
1 23

Mathematical Programming
Computation
A Publication of the Mathematical
Optimization Society

ISSN 1867-2949

Math. Prog. Comp.
DOI 10.1007/s12532-018-0148-3

ADMM for the SDP relaxation of the QAP

Danilo Elias Oliveira, Henry Wolkowicz
& Yangyang Xu

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag GmbH Germany, part of Springer

Nature and The Mathematical Programming

Society. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Mathematical Programming Computation
https://doi.org/10.1007/s12532-018-0148-3

FULL LENGTH PAPER

ADMM for the SDP relaxation of the QAP

Danilo Elias Oliveira1 · Henry Wolkowicz1 · Yangyang Xu2

Received: 15 December 2015 / Accepted: 30 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature and The Mathematical Programming Society 2018

Abstract
Semidefinite programming, SDP, relaxations have proven to be extremely strong
for many hard discrete optimization problems. This is in particular true for the
quadratic assignment problem, QAP, arguably one of the hardest NP-hard discrete
optimization problems. There are several difficulties that arise in efficiently solving
the SDP relaxation, e.g., increased dimension; inefficiency of the current primal–dual
interior point solvers in terms of both time and accuracy; and difficulty and high
expense in adding cutting plane constraints. We propose using the alternating direc-
tion method of multipliers ADMM in combination with facial reduction, FR, to solve
the SDP relaxation. This first order approach allows for: inexpensive iterations, a
method of cheaply obtaining low rank solutions; and a trivial way of exploiting the
FR for adding cutting plane inequalities. In fact, we solve the doubly nonnegative,
DNN, relaxation that includes both the SDP and all the nonnegativity constraints.
When compared to current approaches and current best available bounds we obtain
robustness, efficiency and improved bounds.

The code can be downloaded from the author’s webpage https://xu-yangyang.github.io/ADMM_QAP/
The software that was reviewed as part of this submission was given the DOI (Digital Object Identifier)
10.5281/zenodo.1412139.

This work is partially supported by NSERC and AFOSR. The first version of this paper appeared in
optimization online, Dec. 16, 2015 and in arXiv:1512.05448, Dec. 17, 2015
Research supported by The Natural Sciences and Engineering Research Council of Canada and by
AFOSR.
Research partly supported by NSF Grant DMS-1719549.

B Yangyang Xu
xuy21@rpi.edu

Henry Wolkowicz
hwolkowicz@uwaterloo.ca

1 Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

2 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-018-0148-3&domain=pdf
https://xu-yangyang.github.io/ADMM_QAP/
http://www.optimization-online.org/DB_HTML/2015/12/5251.html
https://arxiv.org/abs/1512.05448

D. E. Oliveira et al.

Keywords Quadratic assignment problem · Semidefinite programming relaxation ·
Alternating direction method of multipliers · Facial reduction · Doubly nonnegative ·
Large scale

Mathematics Subject Classification 90C22 · 90B80 · 90C46 · 90C06 · 90-08

1 Introduction

The quadratic assignment problem, QAP, in the trace formulation [11] is

(QAP) p∗ := min
X∈�n

〈AXB − 2C, X〉, (1.1)

where A, B ∈ S
n are real symmetric n × n matrices, C is a real n × n matrix, 〈· , ·〉

denotes the trace inner product, i.e., 〈Y , X〉 = trace Y X�, and �n denotes the set of
n × n permutation matrices. A typical application of the QAP is to assign n facilities
to n locations while minimizing total cost. This total cost uses the flow Ai j between a
pair of facilities i, j multiplied by the distance Bst between their assigned locations
s, t , respectively. Included is the location cost Cis of placing facility i in location
s. The QAPwas first introduced as a model for analyzing the location of economic
activities [17,18]. Further applications include: various layout problems, e.g., hos-
pitals, airports, circuit boards, VLSI keyboards; bandwith minimization of a graph;
image processing; molecular conformations in chemistry; scheduling; supply chains;
manufacturing lines. Moreover, many well known discrete optimization problems are
a special case of QAP, e.g., the traveling salesman problem and the maximum cut
problem; see e.g., [3,20,21].

It is well known that the QAP is an NP-hard problem and that problems with size
as moderate as n = 30 still remain difficult to solve, e.g., [1]. Solution techniques rely
on efficiently calculating lower and upper bounds. An important tool for finding lower
bounds is the work in [28] that provides a semidefinite programmming (SDP), relax-
ation of (1.1). In particular, this relaxation uses facial reduction (FR) to guarantee
strict feasibility for both the relaxation and its dual and thus providing robustness; and
FR greatly simplifies the constraints bymakingmany of them redundant. Themethods
of choice for SDP are based on a primal–dual interior-point, p–d i-p, approach. These
methods cannot solve large problems, have difficulty in obtaining high accuracy solu-
tions, and cannot properly exploit sparsity. Moreover, it is very expensive to add on
nonnegativity and other cutting plane constraints. The current state for finding bounds
and solving QAP is given in e.g., [1,2,6,9,23,24].

1.1 Contributions

In this paper we apply the alternating direction method of multipliers (ADMM) for
solving the facially reduced SDP relaxation of the QAPwhere we add additional ele-
mentwise nonnegativity constraints to the SDP constraints, i.e., anADMMmethod for
solving a doubly nonnegative (DNN) problem.Ourmodel takes particular advantage of

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

the facial reduction by doubling the number of variables so that the ADMM approach
can take advantage of separate simplified subproblems for the semidefinite constraints
and the elementwise nonnegativity constraints. The recent papers [16,27] also present
algorithms for solving the DNN relaxation of QAP, and their methods turn out to be
very efficient for finding strong lower bounds of manyQAP instances. However, they
do not use the FR technique, and our lower bounds are stronger on many of our tested
instances.

We compare our upper and lower bounds with: the best known results given in [24];
the best known bounds found at SDPLIB [7]; and with a p–d i-p methods based on the
so-called HKM direction. We tested all symmetric instances from QAPLIB [7] with
sizes up to n = 100. We find that our bounds strictly improve on the existing bounds
in the literature and provably solve many instances to optimality. Moreover, we see
that the ADMMmethod is significantly faster, and can often easily obtain medium-
accuracy solutions, that are sufficient to provide strong lower bounds for QAP . This
is partly due to the ability of obtaining low rank SDP solutions, as well as being able
to solve the subproblems within the ADMMmethod fast and accurately. Finally, by
exploiting low rank projections, we also obtain strong upper bounds.

1.2 Related works

A survey for various eigenvalue and SDP type lower bounds for QAP is given in
[1]. Included are exact solution techniques as well. A copositive program, CP, is
formulated in [23] and is shown to be equivalent to the QAP . Although the CP is
convex, it is still intractable. Starting with the CP, several relaxations of QAP are
presented in [23]. A review and a comparison with several other SDP relaxations is
included.

Since the submission of our paper, we have become aware of the results in
[15,16,27]. The work [15] studies optimization over permutation matrices. It shows
that a penalized problem with the �0 seminorm can recover the solution to the original
one if the penalty parameter is sufficiently large. Based on that observation, [15] uses
an �p, p ∈ (0, 1) seminorm to replace the �0 term. In addition, an �p regularization
algorithm is used to find KKT points of a sequence of smoothed �p regularized prob-
lems. The algorithm is guaranteed to return a permutation matrix in a finite number of
steps. Applied to the QAP, it will give a feasible solution and thus provide an upper
bound.

General quadratic optimization with linear and also binary constraints is studied in
[16]. This includes QAP as a special case. A Lagrangian-DNN relaxation is solved.
Based on a formulation given in [23], lower bounds for some QAP instances are
reported in [16]. It is demonstrated that the Lagrangian-DNN approach can be signifi-
cantly faster than a Newton-CG SDPmethod (SDPNAL) [29], and comparable lower
bounds are obtained. In contrast, our method yields the same or even better lower
bounds on all the common tested instances except for Char20c, even though a small
tolerance 10−12 was set in [16]. This is most likely due to the fact that FRwas not
used.

123

Author's personal copy

D. E. Oliveira et al.

An improved version of SDPNAL, called SDPNAL+, is given in [27]. Using a good
initial point found with an ADMM type method, SDPNAL+ applies a semismooth
Newton-CG to subproblems in the augmented Lagrangian method framework. It is
shown to be superior to several other SDP solvers and can solve many difficult SDPs
fromQAP instances to tolerance of order 10−6. When compared to our approach, [27]
obtains a better lower bound only on the instance Tai25a, and for many other tested
instances, our results turn out to be strictly better. As noted above, this is possibly due
to the use of FR.

More recently, [13] introduced a MATLAB based software package BBCPOP, that
appears to improve further on [27] for solving the DNN relaxation of QAP . It applies
the solver on the same relaxation used in [16]. It obtained a stronger lower bound than
our approach on the single instance Char20c, while our lower bounds were strictly
better on many tested instances.

We note that previous success of ADMM for solving SDP is presented in e.g., [26].
Convincing results on a few combinatorial optimization problems were obtained. A
detailed survey for ADMM can be found in [5].

1.3 Outline

We continue in Sect. 2 with a new derivation of the facially reduced SDP relaxation
of theQAP from [28]. This derivation is novel in that it directly includes the so-called
gangster constraints. The newADMM approach is presented in Sect. 3, where details
of the ADMM subproblems are included, as well as details for obtaining the lower
bounds from possibly inaccurate solutions of the SDP , and obtaining the upper bounds
efficiently. Our numerics are presented in Sect. 4 with several tables. We conclude in
Sect. 5.

