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We investigate the effect of constant vorticity background shear on the properties of
wavetrains in deep water. Using the methodology of Fokas (2008), we derive a higher-
order nonlinear Schrödinger equation in the presence of shear and surface tension. We
show that the presence of shear induces a strong coupling between the carrier wave and
the mean surface displacement. The effects of the background shear on the modulational
instability of plane waves is also studied, where it is shown that shear can suppress
instability, though not for all carrier wavelengths in the presence of surface tension.
These results expand upon the findings of Thomas et al. (2012).

Using a modification of the Generalized Lagrangian Mean theory in Andrews &
McIntyre (1978) and approximate formulas for the velocity field in the fluid column,
explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are
obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger
equation. Numerical approximations to particle trajectories for these solutions are found
and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions
corroborate the theoretical results.

We show that background currents have significant effects on the mean transport
properties of waves. In particular, certain combinations of background shear and carrier
wave frequency lead to the disappearance of mean surface mass transport. These results
provide a possible explanation for the measurements reported in Smith (2006). Our
results also provide further evidence of the viability of the modification of the Stokes drift
velocity beyond the standard monochromatic approximation, such as recently proposed
in Breivik et al. (2014) in order to obtain a closer match to a range of complex ocean
wave spectra.

1. Introduction

Currents are an ubiquitous feature in oceanic dynamics where they are a driving force
in the formation and propagation of waves in the ocean. Helfrich & Melville (2006)
show that shallow water currents over bathymetric variations are a key mechanism for
surface and internal wave generation. Slowly varying currents likewise act as refractive
medium for small-amplitude, linear surface and internal water waves, thereby strongly
influencing propagation and dispersion; see McWilliams et al. (1997); Bühler (2009);
Gallet & Young (2014). Concominant with this, currents also strongly influence the
mean transport properties of waves. This issue has been extensively studied in Craik
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(1982a,b,c, 1988); Phillips (2005); Phillips et al. (2010) where the question of how shear
currents excite instabilities and drive mean wave transport in the linear limit has been
thoroughly addressed. However, what is less well understood is the interplay of depth-
varying currents with nonlinear surface waves, and how nonlinearity influences the mean
transport properties of waves.

By restricting to the case of a constant-vorticity-shear current, given its relative
simplicity, detailed explorations of the existence, shape, stability, and pointwise properties
of nonlinear waves in the presence of a current has been studied in a wide number of
places such as Freeman & Johnson (1970); Brevik (1979); Simmen & Saffman (1985);
Pullin & Grimshaw (1983, 1986); da Silva & Peregrine (1988); Baumstein (1998); Choi
(2009); Wahlén (2007, 2009); Constantin (2011); Thomas et al. (2012); Vasan & Oliveras
(2014) and Ribeiro et al. (2017) among many others. In particular, in Thomas et al.
(2012) the impact of vorticity on the modulational instabilities (MIs) of wave trains in
deep water was examined. The MI, which is also known as the Benjamin–Feir instability,
is a key factor in the understanding of a number of wave phenomena, and is particularly
important in the study of issues such as wave breaking and freak wave formation. In
Thomas et al. (2012) it is shown that constant vorticity strongly modifies the onset and
bandwidth of MIs. Further, it is shown that some currents can even completely suppress
MIs, which is a striking result and speaks to the importance of better understanding the
role of shear currents in deep water flows.

But there is far less known about how currents impact the transport properties of
nonlinear surface waves. A key measure of the strength of the material transport of
surface waves is the Lagrangian drift velocity (LDV), which in the absence of background
currents is the mean speed at which fluid parcels travel in a flow, see Longuet-Higgins
(1953). An understanding of the LDV, and the associated mean quantity known as the
Stokes drift velocity (SDV), is critical in the study of mass and energy transport in
oceanic environments, and it has been a central point of investigation in a number of
studies such as McWilliams et al. (1997); Webb & Fox-Kemper (2011); Breivik et al.
(2014). Regarding the impact of constant vorticity currents on the transport properties
of surface waves in deep water, the experimental work of Monismith et al. (2007) and
the field measurements of Smith (2006) seem to suggest wavetrains on deep water excite
Eulerian counter currents which in effect cancel the mean flow induced by the SDV. These
counter currents cancel surface drift in the open ocean such as explained by Smith (2006)
and they can even cancel the drift at both the surface and throughout the bulk of fluids
in laboratory settings such as found by Monismith et al. (2007). To date, there seems to
be no theoretical framework explaining the mechanisms behind the development of these
currents. A different but related dilemma emerges in attempts to fit classic, current free,
derivations for the SDV in deep water to oceanographic data. Recently, Breivik et al.
(2014) put forward phenomenological modifications to the SDV profile which amount to
introducing background currents. They show that the use of these modified SDV profiles
is superior to the standard approach of using monochromatic SDV profiles. However, no
physical mechanism is provided which explains the origins of the modifications used in
Breivik et al. (2014).

