J. Oper. Res. Soc. China (2019) 7:5-42 @ CrossMark
https://doi.org/10.1007/s40305-017-0183-1

On the Convergence of Asynchronous Parallel Iteration
with Unbounded Delays

Zhimin Peng! . Yangyang Xu? - Ming Yan? -
Wotao Yin!

Received: 14 August 2017 / Revised: 4 November 2017 / Accepted: 13 November 2017 /
Published online: 9 December 2017
© The Author(s) 2018, corrected publication June 2018

Abstract Recent years have witnessed the surge of asynchronous parallel (async-
parallel) iterative algorithms due to problems involving very large-scale data and a
large number of decision variables. Because of asynchrony, the iterates are computed
with outdated information, and the age of the outdated information, which we call
delay, is the number of times it has been updated since its creation. Almost all recent
works prove convergence under the assumption of a finite maximum delay and set
their stepsize parameters accordingly. However, the maximum delay is practically
unknown. This paper presents convergence analysis of an async-parallel method from

The original version of this article was revised due to a retrospective Open Access order.

This paper is dedicated to Professor Yin-Yu Ye in celebration of his 70th birthday.

This project was supported by the National Science Foundation (EAGER ECCS-1462397,
DMS-1621798, and DMS-1719549).

B Wotao Yin
wotaoyin@math.ucla.edu

Zhimin Peng
zhiminp @ gmail.com

Yangyang Xu
xuy21@rpi.edu

Ming Yan

yanm @math.msu.edu
1 Department of Mathematics, University of California, Los Angeles, CA 90095, USA
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Department of Computational Mathematics Science and Engineering, Department of Mathematics,
Michigan State University, East Lansing, MI 48824, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-017-0183-1&domain=pdf
http://orcid.org/0000-0001-6697-9731

6 Z. Peng et al.

a probabilistic viewpoint, and it allows for large unbounded delays. An explicit for-
mula of stepsize that guarantees convergence is given depending on delays’ statistics.
With p + 1 identical processors, we empirically measured that delays closely follow
the Poisson distribution with parameter p, matching our theoretical model, and thus,
the stepsize can be set accordingly. Simulations on both convex and nonconvex opti-
mization problems demonstrate the validness of our analysis and also show that the
existing maximum-delay-induced stepsize is too conservative, often slows down the
convergence of the algorithm.

Keywords Asynchronous unbounded delays - Nonconvex - Convex

Mathematics Subject Classification 65K 10 - 65Y05 - 90C25 - 90C26

1 Introduction

In the “big data” era, the size of the dataset and the number of decision variables
involved in many areas such as health care, the Internet, economics, and engineering
are becoming tremendously large [1]. It motivates the development of new computa-
tional approaches by efficiently utilizing modern multi-core computers or computing
clusters.

In this paper, we consider the block-structured optimization problem

m
minimize F(x) = f(x1, -+ ,x,n>+z;ri<xi), (1.1)
1=
where x = (X1, ..., X;;) is partitioned into m disjoint blocks, f has a Lipschitz contin-

uous gradient (possibly nonconvex), and r;’s are (possibly nondifferentiable) proper
closed convex functions. Note that r;’s can be extended-valued, and thus, (1.1) can have
block constraints x; € X; by incorporating the indicator function of X; in r; for all i.

Many applications can be formulated in the form of (1.1), and they include classic
machine learning problems: support vector machine (squared hinge loss and its dual
formulation) [2], least absolute shrinkage and selection operator (LASSO) [3], and
logistic regression (linear or multilinear) [4], and also subspace learning problems:
sparse principal component analysis [5], nonnegative matrix or tensor factorization [6],
just to name a few.

Toward the solutions for these problems with extremely large-scale datasets and
many variables, first-order methods and also stochastic methods become particu-
larly popular because of their scalability to the problem size, such as fast iterative
shrinkage-thresholding algorithm (FISTA) [7], stochastic approximation [8], random-
ized coordinate descent [9], and their combinations [10,11]. Recently, lots of efforts
have been made to the parallelization of these methods, and in particular, asynchronous
parallel (async-parallel) methods attract more attention (e.g., [12,13]) over their syn-
chronous counterparts partly due to the better speedup performance.

This paper focuses on the async-parallel block coordinate update (async-BCU)
method (see Algorithm 1) for solving (1.1). To the best of our knowledge, all works on
async-BCU before 2013 consider a deterministic selection of blocks with an exception

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 7

to [14], and thus, they require strong conditions (like a contraction) for convergence.
Recent works, e.g., [12,13,15,16], employ randomized block selection and signifi-
cantly weaken the convergence requirement. However, all of them require bounded
delays and/or are restricted to convex problems. The work [15] allows unbounded
delays but requires convexity, and [17, 18] do not assume convexity but require bounded
delays. We consider unbounded delays and deal with nonconvex problems.

1.1 Algorithm

We describe the async-BCU method as follows. Assume there are p + 1 processors,
and the data and variable x are accessible to all processors. We let all processors
continuously and asynchronously update the variable x in parallel. At each time %,
one processor reads the variable x as X from the global memory, randomly picks a
block iy € {1,2,...,m}, and renews X;, by a prox-linear update while keeping all
other blocks unchanged. The pseudocode is summarized in Algorithm 1, where the
prox operator is defined in (1.3).

The algorithm first appeared in [12], where the age of X* relative to x, which we
call the delay of iteration k, was assumed to be bounded by a certain integer 7. For
general convex problems, sublinear convergence was established, and for the strongly
convex case, linear convergence was shown. However, its convergence for nonconvex
problems and/or with unbounded delays was unknown. In addition, numerically, the
stepsize is difficult to tune because it depends on t, which is unknown before the
algorithm completes.

Algorithm 1: Async-parallel block coordinate update
Input : Any point x’ € R” in the global memory, maximum number of iterations K,
stepsize n > 0 while k < K, each and all processors asynchronously do
select ix from [m] uniformly at random;
%% < read x from the global memory;
foralli € [m],

(1.2)

! xf‘ , otherwise;

Xk'H <~ {proxm[(Xf - nvif(ﬁk)) , ifi =iy,

increase the global counter k < k + 1;
end

1.2 Contributions

‘We summarize our contributions as follows:

— We analyze the convergence of Algorithm 1 and allow for large unbounded delays
following a certain distribution. We require the delays to have certain bounded
expected quantities (e.g., expected delay, variance of delay). Our results are more
general than those requiring bounded delays such as [12,16].

@ Springer

8 Z. Peng et al.

— Both nonconvex and convex problems are analyzed, and those problems include
both smooth and nonsmooth functions. For nonconvex problems, we establish
the global convergence in terms of first-order optimality conditions and show
that any limit point of the iterates is a critical point almost surely. It appears
to be the first result of an async-BCU method for general nonconvex problems
and allowing unbounded delays. For weakly convex problems, we establish a
sublinear convergence result, and for strongly convex problems, we show the
linear convergence.

— We show that if all p + 1 processors run at the same speed, the delay follows
the Poisson distribution with parameter p. In this case, all the relevant expected
quantities can be explicitly computed and are bounded. By setting appropriate
stepsizes, we can reach a near-linear speedup if p = o(y/m) for smooth cases and
p = o({/m) for nonsmooth cases.

— When the delay follows the Poisson distribution, we can explicitly set the stepsize
based on the delay expectation (which equals p). We simulate the async-BCU
method on one convex problem: LASSO, and one nonconvex problem: the non-
negative matrix factorization. The results demonstrate that async-BCU performs
consistently better with a stepsize set based on the expected delay than on the
maximum delay. The number of processors is known while the maximum delay
is not. Hence, the setting based on expected delay is practically more useful.

Our algorithm updates one (block) coordinate of x in each step and is sharply
different from stochastic gradient methods that sample one function in each step to
update all coordinates of x. While there are async-parallel algorithms in either classes
and how to handle delays is important to both of their convergence, their basic lines
of analysis are different with respect to how to absorb the delay-induced errors. The
results of the two classes are in general not comparable. That is said, for problems
with certain proper structures, it is possible to apply both coordinate-wise update and
stochastic sampling (e.g., [11,18-20]), and our results apply to the coordinate part.

1.3 Notation and Assumptions

Throughout the paper, bold lowercase letters X, y, ..., are used for vectors. We
denote x; as the ith block of x and U; as the ith sampling matrix, i.e., U;X is a vector
with x; as its ith block and 0 for the remaining ones. E;, denotes the expectation with
respect to iy conditionally on all previous history, and [m] = {1, ..., m}.

We consider the Euclidean norm denoted by || - ||, but all our results can be directly
extended to problems with general primal and dual norms in a Hilbert space.

The projection to a convex set X is defined as

Px(y) = arg min [x — y[*,
xeX
and the proximal mapping of a convex function 4 is defined as

prox; (y) = argmin h(x) + 3 [x — y[|*. (1.3)
X

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 9

Definition 1.1 (Critical point) A point x* is a critical point of (1.1) if 0 € V f(x*) +
0 R(x*), where 9 R(x) denotes the subdifferential of R at x and

R(x) = ri(x). (14)
i=1

Throughout our analysis, we make the following three assumptions to problem (1.1)
and Algorithm 1. Other assumed conditions will be specified if needed.