2 A new derivation for the SDP relaxation

In this section we present a new derivation of the facially reduced SDP relaxation of
the QAPobtained in [28]. The derivation is new in that the gangster constraints are
obtained directly. We first briefly introduce FR and then derive the SDP relaxation
from the dual of the Lagrangian dual.

2.1 Original FR for SDP relaxation of QAP

The SDP relaxation of the QAP in [28] begins with a set of quadratic constraints that
represent the permutationmatrices. Then, the Lagrangian relaxation (Lagrangian dual)
is formed and shown to be equivalent to an SDP. The dual of this Lagrangian dual
is then the SDP relaxation of the QAP. However, it is then shown in [28] that strict
feasibility fails for this SDP relaxation. But one can find the barycenter, ̂Y , of the
feasible set and use the spectral decomposition

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

̂Y = [

̂V ̂U
]

[

D � 0 0
0 0

]

[

̂V ̂U
]T

to obtain the facial reduction, minimal faceF , of all feasible Y for the SDP relaxation,

Y ∈ F := ̂VS
(n−1)2+1
+ ̂V T � S

n2+1,

where � denotes face. Using the substitution Y = ̂V R̂V T results in a smaller dimen-
sional problem and, moreover, this substitution and the addition of the gangster
constraints, makes many of the original constraints redundant. The result is an elegant,
much simplified, stable SDP relaxation.

2.2 The new derivation

We now provide the new derivation of the facially reduced SDP relaxation in [28].
We start with the following equivalent quadratically constrained quadratic problem
for QAP

min
X

〈AXB − 2C, X〉
s.t. Xi j Xik = 0, X ji Xki = 0, ∀i, ∀ j 	= k,

X2
i j − Xi j = 0, ∀i, j,
n
∑

i=1

X2
i j − 1 = 0, ∀ j,

n
∑

j=1

X2
i j − 1 = 0, ∀i . (2.1)

Remark 2.1 Note that the quadratic orthogonality constraints X�X = I , XX�
= I , and the linear row and column sum constraints Xe = e, X�e = e, can all
be represented using linear combinations of those in (2.1). This observation avoids the
need for adding all the redundant quadratic constraints and then removing redundant
linear constraints in the SDP. Here e is the vector of all ones.

In addition, the first set of constraints, the elementwise orthogonality of the row
and columns of X , are referred to as the gangster constraints. They are particularly
strong constraints and enable many of the other constraints to be redundant. In fact,
after the FR is done, many of these gangster constraints also become redundant.

The Lagrangian for (2.1) is

L0(X ,U , V ,W , u, v)

= 〈AXB − 2C, X〉 +
n
∑

i=1

∑

j 	=k

U (i)
jk Xi j Xik +

n
∑

i=1

∑

j 	=k

V (i)
jk X ji Xki

+
∑

i, j

Wi j (X
2
i j − Xi j) +

n
∑

j=1

u j

(

n
∑

i=1

X2
i j − 1

)

+
n
∑

i=1

vi

⎛

⎝

n
∑

j=1

X2
i j − 1

⎞

⎠ .

123

Author's personal copy

D. E. Oliveira et al.

The dual problem is a maximization of the dual functional d0,

max d0(U , V ,W , u, v) := min
X

L0(X ,U , V ,W , u, v). (2.2)

To simplify the dual problem, we homogenize L0 by multiplying the degree-one
terms in X by a scalar variable x0 and adding the single constraint x20 = 1 to the dual
functional. We add the additional dual variable w0 and let

L1(X , x0,U , V ,W , w0, u, v)

= 〈AXB − 2x0C, X〉 +
n
∑

i=1

∑

j 	=k

U (i)
jk Xi j Xik +

n
∑

i=1

∑

j 	=k

V (i)
jk X ji Xki

+
∑

i, j

Wi j (X
2
i j − x0Xi j) +

n
∑

j=1

u j

(

n
∑

i=1

X2
i j − 1

)

+
n
∑

i=1

vi

⎛

⎝

n
∑

j=1

X2
i j − 1

⎞

⎠ + w0(x
2
0 − 1).

This homogenization technique is the same as that in [28]. The new dual problem is

max d1(U , V ,W , w0, u, v) := min
X ,x0

L1(X , x0,U , V ,W , w0, u, v). (2.3)

Note that the dual functionals satisfy d1 ≤ d0. Hence, our relaxation still yields a
lower bound to (2.1). In fact, the relaxations give the same lower bound. This follows
from strong duality of the trust region subproblem as shown in [28].

Let x = vec(X), y = [x0; x], and w = vec(W), where vec(X) denotes the colum-
nwise vectorization of X . Then

L1(X , x0,U , V ,W , w0, u, v) = y� [

LQ + B1(U) + B2(V) + Arrow(w,w0)

+K1(u) + K2(v)] y − e�(u + v) − w0,

where

K1(u) = blkdiag(0, u ⊗ I), K2(v) = blkdiag(0, I ⊗ v),

B1(U) = blkdiag(0, ˜U), B2(V) = blkdiag(0, ˜V),

LQ =
[

0 − vec(C)�
− vec(C) B ⊗ A

]

, Arrow(w,w0) =
[

w0 − 1
2w

�
− 1

2w Diag(w)

]

.

Here, ⊗ denotes the Kronecker product, and ˜U and ˜V are n × n block matrices. ˜U
has zero diagonal blocks and the (j, k)-th off-diagonal block is the diagonal matrix
Diag(U (1)

jk , . . . ,U (n)
jk), for all j 	= k. ˜V has zero off-diagonal blocks and the i-th

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

diagonal block is

⎡

⎢

⎢

⎢

⎢

⎣

0 V (i)
12 · · · V (i)

1n

V (i)
21 0 · · · V (i)

2n
...

...
. . .

...

V (i)
n1 V (i)

n2 · · · 0

⎤

⎥

⎥

⎥

⎥

⎦

. We use blkdiag(A1, A2) to denote the

block diagonal matrix with principal diagonal blocks A1, A2, cf. the same command
in MATLAB. Hence, the dual problem (2.3) is equivalent to the SDP

max −e�(u + v) − w0

s.t. LQ + B1(U) + B2(V) + Arrow(w,w0) + K1(u) + K2(v) � 0. (2.4)

To obtain the SDP relaxation of (2.1), we further take the dual of (2.4). Before pre-
senting the relaxation, we give a few definitions.

Definition 2.2 [block matrix Y ∈ S
n2+1] Given n2 matrices ˜Yi j for i = 1, . . . , n and

j = 1, . . . , n that satisfy ˜Yi j = ˜Y�
j i , let Ȳ be the n × n block matrix with ˜Yi j as the

(i, j)-th block. We form the symmetric block matrix

Y =
[

y00 y�
0

y0 Ȳ

]

, (2.5)

where y00 is a scalar, and y0 is a vector in Rn2 .

Definition 2.3 (Gangster index set) The gangster index set, J is defined to be the
union of the top left index (00) and the set of indices i < j in the matrix Ȳ in (2.5)
corresponding to:

1. the off-diagonal elements in the n diagonal blocks;
2. the diagonal elements in the off-diagonal blocks.

Definition 2.4 (Gangster operator) The gangster operator, GJ : Sn2+1 → S
n2+1 is

defined by

GJ (Y)i j =
{

Yi j if (i, j) ∈ J or (j, i) ∈ J
0 otherwise.

By abuse of notation, we let the same symbol denote the projection onto R
|J |, and

thus for y ∈ R
|J |, the adjoint yields Y = G∗

J (y) ∈ S
n2+1 obtained by symmetrization

and filling in the missing elements with zeros.

Now, taking the dual of (2.4), we have the SDP relaxation of (2.1):

min 〈LQ,Y 〉
s.t. GJ (Y) = E00

diag(Ȳ) = y0
trace(˜Yii) = 1, ∀i
∑n

i=1
˜Yii = I

Y � 0,

(2.6)

123

Author's personal copy

D. E. Oliveira et al.

where E00= e0e0T is the outer product of the first unit vector, the block matrix Y is
defined in Definition 2.2 and the gangster index set J and the gangster operator GJ

are defined in Definitions 2.3 and 2.4. Note that the variable Y in (2.6) is in a higher
dimensional space compared to the original variable X in (2.1). This can be motivated

from the lifting Y =
(

1
vec(X)

)(

1
vec(X)

)�
.We applyADMM to an equivalent, more

succinct, modification of (2.6). (See (3.1) and Theorem 3.1, below.)

Remark 2.5 If one more feasible quadratic constraint q(X) can be added to (2.1), and
q(X) cannot be linearly represented by those in (2.1), the relaxation following the
same derivation as above can be tighter. We conjecture that no more such q(X) exists,
and thus (2.6) is the tightest among all Lagrange dual relaxations from a quadratically
constrained program like (2.1).However, this does notmean thatmore linear inequality
constraints cannot be added, i.e., linear cuts.

2.3 Strict feasibility by FR

As above, let e be the vector of all ones of appropriate dimension, and let V ∈ R
n×(n−1)

be full column rank with V T e = 0, and

̂V =
[

1 0
1
n e V ⊗ V

]

. (2.7)

FR is applied in [28] by using the substitution

Y = ̂V R̂V� ∈ S
n2+1. (2.8)

This way, it is shown that (2.6) is equivalent to

p∗
R := min

R
〈̂V�LQ̂V , R〉

s.t. GJ (̂V R̂V�) = E00

R � 0, (2.9)

a greatly simplified SDP. This simplification arising from FR allows for theADMM to
be applied efficiently for the DNNproblem, i.e., we use the equivalence in (2.8) to
relate Y , R and apply the gangster constraints and nonnegativity on Y while applying
the semidefinite constraint on R.