In order then to better understand the interplay of constant vorticity on deep-water
nonlinear-surface flows, we study how a constant vorticity shear profile influences the
motion and mean properties of particle paths both at and beneath waves in infinitely
deep water. Our work complements and expands on the shallow and finite depth results
found in Wahlén (2009); Constantin (2011); Borluk & Kalisch (2012) and Ribeiro et al.
(2017). To do this, we first derive a higher-order nonlinear Schrödinger (NLS) model,
which we call the Vor-Dysthe (VD) equation, which describes the long temporal and
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spatial coupling between the nonlinear carrier wave and the mean fluid depth, in effect
extending the now classic results of Dysthe (1979) to include constant vorticity and
extending the results of Thomas et al. (2012) to the next asymptotic order. This is done
via the methodology of Ablowitz–Fokas–Musslimani (AFM), see Ablowitz et al. (2006);
Ashton & Fokas (2011), which is a particular case of the more general approach of the
Unified Transform Method Fokas (2008). Using this derivation, we determine not only the
appropriate form of the NLS equation, but also the mean-surface height and tangential-
surface velocity. We show that the mean-surface height is markedly increased due to the
background shear current. We characterize the impact of constant vorticity and surface
tension on MIs, in which we show that surface tension in general prevents there being any
vorticity value which completely supresses instability. This expands on the zero-surface
tension results in Thomas et al. (2012).

Using these derivations, we provide a description of the impact of constant vorticity
shear currents on the LDV and SDV via the techniques of the Generalized Lagrangian
Mean (GLM) theory as found in Andrews & McIntyre (1978); Bühler (2009). This
approach provides an unambiguous way of computing mean velocities under the influence
of depth varying currents, whereby we are then able to explicitly derive formulas for the
LDV and SDV for a variety of solutions to the NLS equation. Our method enables
the quantification of the combined effect of background shear and wave modulation,
and to determine which combinations of background shear and carrier wave frequency
produce particularly strong or weak mean flows. Further, we are able to show which
background shear currents quench mean surface flows, thereby providing a potential
theoretical explanation for the results presented in Smith (2006). We also show how one
can derive from our model the phenomenological modifications used in Breivik et al.
(2014).

As stated above, results on the mean transport properties of far more general shear
flows have appeared in Craik (1982b,c); Phillips (2005); Phillips et al. (2010), which
also explore the existence of transverse instabilities to said shear profiles. This was done
even in the presence of free surfaces; see Phillips (2005); Phillips et al. (2010). However,
we note that throughout all of these works, aside from just examing the linear limit of
the free surface, thereby disallowing for the study of the slow modulations described by
the NLS and VD equations, the computations of mean velocities were done in such a
way so that fluctuations around the mean in the horizontal and vertical directions were
independent. While this is certainly appropriate in the bullk of the fluid, as we argue
in this paper, this does not make sense at the surface, where one couples the vertical
to the horizontal coordinate. Thus, while we examine a far simpler shear profile, we
develop a modification to the standard GLM methodology which treats the free surface
in a consistent and more explicit manner. Likewise, preliminary computations show that
our treatement of the surface leads to different mean velocity results than one would
get through direct use of the formulas found in say Craik (1982b), though we note in
that paper rigid lids were assumed. Our predictions of the mean surface velocities are
confirmed through the numerical experiments presented in this paper, in particular with
regards to the correct dertimination of those constant vorticity values which quench
mean transport. We also note that our formulas for the LDV are in terms of the slow
variables underlying the NLS equation, thereby allowing for a clear understanding of the
impact of nonlinear wave modulation on the mean transport properties throughout the
fluid. Thus, in this regard, our formulas are nonlinear, though not necessarily of larger
amplitude than those found in previous works.

As a way of confirming our theoretical findings, we discretize the dynamical system
describing particle trajectories in the NLS approximation and compute approximations
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of such trajectories. Our numerical results on the impact of background shear currents on
particle paths and the LDV support the results predicted by our theory. We generate the
numerical approximations by using using numerical solutions to the VD equation with
initial conditions corresponding to the Jacobi elliptic function solutions for both the focus-
ing and defocusing NLS equations to model deep water time-evolving surface wavetrains.
Complementing these results, we also examine using initial conditions corresponding to
the defocusing plane-wave solutions of the NLS equation. Our results show how transport
properties are most enhanced for shear currents which at the surface are directed against
the carrier wave. This can occur near what appear to be resonances between nonlinearity
and the background shear profile. Likewise, in the defocusing case we numerically confirm
the theoretical predictions made for those balances between vorticity and carrier wave-
number which one expects to quench the mean surface drift, thereby providing a possible
explanatory mechanism for the results in Smith (2006); Breivik et al. (2014); Monismith
et al. (2007). In total, our theoretical and numerical results show that the transport
properties of surface waves can be greatly affected by constant vorticity background
shear profiles, motivating further study of the impact of rapidly depth-varying currents
on transport properties on nonlinear wavetrains at the free surface.

The outline of the paper is as follows. The derivations of the VD and NLS equations and
the dynamical system describing particle paths is given in Section 2. The explanations
and derivations of the formulas necessary to compute the Stokes drift velocity are given
in Section 3. The numerical results on the particle paths and Stokes drift velocity are in
Section 4.

