07e—06 271
Had20 196.70 6.17 14.53 9038 309 40,000 5.55e—07 321
Kra30a  988.47  62.61 — 1111 8466 632 40,000 2.08¢—07 654
Kra30b 1481.32  63.31 — 1111 12,882 623 40,000 8.73e—07 645
Kra32  1355.11 9243 — 1111 9020 720 40,000 5.28e—07 737
Nugl2 22.27 0.53 5.93 5813 146 40,000 3.82e—09 163
Nugl4 49.76 1.01 8.43 7667 167 40,000 2.94e—07 186
Nugl5 53.68 1.49 7.79 6547 200 40,000 2.11e—07 221
Nugl6a 117.57 1.76 12.24 11,591 193 40,000 1.46e—06 208
Nugl6b 62.72 1.98 11.83 6410 207 40,000 5.87e—10 234
Nugl? 135.80 2.31 13.13 10,727 204 40,000 9.12e—07 215
Nugl8 250.85 3.22 15.23 15,862 226 40,000 1.79e—06 240
Nug20  238.68 5.82 14.35 9786 276 40,000 4.55e—07 289
Nug21 651.15 8.27 14.95 22,465 322 40,000 3.62e—06 340
Nug22  942.50 9.84 13.90 27,839 325 40,000 5.69e—06 338
Nug24  572.04  13.47 —1111 12,148 335 40,000 7.55e—07 346
Nug25 1308.41 18.38 —1111 24,051 375 40,000 5.05e—06 386
Nug27 1875.89 30.54 —1111 25,201 454 40,000 4.16e—06 465
Nug28 1658.48 34.50 —1111 18,417 447 40,000 2.73e—06 461
Nug30 2584.42  48.92 — 1111 22,613 469 40,000 3.06e—06 478
Roul2 23.19 0.44 6.90 6327 127 6360 2.02e—13 142
Roul5 19.00 1.27 9.46 2219 170 19,769 6.08¢—13 184
Rou20 88.20 5.60 16.08 3684 263 40,000 2.08¢e—07 275
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Table 2 continued

1 Tol5 2 Tol5 3HKM 4 Tol5 5 Tol5 6 Tol12 7 Tol12 8 Toll2
cpusec cpusec  cpuratio iterations iterations iterations  residual iterations
HighRk LowRk Tol9 HighRk LowRk HighRk HighRk LowRk

Scrl2 3.71 0.48 5.79 1135 142 2878 6.65e—13 160
Scrl5 8.06 1.14 10.75 1061 158 2023 8.11e—13 176
Scr20 858.08 5.94 17.96 34,679 264 40,000 7.68e—06 276
Tail2a 1.56 0.50 6.70 421 127 454 1.38e—13 145
Tail5a 17.01 1.22 10.34 1955 157 29,673 541le—13 170
Tail7a 39.60 2.31 12.04 2997 216 22,276 7.29e—13 234
Tai20a 66.02 5.62 15.85 2755 252 40,000 1.72e—08 267
Tai25a  128.14 17.20 —1111 2244 350 12,809 6.33e—13 362
Tai30a  433.54 55.82 —1111 3698 527 39,288 3.74e—13 539
Tho30 2045.32 51.37 —1111 17,854 522 40,000 2.23e—06 533

4. Tol5 ADMM LowBnd: the lower bound found by running ADMM without the
rank-1 constraint, with the tolerance 10~°, and evaluating the dual objective
using the approach in Sect. 3.1;

5. Tol5 feas UpBnd: the stronger upper bound found by running ADMM with
the rank-1 constraint and tolerance 10~>, and also by running ADMM without
the rank-1 constraint, with tolerance 1075, and then using the approach in
Sect. 3.2;

6. Toll2 ADMM LowBnd: the lower bound found by running ADMM without
rank-1 constraint to the tolerance 10~'% and then evaluating the dual objective
through the approach discussed in Sect. 3.1;

7. Toll2 feas UpBnd: the stronger upper bound found by ADMM with the rank-1
constraint and tolerance 10712, and also ADMM without the rank-1 constraint
with tolerance 10~12 and then using Sect. 3.2;

8. Tol5 ADMM % gap: the percentage gap between the lower and upper bounds
found by our proposed approach with tolerance 107

9. ADMM Tol5 vs Boundle %Impr LowBnd: the percentage improvement by

our proposed approach with tolerance 10~ over the current best known lower
bound from [24].

Remark 4.1 (Table 1) From column 9, we see that our approach improves the currently
best-known bounds for every instance. In addition, we have provably found the global
optimal solution for the seven instances:

Esc16j, Had12, Had14, Had16, Had18, Roul2, Tail2a.