Note that after FR , many constraints in (2.6) become redundant, and also we can
remove redundant indices in J : the diagonal (zero) constraints in the last column of
off-diagonal blocks and in the (n−2, n−1) off-diagonal block. By abuse of notation,
we use the same notation J and GJ after removing these indices. Another advantage
of (2.9) is that strict feasibility holds, i.e., there exists a feasible R � 0, as shown in
Lemma 2.6. In addition, strict feasibility holds for its dual problem, see Lemma 2.7.
Both lemmas are from [28].

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

Lemma 2.6 The matrix ̂R defined by

̂R :=
[

1 0
0 1

n2(n−1)
(nIn−1 − En−1) ⊗ (nIn−1 − En−1)

]

∈ S
(n−1)2+1
++

is (strictly) feasible for (2.9). ��
We note that the gangster operator is self-adjoint, G∗

J = GJ . Therefore, the dual of
(2.9) can be written as the following:

d∗
Y := max

Y
〈E00,Y 〉 (= Y00)

s.t. ̂V�GJ (Y)̂V � ̂V�LQ̂V .
(2.10)

Again by abuse of notation, using the same symbol twice, we get the two equivalent
dual constraints:

̂V�GJ (Y)̂V � ̂V�LQ̂V ; ̂V�G∗
J (y)̂V � ̂V�LQ̂V .

As above, the dual variable for the first form is Y ∈ S
n2+1 and for the second form is

y ∈ R
|J |. We have used G∗ for the second form to emphasize that only the first form

is self-adjoint.

Lemma 2.7 Define matrices ̂Y , ̂Z, with M > 0 sufficiently large, by

̂Y := M

[

n 0

0 In ⊗ (In − En)

]

∈ S
(n−1)2+1
++ , ̂Z := ̂V�LQ̂V − ̂V�GJ (̂Y)̂V ∈ S

(n−1)2+1
++ .

Then they are (strictly) feasible variable and slack for (2.10). ��

3 A new ADMMalgorithm for the SDP relaxation

We can write (2.9) equivalently as

min
R,Y

〈LQ,Y 〉 s.t. GJ (Y) = E00, Y = ̂V R̂V�, R � 0. (3.1)

The following theorem from [28] shows the equivalence between (2.6) and (3.1).

Theorem 3.1 A matrix Y is feasible for (2.6) if, and only if, it is feasible for
(3.1). ��

Therefore we can work with (3.1). The augmented Lagrange of (3.1) is

LA(R,Y , Z) = 〈LQ,Y 〉 + 〈Z ,Y − ̂V R̂V�〉 + β

2
‖Y − ̂V R̂V�‖2F . (3.2)

123

Author's personal copy

D. E. Oliveira et al.

Recall that (R,Y , Z) are the primal reduced, primal, and dual variables respectively.
We denote (R,Y , Z) as the current iterate. Our new algorithm, an application of
ADMM, uses the augmented Lagrangian in (3.2) and performs the following updates
to obtain a new iterate (R+,Y+, Z+):

R+ = arg min
R∈S+

LA(R,Y , Z), (3.3a)

Y+ = arg min
Y∈Pi

LA(R+,Y , Z), (3.3b)

Z+ = Z + γ · β(Y+ − ̂V R+̂V�), (3.3c)

where the simplest case for the polyhedral constraints Pi is the linear manifold from
the gangster constraints:

P1 = {Y ∈ S
n2+1 : GJ (Y) = E00}.

We use this notation as we add additional simple polyhedral constraints. The second
case is the polytope:

P2 = P1 ∩ {0 ≤ Y ≤ 1}.

Let ̂V be normalized such that ̂V�
̂V = I . Then the R-subproblem can be explicitly

solved by

R+ = arg minR�0〈Z ,Y − ̂V R̂V�〉 + β
2 ‖Y − ̂V R̂V�‖2F

= arg minR�0

∥

∥

∥Y − ̂V R̂V� + 1
β
Z
∥

∥

∥

2

F

= arg minR�0

∥

∥

∥R − ̂V�(Y + 1
β
Z
)

̂V
∥

∥

∥

2

F

= PS+
(

̂V�(Y + 1
β
Z
)

̂V
)

,

(3.4)

where S+ denotes the SDP cone, and PS+ is the orthogonal projection onto S+. For
any symmetric matrix W , we have

PS+(W) = U+�+U�+ ,

where (U+, �+) contains the positive eigenpairs of W ; we let (U−, �−) be for the
negative eigenpairs.

If i = 1 in (3.3b), the Y -subproblem also has a closed-form solution:

Y+ = arg min
GJ (Y)=E00

〈LQ,Y 〉 + 〈Z ,Y − ̂V R+̂V�〉 + β

2
‖Y − ̂V R+̂V�‖2F

= arg min
GJ (Y)=E00

∥

∥

∥

∥

Y − ̂V R+̂V� + LQ + Z

β

∥

∥

∥

∥

2

F

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

= E00 + GJ c

(

̂V R+̂V� − LQ + Z

β

)

. (3.5)

One major advantage of using ADMM is that the complexity increases marginally
when we add constraints to (2.9) and tighten the SDP relaxation. If 0 ≤ ̂V R̂V� ≤ 1
is added in (2.9), then we simply add the constraints 0 ≤ Y ≤ 1 to (3.1). This yields
the new problem

p∗
RY := min

R,Y
{〈LQ,Y 〉 : GJ (Y) = E00, 0 ≤ Y ≤ 1, Y = ̂V R̂V�, R � 0}. (3.6)

The ADMM for solving (3.6) has the same R-update and Z -update as those in (3.3).
The Y -update is changed to

Y+ = E00 + min

(

1, max

(

0, GJ c
(

̂V R+̂V� − LQ + Z

β

)

))

. (3.7)

The nonnegativity constraint means that the ≤ 1 constraint is redundant. But the
inclusion makes the algorithm converge faster and avoid roundoff error. We empha-
size again that it is the FR that allows for the splitting into polyhedral and semidefinite
constraints. The update for R+ is a nearest semidefinite problem and we can effi-
ciently cheat and reduce the number of eigenvalues we allow to be positive by using
the Eckart–Young Theorem, [10]. The update for Y+ is a projection onto a simple
polyhedral set and is very efficient and accurate.

3.1 Lower bound

Ifwe solve (3.6) to high accuracy,we get a lower bound for the originalQAP. However,
the problem size of (3.6) can be extremely large, and it would be very expensive to
obtain a highly accurate solution. In the following, we provide an inexpensive way to
get a valid lower bound from the output of our algorithm that solves (3.6) to amoderate
accuracy. Our method is to find a feasible solution of the dual problem of (3.6). The
lemma below shows that any feasible dual solution provides a valid lower bound to
(3.6) and thus the original QAP.

Lemma 3.2 (Lagrangian dual problem) Let

R := {R : R � 0}, Y := {Y : GJ (Y) = E00, 0 ≤ Y ≤ 1}, Z := {Z : ̂V�ẐV � 0}.

Define

g(Z) := min
Y∈Y

〈LQ + Z ,Y 〉.

Then the dual problem of (3.6) is d∗
Z := max

Z∈Z
g(Z), and the weak duality holds, i.e,

d∗
Z ≤ p∗

RY , where p∗
RY is the optimal objective value of (3.6).

123

Author's personal copy

D. E. Oliveira et al.

Proof The dual problem of (3.6) can be derived as

d∗
Z := max

Z
min

R∈R,Y∈Y
〈LQ,Y 〉 + 〈Z ,Y − ̂V R̂V�〉

= max
Z

min
Y∈Y

〈LQ,Y 〉 + 〈Z ,Y 〉 + min
R∈R

〈Z ,−̂V R̂V�〉
= max

Z
min
Y∈Y

〈LQ,Y 〉 + 〈Z ,Y 〉 + min
R∈R

〈̂V�ẐV ,−R〉
= max

Z∈Z
min
Y∈Y

〈LQ + Z ,Y 〉
= max

Z∈Z
g(Z),

where the fourth equality holds because if Z /∈ Z , thenminR∈R〈̂V�ẐV ,−R〉 = −∞.
Weak duality follows in the usual way by exchanging the max and min. ��

For any Z ∈ Z , we have g(Z) ≤ d∗
Z . Hence, from the above lemma, it follows that

g(Z) is a lower bound of (3.6) and thus of the original QAP. In addition, note that
g(Z) is easy to evaluate. Let (Rout ,Yout , Zout) be the output of the ADMM for (3.6).
We use the dual function value at the projected pointPZ (Zout), namely g

(PZ (Zout)
)

,
as the lower bound. Below we show how to get PZ (˜Z) for any symmetric matrix ˜Z .

Let ̂V⊥ be the orthonormal basis of the null space of ̂V . Then V̄ = (̂V , ̂V⊥) is an
orthogonal matrix. Given any Z ∈ Z , letW = V̄�Z V̄ , and we writeW into the 2× 2

block matrix

[

W11 W12
W21 W22

]

. We have

Z ∈ Z ⇔̂V�ẐV � 0 ⇔ ̂V�ẐV = ̂V�V̄ W V̄�
̂V = W11 � 0.

Hence,

PZ (˜Z) = arg min
Z∈Z

‖Z − ˜Z‖2F = V̄ W ∗V̄�,

where

W ∗ = arg min
W11�0

‖V̄ W V̄� − ˜Z‖2F
= arg min

W11�0
‖W − V̄�

˜Z V̄ ‖2F

=
[PS−(˜W11) ˜W12

˜W21 ˜W22

]

.

Here S− denotes the negative semidefinite cone, and we have assumed V̄�
˜Z V̄ =

[

˜W11 ˜W12
˜W21 ˜W22

]

. Note that PS−(W11) = −PS+(−W11).