2. Derivations

2.1. Derivation of NLS with Constant Vorticity in Infinite Depth

We examine the unsteady nonlinear wave propagation over a constant shear current.
To do this, we assume the fluid velocity has the form

u = u(x, t)x̂ + w(x, t)ẑ = ωzx̂ +∇φ,

where φ is a harmonic function. We restrict fluid motion to the (x, z)-plane, thereby
ignoring transverse variations in the y dimension. Following standard arguments, e.g. see
Ashton & Fokas (2011), the dynamics of the fluid can be determined by solving the free
boundary value problem

∆φ = 0, −∞ < z < η(x, t),

ηt + (ωη + φx) ηx − φz = 0, z = η(x, t), (2.1)

φt + ω∂−1
x ηt +

1

2
|u|2 + gη − σ

ρ
∂x

ηx√
1 + η2

x

= 0, z = η(x, t), (2.2)

lim
z→−∞

φz = 0,

where η represents the free surface displacement, and g, ρ, and σ represent the accelera-
tion due to gravity, the fluid density, and the coefficient of surface tension respectively.

By choosing a characteristic wave height a and wave length L, all quantities can be
non-dimensionalized via

x̃ =
x

L
, z̃ =

z

L
, t̃ =

√
g

L
t, ω =

√
g

L
ω̃,

η = aη̃, φ = a
√
gL φ̃, ε =

a

L
.
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By following the AFM approach described in Ablowitz et al. (2006); Ashton & Fokas
(2011) and dropping the tildes, the kinematic boundary condition, Equation (2.1), can
be written in terms of surface variables alone via the integro-differential equation∫

R
dx e−ikxeε|k|η (ηt + εωηηx + isgn(k)Q) = 0, k 6= 0, (2.3)

where Q = qx, q(x, t) = φ(x, η(x, t), t). By integrating over R, we are assuming that both
η and Q decay to zero sufficiently rapidly in the far field. We can also readily derive a
nearly identical expression on domains periodic in the horizontal variable x, in which
case Equation (2.3) becomes∫ Lp/2

−Lp/2

dx e−ikxeε|k|η (ηt + εωηηx + isgn(k)Q) = 0, k =
2πm

Lp
, m ∈ Z\0, (2.4)

where Lp is the spatial period. Throughout the remainder of this section we only present
results over the real line R since identical results can be derived for the periodic case.
Lastly, we note that if in Equation (2.3) we approach k = 0 from both the left and the
right, we get the equations∫

R
dx (ηt + iQ) = 0,

∫
R
dx (ηt − iQ) = 0.

Thus we get the identities

∂t

∫
R
dx η(x, t) = 0, (2.5)∫

R
dx Q(x, t) = 0. (2.6)

Taylor expanding Equation (2.3) up to O(ε3) for k 6= 0 gives∫
R
dx e−ikx

(
1 + ε|k|η +

ε2|k|2η2

2
+
ε3|k|3η3

6

)
(ηt + isgn(k)Q)

+ εω

∫
R
dx e−ikx

(
1 + ε|k|η +

ε2|k|2η2

2

)
ηηx = 0. (2.7)

Transforming into surface variables and Taylor expanding Equation (2.2), Bernoulli’s
equation, up to O(ε3) gives

Qt + ωηt + ηx − σ̃ηxxx +
ε

2
∂x
(
−η2

t + (Q+ ωη)2
)

+ ε2∂x

(
3

2
σ̃η2

xηxx − ηtηx (Q+ ωη)

)
− ε3

2
η2
x

(
(ωη +Q)2 − η2

t

)
= 0, (2.8)

where the reciprocal of the Bond number, σ̃, is given by

σ̃ =
σ

ρgL2
.

We note that we have tacitly assumed ω = O(1). In physical terms, this implies that ω is
comparable to the natural time scale of this problem,

√
L/g. If we were to assume ω were

of larger magnitude, the problem would no longer be weakly nonlinear and thus would
be much less amenable to asymptotic analysis. Therefore, throughout the remainder of
the paper, we assume that the vorticity is not too large.
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The nonlocality in the full equations comes from the Hilbert transform, H, defined by

Hf =
1

2π

∫
R
dk eikxisgn(k)f̂(k),

where f̂(k) is the Fourier transform of f(x) defined by

f̂(k) =

∫
R
dx e−ikxf(x).

In other words, H is the operator with symbol isgn(k). Given that

sgn(k0 + εk) = sgn(k0)sgn

(
1 +

εk

k0

)
,

assuming f̂(k) is a function of rapid decay, see Folland (1999), and assuming k0 � ε
gives

H
(
f(εx)eik0x

)
=
eik0x

2π

∫
R
dk eikεxisgn(k0 + εk)f̂(k)

∼ isgn(k0)eik0xf(εx).

with the difference being exponentially small. On the other hand, if k0 = 0, then

H (f(εx)) =
1

2π

∫
R
dk eikεxisgn(k)f̂(k) = (Hf)(εx).

Thus, the Hilbert transform does not have any significant effect on the multiple scales
ansätze made below.

Equation (2.7) readily leads to a recursive formula for the surface velocity potential Q
of the form

Q = H∂tη + εR1 + ε2R2 + ε3R3, (2.9)

where

R1 =H∂x
(
ηH∂tη +

ω

2
η2 − 1

2
H∂tη2

)
,

R2 =H∂x (ηR1)−H∂2
x

(
1

6
∂tη

3 +
ω

3
Hη3 +

1

2
H(η2H∂tη)

)
,

R3 =H∂x (ηR2) +
1

2
∂2
x

(
η2R1

)
+H∂3

x

(
1

24
H∂tη4 − 1

6
η3H∂tη −

ω

8
η4

)
.