Assumption 1.1 The function F is lower bounded. The problem (1.1) has at least one
solution, and the solution set is denoted as X ™.

Assumption 1.2 V f(x) is Lipschitz continuous with constant L s, namely,

IVFfx) =VfWI < Lyllx=yl, vx, y. (1.5)

In addition, for each i € [m], fixing all block coordinates but the ith one, V f(x) and
V; f (x) are Lipschitz continuous about x; with L, and L., respectively, i.e., for any
X, y,and i,

IVfx) =V x+UwI < Leyil,
IVif(x) = Vif(x+ Uiyl < Lellyill- (1.6)

From (1.6), we have that for any x, y, and i,
FE+UyY) < F)+(VifX).y:) + S llyill™ (1.7)

We denote k = 2—' as the condition number.
.

Assumption 1.3 For each k > 1, the reading %% is consistent and delayed by j,
namely, ¥ = x¥~J« The delay j; follows an identical distribution as a random variable
J

Prob(j=¢t)=g¢q;,, t=0,1,2,---, (1.8)

and is independent of i;. We let

cr = Zq,, T :=E[j]l, S:= E[jz].
1=k

Remark 1.1 Although the delay always satisfies 0 < j; < k, the assumption in (1.8)
is without loss of generality if we make negative iterates and regard x* = x°, Vk < 0.
For simplicity, we make the identical distribution assumption, which is the same as
that in [14]. Our results can still hold for nonidentical distribution; see the analysis for
the smooth nonconvex case in the arXiv version of the paper.

@ Springer

10 Z. Peng et al.

2 Related Works

We briefly review block coordinate update (BCU) and async-parallel computing
methods.

The BCU method is closely related to the Gauss—Seidel method for solving linear
equations, which can date back to 1823. In the literature of optimization, BCU method
first appeared in [21] as the block coordinate descent method, or more precisely, block
minimization (BM), for quadratic programming. The convergence of BM was estab-
lished early for both convex and nonconvex problems, for example [22—-24]. However,
in general, its convergence rate result was only shown for strongly convex problems
(e.g., [23]) until the recent work [25] shows sublinear convergence for weakly convex
cases. Tseng and Yun [26] proposed a new version of BCU methods, called coor-
dinate gradient descent method, which mimics proximal gradient descent but only
updates a block coordinate every time. The block coordinate gradient or block prox-
linear update (BPU) becomes popular since [9] proposed to randomly select a block
to update. The convergence rate of the randomized BPU is easier to show than the
deterministic BPU. It was firstly established for convex smooth problems (both uncon-
strained and constrained) in [9] and then generalized to nonsmooth cases in [27,28].
Recently, Refs. [10,11] incorporated stochastic approximation into the BPU frame-
work to deal with stochastic programming, and both established sublinear convergence
for convex problems and also global convergence for nonconvex problems.

The async-parallel computing method (also called chaotic relaxation) first appeared
in [29] to solve linear equations arising in electrical network problems. Chazan and
Miranker [30] first systematically analyzed (more general) asynchronous iterative
methods for solving linear systems. Assuming bounded delays, it gave a necessary and
sufficient condition for convergence. Bertsekas [31] proposed an asynchronous dis-
tributed iterative method for solving more general fixed-point problems and showed its
convergence under a contraction assumption. Tseng et al. [32] weakened the contrac-
tion assumption to pseudo-nonexpansiveness but made other more assumptions. From-
mer and Szyld [33] made a thorough review of asynchronous methods before 2000.
It summarized convergence results under nested sets and synchronous convergence
conditions, which are satisfied by P-contraction mappings and isotone mappings.

Since it was proposed in 1969, the async-parallel method has not attracted much
attention until recent years when the size of data is increasing exponentially in many
areas. Motivated by “big data” problems, Refs. [12,16] proposed the async-parallel
stochastic coordinate descent method (i.e., Algorithm 1) for solving problems in the
form of (1.1). Their analysis focuses on convex problems and assumes bounded delays.
Specifically, they established sublinear convergence for weakly convex problems and
linear convergence for strongly convex problems. In addition, near-linear speedup was
achieved if T = o(/m) for unconstrained smooth convex problems and T = o(/m)
for constrained smooth or nonsmooth cases. For nonconvex problems, Davis [18]
introduced an async-parallel coordinate descent method, whose convergence was
established under iterate boundedness assumptions and appropriate stepsizes.

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 11

3 Convergence Results for the Smooth Case

Throughout this section, let r; = 0, Vi, i.e., we consider the smooth optimization
problem
minimize f(x). 3.1
xeR"

The general (possibly nonsmooth) case will be analyzed in the next section. The
results for nonsmooth problems of course also hold for smooth ones. However, the
smooth case requires weaker conditions for convergence than those required by the
nonsmooth case, and their analysis techniques are different. Hence, we consider the
two cases separately.

3.1 Convergence for the Nonconvex Case

In this subsection, we establish a subsequence convergence result for the general
(possibly nonconvex) case. We begin with some technical lemmas. The first lemma
deals with certain infinite sums that will appear later in our analysis.

Lemma 3.1 Foranyk andt < k, let

L, n n*L
r C
= —d — — s 3.2
Vi i dZ_;(Ck d —CK)ed + 2ka+ ok (3.2a)
2
L
Bo=(2 -T2 go— er for k=1, (andfp=0), (3.2b)
m 2m 2m
2 2 t
n n“Le n“L,
Cir=|—— — t — —dl. 3.2
1k (m .)% mm (Qz-l-dE_I(Cd Ck)q: d) (3.2¢)
Then
00 2
nzL,- 2 n Ui Lc
k§_0 Vi < WT + (ﬁ + e 1+T7), (3.3)

o0
Ciopy>———< 170 v, 34
/3k‘|‘t:;‘_1 t—k,t m m mﬂ ()

Proof To bound Y 2~ vk, we bound the first term Zs;]l (ck—a — cr)cq in (3.2a).
Specifically,

oo k—1 oo k—1 00 0
DY (ha—cea <Y ceaca=y, Y ckaca =T
k=0 d=1 k=0 d=1 d=1 k=d+1

where the last equality holds since T := E[jl = Y 00 tq = > o1 S 1ar =
Y S ar = Y52 ca. We obtain (3.3) by combining these two equations.

@ Springer

12 Z. Peng et al.

To prove (3.4), we will use

9] t

o0 t
ZZ(Cd — Ckt)qi—d < ZZCth—d = chd% d= ch =T. (3.5

=1 d=1 =1 d=1 d=11=d
The above inequality yields

o o
Br + Z Crir = Br + Z Crivk

t=k+1 t=1
_ n 772Lc go — ick
m 2m 0 2m

o n L ;
+Z(< 2m)q: 2m./m 1qr — 2m\/_ Z(Cd Ck+1)q1— a’)

G n wle 7 LT n n’L. 2LrT
> - - -

m_ 2m 2m " m\/_ 2m mym’

where the last inequality follows from ¢ < 1.

The second lemma below bounds the cross term that appears in our analysis.

Lemma 3.2 (Cross term bound) For any k > 1 and t < k, it holds that
k—1
S GE[(V&) = VT, V)|
t=1

k—1 t
2’7 =D <tqt+;<cd —ck>qfd> E[Vfx)?

k—1
+5 f Z(ck d —cneallV F P (3.6)

Proof Define A? := V f(x?) -V f(x? +1) Applying the Cauchy—Schwarz inequality
with V £ (xF~1) = V f(xF) = YX20 A yields

(V&) = VA, Vi) < Z ALY -1V f &)

d=k—t

Since [|A?|| < Ly [|x¥! — x9|| = nL, | Vi, f&?)]. by applying Young’s inequality,
we get

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 13

— (V&) = V), V)
k—1

> (ﬂnvmf(ﬁ")nz +

d=k—t

nLy
2

X

1
ﬁnW(xk—f)uz) : (3.7)

By taking expectation, we have

. 1 »
Eiy Vi, fGD? = n—1E,,~d||Vf<xd Jty|?

d—1
1
= <Z a1V F x| +Cd||vf(xo)||2> :

r=0
Now taking expectation on both sides of (3.7) and using the above equation, we get

E[—<Vf(xk) — V&, V)

k—1 d—1
G-EIVFxI)? +cd||Vf(x°)||2>
Zf ka:t (rX(:)

tE||V f (x| (3.8)
2\/— d;t

Finally, (3.6) follows from

k—1 k—1 A1 k—1
Yoo Y clviahP ‘s)Z< > q,) call V£ &)
=

t=1 d=k—t d=1 k—d
k—1
> (er—a — el V f &),
d=1
and
k—1 k—1 d—1 k—1 d—1
a0 D GEIVIETTIE = D (eea —) Y_grEIVFET?
t=1 d=k—t r=0 d=1 r=0
k—1
[letr <~ d—r] = Z(C" d —ck)qu FENV £ (D)1
d=1 r=1
k—1 /k—1
A2
=Y (Z(ck_d - ck)qd_r> EV £ ()]
r=1 \d=r

k—1 t
llett —k—r, d<—k-dl =) (Z(cd—cwqt_d) E|Vf&]
=1 \d=1
(3.9)

@ Springer

14 Z. Peng et al.

Using the above lemma, we show a result of running one iteration of the algorithm.