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

3.2 Upper bound from feasible solution

Let (Rout ,Yout , Zout) be the output of the ADMM for (3.6). Assume the largest
eigenvalue and the corresponding eigenvector of Y are λ and v, respectively. Then
λvv� is a best rank-one approximation of Y .We let Xout be the squarematrix reshaped
from the second through the last elements of the first column of λvv�. This is our
approximation to (a multiple of) the optimal permutation matrix. Note that for any
permutation matrix X we have trace XT X = n. This implies that

‖Xout − X‖2F = −2 trace XT Xout + constant.

Thus to find the nearest permutation matrix to our approximation, we can take advan-
tage of the Birkoff–von Neumann Theorem e.g., [4], that the permutation matrices are
the extreme points of the doubly stochastic matrices. We only need to solve the linear
program

max
X

{

〈Xout , X〉 : Xe = e, X�e = e, X ≥ 0
}

(3.8)

by a simplex method that gives a basic feasible optimal solution, i.e., a permutation
matrix.

3.3 Low-rank solution

Instead of finding a feasible solutionwith (3.8), we can directly get one by restricting R
to a rank-one matrix, i.e., rank(R) = 1 and R � 0. With this constraint, the R-update
can be modified to

R+ = PS+∩R1

(

̂V�(Y + Z

β

)

̂V

)

, (3.9)

whereR1 = {R : rank(R) = 1} denotes the set of rank-one matrices. For a symmetric
matrix W with largest eigenvalue λ > 0 and corresponding eigenvector w, we have

PS+∩R1 = λww�.

Despite of the nonconvexity of the rank-one constraint, we observed empirically that
our algorithm almost always converged to a solution satisfying all the constraints in
(3.6). Therefore, we obtained a permutation matrix from the lower bound.

3.4 Different choices for V,̂V

The matrix ̂V is essential in the steps of the algorithm, see e.g., (3.4). A sparse ̂V helps
in the projection if one is using a sparse eigenvalue code. We have compared several.
One is based on applying a QR algorithm to the original simple V from the definition

123

Author's personal copy

D. E. Oliveira et al.

of ̂V in (2.7). The other two are based on the approach in [22] and we present the most
successful here. The orthogonal V we use is

V =

⎡

⎢

⎢

⎢

⎢

⎣

⎡

⎣

[

I� n
2 � ⊗ 1√

2

[

1
−1

]]

0(n−2� n
2 �),� n

2 �

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎣

I� n
4 � ⊗ 1

2

⎡

⎢

⎢

⎣

1
1

−1
−1

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

0(n−4� n
4 �),� n

4 �

⎤

⎥

⎥

⎥

⎥

⎦

[

. . .
] [

̂V
]

⎤

⎥

⎥

⎥

⎥

⎦

n×n−1

i.e., the block matrix consisting of t blocks formed from Kronecker products along
with one block ̂V to complete the appropriate size so that V�V = In−1, V�e = 0.
We take advantage of the 0, 1 structure of the Kronecker blocks and delay the scaling
for the normalization till the end. The main work in the low rank projection part of the
algorithm is to evaluate one (or a few) eigenvalues of W = ̂V�(Y + 1

β
Z)̂V to obtain

the update R+. Here

Y + 1

β
Z =

[

ρ w�
w W̄

]

.

We let

K := V ⊗ V , α = 1/
√
2, v = 1√

2n
e, x =

(

x1
x̄

)

.

The structure for ̂V in (2.7) means that we can evaluate the product for Wx as

[

α 0
v K

]� [

ρ w�
w W̄

] [

α 0
v K

]

x =
[

α 0
v K

]� [

ρ w�
w W̄

](

αx1
x1v + K x̄

)

=
[

α v�
0 K�

](

ραx1 + w�(x1v + K x̄)
αx1w + W̄ (x1v + K x̄)

)

=
(

ρα2x1 + αw�(x1v + K x̄) + v� (

αx1w + W̄ (x1v + K x̄)
)

K� (

αx1w + W̄ (x1v + K x̄)
)

)

=
(

ρα2x1 + (

αw� + v�W̄
)

(x1v + K x̄) + v� (αx1w)

K� (

αx1w + W̄ (x1v + K x̄)
)

)

.

We emphasize that V ⊗ V = (V̄ ⊗ V̄)(D ⊗ D)−1, where V̄ denotes the unscaled
V , and D is the diagonal matrix of scale factors to obtain the orthogonality in V .
Therefore, we can evaluate

K�W̄ K = (V ⊗ V)�W̄ (V ⊗ V) = (V̄ ⊗ V̄)�
[

(D ⊗ D)−1W̄ (D ⊗ D)−1] (V̄ ⊗ V̄).

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

4 Numerical experiments

In this section we present the results of extensive numerical tests using our proposed
methods. We used MATLAB version 2018a. AllQAP symmetric instances from [7,8]
with size up to n = 100 were used in our tests, while the instances bur26a–bur26h
are not symmetric and not used. We divided them into two sets: QAPLIB instances I
and QAPLIB instances II. All the instances were tested on an Intel Xeon Gold 6130
2.10 Ghz PC with 32 cores and 64 Gigabyte memory and running on 64-bit Ubuntu
system.

4.1 Parameter settings

The parameters β and γ in the updates (3.3) play important roles on the speed of the
ADMMmethod. Running the algorithm on a few small-sized problems, we heuris-
tically set γ = 1.618 and β = n

3 . Unless specified, the algorithm was terminated
if it reached a maximum number of iterations or the following conditions hold in 5
consecutive iterations:

max

(‖Y k − ̂V Rk
̂V ‖F

‖Y k‖F , β‖Y k+1 − Y k‖
)

≤ tol, (4.1)

where “tol” is a specified tolerance. In (4.1), the first termon the left hand sidemeasures
the residual of primal feasibility while the second term measures the dual feasibility;
see [5, Sect. 3.3]. Although we have the rank-1 constraint, the stopping conditions in
(4.1) were still met for most instances.

4.2 Results on QAPLIB instances I

Two stopping tolerances 10−5 and 10−12 were used forADMMon QAPLIB instances
I, and the maximum number of iterations was set to 40,000. Solving the SDP to the
higher accuracy rarely improved the bounds. The results of lower and upper bounds
are listed in Table 1; and the CPU times and iteration numbers of the algorithm for
both tolerances are in Table 2. Failure of an algorithm is marked by −1111.

• In Table 1 the columns are:

0. Instance name;
1. Opt value: the globally optimal value of each instance, except for problem

Tai30a, where optimality of the value is still not known;
2. Bundle LowBnd: current best known lower bound from [24];
3. HKM-FR LowBnd: the lower bound found using the p–d i-p approach with

facial reduction and the HKM search direction and the code SDPT3 [25];1

1 We do not include the times as they were much greater than those by the ADMM approach, e.g., hours
instead of minutes and a day instead of an hour.

123

Author's personal copy

D. E. Oliveira et al.

Ta
bl
e
1

R
es
ul
ts
of

lo
w
er

an
d
up

pe
r
bo

un
ds

fo
r
ea
ch

in
st
an
ce

in
Q
A
P
L
IB

In
st
an
ce
s
I

Pr
ob
le
m

1
2

3
4
To

l5
5
To

l5
6
To

l1
2

7
To

l1
2

8
To

l5
9
A
D
M
M

To
l5

O
pt

B
un

dl
e
[2
4]

H
K
M
-F
R

A
D
M
M

fe
as

A
D
M
M

fe
as

A
D
M
M

vs
B
un
dl
e

va
lu
e

L
ow

B
nd

L
ow

B
nd

L
ow

B
nd

U
pB

nd
L
ow

B
nd

U
pB

nd
%
ga
p

%
Im

pr
L
ow

B
nd

E
sc
16

a
68

59
50

64
78

64
78

20
.5
9

7.
35

E
sc
16

b
29

2
28

8
27

6
29

0
29

4
29

0
29

4
1.
37

0.
68

E
sc
16

c
16

0
14

2
13

2
15

4
17

0
15

4
17

0
10

.0
0

7.
50

E
sc
16

d
16

8
−
12

13
20

13
20

43
.7
5

31
.2
5

E
sc
16

e
28

23
13

27
34

27
34

25
.0
0

14
.2
9

E
sc
16

g
26

20
11

25
34

25
34

34
.6
2

19
.2
3

E
sc
16

h
99

6
97

0
90

9
97

7
10

12
97

7
10

12
3.
51

0.
70

E
sc
16

i
14

9
−
21

12
14

12
14

14
.2
9

21
.4
3

E
sc
16

j
8

7
−
4

8
8

8
8

0.
00

12
.5
0

H
ad
12

16
52

16
43

16
41

16
52

16
52

16
52

16
52

0.
00

0.
54

H
ad
14

27
24

27
15

27
09

27
24

27
24

27
24

27
24

0.
00

0.
33

H
ad
16

37
20

36
99

36
78

37
20

37
20

37
20

37
20

0.
00

0.
56

H
ad
18

53
58

53
17

52
87

53
58

53
58

53
58

53
58

0.
00

0.
77

H
ad
20

69
22

68
85

68
48

69
22

69
30

69
22

69
30

0.
12

0.
53

K
ra
30

a
88

,9
00

77
,6
47

−
11

11
86

,8
38

10
40

50
86

,8
38

10
5,
90

0
19

.3
6

10
.3
4

K
ra
30

b
91

,4
20

81
,1
56

−
11

11
87

, 8
58

11
49

50
87

,8
58

11
4,
95

0
29

.6
3

7.
33

K
ra
32

88
,7
00

79
,6
59

−
11

11
85

,7
75

11
14

50
85

,7
75

11
1,
45

0
28

.9
5

6.
90

N
ug

12
57

8
55

7
53

0
56

8
65

4
56

8
65

4
14

.8
8

1.
90

N
ug

14
10

14
99

2
96

0
10

11
10

22
10

11
10

22
1.
08

1.
87

N
ug

15
11

50
11

22
10

71
11

41
11

96
11

41
11

96
4.
78

1.
65

N
ug

16
a

16
10

15
70

15
28

16
00

16
10

16
00

16
10

0.
62

1.
86

N
ug

16
b

12
40

11
88

11
39

12
19

14
38

12
19

14
38

17
.6
6

2.
50

N
ug

17
17

32
16

69
16

22
17

08
17

56
17

08
17

56
2.
77

2.
25

123

Author's personal copy

http://anjos.mgi.polymtl.ca/qaplib/

ADMM for the SDP relaxation of the QAP

Ta
bl
e
1

co
nt
in
ue
d

Pr
ob
le
m

1
2

3
4
To

l5
5
To

l5
6
To

l1
2

7
To

l1
2

8
To

l5
9
A
D
M
M

To
l5

O
pt

B
un

dl
e
[2
4]