Coupling this to Equation (2.8) gives a single scalar equation defined entirely in terms
of the surface height η. Now, use the ansatz

η(x, t) = εη0(ξ, τ) + η1(ξ, τ)eiθ + η∗1(ξ, τ)e−iθ + ε
(
η2(ξ, τ)e2iθ + η∗2(ξ, τ)e−2iθ

)
+ ε2

(
η3(ξ, τ)e3iθ + η∗3(ξ, τ)e−3iθ

)
+ ε3

(
η4(ξ, τ)e4iθ + η∗4(ξ, τ)e−4iθ

)
+ · · · (2.10)

where

θ = k0x+Ωt, ξ = ε(x+ cgt), τ = ε2t. (2.11)

We note that using integration by parts shows that terms of the form ηme
imθ satisfy∫

R
dx ηm(ξ, τ)eimθ = O(εj), j > 1, m > 0,

which is to say that these terms are vanishingly small in an asymptotic sense. Thus,



7

asymptotically, Equation (2.5) becomes

∂τ

∫
R
dξ η0(ξ, τ) = 0. (2.12)

By expanding and matching terms in the fundamental harmonic, eiθ, at O(1) we obtain
the linear dispersion relation,

Ω±(k0, ω) =
1

2

(
sω ±

√
ω2 + 4|k0|(1 + σ̃k2

0)

)
, (2.13)

and at O(ε) we find that

cg =
1 + 3σ̃k2

0

2sΩ − ω
,

where s = sgn(k0). We note that Equation (2.13) establishes that Ω+(k0, ω) > 0 and
Ω−(k0, ω) < 0 for k0 6= 0. Throughout the remainder of the paper, Ω always denotes the
positive branch, Ω+. By looking at the second harmonic, e2iθ, we find that

η2 = `0η
2
1 + iε`1η1∂ξη1 +O(ε2),

where

`0 =−
k0

(
ω2 + 2Ω2 − 4sωΩ

)
2(k0 + ωΩ − 2sΩ2 + 4σ̃k3

0)
,

`1 =

(
2cgk0(Ω − sω)− 2sωΩ +Ω2 + ω2/2

)
+ (1 + ωcg + 12k2

0σ̃ − 4scgΩ)`0

k0 + ωΩ − 2sΩ2 + 4σ̃k3
0

.

By then going up to O(ε3), we get the following coupled system describing the slow
spatial and temporal modulation due to the interaction of the leading harmonic term η1

and the mean surface height η0

εc2gH∂2
ξn0 + (1 + ωcg)∂ξη0 + εω∂τn0 + ω (ω − 2sΩ) ∂ξ |η1|2

+ ε
(
cg(ω − 2sΩ)H∂2

ξ |η1|2 + isωcg
(
η∗1∂

2
ξη1 − η1∂

2
ξη
∗
1

))
= 0, (2.14)

(ω − 2sΩ)∂τη1 + i(c2gs− 3k0σ̃)∂2
ξη1 + 2iεscg∂

2
ξτη1 − εσ̃∂3

ξη1

+ ik0ω (ω − 2sΩ) η0η1 + iα0 |η1|2 η1 + εα1 |η1|2 ∂ξη1 + εα2η
2
1∂ξη

∗
1+

εiα3η1H∂ξ |η1|2 + εω(ω − 2sΩ − |k0|cg)η1∂ξη0 + εω(ω − 2sΩ − 2|k0|cg)η0∂ξη1

+ εik0cg(ω − 2sΩ)η1H∂ξη0 = 0, (2.15)

where

α0 =k2
0

(
−3

2
k3

0σ̃ + 2sΩ2 − sω2

)
+ `0k0

(
ω2 + 2Ω2 − 4sωΩ

)
,

α1 =k0

(
4cg|k0|Ω − 9σ̃k3

0 + 6sΩ2 − 3sω2
)

+ `0
(
2ω2 + 4Ω2 − 8sωΩ + 4k0cg(Ω − sω)

)
+ `1k0

(
4sωΩ − 2Ω2 − ω2

)
,

α2 =k0

(
−3

2
k3

0σ̃ + 2sΩ2 − sω2

)
+ `0

(
ω2 + 2Ω2 − 4sωΩ

)
,

α3 =k0 (ω − 2sΩ)
2
.
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By solving Equation (2.14) to leading order and using Equation (2.12), we find that

η0(ξ, τ) =
ω(2sΩ − ω)

1 + ωcg
|η1|2 (ξ, τ) +O(ε), (2.16)

Likewise, from (2.15) at this order, and using the leading order solution for the mean
height, η0, gives the time-dependent NLS equation

i∂τη1 + αnl |η1|2 η1 + αd∂
2
ξη1 = 0, (2.17)

where

αd(k0, ω) =
(c2g − 3|k0|σ̃)

2Ω − sω
,

αnl(k0, ω) =
k0

(
sk3

0

(
8 + σ̃k2

0 + 2(σ̃k2
0)2
)

+ ωαv
)

(2sΩ − ω) (1 + cgω) (4Ω2 − s(2k0(1 + 4σ̃k2
0) + 2ωΩ))

,

and

αv(k0, ω) =s(cgk0 − 2Ω)ω4 + k0(4k2
0sσ̃ + 2Ωcg − s)ω3

+ k0(16cgk
3
0σ̃ − 8Ωk2

0σ̃ + 10cgk0 − 6Ω)ω2

− k2
0(15Ωcgk

2
0sσ̃ − 16k4

0σ̃
2 − 24k2

0σ̃ − 2)ω

+ k3
0(2cgk

4
0sσ̃

2 + cgk
2
0sσ̃ − 15Ωk0sσ̃ + 8cgs).