Theorem 3.1 (Fundamental bound) Set y, B and Cy y as in (3.2). For any k > 1,
we have

E[f] S ELF &+ ml V&I — BEIV £ x5))12
k—1
— D GBIV FEDIP. (3.10)

=1
Proof Since x¥t1 = xk — nUika(xk_jk), we have from (1.7) that

2

SO < 6 = (V& U E) G g0 v r et

Taking conditional expectation on (ix, jx) gives

Eip j fT) < F(xb) = LE, (V£ (xF), V£ (E)) + LLe gy v £ (xk))12

2m
k—1
=) = LY g(VFE), VAET)) = La(V (x5, VFE)
=0
2L = k 2 2L 012
+ LE N gV AT + Lo |V F ()12 (3.11)

=0
For the first cross term in (3.11), we write each summand as
(VIE, VEE) = (VN = V), VA + IV A2, (3.12)

and we use Young’s inequality to bound the second cross term by
= Za(V), V) < B[V 62+ IV O] (3.13)

Now taking expectation over both sides of (3.11), plugging in (3.12) and (3.13), and
using Lemma 3.2, we have the desired result.

We are now ready to show the main result in the following theorem.

Theorem 3.2 (Convergence for the nonconvex smooth case) Under Assumptions 1.1
through 1.3, let {xk}k>1 be generated from Algorithm 1. Assume T < oo. Take the

stepsize as 0 < n < _VLe qo > 0 or V f(x) is bounded for all X, then
1+2cT//m

lim E|Vf&H| =0, (3.14)
k— 00
and any limit point of {Xk}k>1 is almost surely a critical point of (3.1).

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 15

Remark 3.1 If T = E[j] = o(y/m), then n only weakly depends on the delay. The
conditions go > 0 or V f(x) being bounded can be dropped if S = E[j?] is bounded;
see Theorem 4.1.

Proof Summing up (3.10) from k = 0 through K and using (A.3), we have

K
ELFEII < £+ D ml VDI = BREIV £ 5|12

k=0

K—1 K
- (ﬂk + Y c,_k,,) E|V £ (3.15)
k=1

t=k+1

m

Note that Bx — (ﬁ — %) qo as K — o00.If g > 0 or |V f(x)| is bounded,

by letting K — oo in (3.15) and using the lower boundedness of f, we have from
Lemma 3.1 that

o0 2 2
n n°L. n°L,T
§ L 1= IV EIVIEYH)? < .
2m 2m mﬁ

1/L,
142« T //m>

From the Markov inequality, it follows that ||V f Rl converges to zero with prob-
ability one. Let X be a limit point of {xk Jk>1, 1.e., there is a subsequence (X} eekc
convergent to X. Hence, ||V f(x*)| — 0 almost surely as K > k — oo. By [34,
Theorem 3.4, p. 212], there is a sub-subsequence {X*};cx such that |V f (x*)|| — 0
almost surely as K’ 3 k — oo. This completes the proof.

Since n < we have (3.14) from the above inequality.

3.2 Convergence Rate for the Convex Case

In this subsection, we assume the convexity of f and establish convergence rate
results of Algorithm 1 for solving (3.1). Besides Assumptions 1.1 through 1.3, we
make an additional assumption to the delay as follows. It means the delay follows a
sub-exponential distribution.

Assumption 3.1 There is a constant o > 1 such that
My = E[o7] < . (3.16)

The condition in (3.16) is stronger than 7' < 0o, and both of them hold if the delay
Jk s uniformly bounded by some number t or follows the Poisson distribution; see the
discussions in Sect. 5. Using this additional assumption and choosing an appropriate
stepsize, we are able to control the gradient of f such that it changes not too fast.

Lemma 3.3 Under Assumptions 1.2 through 3.1, for any 1 < p < o, if the stepsize
satisfies

(p=D)ym (3.17)

O <n< orarm,y

@ Springer

16 Z. Peng et al.

with M, defined in (3.16), then for all k, it holds that
EIVFEII? < pEIVFETHI? and EIVFETHI? < pEIVFENIE (3.18)

The proof of Lemma 3.3 follows an argument similar to [12]. Since it is rather long,
it is included in Appendix. Similar to Lemma 3.2, we can show the following result.

Lemma 3.4 For any k, it holds that

k—1
Y GE—(V (), V) = V)] = BV F (), V) =V F(x))
=0
NI* + OIP
t 1 d=1
L, k—1
N (Z 1q: +ka> EIVf x5 (3.19)

Proof Following an argument similar to how (3.8) is obtained, we can show

k—1

Y GE—(VF), V) = V)]
t=0
77L k—1 k—1 d-1
SN (> (quEIIVf(Xd’)||2+Cd|IVf(X°)||2)+tEI|Vf(Xk)||2>
ﬁ t=0 d=k—t r=0

- ckE<Vf<x"> Vi) — V)

d—1
2f (Z (Z GEIV x4 + cd||Vf(x0)||2> + kE||Vf(xk)||2> .

r=0

Using the above inequalities, we complete the proof by noting (3.9),

th Z Cd‘l‘CkZCd_Z(Ck d_Ck)Cd+CkZCd

t=0 d=k—t

= Z Ck—dCd +cx = ZCk_dCd, (3.20)

_ —1 _
and ¢ YN0 S0 g IV A2 = S Y ckgr—all VR

Using the above two lemmas, we establish sufficient objective decrease.

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 17

Theorem 3.3 (Sufficient progress) Under Assumptions 1.1 through 3.1, we let {xk};@l
be the sequence generated from Algorithm 1. For a certain 1 < p < o, define

N, := E[jp']. (3.21)

Take the stepsize such that (3.17) is satisfied and also

—1
0<n<2(Lc(M,+ CRgLADY) (3.22)
Let
D:zm(2 M—i—T)—nLM) (3.23)
Then,
EfI("™)] < E[f)] — DE|IV f (x"))%. (3.24)

Proof First note that for any p < o, tp’ is dominated by o’ as ¢ is sufficiently large.
Hence, N, < oo from (3.16), and it is easy to see T < oo. Also note that

. o oo 1 oo o0
Elip'l =) tan' =)) an' =) Y aip'
t=1 t=1d=1 d=1t=d
oo o0 oo
Zqud = cap’. (3.25)
d=1t= d=1

We write the cross terms in (3.11) to
(VFE, VEED) = (V) VAT = VD) + IV

Taking expectation on both sides of (3.11) and using (3.19), we have

ELf x"D] < ELF (M) + o[

+ 5 fZchq, JEIV f (D17

t=1d=1

2 k—1
n“L, k2 n kyy 2
1 k E|V — —FE||V
o (;:O: q + Ck> IV = BNV F)]
2 2
_ n°L
=12+ chcka(xO)nz. (3.26)

@ Springer

18 Z. Peng et al.

The above inequality together with (3.18) implies

2Lr k
ELf] < E[f(xF)] + 2”;—@ 2 Cch—acap"E|IV f(x5)|?

Z chqt ap'EIV f]

Zm\/_ t=1 d=1
Ly kitq Fker |ENIVFEO? = LEIV)2
zm\/— — ! m
2L 2L
I? + Ck,OkE”V FEOIE 327

Notethat Y521 S caqi_ap’ < 300, S| caqi—ap’, whichby exchanging sum-

(3.25)
mations equals Y5> cap? 3% qi—ap'~? < N,M,. Also note that

k k
Z ck—acapt = Z capcr—ap*™?
d=1 d=1
k o)
< > cap? (Z qrp’)
d=1 r=0

< NoM

From these relations and (3.27), we obtain

2

ELf S < ELF)T + prM IV LI
2L k—1
o (Z 149; +kck> E|Vfx))* - IIVf(X")IIZ

2
—Zq,p ENVia? + CkPkEHVf(Xk)”

E[f(xM)] + (2N,

0>
L, n kyi2
E|V f(x ,
(it m) IV F&HI
which completes the proof.

Using (3.24) and the convexity of f, we establish the following convergence rate.

Theorem 3.4 (Convergence rate for the convex smooth case) Under the assumptions
of Theorem 3.3, we have

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 19

1. If f is convex and | x* — Px«(xX)|| < B, Vk for a certain constant B, then

1

E[fx*) — 1< : 3.28
Ve = IS G0 — T e+ DDB 2 628
where f* denotes the minimum value of (3.1) and D is given in (3.23).
2. If f is strongly convex with constant i, then
ELf(X — 1< (= 2uD)ELF () — £, (3.29)

where D is given in (3.23).

Remark 3.2 For the sublinear rate in (3.28), we assume the boundedness of the iterates.
This assumption can be relaxed if we use potentially smaller stepsize; see Theorem 4.2.

For the linear convergence, the assumption on strongly convexity can be weakened
to either essential or restrict strong convexity, see [12,35].