H
K
M
-F
R

A
D
M
M

fe
as

A
D
M
M

fe
as

A
D
M
M

vs
B
un
dl
e

va
lu
e

L
ow

B
nd

L
ow

B
nd

L
ow

B
nd

U
pB

nd
L
ow

B
nd

U
pB

nd
%
ga
p

%
Im

pr
L
ow

B
nd

N
ug

18
19

30
18

52
18

02
18

94
21

60
18

94
21

60
13

.7
8

2.
18

N
ug

20
25

70
24

51
23

86
25

07
27

32
25

07
27

32
8.
75

2.
18

N
ug

21
24

38
23

23
23

86
23

82
26

72
23

82
26

72
11

.8
9

2.
42

N
ug

22
35

96
34

40
33

96
35

29
38

56
35

29
38

56
9.
09

2.
47

N
ug

24
34

88
33

10
−
11

11
34

02
36

58
34

02
36

58
7.
34

2.
64

N
ug

25
37

44
35

35
−
11

11
36

26
40

52
36

26
40

52
11

.3
8

2.
43

N
ug

27
52

34
49

65
−
11

11
51

30
56

02
51

30
56

02
9.
02

3.
15

N
ug

28
51

66
49

01
−
11

11
50

26
55

34
50

26
55

34
9.
83

2.
42

N
ug

30
61

24
58

03
−
11

11
59

50
65

78
59

50
65

78
10

.2
5

2.
40

R
ou

12
23

5,
52

8
22

3,
68

0
22

1,
16

1
23

5,
52

8
23

5,
52

8
23

5,
52

8
23

5,
52

8
0.
00

5.
03

R
ou

15
35

4,
21

0
33

3,
28

7
32

3,
23

5
35

0,
21

7
36

7,
78

2
35

0,
21

7
36

7,
78

2
4.
96

4.
78

R
ou

20
72

5,
52

2
66

3,
83

3
64

2,
85

6
69

5,
18

1
76

5,
39

0
69

5,
18

1
76

5,
39

0
9.
68

4.
32

Sc
r1
2

31
,4
10

29
,3
21

23
,9
73

31
,4
10

44
,3
60

31
,4
10

44
,3
60

41
.2
3

6.
65

Sc
r1
5

51
,1
40

48
,8
36

42
,2
04

51
,1
40

58
,3
04

51
,1
40

58
,3
04

14
.0
1

4.
51

Sc
r2
0

11
0,
03

0
94

,9
98

83
,3
02

10
6,
80

3
14

9,
03

8
10

6,
80

3
14

9,
03

8
38

.3
8

10
.7
3

Ta
i1
2a

22
4,
41

6
22

2,
78

4
21

5,
63

7
22

4,
41

6
22

4,
41

6
22

4,
41

6
22

4,
41

6
0.
00

0.
73

Ta
i1
5a

38
8,
21

4
36

4,
76

1
34

9,
58

6
37

7,
10

1
41

2,
76

0
37

7,
10

1
41

2,
76

0
9.
19

3.
18

Ta
i1
7a

49
1,
81

2
45

1,
31

7
44

1,
29

4
47

6,
52

5
54

6,
36

6
47

6,
52

5
54

6,
36

6
14

.2
0

5.
13

Ta
i2
0a

70
3,
48

2
63

7,
30

0
61

9,
09

2
67

1,
67

5
75

0,
45

0
67

1,
67

6
75

0,
45

0
11

.2
0

4.
89

Ta
i2
5a

1,
16

7,
25

6
1,
04

1,
33

7
−
11

11
1,
09

6,
65

7
1,
27

1,
69

6
1,
09

6,
65

8
1,
27

1,
69

6
15

.0
0

4.
74

∗T
ai
30

a
1,
81

8,
14

6
1,
65

2,
18

6
−
11

11
1,
70

6,
87

1
1,
94

2,
08

6
1,
70

6,
87

2
1,
94

2,
08

6
12

.9
4

3.
01

T
ho

30
14

9,
93

6
13

6,
05

9
−
11

11
14

3,
57

6
16

9,
95

8
14

3,
57

6
16

9,
95

8
17

.6
0

5.
01

Fa
ilu

re
of

an
al
go

ri
th
m

is
m
ar
ke
d
by

−1
11

1,
an
d
th
e
op

tim
al
va
lu
e
of

th
e
in
st
an
ce

m
ar
ke
d
by

∗i
s
st
ill

un
kn
ow

n

123

Author's personal copy

D. E. Oliveira et al.

Table 2 CPU times (in seconds) and iteration numbers by different approaches on QAPLIB Instances I.
Failure of an algorithm is marked by −1111

1 Tol5 2 Tol5 3 HKM 4 Tol5 5 Tol5 6 Tol12 7 Tol12 8 Tol12
cpusec cpusec cpuratio iterations iterations iterations residual iterations
HighRk LowRk Tol 9 HighRk LowRk HighRk HighRk LowRk

Esc16a 20.14 2.64 9.37 2053 280 7309 9.87e−13 305

Esc16b 3.10 2.93 8.08 338 311 641 3.94e−13 334

Esc16c 8.44 3.68 4.88 961 403 3751 9.69e−13 592

Esc16d 17.39 2.18 10.22 1889 236 7812 9.87e−13 270

Esc16e 24.04 2.63 8.79 2719 288 11784 9.93e−13 310

Esc16g 33.54 2.61 8.63 3839 285 9096 9.87e−13 304

Esc16h 4.01 2.73 10.60 433 300 886 8.47e−13 354

Esc16i 100.79 2.26 8.76 11653 290 27,106 9.96e−13 323

Esc16j 56.90 2.67 7.93 6898 306 29,743 9.95e−13 338

Had12 8.39 0.53 5.91 2682 157 2845 8.64e−13 178

Had14 23.07 0.99 10.46 3919 169 4747 2.35e−13 181

Had16 111.92 1.88 12.51 14,179 210 14,362 6.80e−13 228

Had18 268.58 3.57 13.28 18,068 259 40,000 2.07e−06 271

Had20 196.70 6.17 14.53 9038 309 40,000 5.55e−07 321

Kra30a 988.47 62.61 −1111 8466 632 40,000 2.08e−07 654

Kra30b 1481.32 63.31 −1111 12,882 623 40,000 8.73e−07 645

Kra32 1355.11 92.43 −1111 9020 720 40,000 5.28e−07 737

Nug12 22.27 0.53 5.93 5813 146 40,000 3.82e−09 163

Nug14 49.76 1.01 8.43 7667 167 40,000 2.94e−07 186

Nug15 53.68 1.49 7.79 6547 200 40,000 2.11e−07 221

Nug16a 117.57 1.76 12.24 11,591 193 40,000 1.46e−06 208

Nug16b 62.72 1.98 11.83 6410 207 40,000 5.87e−10 234

Nug17 135.80 2.31 13.13 10,727 204 40,000 9.12e−07 215

Nug18 250.85 3.22 15.23 15,862 226 40,000 1.79e−06 240

Nug20 238.68 5.82 14.35 9786 276 40,000 4.55e−07 289

Nug21 651.15 8.27 14.95 22,465 322 40,000 3.62e−06 340

Nug22 942.50 9.84 13.90 27,839 325 40,000 5.69e−06 338

Nug24 572.04 13.47 −1111 12,148 335 40,000 7.55e−07 346

Nug25 1308.41 18.38 −1111 24,051 375 40,000 5.05e−06 386

Nug27 1875.89 30.54 −1111 25,201 454 40,000 4.16e−06 465

Nug28 1658.48 34.50 −1111 18,417 447 40,000 2.73e−06 461

Nug30 2584.42 48.92 −1111 22,613 469 40,000 3.06e−06 478

Rou12 23.19 0.44 6.90 6327 127 6360 2.02e−13 142

Rou15 19.00 1.27 9.46 2219 170 19,769 6.08e−13 184

Rou20 88.20 5.60 16.08 3684 263 40,000 2.08e−07 275

123

Author's personal copy

http://anjos.mgi.polymtl.ca/qaplib/

ADMM for the SDP relaxation of the QAP

Table 2 continued

1 Tol5 2 Tol5 3 HKM 4 Tol5 5 Tol5 6 Tol12 7 Tol12 8 Tol12
cpusec cpusec cpuratio iterations iterations iterations residual iterations
HighRk LowRk Tol 9 HighRk LowRk HighRk HighRk LowRk