Note, our results for the NLS equation agree with those in Ablowitz et al. (2006) for
ω = 0, and they agree with the results in Thomas et al. (2012) for σ̃ = 0. Further, all
of our results in this section are derived with the aid of the computer algebra system
SAGE.

We readily see that we can go to higher order in the mean term using Equation (2.14)
and the expansion

η0(ξ, τ) =
ω(2sΩ − ω)

1 + ωcg
|η1|2 (ξ, τ) + εη01(ξ, τ) +O(ε2),

which gives

η01 =
cg(2sΩ − ω)

(1 + ωcg)2
H∂ξ |η1|2 +

iω

1 + ωcg

(
αdω(2sΩ − ω)

1 + ωcg
+ scg

)
(η1∂ξη

∗
1 − η∗1∂ξη1)

Thus, we can finally write Equation (2.15) in terms of η1 alone so that we get

(ω − 2sΩ)∂τη1 + i(c2gs− 3k0σ̃)∂2
ξη1 + 2iεscg∂

2
ξτη1 − εσ̃∂3

ξη1

− iαnl(ω − 2sΩ) |η1|2 η1 + εα̃1 |η1|2 ∂ξη1 + εα̃2η
2
1∂ξη

∗
1 + εiα̃3η1H∂ξ |η1|2 = 0. (2.18)

Obtaining the coefficients α̃j is straightforward, and thus we omit writing them down for
the sake of brevity. We call Equation (2.18) the Vor-Dysthe (VD) equation. By solving it,
we in effect find the next order correction to the NLS equation, and thus, by combining
with our previous results, we can find η up to O(ε2) on a O(1/ε2) timescale. This becomes
a critical feature necessary to ensure the accuracy of our numerics in Section 4.

For the NLS equation, the case in which αd and αnl have the same sign is known
as the ‘focusing’ case while the case in which they have opposite signs is known as the
‘defocusing’ case. These two cases are qualitatively different. In the focusing case, the
trivial-phase Jacobi elliptic solutions are given by

η1(ξ, τ) = κβ

√
2αd
αnl

cn(βξ;κ)e−iαdβ
2(1−2κ2)τ , (2.19)
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where 0 6 κ 6 1 is the elliptic modulus and β is a positive lengthscale parameter. In the
κ→ 1 limit, these solutions limit to the ‘bright’ soliton solutions

η1(ξ, τ) = β

√
2αd
αnl

sech(βξ)eiαdβ
2τ .

In the defocusing case, the trivial-phase Jacobi elliptic solutions are given by

η1(ξ, τ) = κβ

√
−2αd
αnl

sn(βξ;κ)e−iαdβ
2(1+κ2)τ . (2.20)

In the κ→ 1 limit, these solutions limit to the ‘dark’ soliton solutions

η1(ξ, τ) = β

√
−2αd
αnl

tanh(βξ)e−2iαdβ
2τ .

The elevated profile of the magnitude of the bright soliton is qualitatively different from
the depressed profile of the magnitude of the dark soliton. This distinction typifies the
difference between the behavior of the focusing and defocusing cases. Note that in order
for η(x, t) to be periodic when Jacobi elliptic functions are used, the following restriction
must be enforced

k0 =
πεm

2K(κ)
, m ∈ Z, (2.21)

where K(κ) is the complete elliptic integral of the first kind.

2.2. Modulational Instabilities and Currents in Infinite Depth

The plane-wave, or Stokes wave, solutions of the NLS equation are given by

η1(ξ, τ) = AeiαnlA
2τ , (2.22)

where A > 0 is a real constant. Complementing the results in Thomas et al. (2012), we
study the stability of these solutions by considering perturbed solutions of the form

η1p(ξ, τ) =
(
A+ µ

(
up(ξ, τ) + ivp(ξ, τ)

)
+O(µ2)

)
eiαnlA

2τ , (2.23)

where µ is a small real parameter and up and vp are real-valued functions. Substituting
(2.23) into the NLS equation and linearizing gives

∂τ

(
up
vp

)
=

(
0 −αd∂2

ξ

αd∂
2
ξ + 2A2αnl 0

)(
up
vp

)
.

Separating variables, applying a Fourier transform in ξ, and introducing the ξ wave
number l, establishes that NLS plane-wave solutions are unstable with respect to the
modulational instabilities (MIs) if

0 < l2 6 2
αnl
αd

A2.

This reduces to the classic requirement that MIs are suppressed if the coefficients of
dispersion and nonlinearity have opposite signs (i.e. the defocusing case).