Proof If ||x* — Px«(x¥)|| < B, then from f(x%) — f(Px+(x¥)) < (Vf(xF), xF —
Py (xK)), we have

IF&E) — AL <IVEED] - IXE = Py 5| < BIVFEHI,

and thus 1
IV f&x5))? = ﬁ(f(xk) — 2 (3.30)
Substituting (3.30) into (3.24) yields

D
E[f D] < E[f(x)] — EE(f(xk) - %

Hence,

D
E[f Y — f*1 < ELF(b) — 71— EE(f(xk) — f%?

N I . ! D Ef(H - f*]
E[f(kHT) — f*] 7 E[f (%) — f*] '~ B2E[f(x5T) — f*]
1 D
2— _
Hfeh -7 B
1 1 Dk +1)

CEF T = 7

and thus (3.28) holds.
If f is strongly convex with constant u, then

[f(x%) — f*] B

s IVFOOIP < = r).

We immediately have (3.29) from (3.24) and the above inequality. This completes the
proof.

@ Springer

20 Z. Peng et al.

4 Convergence Results for the Nonsmooth Case

In this section, we analyze the convergence of Algorithm 1 for possibly nonsmooth
cases. Throughout this section, we let

X+ = prox, (xk — an(xk*jk)>

a virtual full-update iterate, where R is defined in (1.4), and denote

dk — ik-i—l _ Xk.

Due to more generality, we will make stronger assumptions on the delay than those
made in the previous section. But all these assumptions are satisfied if the delay is
uniformly bounded or follows the Poisson distribution, as shown in Sect. 5.

4.1 Convergence for the Nonconvex Case

We first establish the almost sure global convergence for possibly nonconvex cases
starting with the following square summable result.

Lemma 4.1 (Square summability) Under Assumptions 1.1 through 1.3, we let {xk Je>1

be the sequence generated in Algorithm 1. Assume S < 00, and the stepsize is taken

1/Lc
as0<n< x2S, am) - Then

o0
> Eld*|* < oo. 4.1)
k=0

Proof By the definition of X¥*!, we have —V f (x¥~/k) — %d" € dR(X*1), which
together with the convexity of R implies that, for any X,

R()_(k+l) —R(x) < —(Vf(Xk_jk) + %dk’)_(k+l — X). “4.2)

By x**! = xk 4+ U, d* and (1.7), we get F() < f(x8) + (Vi f(x5), df) +
% ||df.‘k 12 + R(x¥t1). To this inequality, take conditional expectation on ix:

E, F(X) < F(xF) + L ((Vf(xk), d) + %ndkn2 + REH — R(xk)> :
m

To bound the right-hand side, we split the cross term as
(V&) d) = (V&) dY + (V) = V), df)

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 21

k

and apply (4.2) with x = x*, arriving at
1 (L. 1
E, F&™) < F(x*) + — (—C — —) ¥
m \ 2 n
1 ‘
+ — (V") — VT, db). (4.3)
m

Following a similar argument in the proof of Lemma 3.2 and Young’s inequality, we
get

k—1
(V) = vk dy<n, Yo Ix —xd)-d
d=k— ji
Le o kL [RS d+1_dy2
<ol P+ e Y I =P @4
d=k— ji
Note that
k—1
Elje Y Ix*—x7?
d=k— ji
k—1 k—1 00 k—1
=D ait Y EIx x4} g Y ElxT - x|
=1 d=k—t t=k d=0
1 k—1 k—1 1 00 k—1
=— > ait Y ElP+—% gy Eld’|. (4.5)
t=1 d=k—t t=k d=0

Hence, taking expectation yields
E(Vf(x") =V f(x"), d)

k—1 k—1 oo k—1
L 1 K
<5 [;End"n%; (Zcht > E||dd||2+Zq,rZE||ddn2)]. (4.6)
=1 t=k d

= d=k—t = =0

Taking expectation on both sides of (4.3) and substituting (4.6) yield

1 /1
E[F () — F(x")] 4+ — (— - Lc) E||d"|*
m\n
<L k—1 k—1) k—1
<3 (Z%t > E||dd||2+2qtrZE||dd||2). 4.7)
t=1 d=k—t t=k d=0

@ Springer

22 Z. Peng et al.

From Lemma A.1, we have that for any K > 0,

K k-1 k—1 A 1) K k-1 k—1
YN qr > ElaP = ZZ(q,r>E||dd||2
k=0 t=1 d=k—t k=0d=1 \t=k—d
A2) K—-1 K k—1
=2 2 < cm)Enddn2
d=1 k=d+1 \t=k—d
K—1 K d—1
k< d] = (Z q,r> Eld“)?, @48)
k=1 \d=k+1t=d—k
K oo K k-1 00
and ZZquZEnddn ZZ(Z% E|d"|?
k=0 t=k d=0 k=1d=0 \t=k
(2) K—-1 K o0
=) > (qut)lind"n2
d=0 k=d+1 \t=k
K—-1 K 00
ked =3 (> Z%t) E|ld"|%. (4.9)
k=0 \d=k+1 t=d

Summing up (4.7) from k = 0 through K and substituting (4.8) and (4.9), we have
1 /1 K
E[Fx*t) — F")] + — (— - Lc> > Eldt)”?
A k=0

K 00
2m2 Z (> 2 q:r) E|ld“|2. (4.10)

k=0 \d=k+1t=d—k
Note that
K 00 K—k o 00 00 00
Z Z ZC]tt<Ztht=Zt2qt=S_
d=k+1t=d— d=1 i=d d=11=d =1

Since F is lower bounded, we have (4.1) from (4.10) by letting K — oo0.
Since (E[j])2 < E[j?], the condition § < oo implies T < oo. Equation (4.1)
indicates that £ ||dk|| — 0 as k — oo. Together with S < oo, we are able to show

E||x* — xk—Jk || also approaches zero, as summarized in the following.

Lemma 4.2 Under the assumptions of Lemma 4.1, we have

lim E|xf — x*=/ || = 0.
k—00

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 23

Proof Pick any € > 0. From (4.1), there must exist an integer J > 0 such that

1

ZE||dd|| m8<3Zq,t>) 4.11)

For the above J, there must exist an integer K > J such that, for any k > K,

00 -1
> ait< m8<3 > Ela?)?) : (4.12)
d=0

t=k—J

From Young’s inequality, it follows that ||x* — x*—/||2 < ji Zd k— i x4+l — x4)2
Hence, for any k > K, using (4.5) and (A.1), we have

k—1
~ 1
E|xf —x* 2 < — [Z(oo r) E|la‘|)? +Z (ZW) E||d"||2]
mn d=1 \t=k—d
J

1
— Z(> qn) E[ld”|?
m

=

k

d=1 k—d
1 -1 k—1 k=1 / oo
d2 d)2
+;[> qtr> Ela’| +Z<tht) Ela’|]
d=J+1 \t=k—d d=0 \r=k
1 J o0
< EZ< > W) Ella’|?
d=1 \t=k—J
1 k—1 00 k—1 00
d2 dp2
+n—1[(tht> Ela?| +Z< > q,r> Eja’| }
d=J+1 \t=1 d=0 \t=k—J

which implies E||xk xk—k ||2 eunder (4.11) and (4.12). We have limy_, o E||x —
xk=Jk||2 = 0 as ¢ is arbitrary. Now note E||x¥ — x¥—/k|| < /E|xk — xk—Jx|2 to

complete the proof.

Using Lemmas 4.1 and 4.2, we establish the almost sure global convergence of
Algorithm 1.

Theorem 4.1 Under the assumptions of Lemma 4.1, any limit point x* of {x*} is a
critical point of (1.1) almost surely.

Before proving this theorem, we make two remarks as follows.

Remark 4.1 From the theorem, we see that if § = E[j2] = o(m), then the stepsize
required for convergence only weakly depends on the delay.

Remark 4.2 (Comparison of stepsize) The works [18] consider asynchronous coor-
dinate descent for nonconvex problems. To have convergence to critical points, they

@ Springer

24 Z. Peng et al.

assume delays bounded by a number 7. Also, they require the boundedness of iterates

. L
and the stepsize less than - rxpy f Note that our stepsize in Theorem 4.1 is larger if
2

k=S < 16m, where S = EL]z] < 72, and that can lead to faster convergence.

Proof Let {x*};cxc be a subsequence that converges to x*. Since E[d*| — 0 as
K > k — oo, from the Markov inequality, |[d¥|| converges to zero in probability as
K 5 k — oo. By [34, Theorem 3.4, p. 212], there is a sub-subsequence {x*};cx such
that ||d*|| almost surely converges to zero as K’ 3 k — oo. Hence, xk+1 almost surely
converges to x* as ' 3 k — oo.

Since —V f (&) — 1d* € dRE), we have

dist (0, 8F(ik+1)) < HVf(ik“) — v ki~ Lt H .

Using triangle inequality and the Lipschitz continuity of V f, and taking expectation
give

E[dist (0, 8F(ik+l))] < LyENd | + LpEIx* — x| + LEd¥].

From Lemmas 4.1 and 4.2, it follows that the right-hand side approaches to zero as
k — oo. Hence, Edist (0, 8F(ik+1)) — 0 ask — oo. If necessary, passing to another
subsequence, we use Markov inequality and [34, Theorem 3.4, p. 212] again to have
dist (0, 3 F (x**1)) almost surely converges to zero as K’ 5 k — co. Now use the
outer semicontinuity [36] of dist (0, d F (x)) to obtain the desired result.