Scr12 3.71 0.48 5.79 1135 142 2878 6.65e−13 160

Scr15 8.06 1.14 10.75 1061 158 2023 8.11e−13 176

Scr20 858.08 5.94 17.96 34,679 264 40,000 7.68e−06 276

Tai12a 1.56 0.50 6.70 421 127 454 1.38e−13 145

Tai15a 17.01 1.22 10.34 1955 157 29,673 5.41e−13 170

Tai17a 39.60 2.31 12.04 2997 216 22,276 7.29e−13 234

Tai20a 66.02 5.62 15.85 2755 252 40,000 1.72e−08 267

Tai25a 128.14 17.20 −1111 2244 350 12,809 6.33e−13 362

Tai30a 433.54 55.82 −1111 3698 527 39,288 3.74e−13 539

Tho30 2045.32 51.37 −1111 17,854 522 40,000 2.23e−06 533

4. Tol5 ADMMLowBnd: the lower bound found by runningADMMwithout the
rank-1 constraint, with the tolerance 10−5, and evaluating the dual objective
using the approach in Sect. 3.1;

5. Tol5 feas UpBnd: the stronger upper bound found by running ADMMwith
the rank-1 constraint and tolerance 10−5, and also by runningADMMwithout
the rank-1 constraint, with tolerance 10−5, and then using the approach in
Sect. 3.2;

6. Tol12 ADMM LowBnd: the lower bound found by running ADMMwithout
rank-1 constraint to the tolerance 10−12 and then evaluating the dual objective
through the approach discussed in Sect. 3.1;

7. Tol12 feas UpBnd: the stronger upper bound found byADMMwith the rank-1
constraint and tolerance 10−12, and alsoADMMwithout the rank-1 constraint
with tolerance 10−12 and then using Sect. 3.2;

8. Tol5 ADMM% gap: the percentage gap between the lower and upper bounds
found by our proposed approach with tolerance 10−5;

9. ADMM Tol5 vs Boundle %Impr LowBnd: the percentage improvement by
our proposed approach with tolerance 10−5 over the current best known lower
bound from [24].

Remark 4.1 (Table 1) From column 9, we see that our approach improves the currently
best-known bounds for every instance. In addition, we have provably found the global
optimal solution for the seven instances:

Esc16j, Had12, Had14, Had16, Had18, Rou12, Tai12a.

This ismainlydue to the inclusionof all the nonnegativity constraints and theprojection
onto [0, 1], all with essentially zero extra computational cost, see (3.7). Note that
adding the nonnegativity constraints would be too expensive within an interior point
approach. In addition, the bounds rarely improved when using the smaller tolerance
10−12.

123

Author's personal copy

D. E. Oliveira et al.

Ta
bl
e
3

R
es
ul
ts
of

lo
w
er

an
d
up
pe
r
bo
un
ds
,i
te
ra
tio

n
nu
m
be
rs
,a
nd

al
so

C
PU

tim
es

(i
n
se
co
nd
s)

by
A
D
M
M

fo
r
ea
ch

in
st
an
ce

in
Q
A
P
L
IB

In
st
an
ce
s
II
w
ith

si
ze

no
la
rg
er

th
an

64
.O

pt
im

al
va
lu
es

of
th
e
in
st
an
ce
s
m
ar
ke
d
by

∗a
re

st
ill

un
kn
ow

n

Pr
ob

le
m

1.
2.

3.
4.

5
To

l5
6
To

l5
7
A
D
M
M

8
A
D
M
M

op
t

A
D
M
M

fe
as

A
D
M
M

cp
us
ec

cp
us
ec

ite
ra
tio

ns
ite
ra
tio

ns
va
lu
e

L
ow

B
nd

U
pB

nd
%
ga

p
H
ig
hR

k
L
ow

R
k

H
ig
hR

k
L
ow

R
k

C
hr
12

a
95

52
95

52
95

52
0.
00

6.
53

e+
01

4.
08

e−
01

21
,0
61

11
7

C
hr
12

b
97

42
97

42
97

42
0.
00

3.
32

e+
01

4.
11

e−
01

10
,5
92

11
9

C
hr
12

c
11

15
6

11
,1
56

11
,1
56

0.
00

7.
42

e+
01

3.
96

e−
01

23
,9
82

11
5

C
hr
15

a
98

96
98

96
98

96
0.
00

2.
07

e+
02

1.
28

e+
00

31
,9
37

17
3

C
hr
15

b
79

90
79

90
79

90
0.
00

2.
69

e+
01

9.
84

e−
01

39
76

13
3

C
hr
15

c
95

04
95

04
95

04
0.
00

1.
54

e+
01

1.
06

e+
00

21
92

14
7

C
hr
18

a
11

,0
98

11
,0
98

11
,0
98

0.
00

4.
94

e+
02

2.
86

e+
00

40
,0
00

19
8

C
hr
18

b
15

34
15

34
22

64
32

.2
4

5.
72

e+
01

3.
08

e+
00

38
43

24
3

C
hr
20

a
21

92
21

92
21

92
0.
00

7.
40

e+
02

4.
31

e+
00

40
,0
00

21
7

C
hr
20

b
22

98
22

98
22

98
0.
00

1.
42

e+
02

5.
31

e+
00

63
55

24
3

C
hr
20

c
14

,1
42

14
,1
39

14
,1
42

0.
02

7.
28

e+
02

5.
03

e+
00

40
,0
00

23
2

C
hr
22

a
61

56
61

56
61

56
0.
00

4.
02

e+
02

9.
37

e+
00

14
,0
51

31
0

C
hr
22

b
61

94
61

94
61

94
0.
00

3.
80

e+
02

9.
45

e+
00

11
,4
18

30
4

C
hr
25

a
37

96
37

96
37

96
0.
00

3.
06

e+
02

1.
70

e+
01

61
64

35
5

E
ls
19

17
,2
12

,5
48

17
,2
09

,7
89

17
,2
12

,5
48

0.
02

6.
17

e+
02

4.
48

e+
00

40
,0
00

26
9

E
sc
16

f
0

0
0

0.
00

3.
22

e+
02

3.
39

e+
02

40
,0
00

40
,0
00

E
sc
32

a
13

0
10

4
16

8
38

.1
0

2.
89

e+
03

9.
16

e+
01

20
,3
98

70
0

E
sc
32

b
16

8
13

2
26

4
50

.0
0

2.
52

e+
03

8.
31

e+
01

17
,9
20

65
8

E
sc
32

c
64

2
61

6
68

6
10

.2
0

4.
48

e+
02

1.
01

e+
02

31
77

78
0

E
sc
32

d
20

0
19

1
22

8
16

.2
3

8.
68

e+
02

1.
09

e+
02

63
34

82
5

123

Author's personal copy

http://anjos.mgi.polymtl.ca/qaplib/

ADMM for the SDP relaxation of the QAP

Ta
bl
e
3

co
nt
in
ue
d

Pr
ob

le
m

1.
2.

3.
4.

5
To

l5
6
To

l5
7
A
D
M
M

8
A
D
M
M

op
t

A
D
M
M

fe
as

A
D
M
M

cp
us
ec

cp
us
ec

ite
ra
tio

ns
ite
ra
tio

ns
va
lu
e

L
ow

B
nd

U
pB

nd
%
ga

p
H
ig
hR

k
L
ow

R
k

H
ig
hR

k
L
ow

R
k

E
sc
32

e
2

2
2

0.
00

1.
81

e+
03

1.
05

e+
02

13
,0
40

83
6

E
sc
32

f
2

2
2

0.
00

1.
80

e+
03

1.
07

e+
02

13
,0
40

83
6

E
sc
32

g
6

6
8

25
.0
0

6.
04

e+
02

1.
06

e+
02

44
05

85
5

E
sc
32

h
43

8
42

5
48

2
11

.8
3

3.
02

e+
03

1.
00

e+
02

21
,5
15

79
5

∗S
ko
42

15
,8
12

15
,3
35

17
,0
86

10
.2
5

1.
06

e+
04

3.
87

e+
02

21
,0
13

91
1

∗S
ko
49

23
,3
86

22
,6
53

25
,0
76

9.
66

3.
03

e+
04

1.
18

e+
03

28
,7
71

13
16

∗S
ko
56

34
,4
58

33
,3
90

36
,5
80

8.
72

3.
90

e+
04

2.
68

e+
03

21
,1
06

16
64

St
e3
6a

95
26

92
59

13
,8
66

33
.2
3

1.
02

e+
04

1.
87

e+
02

40
,0
00

85
1

St
e3
6b

15
,8
52

15
,6
68

25
,8
78

39
.4
5

1.
01

e+
04

1.
56

e+
02

40
,0
00

70
0

St
e3
6c

8,
23

9,
11

0
8,
13

4,
72

0
11

,1
52

,9
26

27
.0
6

1.
01

e+
04

1.
69

e+
02

40
,0
00

79
8

∗T
ai
35

a
2,
42

2,
00

2
2,
21

6,
64

5
2,
59

9,
92

4
14

.7
4

7.
40

e+
02

1.
33

e+
02

32
25

66
1

∗T
ai
40

a
3,
13

9,
37

0
2,
84

3,
31

2
3,
39

2,
69

2
16

.1
9

1.
94

e+
03

2.
99

e+
02

46
65

85
2

∗T
ai
50

a
4,
93

8,
79

6
4,
39

0,
97

6
5,
33

2,
79

0
17

.6
6

6.
36

e+
03

1.
33

e+
03

53
93

13
48

∗T
ho

40
24

0,
51

6
22

6,
52

2
26

9,
45

2
15

.9
3

8.
52

e+
03

2.
90

e+
02

21
,1
31

82
8

∗W
il5

0
48

,8
16

48
,1
25

50
,0
40

3.
83

1.
73

e+
04

1.
43

e+
03

15
,3
70

14
73

123

Author's personal copy

D. E. Oliveira et al.

Table 4 Results of lower and upper bounds and also CPU times (in seconds) by ADMM for each instance
inQAPLIB Instances II with size at least 64. Optimal values of the instances marked by ∗ are still unknown