Figure 1 shows the values of ω and k0 for which MIs exist (white areas) or not (black
areas) for σ̃ = 10−3 in Figure 1 (a), σ̃ = 10−5 in Figure 1 (b), σ̃ = 10−5 in Figure 1 (c),
and σ̃ = 0 in Figure 1 (d). Note, the scale of the axes changes from Figures 1 (a) and (b)
to (c) and (d). Further, while we assumed that ω = O(1) in our derivation of the NLS
equation, to see the impact of surface tension and its connection to MI, we have had
to plot on an exaggerated scale in Figure 1. As can be seen, in the presence of surface
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(a) (b)

(c) (d)

Figure 1. MIs exist - white, MIs suppressed - black, for σ̃ = 10−3 (a), σ̃ = 10−5 (b), σ̃ = 10−5

(c), and σ̃ = 0 (d). Note the change in scale of the axes in (c) and (d) relative to (a) and (b).

tension, there does not appear to be a value of ω that suppresses MIs across all wave
numbers. This is in contrast to the zero surface tension case, in which if k0ω > 0 and
the magnitude of the shear is sufficiently large, then the MI is suppressed across all wave
numbers. As can be seen by comparing Figures 1 (a), (b), and (c), larger surface tension
facilitates the transitions between regions in which the MI is or is not suppressed for
relatively smaller values of carrier wavenumber and shear magnitude. This expands on
the results in Thomas et al. (2012), which did not consider the effect of surface tension.
Throughout the rest of the paper we take σ̃ = 10−5 which corresponds to supposing a
characteristic wave length L ∼ 1m.

Per our convention of taking the fast phase, θ(x, t), to be

θ(x, t) = k0x+Ω(k0, ω)t,

if k0Ω(k0, ω) > 0, then the carrier wave propagates to the left, and if k0Ω(k0, ω) < 0,
then the carrier wave propagates to the right. Figures 1(a) and (c) then show that MIs
are generally suppressed when the shear current at the surface is co-propagating with
respect to the carrier wave with sufficient strength which is inversely related to the carrier
wavenumber. Thus, in order to suppress most MIs, we need either relatively high carrier
wave numbers for relatively weak shear currents, or relatively strong shear currents for
relatively low carrier wave numbers. The regions in Figures 1(a) and (c) in which counter-
propagating sheer currents suppress MIs are more complicated in nature, though one
can argue that counter-propagating currents generally exacerbate MIs, especially with
increasing shear strength.
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2.3. Derivation of Velocity Formulas

In non-dimensional coordinates, the position of a given fluid particle, (x(t), z(t)), is
defined by the dynamical system

ẋ = ωz + εφx(x, z, t), ż = εφz(x, z, t),

x(0) = x0, z(0) = z0.
(2.24)

Therefore, in order to track the motion of a fluid particle, both φx and φz must be
known throughout the fluid domain. In order to determine asymptotic formulas for these
quantities, let

φx(x, z, t) =
1

2π

∫
R
dk eikxA(k, t)e|k|z, (2.25)

φz(x, z, t) =
1

2π

∫
R
dk eikxB(k, t)e|k|z. (2.26)

Expanding eεη|k| in Equations (2.25) and (2.26) gives

φx|z=εη =Ã(x, t)− εηH∂xÃ+O(ε2), (2.27)

φz|z=εη =B̃(x, t)− εηH∂xB̃ +O(ε2), (2.28)

where

Ã(x, t) =
1

2π

∫
R
dk eikxA(k, t), B̃(x, t) =

1

2π

∫
R
dk eikxB(k, t).

The surface boundary conditions give

φx|z=εη =
Q− εηx(ηt + εωηηx)

1 + ε2η2
x

,

φz|z=εη =
ηt + ε (Q+ ωη) ηx

1 + ε2η2
x

.

Substituting the expansions in Equations (2.9) and (2.10) into these equations and using
the results obtained during the derivation of the NLS equation gives

φx|z=εη =− 2εk0Ω |η1|2 + (−sΩη1 + iεscg∂ξη1) eiθ

− ε(2sΩη2 + k0(sω −Ω)η2
1)e2iθ + c.c. +O(ε2), (2.29)

φz|z=εη =(iΩη1 + εcg∂ξη1)eiθ + iε(2Ωη2 + k0(ω − sΩ)η2
1)e2iθ + c.c. +O(ε2). (2.30)

This motivates the expansions

Ã(x, t) =εÃ01(ξ, τ) +
(
Ã10(ξ, τ) + εÃ11(ξ, τ)

)
eiθ(x,t) + εÃ21(ξ, τ)e2iθ(x,t) + c.c. +O(ε2),

B̃(x, t) =εB̃01(ξ, τ) +
(
B̃10(ξ, τ) + εB̃11(ξ, τ)

)
eiθ(x,t) + εB̃21(ξ, τ)e2iθ(x,t) + c.c. +O(ε2).

Inserting these expansions into Equations (2.27) and (2.28) and matching powers of ε
with the expansions in Equations (2.29) and (2.30) gives

Ã01 = 0,

Ã10 = −sΩη1,

Ã11 = iscg∂ξη1,

Ã21 = −(2sΩη2 + k0(sω − 2Ω)η2
1).