4.2 Convergence Rate for the Convex Case

In this subsection, we establish convergence rates of Algorithm 1 for nonsmooth
convex cases. Similar to (3.18), we first show that choosing an appropriate stepsize,
the iterate difference does not change too fast.

Lemma 4.3 (Fundamental bounds) Assume Assumptions 1.2 through 3.1. Then for
any 1 < p < o, it holds that

00 1/2
P2 — r_
Vp,1 = Z% 72 1 <00 and yp2:i= (Z%f]p_pll> < o0. (4.13)
=1

In addition, if the stepsize is taken such that

1—p! —4
0<pg_L—P Wm—4 (4.14)
2L,(1+¥p1+ Vp.2)

then, for all k > 1
Ed*7"|1? < pE|d"|%. (4.15)

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 25

Proof Itis easy to show (4.13) by noting that 7o’ is dominated by o as # is sufficiently
large. Next we show (4.15) by induction.
Using the inequality [lu]|> — [|[v]|*> < 2|u| - |v — u]|, we have

@ =12 — ak? < 2d* - 1k — af), k. (4.16)
In addition, for all &,

EIX ! — x5 < SB[VimIx ! = X2+ dk

= J=Eld")% (4.17)
Furthermore, from d* — d*~! = xf — prox, p (xk — an(xk_jk)) — x4

prox, p (xk_1 —nVf (Xk_l_jkfl)), the nonexpansiveness of prox, g, and the trian-
gle inequality, we have

la* —a* 1
<Ix* =X X = gV F) — x4 gy)
Q2YxE — x5 | V) — v kT e (4.18)
L2YxF — x| | V) — Vb

+llVf (&) = VIR (4.19)

Whenk = 1, wehave jo = Oand j; € {0, 1} because jr < k, Yk.Hence, from (4.18),
la' — % < 2)x! = x| + 9V L&D = VA& < @+ nL)lx' —x°],
which together with (4.16) and (4.17) implies

44 2nL,

Jm

E[18°1 = 14" 1] < @+ 2L E[1] - X" = x| < Elld°)P.

Hence,

44 29,0\ ! “.14)
E||d°||2<<1—l) Eld')?> < pE|d'>

Jm

@ Springer

26 Z. Peng et al.

Assume (4.15) holds for all k < K — 1. We show it holds for k = K. First, for any
d<K-1,

r K—1-d
_ 1 | p _ Vm
ENd 1 x? —x) < E | ——1aX P + S Ixd - xH)2
27| m e
1 r K—zl—d 1
P K—1,2 2
= —E| —— a7 > + ———= 14|
27| Jm Jmp
r K—1-d
1 p 2z B pK—l—d 3
< E| — 1 d* P+ e 1a* 2
2| Jm Jmp 2
K—zl—d
4 K—12
— Elld . 4.20
N I I (4.20)

Secondly, we have

4.16)
E[1a5 712 - a¥ 2] U< 2E1a ek - af

(459)4E||d’<—1 IHIx® =<1+ 2pEad* v £ 5 = v KT
+2nE|d5 |V F KR — v E)|
+2E|d* VKT — v KR

@17

< HZL K2 4 o EaK |V £ K TIR) — v F x|
+ 2pEld NV KT — v KT, 4.21)
Note that

K—1
Ej IVF K8y =V) =) allVraE™) = viah)

=1
+ ek IVFE) — VK.

By the triangle inequality and the Lipschitz of V f, it follows that, forany 1 <t < K,

K—1
VA = v < Y Ivrah - vt
d=K—t
K—1
<L) Ix = x) (4.22)
d=K—t

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 27

Since ||dX~!| is independent of jx, we have from the above two equations that

K—1 K—1
E[@* V&R - v <L Y qEIdST YT x = x|
t=1 d=K-—t
K—1
+ Lreg ENdX 1 Y7 x? — x4,
d=0
K—1-d 021
Us1ng (4.20), the definition of y, 1 in (4.13) and Zd K- P 2 = g V1 <
< K, we have
ENQS V&5 = VO < TRy BRI 423)

Also, using Young’s inequality and (4.22) with K replaced by K — 1l and t = jgx_1,
we have, for any 8 > 0,

ENd v X — v K10k

K-2
/3 d o d+1
E ak—12 o =282 x4 — x4t . 4.24
<35l 1”4+ =3 Z' I I (4.24)
d=K—1—jg-1
Note that
K-2 2
d=K—1—jk_1
K-2 K—2 2 K_2 2
=Y aF [> ||xd—x"“||} +cK_1E[Z||xd—xd“||}
=1 d=K—1—t d=0
K-2 -2 K-2
< it Z E|x? —x™2 4 eg (K = 1) Y Elx? —x?%,
=1 d=K—1—t d=0

Substituting this inequality into (4.24), noting E[x? — x?*!|2 = LE|d4|?, and
applying (4.15) for all k < K — 1, we have

Ela* v X — v K iken) < celaf 2,

L, L,
where C = 75 + 2rfzzlqtt2d1<1rp 2Lk
e K172
YK 2 pK=1=d_ Now let = f(2, Ptk ek 1 (K - 14 ‘)

@ Springer

28 Z. Peng et al.

and recall the definition of y, > in (4.13). From the above inequality, we have

. L
ENdX 1V £ K1) — v pxK—1mikny) < 2222 prgk 12, (4.25)

Jm

Substituting (4.23) and (4.25) into (4.21) gives

44 2nL(1
E[IIdK‘IIIZ—IldKllz] < F 2k +V"’1+V”’2)E||d"—1||2,
N

and thus

E”dKfl ”2 < 1 _ 4 +2’7Lr(1 + J/,O,] + Vp,Z)
~ ﬂ

Therefore, by induction, it follows that (4.15) holds for all k, and we complete the
proof.

—1
“.14)
) EldX > < pEd®)2

By this lemma, we are able to establish the convergence rate result of Algorithm 1
for solving (1.1) if the problem is convex.

Theorem 4.2 (Convergence rate for the nonsmooth convex case) Under Assumptions
1.1 through 3.1, let {x* }k>1 be the sequence generated from Algorithm 1 with stepsize
satisfying (4.14) and also

-1

2Lpy?, 2L

n<<u+ o2 4 ZRi¥o2) (4.26)
m A m

where y, 1 and y, > are defined in (4.13). We have

1. If the function F is convex, then

' . m®(x)
E[Fx") = F'] < s—— (4.27)
2n(m + k)
where
2
o) =E ka — Py (xk)H + 2nE[F(xb) — F*].
2. If F is strongly convex with constant ., then
i k
o(xF) < (1 — —) o (x"). (4.28)
m(l +nuw)

Before proving this theorem, we make two remarks and present a few lemmas
below.

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 29

Remark 4.3 Similar to (3.29), for the linear convergence result (4.28), the strong
convexity assumption can be weakened to optimal strong convexity. The latter one is
strictly weaker than the former one; see [16] for more discussions.

Remark 4.4 (Comparison of stepsize) For the special case that the delay is bounded
by T = o(/m), choosing p = O(1 + %), we have both y,, | and y, > are O(t). Thus
we can take stepsize almost L%, which is larger than the stepsize i given in [16].

Lemma 4.4 Let y, > be defined in (4.13). We have

i L:yp,2
k k k k+1 , k2
E(Vi f (&) — v, f(xb), xk —xbH) < ﬁElld [(4.29)

Proof 1t is proved via the Cauchy-Schwarz inequality, the bound (4.25), and
E(Vy f (&7 — v, f(x6), xE = x) = LE(V F(xFi) - v £ (x6), db).

ik

Lemma 4.5 It holds that

E[F&5 = F&F) 4 1y (P (i) = iy)]

=E[F(x") — F&™H] + LE[R(Px-(x})) — RxM)1. (4.30)

kLY

Proof Equation (4.30) is a direct consequence of r; ((Px+ (xk))ik) — ri (Xl-k

rig (P (x))i) = ri (%)) + R(x*) — RGxHHY),

Lemma 4.6 Let y, > be defined in (4.13). It holds that

E(Vi f (7). (P ()i, = xE) < RE[f(Pxex) = 1 (&H)]
L 2
+ L2 gk, (4.31)
Proof Since iy, is uniformly distributed and independent of ji, we have

Ei (Vi f(&ETI), Py (xh));, — xE) = L(v r(xh—0), Py () —xF). (4.32)

ik
We split the term and apply the convexity of f and Lipschitz continuity of V f to get

(Vf (), P () = x6)

=(Vf &), Py (x) — ¥
VL) + VAR = v (), T - x)

<[FPr ety = r i+ p b — podh |
VAT = V), T —x)

<[rPr ety = ro) |+ L X (4.33)

@ Springer

30 Z. Peng et al.

Substituting (4.33) into (4.32) and taking expectation yield

E(Vi f*7I), (Px=(x));, — xF)
< RE[£Px) = £ |+ HLEIN T — x|,

Noting [|x* — x*=/k |12 < ji Zl‘;;}(_jk x4+ — x@||2, applying (4.5) and (4.15) and

using the definition of y,, 5, we complete the proof of (4.31).