Problem 1. 2. 3. 4. 5 Tol5 6 Tol5
opt ADMM feas ADMM cpusec cpusec
value LowBnd UpBnd %gap HighRk LowRk

Esc64a 116 98 120 18.33 1.64e+04 1.11e+04

∗Sko64 48,498 46,888 50,840 7.77 1.56e+04 1.13e+04

∗Sko72 66,256 64,205 70,672 9.15 3.01e+04 2.07e+04

∗Sko81 90,998 87,756 96,456 9.02 5.94e+04 3.77e+04

∗Sko90 115,534 111,300 121,390 8.31 9.32e+04 6.72e+04

∗Sko100a 152,002 145,775 160,794 9.34 1.38e+05 9.37e+04

∗Sko100b 153,890 147,332 162,004 9.06 1.38e+05 9.45e+04

∗Sko100c 147,862 142,018 156,230 9.10 1.38e+05 9.46e+04

∗Sko100d 149,576 143,205 157,100 8.84 1.39e+05 9.53e+04

∗Sko100e 149,150 142,977 155,858 8.26 1.38e+05 9.51e+04

∗Sko100f 149,036 142,413 156,088 8.76 1.40e+05 9.70e+04

∗Tai60a 7,205,962 6,319,630 7,759,332 18.55 1.34e+04 1.01e+04

Tai64c 1,855,928 1,809,370 1,917,484 5.64 1.65e+04 1.14e+04

∗Tai80a 13,499,184 11,613,474 14,618,694 20.56 5.17e+04 3.08e+04

∗Tai100 21,052,466 17,704,527 22,641,778 21.81 1.53e+05 9.33e+04

∗Wil100 273,038 267,469 278,898 4.10 1.41e+05 9.67e+04

• In Table 2 the columns are:

0. Instance name;
1. Tol5 cpusec HighRk: CPU times (in seconds) of ADMMwithout the rank-1

constraint and with tolerance 10−5;
2. Tol5 cpusec LowRk: CPU times (in seconds) of ADMMwith the rank-1 con-

straint and with tolerance 10−5;
3. HKM cpuratio Tol 9: the ratio between the CPU times by the p–d i-p approach

and ADMMwithout the rank-1 constraint and with tolerance 10−5;
4. Tol5 iterations HighRk: iteration numbers of ADMMwithout the rank-1 con-

straint and with tolerance 10−5;
5. Tol5 iterationsLowRk: iteration numbers of ADMMwith the rank-1 constraint

and with tolerance 10−5;
6. Tol12 iterations HighRk: iteration numbers of ADMMwithout the rank-1 con-

straint and with tolerance 10−12;
7. Tol12 residual HighRk: residual of the output measured as in (4.1) of

ADMMwithout the rank-1 constraint and with tolerance 10−12;
8. ADMM Tol12 iterations LowRk: the iteration numbers of ADMMwith the

rank-1 constraint and with tolerance 10−12.

Remark 4.2 (Table 2) We see that ADMM with rank-1 constraint is much faster than
that without the rank-1 constraint to reach the same tolerance. In addition, we notice

123

Author's personal copy

http://anjos.mgi.polymtl.ca/qaplib/

ADMM for the SDP relaxation of the QAP

Ta
bl
e
5

L
ow

er
an
d
up

pe
r
bo

un
ds

by
A
D
M
M

fo
r
so
lv
in
g
SD

P
re
la
xa
tio

n
w
ith

or
w
ith

ou
tt
he

re
st
ri
ct
io
n
0

≤
Y

≤
1
on

ce
rt
ai
n
in
st
an
ce
s
in

Q
A
P
L
IB

In
st
an
ce
s
I

Pr
ob
le
m

A
D
M
M

fe
as
.Y

as
in

(3
.7
)

A
D
M
M

fe
as
.Y

as
in

(3
.5
)

L
ow

B
nd

U
pB

nd
It
er
.H
ig
hR

k
It
er
.L
ow

R
k

L
ow

B
nd

U
pB

nd
It
er
.H
ig
hR

k
It
er
.L
ow

R
k

K
ra
30

a
86

,8
38

10
4,
05

0
84

66
63

2
78

,6
87

1,
04

,0
50

25
,9
74

40
,0
00

K
ra
30

b
87

,8
58

11
4,
95

0
12

,8
82

62
3

79
,5
10

10
8,
55

0
21

,2
48

40
,0
00

K
ra
32

85
,7
75

11
1,
45

0
90

20
72

0
77

,1
30

10
5,
50

0
39

04
40

,0
00

N
ug

24
34

02
36

58
12

,1
48

33
5

32
35

38
44

46
29

39
,6
16

N
ug

25
36

26
40

52
24

,0
51

37
5

34
54

40
78

89
74

40
,0
00

N
ug

27
51

30
56

02
25

,2
01

45
4

49
22

57
08

20
,7
63

40
,0
00

N
ug

28
50

26
55

34
18

,4
17

44
7

48
13

54
66

15
,9
16

40
,0
00

N
ug

30
59

50
65

78
22

,6
13

46
9

56
94

66
30

10
,5
24

40
,0
00

Ta
i3
0a

1,
70

6,
87

1
1,
94

2,
08

6
36

98
52

7
1,
57

8,
07

4
1,
96

3,
80

8
10

72
40

,0
00

T
ho

30
14

3,
57

6
16

9,
95

8
17

,8
54

52
2

13
6,
00

4
17

0,
39

0
34

,2
89

40
,0
00

123

Author's personal copy

http://anjos.mgi.polymtl.ca/qaplib/

D. E. Oliveira et al.

Ta
bl
e
6

L
ow

er
an
d
up

pe
r
bo

un
ds

by
A
D
M
M

fo
r
so
lv
in
g
SD

P
re
la
xa
tio

n
w
ith

or
w
ith

ou
tt
he

re
st
ri
ct
io
n
0

≤
Y

≤
1
on

ce
rt
ai
n
in
st
an
ce
s
in

Q
A
P
L
IB

In
st
an
ce
s
II

Pr
ob
le
m

A
D
M
M

fe
as
.Y

as
in

(3
.7
)

A
D
M
M

fe
as
.Y

as
in

(3
.5
)

L
ow

B
nd

U
pB

nd
It
er
.H
ig
hR

k
It
er
.L
ow

R
k

L
ow

B
nd

U
pB

nd
It
er
.H
ig
hR

k
It
er
.L
ow

R
k

C
hr
18

b
15

34
22

64
38

43
24

3
47

7
24

46
19

,6
42

21
,3
02

E
sc
32

c
61

6
68

6
31

77
78

0
52

9
69

2
24

60
40

,0
00

E
sc
32

h
42

5
48

2
21

,5
15

79
5

33
0

52
2

16
85

40
,0
00

Ta
i3
5a

2,
21

6,
64

5
2,
59

9,
92

4
32

25
66

1
2,
03

0,
95

8
2,
72

8,
42

2
12

22
40

,0
00

Ta
i4
0a

2,
84

3,
31

2
3,
39

2,
69

2
46

65
85

2
2,
59

4,
39

4
3,
47

5,
27

4
14

33
40

,0
00

T
ho

40
22

6,
52

2
26

9,
45

2
21

,1
31

82
8

21
5,
63

9
29

0,
12

4
40

,0
00

40
,0
00

123

Author's personal copy

http://anjos.mgi.polymtl.ca/qaplib/

ADMM for the SDP relaxation of the QAP

Table 7 New lower bounds by the proposed approaches for QAPLIB unsolved instances

Problem QAPLIB ADMM % Impr QAPLIB New
LowBnd LowBnd LowBnd %gap %gap

Sko42 14,934 15,335 2.61 5.55 3.02

Sko49 22,004 22,653 2.86 5.91 3.13

Sko56 32,610 33,390 2.34 5.36 3.10

Sko64 45,736 46,888 2.46 5.70 3.32

Sko72 62,691 64,205 2.36 5.38 3.10

Sko81 86,072 87,756 1.92 5.41 3.56

Sko90 109,030 111,300 2.04 5.63 3.66

Sko100a 143,846 145,775 1.32 5.37 4.10

Sko100b 145,522 147,332 1.23 5.44 4.26

Sko100c 139,881 142,018 1.50 5.40 3.95

Sko100d 141,289 143,205 1.34 5.54 4.26

Sko100e 140,893 142,977 1.46 5.54 4.14

Sko100f 140,691 142,413 1.21 5.60 4.44

Tai30a 1,706,855 1,706,871 <0.01 6.12 6.12

Tai35a 2,216,627 2,216,645 <0.01 8.48 8.48

Tai40a 2,843,274 2,843,312 <0.01 9.43 9.43

Tai50a 4,390,920 4,390,976 <0.01 11.09 11.09

Tai60a 5,578,356 6,319,630 11.73 22.59 12.30

Tai80a 10,501,941 11,613,474 9.57 22.20 13.97

Tai100 15,844,731 17,704,527 10.50 24.74 15.90

Tho40 224,414 226,522 0.93 6.69 5.82

Wil50 47,098 48,125 2.13 3.52 1.42

Wil100 264,442 267,469 1.13 3.15 2.04

that for all instances, ADMM can reach an accuracy of 10−5. However, for most
instances, it cannot reach the accuracy of 10−12 even though running to 40,000 itera-
tions.