This is mainly due to the inclusion of all the nonnegativity constraints and the projection
onto [0, 1], all with essentially zero extra computational cost, see (3.7). Note that
adding the nonnegativity constraints would be too expensive within an interior point
approach. In addition, the bounds rarely improved when using the smaller tolerance

10~12,
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Table 4 Results of lower and upper bounds and also CPU times (in seconds) by ADMM for each instance
in QAPLIB Instances II with size at least 64. Optimal values of the instances marked by x are still unknown

Problem 1. 2. 3. 4. 5 Tol5 6 Tol5
opt ADMM feas ADMM cpusec cpusec
value LowBnd UpBnd Yogap HighRk LowRk

Esco4a 116 98 120 18.33 1.64e+04 1.11e+04

*Sko64 48,498 46,888 50,840 7.77 1.56e+04 1.13e+04

#Sko72 66,256 64,205 70,672 9.15 3.0le+04 2.07e+04

#Sko81 90,998 87,756 96,456 9.02 5.94e+04 3.77e+04

#Sko90 115,534 111,300 121,390 8.31 9.32e+04 6.72e+04

+Sko100a 152,002 145,775 160,794 9.34 1.38e+05 9.37e+04

+Sko100b 153,890 147,332 162,004 9.06 1.38e+05 9.45e+04
+Sko100c 147,862 142,018 156,230 9.10 1.38e+05 9.46e+04

#Sko100d 149,576 143,205 157,100 8.84 1.39e+05 9.53e+04

#Sko100e 149,150 142,977 155,858 8.26 1.38e+05 9.51e+04

#Sko100f 149,036 142,413 156,088 8.76 1.40e+05 9.70e+04

+Tai60a 7,205,962 6,319,630 7,759,332 18.55 1.34e+04 1.01e+04

Tai64c 1,855,928 1,809,370 1,917,484 5.64 1.65e+04 1.14e+04

+Tai80a 13,499,184 11,613,474 14,618,694 20.56 5.17e+04 3.08e+04

+Tail00 21,052,466 17,704,527 22,641,778 21.81 1.53e+05 9.33e+04

*Wil100 273,038 267,469 278,898 4.10 1.41e+05 9.67e+04

e In Table 2 the columns are:

. Instance name;
. Tol5 cpusec HighRk: CPU times (in seconds) of ADMM without the rank-1

constraint and with tolerance 10™2;

. Tol5 cpusec LowRk: CPU times (in seconds) of ADMM with the rank-1 con-

straint and with tolerance 1072;

. HKM cpuratio Tol 9: the ratio between the CPU times by the p—d i-p approach

and ADMM without the rank-1 constraint and with tolerance 10~2;

. Tol5 iterations HighRk: iteration numbers of ADMM without the rank-1 con-

straint and with tolerance 107>;

Tol5 iterations LowRk: iteration numbers of ADMM with the rank-1 constraint
and with tolerance 1077

Tol12 iterations HighRk: iteration numbers of ADMM without the rank-1 con-
straint and with tolerance 10~12;

. Toll2 residual HighRk: residual of the output measured as in (4.1) of

ADMM without the rank-1 constraint and with tolerance 10~12;
ADMM Tol12 iterations LowRKk: the iteration numbers of ADMM with the
rank-1 constraint and with tolerance 10712,

Remark 4.2 (Table 2) We see that ADMM with rank-1 constraint is much faster than
that without the rank-1 constraint to reach the same tolerance. In addition, we notice
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Table 7 New lower bounds by the proposed approaches for QAPLIB unsolved instances

Problem QAPLIB ADMM % Impr QAPLIB New
LowBnd LowBnd LowBnd Yogap Yogap
Sko42 14,934 15,335 2.61 5.55 3.02
Sko49 22,004 22,653 2.86 5.91 3.13
Sko56 32,610 33,390 2.34 5.36 3.10
Sko64 45,736 46,888 2.46 5.70 3.32
Sko72 62,691 64,205 2.36 5.38 3.10
Sko81 86,072 87,756 1.92 5.41 3.56
Sko90 109,030 111,300 2.04 5.63 3.66
Sko100a 143,846 145,775 1.32 5.37 4.10
Sko100b 145,522 147,332 1.23 5.44 4.26
Sko100c 139,881 142,018 1.50 5.40 3.95
Sko100d 141,289 143,205 1.34 5.54 4.26
Sko100e 140,893 142,977 1.46 5.54 4.14
Sko100f 140,691 142,413 1.21 5.60 4.44
Tai30a 1,706,855 1,706,871 <0.01 6.12 6.12
Tai35a 2,216,627 2,216,645 <0.01 8.48 8.48
Tai40a 2,843,274 2,843,312 <0.01 9.43 9.43
Tai50a 4,390,920 4,390,976 <0.01 11.09 11.09
Tai60a 5,578,356 6,319,630 11.73 22.59 12.30
Tai80a 10,501,941 11,613,474 9.57 22.20 13.97
Tail00 15,844,731 17,704,527 10.50 24.74 15.90
Tho40 224,414 226,522 0.93 6.69 5.82
Wil50 47,098 48,125 2.13 3.52 1.42
Will00 264,442 267,469 1.13 3.15 2.04

that for all instances, ADMM can reach an accuracy of 1075, However, for most
instances, it cannot reach the accuracy of 10~!2 even though running to 40,000 itera-
tions.