Lemma 4.7 Under the assumptions of Theorem 4.2, we have E[F (Xk+l)] <
E[F (x")], Vk.

Proof Taking expectation on both sides of (4.3) and using (4.29) yield

1 /L 1 Ly,
E[F)] < E[F (¢ _(_c__ P,>Edk2’
[Fx")] [F(x)]+m > + NG lld™ ||

which implies E[F (xk*t1] < E[F (x*)] from the condition on n in (4.26).

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2 From the update of x**!, we have

0 Vi fOH I+ | (1 —x) o ().

ik

and thus for any x;,, it holds from the convexity of r;, that

ri (X)) = ri (ka) — <V,-kf(xk*jk) + % (x/.<Jr1 — xfk) Xip — xka>. (4.34)

ix 173
Since X+ = xk + U;, (x**! — x¥), we have

2
k+1 k
Xik — Xik

¥ 2<x"+1 - (PX* (xk)) Xkl gk > . (4.35)

ik i ik

R T

From the definition of Py, it follows that || x¥1 — Py (xk+1) |12 < ||IxK 1 =Py (x5) ||2.
Then using (4.34) and (4.35), we have

2
k1 k1412 k ey |12
x5 = Py (X TH 7 < UIx = Py (x))° —

k+1 k
Xik — Xl-k)

427 (g (P i) — i (x47))
+ (Vik FOETI) (Pys (x5, — xk+1>_ (4.36)

ik

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 31

We split the cross term to have

(Vi P79, (Poce (), = %) = (Vi f), (P (6, = x)
(Vi £), % = X (Vi f) = W), 1 =X

ik ik

From (1.7), it follows that

2
(Vi by = xi1) < iy = ety 4 e [k = w1
Plugging the above two equations into (4.36) gives
k+1 k4142 k 2 el k12
[= Py kD] < k= P [T = (e [5

+2n <Vik FOETIR), (P (g — "fk)

+ 20 (Vi I = v), 5 — X

g [f(xk) — SO 4 (Prr)i — iy (xf.‘k“)] . (437)

Substituting (4.29) through (4.31) into (4.37) and rearranging terms yield

2 2
E ka+1 _ ’PX*(xk""])H <E ka _ ”PX*(xk)H

1 271Lf)/22 2nL,yyp 2
—Z[l—nLc— Ly s TR

Jm

+ %E[F — F&N)] + 20E[F(x%) — F(xk+1)] .
The above inequality together with (4.26) implies

EIXH! = P () |2 < ElIXE = P (8|12 4+ 2E [F* = F (<]

+20E [F(xk) — F(xk'H)]
and thus, with the monotonicity of E[F (xk)] in Lemma 4.7,

E ka“ — Py (k) H2 +20E [F(xk+l) - F]

<E ”xk - PX*(xk)Hz n ZnE[F(xk) - F*] _ g [F(xk) - F*] (4.38)
< on — Py (x?) H2 +2E [F(xo) — F*] — Xk:E[F(x’) — F¥]
=0

< HXO—PX*(XO) H2+277E [F(XO) - F*] — B4 1)E [F(ka)—F*] (439

@ Springer

32 Z. Peng et al.

Hence, (4.27) follows.
When F is strongly convex with constant y, we have

F(x*) — F* > &|x* — Py (x5)|1%,

and thus from (4.38), it follows that

2
E HXkJrl _ PX* (Xk+])H + 277E[F(Xk+l) _ F*]
20
m(1l + np)

2 2%\ w
- (— — ————— | SEIX' = P (x|
m m(+nu)) 2

_ (1 - m(+“w)> <E ka — Py (xk)H2 4 2pE[F(xk) — F*]) .

<E ka — Py (xh) H2 i (2;7)E[F(xk) — F¥]

Therefore, (4.28) follows, and we complete the proof.

5 Poisson Distribution

We can treat the asynchronous reading and writing as a queueing system. Assume
the p + 1 processors have the same computing power (i.e., the same speed of reading
and writing). At any time k, suppose the update to x;, is performed by the pith
processor, which can be treated as the server with speed (or service rate) one of reading
and writing. All the other p processors can be treated as customers, each with speed
(or arrival rate) one, where any update to x from the p processors can be regarded
as one customer’s arrival. Under this setting, from the pyth processor starts reading
x until it finishes updating X;,, there would be p customers in the queue in average,
namely, the delay jj follows the Poisson distribution with parameter p. Summarizing
the above discussion, we have the following result.

Claim Suppose Algorithm 1 runs on a system with p + 1 processors, which have the
same speed of reading and writing during the iterations. Then the delay j; follows the
Poisson distribution with parameter p, i.e., for all k,

te=P

Prob(ji =)= 25— t=0,1,---, (5.1)

1!
which implies no delay if p = 0.

In general, if the processors have different computing power, j; would follow
Poisson distribution with a parameter being the speed ratio of the other p processors to
the pith one. However, in a multi-core workstation with shared memory, the processors
are usually of the same style and can have the same computing ability. In the following,
we assume the distribution in (1.8) to be Poisson distribution with parameter p and

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 33

discuss the convergence results we obtained in the previous sections. First we give the
values of the expected quantities we used before.

Proposition 5.1 Suppose there are p + 1 processors and (5.1) holds. Then for any
p > 1, we have that for all k,

T =Eljl=p, S=Ei1=pp+1),
M, = E[pj] — el D, N, = E[jpj] — ppep(p_l),
ePWP—1_1

plp—1) _ -1
Yp,1 = -1 Vo2 = (%) . (5.2)

where y, 1 and y, 2 are defined in (4.13).

The proof of this proposition is standard. From the quantities in (5.2) and the theorems,
which we established in the previous sections, we make the following observations:

1. If p = o(4/m), we can guarantee the convergence of Algorithm 1 for both smooth
and nonsmooth problems by setting 7 < Lic (see Theorems 3.2 and 4.1), where 5
means “less than but close to”’;

2. If 2¢*(p 4 1) + p = o(y/m), then choosing p = 1 + %, we have the convergence

rate of Algorithm 1 obtained in Theorem 3.4 by setting n < % Then D ~ %
in (3.23), and thus, near-linear speedup is achieved for solving convex smooth
problems;

3. If p = o(/m), we can guarantee the convergence rate of Algorithm 1 in Theo-
rem 4.2 by setting n 5 LIT and thus a near-linear speedup for convex nonsmooth
problems.

6 Numerical Experiments

In this section, we evaluate the numerical performance of Algorithm 1 on solving
two problems: the LASSO problem and the nonnegative matrix factorization (NMF).
The tests were carried out on a machine with 64GB memory and two Intel Xeon E5-
2690 v2 processors (20 cores, 40 threads). All of the experiments were coded in C++
and its threading library was used for parallelization. We use the Eigen library for
numerical linear algebra operations. To measure the delay, we use an atomic variable
to track the number of iterations as defined in the paper. The atomic variable will be
incremented by one for each update. For each thread, the delay is calculated based
on the difference of the iteration counters before and after the update. For LASSO,
two different settings were used. The first one sets the stepsize by the expected delay
according to the analysis of this paper, and the other one used the maximum delay
from [12,16] and is dubbed as AsySCD. We compared the async-BCU to the serial
BCU, which can be regarded as a special case of Algorithm 1 with the delay j; = 0, Vk.
For NMF, we set the stepszie by the expected delay and test its convergence behavior
with different numbers of threads.

@ Springer

34 Z. Peng et al.

6.1 Parameter Settings

According to Theorem 4.1, the following two stepsizes were used:!

This paper : n = %, (6.1a)
1/L,
Max delay : 5 = sz/—zL/(zm) (6.1b)

where 7 equals the maximum number of the generated sequence of delays.

6.2 LASSO
We measure the performance of Algorithm 1 on the LASSO problem [3]

minimize §|Ax — b|13 + A[x]1, (6.2)
xeR”

where A € RV*" b € RV, and 1 is a parameter balancing the fitting term and the
regularization term. We randomly generated A and b following the standard normal
distribution. The size was fixedton = 2N and N = 10000, and A = % was used. The
Lipschitz constant L, = max{ ||(Al.TAi) |2, Vil, where A; represents the ith column
block of A.

Figure 1 shows the delay distribution of Algorithm 1 with different numbers of
threads. The blue bars are the normalized histogram so that the bar heights add to
1. Orange curve is the probability density function of Poisson distribution. By using
5 and 10 threads, we observe that the number of delays is concentrated on 4 and 9,
respectively. When the number of threads is relatively large, the actual delay distribu-
tion closely matches with the theoretical distribution as we discussed in Sect. 5. For
20 threads, an interesting observation is that the actual probability density is higher
than the theoretical probability density when the number of delays is around 9. We
think this is due to the architecture of the testing environment, i.e., the average delay
within a CPU is smaller than the average delay across two different CPUs. We observe
a similar behavior when 40 threads are used.