4.3 Results on QAPLIB instances II

Since the tests onQAPLIB instances I showno improvement from the smaller tolerance
10−12, we simply set the tolerance to 10−5 for the tests onQAPLIB instances II. For the
instances with size n < 60, we set the maximum number of iterations to 40,000. For
larger instances, to reduce cputime, we simply run ADMMwith the rank-1 constraint
and ADMMwithout rank-1 constraint, but each to a maximum 2,000 iterations. For
the former, at every 100 iterations, we found a feasible solution (thus an upper bound)
by the method in Sect. 3.2. For the latter, at every 100 iterations we obtain a lower
bound and also an upper bound by the methods in Sects. 3.1 and 3.2. We reported the
best lower and upper bounds that we obtained. The results are shown in Table 3 for

123

Author's personal copy

http://anjos.mgi.polymtl.ca/qaplib/

D. E. Oliveira et al.

instances of size n < 60 and in Table 4 for instances of size n ≥ 60. The columns
used are similar to those in Tables 1 and 2.

Remark 4.3 FromTables 3 and 4, we see that ourmethod provably found exact optimal
solutions for the 15 instances:

chr12a, chr12b, chr12c, chr15a, chr15b, chr15c, chr18a, chr20a, chr20b, chr22a,
chr22b, chr25a, Esc16f, Esc32e, Esc32f.

For the rest of the instances, our method yielded a relative gap smaller than 20% for
26 instances, between 20% to 40% for 8 instances, and greater than 40% for only 1
instance. In addition, theADMMwith the rank-1 constraint reached the same stopping
tolerance in much less time.

4.4 Influence of the nonnegativity constraints

To highlight the importance of the nonnegativity constraints in strengthening the
bounds, i.e., in using a DNNmodel, we now compare results with and without the
restriction 0 ≤ Y ≤ 1, i.e., Y is updated according to (3.5) or (3.7). For the instances
in Table 1 with n ≤ 24, we obtained the same lower bounds as those from the HKM
p–d i-p approach by updating Y according to (3.5). The upper and lower bounds
for the remaining 10 instances by ADMMwith updates (3.5) and (3.7) are shown in
Table 5. We see that for all those 10 problems, ADMMusing (3.7) obtained better
lower bounds. ADMMwith the rank-1 constraint can hardly achieve the tolerance
10−5 if the bound constraint is not enforced. In addition, except for Kra30b, Kra32,
and Nug28, better upper bounds were also obtained by using (3.7).

Moreover, for the instances in Table 3 that were solved to optimality, if we update
Y according to (3.5), the generated solution will not be optimal any more. For most
of these 15 instances, ADMMwith update (3.5) yielded the trivial lower bound 0. In
Table 6, we present the 6 instances, for whichADMMwith (3.7) improved the relative
gap significantly over that with (3.5).

4.5 Improved lower bounds

For the problems marked with ∗ in Tables 1, 3, and 4, their optimal values are still
unknown, and we obtained better lower bounds than those given in [7]. In Table 7, the
fourth column shows the improvement percentage of the lower bounds for those 23
instances. Its last two columns list the gap between current lower bound and the best
known feasible solutions according to Tables 1, 3, and 4, and also the improved gap
by the proposed approach. We note that around 10% improvement has been achieved
on instances Tai60a, Tai80a, and Tai100a, 2% on 6 instances, and less than 0.01%
improvement on the other 4 instances.

123

Author's personal copy

ADMM for the SDP relaxation of the QAP

5 Conclusion

In this paper we have shown the efficiency of using the ADMM approach for solving
the facially reduced SDP relaxation of the QAPproblem with added nonnegativ-
ity constraints, i.e., the usually hard-to-solve DNN relaxation. We exploited the
FR relation Y = V RV T by applying the polyhedral constraints to Y and the positive
semidefinite and rank constraints to R. The addition of the nonnegativity constraints
to Y causes essentially no extra cost but significantly improves the bounds. For most
instances in QAPLIB, we have improved both lower and upper bounds for the QAP,
and in several instances, the bounds provably find the optimal permutation matrix.

In a forthcoming study, begun in [19], we propose to include this in a branch
and bound framework and implement it in a parallel programming approach, see
e.g., [14]. In addition, we propose to test the possibility of using warm starts in the
branching/bounding process and test it on the larger test sets such as used in e.g., [9].

The most expensive steps of our code was the matrix multiplication W = V W̄V T

and the eigenvalue decomposition ofW .We hope that amore efficient approach for this
special matrix multiplication can be found. Moreover, since only a few eigenvalues
of W are needed it is hoped that a more efficient algorithm can be used, e.g., the
MATLAB code eigifp based on [12].

References

1. Anstreicher, K.M.: Recent advances in the solution of quadratic assignment problems. Math. Program.
97(1–2), 27–42 (2003)

2. Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problem based on convex
quadratic programming. Math. Program. 89(3), 341–357 (2001)

3. Bhati, R.K., Rasool, A.: Quadratic assignment problem and its relevance to the real world: a survey.
Int. J. Comput. Appl. 96(9), 42–47 (2014)

4. Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tucumán. Revista A 5, 147–151 (1946)
5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning

via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
6. Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite programming.

Math. Program. 103(3), 427–444 (2005)
7. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB–a quadratic assignment problem library. Eur. J. Oper.

Res. 55, 115–119 (1991)
8. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB–a quadratic assignment problem library. J. Global

Optim. 10(4), 391–403 (1997)
9. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the

quadratic assignment problem. Math. Program. 122(2), 225–246 (2010)
10. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrica 1(3),

211–218 (1936)
11. Edwards, C.S.: A branch and bound algorithm for the Koopmans–Beckmann quadratic assignment

problem. Math. Program. Study 13, 35–52 (1980)
12. Golub,G.H.,Ye,Q.:An inverse free preconditionedKrylov subspacemethod for symmetric generalized

eigenvalue problems. SIAM J. Sci. Comput. 24(1), 312–334 (2002). (electronic)
13. Ito, N., Kim, S., Kojima, M., Takeda, A., Toh, K.C.: Bbcpop: a sparse doubly nonnegative relaxation of

polynomial optimization problems with binary, box and complementarity constraints. arXiv preprint
arXiv:1804.00761 (2018)

14. Jain, R., Yao, P.: A parallel approximation algorithm for positive semidefinite programming. In: 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011, pp. 463–471.
IEEE Computer Soc., Los Alamitos, CA (2011)

123

Author's personal copy

http://www.ms.uky.edu/~qye/software.html
http://arxiv.org/abs/1804.00761

D. E. Oliveira et al.

15. Jiang, Bo, Liu, Ya-Feng, Wen, Zaiwen: l p-norm regularization algorithms for optimization over per-
mutation matrices. SIAM J. Optim. 26(4), 2284–2313 (2016)

16. Kim, S., Kojima, M., Toh, K.-C.: A Lagrangian-DNN relaxation: a fast method for computing tight
lower bounds for a class of quadratic optimization problems. Math. Program. 156(1–2), 161–187
(2016)

17. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economic activities.
Econometrica 25, 53–76 (1957)

18. Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9, 586–599 (1963)
19. Liao, Z.: Branch and bound via ADMM for the quadratic assignment problem. Master’s thesis, Uni-

versity of Waterloo (2016)
20. Pardalos, P., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: a survey and recent devel-

opments. In: Pardalos, P.M., Wolkowicz, H. (eds.) Quadratic Assignment and Related Problems (New
Brunswick, NJ, 1993), pp. 1–42. American Mathematical Society, Providence, RI (1994)

21. Pardalos, P., Wolkowicz, H. (eds.).: Quadratic assignment and related problems. American Mathe-
matical Society, Providence, RI, 1994. Papers from the workshop held at Rutgers University, New
Brunswick, New Jersey, May 20–21 (1993)

22. Pong, T.K., Sun, H., Wang, N., Wolkowicz, H.: Eigenvalue, quadratic programming, and semidefinite
programming relaxations for a cut minimization problem. Comput. Optim. Appl. 63(2), 333–364
(2016)

23. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem.
Discret. Optim. 6(3), 231–241 (2009)

24. Rendl, F., Sotirov, R.: Bounds for the quadratic assignment problem using the bundle method. Math.
Program. 109(2–3), 505–524 (2007)

25. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite pro-
gramming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

26. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite
programming. Math. Program. Comput. 2(3–4), 203–230 (2010)

27. Yang, L., Sun, D., Toh, K.-C.: SDPNAL+: a majorized semismooth Newton-CG augmented
Lagrangianmethod for semidefinite programmingwith nonnegative constraints. Math. Program. Com-
put. 7(3), 331–366 (2015)

28. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the
quadratic assignment problem. J. Comb. Optim. 2(1), 71–109 (1998)

29. Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented lagrangian method for semidefinite pro-
gramming. SIAM J. Optim. 20(4), 1737–1765 (2010)

123

Author's personal copy

	ADMM for the SDP relaxation of the QAP
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related works
	1.3 Outline

	2 A new derivation for the SDPrelaxation
	2.1 Original FRfor SDPrelaxation of QAP
	2.2 The new derivation
	2.3 Strict feasibility by FR

	3 A new ADMMalgorithm for the SDPrelaxation
	3.1 Lower bound
	3.2 Upper bound from feasible solution
	3.3 Low-rank solution
	3.4 Different choices for V,V"0362V

	4 Numerical experiments
	4.1 Parameter settings
	4.2 Results on QAPLIB instances I
	4.3 Results on QAPLIB instances II
	4.4 Influence of the nonnegativity constraints
	4.5 Improved lower bounds

	5 Conclusion
	References