4.3 Results on QAPLIB instances Il

Since the tests on QAPLIB instances I show no improvement from the smaller tolerance
10712, we simply set the tolerance to 10~ for the tests on QAPLIB instances II. For the
instances with size n < 60, we set the maximum number of iterations to 40,000. For
larger instances, to reduce cputime, we simply run ADMM with the rank-1 constraint
and ADMM without rank-1 constraint, but each to a maximum 2,000 iterations. For
the former, at every 100 iterations, we found a feasible solution (thus an upper bound)
by the method in Sect. 3.2. For the latter, at every 100 iterations we obtain a lower
bound and also an upper bound by the methods in Sects. 3.1 and 3.2. We reported the
best lower and upper bounds that we obtained. The results are shown in Table 3 for
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instances of size n < 60 and in Table 4 for instances of size n > 60. The columns
used are similar to those in Tables 1 and 2.

Remark 4.3 From Tables 3 and 4, we see that our method provably found exact optimal
solutions for the 15 instances:

chrl2a, chr12b, chrl2c, chrl5a, chr15b, chrl5c, chr18a, chr20a, chr20b, chr22a,
chr22b, chr25a, Esc16f, Esc32e, Esc32f.

For the rest of the instances, our method yielded a relative gap smaller than 20% for
26 instances, between 20% to 40% for 8 instances, and greater than 40% for only 1
instance. In addition, the ADMM with the rank-1 constraint reached the same stopping
tolerance in much less time.

4.4 Influence of the nonnegativity constraints

To highlight the importance of the nonnegativity constraints in strengthening the
bounds, i.e., in using a DNN model, we now compare results with and without the
restriction 0 < Y < 1, i.e., Y is updated according to (3.5) or (3.7). For the instances
in Table 1 with n < 24, we obtained the same lower bounds as those from the HKM
p—d i-p approach by updating Y according to (3.5). The upper and lower bounds
for the remaining 10 instances by ADMM with updates (3.5) and (3.7) are shown in
Table 5. We see that for all those 10 problems, ADMM using (3.7) obtained better
lower bounds. ADMM with the rank-1 constraint can hardly achieve the tolerance
1073 if the bound constraint is not enforced. In addition, except for Kra30b, Kra32,
and Nug28, better upper bounds were also obtained by using (3.7).

Moreover, for the instances in Table 3 that were solved to optimality, if we update
Y according to (3.5), the generated solution will not be optimal any more. For most
of these 15 instances, ADMM with update (3.5) yielded the trivial lower bound 0. In
Table 6, we present the 6 instances, for which ADMM with (3.7) improved the relative
gap significantly over that with (3.5).

4.5 Improved lower bounds

For the problems marked with * in Tables 1, 3, and 4, their optimal values are still
unknown, and we obtained better lower bounds than those given in [7]. In Table 7, the
fourth column shows the improvement percentage of the lower bounds for those 23
instances. Its last two columns list the gap between current lower bound and the best
known feasible solutions according to Tables 1, 3, and 4, and also the improved gap
by the proposed approach. We note that around 10% improvement has been achieved
on instances Tai60a, Tai80a, and Tail00a, 2% on 6 instances, and less than 0.01%
improvement on the other 4 instances.
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5 Conclusion

In this paper we have shown the efficiency of using the ADMM approach for solving
the facially reduced SDPrelaxation of the QAP problem with added nonnegativ-
ity constraints, i.e., the usually hard-to-solve DNNrelaxation. We exploited the
FRrelation Y = VRV by applying the polyhedral constraints to ¥ and the positive
semidefinite and rank constraints to R. The addition of the nonnegativity constraints
to Y causes essentially no extra cost but significantly improves the bounds. For most
instances in QAPLIB, we have improved both lower and upper bounds for the QAP,
and in several instances, the bounds provably find the optimal permutation matrix.

In a forthcoming study, begun in [19], we propose to include this in a branch
and bound framework and implement it in a parallel programming approach, see
e.g., [14]. In addition, we propose to test the possibility of using warm starts in the
branching/bounding process and test it on the larger test sets such as used in e.g., [9].

The most expensive steps of our code was the matrix multiplication W = VW V7T
and the eigenvalue decomposition of W. We hope that a more efficient approach for this
special matrix multiplication can be found. Moreover, since only a few eigenvalues
of W are needed it is hoped that a more efficient algorithm can be used, e.g., the
MATLAB code eigifp based on [12].
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