Figure 2 plots the convergence behavior of Algorithm 1 running on 40 threads with
different block sizes. We partition x into m equal-sized blocks with block sizes varying
among {10, 50, 100, 500}. The results of the serial randomized coordinate descent
method is also plotted for comparison. Here, one epoch is equivalent to updating all
coordinates once. Comparing to the serial method, we observe that the delay does
affect the convergence speed, and the affect becomes weaker as m increases. Hence,
Algorithm 1 can have nearly linear speedup when the number of blocks is large.
In addition, we note that the stepsize setting of AsySCD is too conservative, and
Algorithm 1 with stepsize set by the expected delay converges significantly faster.
However, we observed that, in general, we could not take larger stepsize than that

! For the NMF problem, L. cannot be determined in the beginning, so instead of using a uniform L., we
used the gradient Lipschitz constant adaptive to the iterate.

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 35

5 threads 10 threads
0.8 0.4 —
— [—Jactual [—Jactual
0.7 — — theory 0.35 — = theory |]
>
2 0.6 = 03¢
2 c
G 05 3 o025}
N >
> =
2 04 = 02t
2 2
& 03 2 0157
e} o
@ 02 ~F o o1} ’
4 - = ~ /
0.1 j ~ o 0.05 t L/
7z ~
0 £ —l—\— il 0 Z = e
0 2 4 6 8 10 0 5 10 15 20
Num. of delay Num. of delay
20 threads 40 threads
0.15 — 0.07
[—Jactual M [—Jactual
M = = theory 0.06 l = = theory
= > \
] M = gl
c M @9 0.05¢
g o1 G 1
©
= S 004} B
= £ 1
Qo =
< ‘g 0031 !
6] el \
& 0.05 ¢ o
o 002} i
0.01 ¢
0 0]
0 40 0 20 40 60 80
Num. of delay Num. of delay

Fig. 1 Delay distribution behaviors of Algorithm 1 for solving LASSO (6.2). The tested problem has
20 000 coordinates, and it was running with 5, 10, 20, and 40 threads. (Color figure online)

in (6.1a). Some divergence behaviors are observed when using stepsizes larger than
that in (6.1a).

6.3 Nonnegative Matrix Factorization (NMF)

This section presents the numerical results of applying Algorithm 1 for solving the
NMF problem [37]
minimize §|XY" - Z|%
XY

(6.3)
st. X e Ry e RV

where Z € Rf *Nis a given nonnegative matrix. We generated Z = ZLZ—IE with the
elements of Z; and Zpy first drawn from the standard normal distribution and then
projected into the nonnegative orthant. The size was fixed to M = N = 10000 and
m = 100.

@ Springer

36

Z. Peng et al.

2,000 blocks

400 blocks

108 08
—&— This paper
g 106» S 105» MV‘V—V
© m is paper
g 104 = 104 i;\r/l:nge:;y
[0 () Serial
> =
fel n
O 100 O 40
102 102
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
108 , 108
V;hlszalper | = dalper
w ax delay ho? ax delay
6 Serial Serial
U, R '
© ©
> 104 > 10*
2 2 O I%
=1 2 =1 P
_ai 10 _i 10
o] e}
(@) 10° (@] 10°
2 2
1040 20 30 40 50 0% 40 20 30 40 50
Time/s Time/s
200 blocks 40 blocks
108 108
[6 — 3] ev
ERD === S0 W
© —57F— Max delay
> 104 Serial > 104
2 2
= = This paper
8 102 8 102 = o iy
L =
© o0 © 100
-2
100 20 40 60 80 100
Epoch
8
10 | —B— This paper
o) —57— Max delay
Serial
3 S 10°f ‘
© (0]
> , >
o 10° N o 10%
= &, 2
8 10? 3 10
o) o)
O oo O o0
1020 10 20 30 40 50 102010 20 30 40 50
Time/s Time/s

Fig. 2 Convergence behaviors of Algorithm 1 for solving the LASSO problem (6.2) with the stepsize
given in (6.1), and also the serial randomized coordinate descent method. The tested problem has 10 000
samples and 20 000 coordinates that are evenly partitioned into m blocks. It was simulated as running with
40 threads. We run 100 epochs for each experiments. (Color figure online)

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 37

5 threads 10 threads
0.7 0.25 —
- [—Jactual [—Jactual
06 = = theory — — theory
> > 02 |
‘w 05 k7]
5 5 a
S 04! 3 o015
2 2
5 03 5
© © 0.1
Q Qo
o 02} L <)
~
o L7 N 0 o005
01t S
7 ~ -
v -~
0 == 0 =
0 2 4 6 8 10 0 5 10 15 20
Num. of delay Num. of delay
20 threads 40 threads
0.14
e [_Jactual 0.08 _ [_—Jactual
0.12 — — theory) Il |= — theory
%‘ 1 %’ 0.07
0.1 M
S i S 0.6 1L
° °
> 0.08 > 0.05 i
o / 3 0.04 1
§ o8 | 8 M
o] , S 0.03 ,
= 0.04 =
o ! Q 002 I
/ 1
0.02 , 0.01 ,
0 0
0 10 20 40 0 20 40 60 80
Num. of delay Num. of delay

Fig. 3 Delay distribution behaviors of Algorithm 1 for solving NMF (6.3). It was running with 5, 10, 20,
and 40 threads. (Color figure online)

We treated one column of X or Y as one block coordinate, and during the iter-
ations, every column of X was kept with unit norm. Therefore, the partial gradient
Lipschitz constant equals one if one column of Y is selected to update and ||y5(||%

if the ixth column of X is selected. Since || yf.‘k ||% could approach to zero, we set the

Lipschitz constant to max(0.001, ||yf.‘k ||%). This modification can guarantee the whole
sequence convergence of the coordinate descent method [38]. Due to nonconvexity,
global optimality cannot be guaranteed. Thus, we set the starting point close to Z; and
Zy. Specifically, we let X* = Z; +0.58; and Y? = Zg + 0.5 ¢ with the elements
of Z and E g following the standard normal distribution. All methods used the same
starting point.

Figure 3 shows the delay distribution behavior of Algorithm 1 for solving NMF. The
observation is similar to Fig. 1. Figure 4 plots the convergence results of Algorithm 1
running with 1, 5, 10, 20 and 40 threads. From the results, we observe that Algorithm 1
scales up to 10 threads for the tested problem. Degenerated convergence is observed

@ Springer

38 Z. Peng et al.
10 —8— 1 thread 10 —H&— 1 thread
10 —%7— 5 threads 10 —— 5 threads

10 threads 10 threads

g —Q— 20 threads g —Q— 20 threads

© —>— 40 threads © —>— 40 threads

> >

2 108 2

© ©

@ o

o o

(e} (e}

10°
0 20 40 60 80 100 0 500 1000 1500 2000

Epoch Time /s

Fig. 4 Convergence behaviors of Algorithm 1 for solving the NMF problem (6.3) with the stepsize set
based on the expected delay. The size of the tested problem is M = N = 10000 and m = 100, i.e., 200
block coordinates, and the algorithm was tested with 1, 5, 10, 20, and 40 threads. (Color figure online)

with 20 and 40 threads. This is mostly due to the following three reasons: (1) since
the number of blocks is relatively small (m = 200), as shown in (6.1a), using more
threads leads to smaller stepsize, hence, slower convergence; (2) the gradient used for
the current update is more staled when a relative large number of threads are used,
which also leads to slow convergence; (3) high cache miss rates and false sharing also
downgrade the speedup performance.

7 Conclusions

We have analyzed the convergence of the async-BCU method for solving both
convex and nonconvex problems in a probabilistic way. We showed that the algorithm
is guaranteed to converge for smooth problems if the expected delay is finite and
for nonsmooth problems if the variance of the delay is also finite. In addition, we
established sublinear convergence of the method for weakly convex problems and
linear convergence for strongly convex ones. The stepsize we obtained depends on
certain expected quantities. Assuming the given p + 1 processors perform identically,
we showed that the delay follows a Poisson distribution with parameter p and thus fully
determined the stepsize. We have simulated the performance of the algorithm with our
determined stepsize on solving LASSO and the nonnegative matrix factorization, and
the numerical results validated our analysis.

A Proofs of Lemmas

The following lemma is used in other proofs several times, and it is easy to verify.