The expressions for the corresponding terms in B̃ can be found in a similar manner.
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Inverting the Fourier transforms leads to expressions for A(k, t) and B(k, t), which
when inserted back into Equations (2.25) and (2.26) gives

φx(x, z, t) = φ̃x(x, z, t) +O(ε2), φz(x, z, t) = φ̃z(x, z, t) +O(ε2),

where

φ̃x(x, z, t) = R1(ξ, z, τ )eiθ + εR2(ξ, z, τ )e2iθ + c.c., (2.31)

φ̃z(x, z, t) = R̃1(ξ, z, τ )eiθ + εR̃2(ξ, z, τ )e2iθ + c.c.. (2.32)

Again, while the expansion procedure is straightforward, due to the length of the expres-
sions involved, the details have been omitted. However, we can still obtain approximations
that will be useful later in this paper. In particular, the leading order behaviors of R1

and R̃1, which in turn give the leading order behaviors of the velocity components, are
given by

R1(ξ, z, τ ) ∼− sΩ

2π

∫
R
dk eikξe|k0+εk|z η̂1(k, τ), (2.33)

R̃1(ξ, z, τ ) ∼ iΩ
2π

∫
R
dk eikξe|k0+εk|z η̂1(k, τ). (2.34)

3. The Lagrangian and Stokes Drift Velocity

We now show how the above approximation schemes can be used to determine how a
background shear current modifies the Lagrangian drift velocity and Stokes drift velocity.
To do so, we make use of the Generalized Lagrangian Mean (GLM) formalism presented
in Andrews & McIntyre (1978). This approach is built via a diffeomorphic mapping of the
original Eulerian spatial coordinates x to the mean-position coordinates x̃ of the form

x = x̃ + y(x̃, t),

so that if Lagrangian paths in the original coordinates are found from the differential
equation

dx

dt
= u(x, t),

then the corresponding mean paths are found from the differential equation

dx̃

dt
= ūL(x̃, t), (3.1)

where the vector-field ūL is the pull back, relative to the mapping above, of the original
vector field u; see Bühler (2009). The vector field ūL is called the Lagrangian drift velocity
(LDV). The equivalent mean-Eulerian representation of the mean differential equation is(

∂t + uL(x̃, t) · ∇x̃

)
(x̃ + y(x̃, t)) = u (x̃ + y(x̃, t), t) . (3.2)

To fully specify the mapping, and thereby connect it to an averaging procedure, we
require for some chosen averaging operator (̄·) that

y(x̃, t) =0,

uL(x̃, t) =uL(x̃, t).

This then allows us to define the Lagrangian mean (̄)
L

at a mean point x̃ relative to the
disturbance y(x̃, t) to be

ϕ̄L(x̃, t) = ϕy(x̃, t),
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where, using the language in Bühler (2009), the y-lift, ϕy(x̃, t), of ϕ is given by

ϕy(x̃, t) = ϕ(x̃ + y(x̃, t), t).

Note, if we define as in Andrews & McIntyre (1978) the mean material derivative D̄L to
be

D̄L =
(
∂t + uL(x̃, t) · ∇x̃

)
,

then upon averaging Equation (3.2), we get back Equation (3.1), thereby showing the
self-consistency of this approach. To fix ideas, throughout the remainder of this paper,
the average will be given by integration with respect to the fast phase variable θ, i.e.

f̄(ξ, z, τ ) =
1

2π

∫ 2π

0

dθ f(ξ, z, τ, θ).

Note, we drop the tildes denoting the mean space coordinates for brevity and since from
context which space we are in should always be clear.

Constant Vorticity, Psuedomomentum, and the Fundamental Equations of the LDV

Let C be an arbitrary smooth, closed, simple contour, and let Cy denote its y-lift,
with the restriction that it remain within the bulk of our fluid domain, i.e. it is not at
the fluid surface z = εη(x, t). Then, for a constant vorticity flow, it is straightforward to
show that the circulation Γ around Cy is given by

Γ =

∮
Cy

u · dx = ω

∫
int(Cy)

dA = ω

∫
int(C)

JdA,

where J is the Jacobian of the map x+y(x, t). Following the arguments in Bühler (2009),
we then have∮

C

(
ūL − p

)
· dx =

∫
int(C)

∇×
(
ūL − p

)
dA = ω

∫
int(C)

J̄dA,

where the pseudomomentum p is given by

p = −∇y(y · ul), ul(x, t) = uy(x, t)− ūL(x, t),

where ∇y uses Feynman notation, and where the curl term is understood to yield the
relevant scalar magnitude since the problem is planar. Since C was arbitrary, we get the
equivalent mean-constant vorticity expression

∇×
(
ūL − p

)
= ωJ̄. (3.3)

Note, this expression is exact. Likewise, since the density of the original flow is assumed
to be a constant, say ρ0, the Lagrangian-mean mass conservation equation; see Andrews
& McIntyre (1978); Bühler (2009), becomes after averaging

D̄LJ̄ + J̄∇ · ūL = 0. (3.4)

As given in Bühler (2009), for planar flow the Jacobian J is found from

J = 1 +∇ · y + ∂zy1∂xy2 − ∂xy1∂zy2.

We call Equations (3.3) and (3.4) the Fundamental Mean Equations (FMEs) for the
LDV. Taken together, they give the divergence and curl of the vector field ūL in terms of
the fluctuation vector y, thereby giving us all of the necessary information to compute
the LDV. We show in the following section how to derive an approximation to y, which
then allows us to asymptotically solve the FMEs.
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Determining the Fluctuations y and the FMEs

In order to then determine the disturbance y, we restrict to the special case in which
the diffeomorphism between the original Eulerian coordinates and the mean coordinates
is a near identity transformation of the form

x = x̃ + εy(x̃, t).