Lemma A.1 For any scalar sequences {a; j} and {b;}, it holds that

k—1 k—1 k—1 k—1
agi =Y Y ag: k=0, (A.1)
t=1 d=k—t d=1t=k—d

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 39

k t—1
ZZ = Z Z aq., Yk > (A2)
t=1d=0 d=0t=d+1
k t—1 k—1
D0 aaibia= Z(> aa- ,d> by, Yk > 0. (A.3)
t=1d=1 t=1 \d=t+1

A.1 Proof of Lemma 3.3
Proof Following the proof of Theorem 1 in [12], we have
E[IV £GP = IV f)]
QE[IV & IV £ = VD] from ul = IvIE < 2wl - fu = Vi)
QLE[IVFEO - I = x| = 20LE[19 6] - 10,V F &)]

<L, <LE||Vf(xf)||2 4 \/EE”Uitvf(th[)”z)
NG

L, .
=L (ENVFOOIP + BNV)P
L, r—1
(Ean(x)n + D arEIVE I +ct||Vf<x°>||> (A4)
r=0
and

E[IV £ HIP = IV 6]
<E[IVFE) + VO] IV &) = V1]
<LE[(219 @O+ IV A+ = Ve Ix = x]]
<LE[2IV & I =X + L x ! = x)]

=LoE [2011V £ GO - 10V £ &+ 0P L1061]

r] . .
SLE|—=IVFE&)I? + n/mlU, V£)* + L, | U,V f (! ,,)”2}

N
Ly L, ZL% .
znﬁ Xt)||2+<n\/E nm)EHVf(Xt In)?
~m
nL, n°L} = t—ryp2 0y 2
+ <ﬁ+ .) ;qrEIIVf(x W+ lIVLSEDHI7) - (A.5)

@ Springer

40 Z. Peng et al.

We first show the first inequality in (3.18). Note that (3.17) gives us

1
—————— <P (A.6)
L= (14 M)

Whent = 0, we have from (A.4) that |V £ x°) |2—E|| V f(x")[|2 < % IV £(x%))2 <
1+ Mp)'%nw(xo)nz. Hence, |V f(x%)||> < pE||V f(x")|]? from (A.6). Now we

assume that E||V f(x")||?> < pE||Vf(x*1)|? forall t < k — 1. For t = k, it holds
from (A.4) and the induction assumption that

EIVF&HI? = EIVf)2

k—1
L,
<t (EIIVf(X")IIZ + Y @ EIVIEHIP + CkPkE”Vf(Xk)”z)
\/ﬁ t=0

k-1

nL, ¢ k k2 NLr ky 2

=— |1+ E qip" +ep” | EIVIED)IT < —=0+ M,) - E|IV fxH)]”.
m < t=0 m ’

Hence, we have E||V £ (x¥) |2 < pE||V f(x*T1)||? from (A.6). Therefore, we finish
the induction step, and thus, the first inequality of (3.18) holds.
Next we show the second inequality of (3.18). Since (3.17) implies n <

L (p—DMp\ >
2 (Mt)

nL, nL, 772L3

1 M

+ﬁ+<ﬁ+ — o

3.17) L L? -1

<+ raemy) + M, r (o= Dym.
Jm m pL(1+ Mp)
nL, (p—l)Mp> <o
Jm p(1+ M,)

When ¢t = 0, we have from (A.5) that

=1+ (1 + M, + (A7)

2nL n*L?
EIVFEHI? = IVFED? < (L L) IV
Jm m
nL, + ﬂzL%

Jm m

< ((1 + M)) IV F&0))2.

Hence, E||V f(x)]? < plIVf(x°)|? holds from (A.7). Assume E||V f(x'T1)||> <
PE||V f(x")|]? for all t < k — 1. It follows from (A.5) and the induction assumption
that

@ Springer

On the Convergence of Asynchronous Parallel Iteration... 41

E|Vf&TH1? — BV £ x5
nL,

Jm

nL, UZL% - t kyp2 k k2
+ + P EIIV)™+ cp EIV D)
A/ m
n t=0

k—1

nLy (nLr 772L3> t k kyp2

= + + D ap' +apt)) EIVFED)
A/ m N m m =0

nL, nL, n’L? k12
<<ﬁ+<ﬁ+ E)MP)EIIVf(X)II-

S——E||V £ (xH))?

Hence, from (A.7), E|V f(x*T1)|?2 < pE|V f(x¥)|? holds, and we complete the
proof.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] WhiteHouse: Big Data: Seizing Opportunities Preserving Values (2014)

[2] Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)

[3] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.)
58, 267-288 (1996)

[4] Zhou, H., Li, L., Zhu, H.: Tensor regression with applications in neuroimaging data analysis. J. Am.
Stat. Assoc. 108(502), 540-552 (2013)

[S] Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat.
15(2), 265-286 (2006)

[6] Cichocki, A., Zdunek, R., Phan, A.H., Amari, Si: Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, London
(2009)

[7]1 Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183-202 (2009)

[8] Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to
stochastic programming. SIAM J. Optim. 19(4), 1574-1609 (2009)

[9] Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim. 22(2), 341-362 (2012)

[10] Dang, C.D., Lan, G.: Stochastic block mirror descent methods for nonsmooth and stochastic opti-
mization. STAM J. Optim. 25(2), 856-881 (2015)

[11] Xu, Y., Yin, W.: Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J.
Optim. 25(3), 1686-1716 (2015)

[12] Liu, J., Wright, S., Re, C., Bittorf, V., Sridhar, S.: An asynchronous parallel stochastic coordinate
descent algorithm. In: Proceedings of the 31st International Conference on Machine Learning (ICML-
14), pp. 469-477 (2014)

[13] Peng, Z., Xu, Y., Yan, M., Yin, W.: Arock: an algorithmic framework for asynchronous parallel
coordinate updates. SIAM J. Sci. Comput. 38(5), A2851-A2879 (2016)

[14] Strikwerda, J.C.: A probabilistic analysis of asynchronous iteration. Linear Algebra Appl. 349(13),

125-154 (2002)

@ Springer

http://creativecommons.org/licenses/by/4.0/

42

Z. Peng et al.

[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]
[37]

[38]

Hannah, R., Yin, W.: On unbounded delays in asynchronous parallel fixed-point algorithms. arXiv
preprint arXiv:1609.04746 (2016)

Liu, J., Wright, S.J.: Asynchronous stochastic coordinate descent: parallelism and convergence prop-
erties. STAM J. Optim. 25(1), 351-376 (2015)

Cannelli, L., Facchinei, F., Kungurtsev, V., Scutari, G.: Asynchronous parallel algorithms for noncon-
vex big-data optimization: model and convergence. arXiv preprint arXiv:1607.04818 (2016)

Davis, D.: The asynchronous PALM algorithm for nonsmooth nonconvex problems. arXiv preprint
arXiv:1604.00526 (2016)

Mokhtai, A., Koppel, A., Ribeiro, A.: A class of parallel doubly stochastic algorithms for large-scale
learning. arXiv preprint arXiv:1606.04991 (2016)

Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In: Advances in Neural Information Processing Systems, pp. 693-701 (2011)
Hildreth, C.: A quadratic programming procedure. Naval Res. Logist. Q. 4(1), 79-85 (1957)
Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss—Seidel method under
convex constraints. Oper. Res. Lett. 26(3), 127-136 (2000)

Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable
minimization. J. Optim. Theory Appl. 72(1), 7-35 (1992)

Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J.
Optim. Theory Appl. 109(3), 475-494 (2001)

Hong, M., Wang, X., Razaviyayn, M., Luo, Z.Q.: Iteration complexity analysis of block coordinate
descent methods. Math. Program. 163(1-2), 85-114 (2017)

Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization.
Math. Program. 117(1-2), 387-423 (2009)

Lu, Z., Xiao, L.: On the complexity analysis of randomized block-coordinate descent methods. Math.
Program. 152(1-2), 615-642 (2015)

Richtdrik, P., Taka¢, M.: Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Math. Program. 144(1-2), 1-38 (2014)

Rosenfeld, J.L.: A case study in programming for parallel-processors. Commun. ACM 12(12), 645—
655 (1969)

Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebra Appl. 2(2), 199-222 (1969)
Bertsekas, D.P.: Distributed asynchronous computation of fixed points. Math. Program. 27(1), 107-
120 (1983)

Tseng, P., Bertsekas, D.P., Tsitsiklis, J.N.: Partially asynchronous, parallel algorithms for network
flow and other problems. SIAM J. Control Optim. 28(3), 678-710 (1990)

Frommer, A., Szyld, D.B.: On asynchronous iterations. J. Comput. Appl. Math. 123(1), 201-216
(2000)

Gut, A.: A Graduate Course: A Graduate Course. Springer, Berlin (2006)

Lai, M.J., Yin, W.: Augmented ¢; and nuclear-norm models with a globally linearly convergent
algorithm. STAM J. Imaging Sci. 6(2), 1059-1091 (2013)

Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Berlin (2009)

Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal uti-
lization of error estimates of data values. Environmetrics 5(2), 111-126 (1994)

Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordi-
nate update. J. Sci. Comput. 72(2), 700-734 (2017)

@ Springer

http://arxiv.org/abs/1609.04746
http://arxiv.org/abs/1607.04818
http://arxiv.org/abs/1604.00526
http://arxiv.org/abs/1606.04991

	On the Convergence of Asynchronous Parallel Iteration with Unbounded Delays
	Abstract
	1 Introduction
	1.1 Algorithm
	1.2 Contributions
	1.3 Notation and Assumptions
	2 Related Works

	3 Convergence Results for the Smooth Case
	3.1 Convergence for the Nonconvex Case
	3.2 Convergence Rate for the Convex Case

	4 Convergence Results for the Nonsmooth Case
	4.1 Convergence for the Nonconvex Case
	4.2 Convergence Rate for the Convex Case

	5 Poisson Distribution
	6 Numerical Experiments
	6.1 Parameter Settings
	6.2 LASSO
	6.3 Nonnegative Matrix Factorization (NMF)

	7 Conclusions
	A Proofs of Lemmas
	A.1 Proof of Lemma 3.3
	References