Along with this, we suppose that the LDV has the asymptotic form

ūL =

(
ωz
0

)
+ ε2ūL2 ,

so that Equation (3.2) establishes that

∂ty + ωz∂xy − ω
(
y2

0

)
=

(
R1e

iθ +R∗1e
−iθ

R̃1e
iθ + R̃∗1e

−iθ

)
+O(ε). (3.5)

The method of characteristics gives

y1 =− i

k0ωz +Ω

(
R1e

iθ −R∗1e−iθ
)
− ω

(k0ωz +Ω)2

(
R̃1e

iθ + R̃∗1e
−iθ
)
, (3.6)

y2 =− i

k0ωz +Ω

(
R̃1e

iθ − R̃∗1e−iθ
)
. (3.7)

Clearly this result is not valid when z ∼ zc ≡ cp(k, ω)/ω, where the phase speed cp is
given by

cp(k0, ω) = −Ω(k0, ω)

k0
.

Again, due to our choice of signs in θ(x, t), we use the opposite sign on the phase speed
so that a positive phase speed cp corresponds to a rightward propagating phase. We
see that zc typifies a kind of stagnation depth in which the carrier wave and the shear
profile cancel one another out. Choosing k0 > 0, we see that as ω � 1, zc / −1, which
is, asymptotically speaking, well removed from the surface z = εη(x, t). However in the
case that ω � −1, we see that, while zc is always positive, zc ∼ 0. Thus, for stronger
negative shear values, the expansions above break down around the surface. Throughout
the remainder of the paper, when we look at the case in which k0ω < 0, we choose other
parameters so as to prevent the surface from overlapping with a region in which the
GLM expansions above break down. We further explore what happens near zc in the
case k0ω > 0 at the end of this section.

Away from the critical depth, zc, using the leading order expansions

R1 ∼ −sΩη1e
|k0|z, R̃1 ∼ iΩη1e

|k0|z,

gives

y1 ∼
−i

k0ωz +Ω

(
ωΩ

k0ωz +Ω
− sΩ

)
(η1e

iθ − η∗1e−iθ)e|k0|z,

y2 ∼
Ω

k0ωz +Ω
(η1e

iθ + η∗1e
−iθ)e|k0|z.

We then find the mean Jacobian J̄ to be

J̄(ξ, τ, z) = 1− 2kΩ2|η1(ξ, τ)|2ε2∂z
(

e2|k0|z

k0ωz +Ω

(
−s

k0ωz +Ω
+

ω

(k0ωz +Ω)2

))
+O(ε3).

We modify our assumption for the expansion of the LDV so that the horizontal and
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vertical speeds do not appear at the same order, i.e.

ūL(ξ, τ, z) =

(
ωz
0

)
+ ε2

(
ūL2 (ξ, τ, z)
εw̄L3 (ξ, τ, z)

)
,

whereby, using the expansion for J̄ above, the divergence equation of the FMEs, Equation
(3.4), gives

∂ξū
L
2 + ∂zw̄

L
3 = 2k(cg + ωz)Ω2∂2

ξz

(
e2|k0|z|η1|2

k0ωz +Ω

(
−s

k0ωz +Ω
+

ω

(k0ωz +Ω)2

))
.

Note, without introducing the asymmetry in scaling between the horizontal and vertical
mean velocities, we do not get a meaningful leading order equation. We can likewise
readily find that

ul = ε

(
ωy2 + φ̃x

φ̃z

)
+O(ε2),

and thus the curl equation of the FMEs, Equation (3.3), gives us to the relevant
asymptotic order

∂zū
L
2 = −2k0Ω

2|η1|2∂z
((

2

k0ωz +Ω
− 3sω

(k0ωz +Ω)2
+

2ω2

(k0ωz +Ω)3

)
e2|k0|z

)
.

We thus see that we can readily solve for ūL2 , so that

ūL2 (ξ, τ, z) = C̃(ξ, τ)− 2k0Ω
2|η1|2

(
2

k0ωz +Ω
− 3sω

(k0ωz +Ω)2
+

2ω2

(k0ωz +Ω)3

)
e2|k0|z.

Then, from the divergence equation, we can find w̄L3 . However, the solution for ūL2 nec-
essarily introduces an integration constant in the form C̃(ξ, τ). Thus, to fully determine
the LDV at this asymptotic order, we need boundary conditions. These are found via a
lifting of the free surface z = εη(x, t).

Lifting the Free Surface

The equation defining the surface, z = εη(x, t) is a constraint, and thus while we could
certainly lift the quantity ϕs(x, z, t) = z−εη(x, t), it is not clear from the GLM formalism
how to lift the level sets of a function, since, at least in some non-trivial neighborhood
of a root, the Implicit-Function Theorem essentially entrains one variable in terms of
the others, thereby removing a degree of freedom at the surface. Thus, to define the lift
of the surface, we introduce the surface fluctuation ys(x̃, t) so that we define the mean
surface position z̃ to be

z̃ = εη(x̃+ εys(x̃, t), t) ≡ εη̄L(x̃, t).

This likewise defines the associated surface Lagrangian mean velocity

ūLs (x̃, t) = u(x̃+ εys(x̃, t), εη(x̃+ εys(x̃, t), t), t)

While we have only one fluctuation term, ys, but two components of the surface La-
grangian mean velocity, it is not problematic to define(

∂t + ūLs ∂x̃
)

(x̃+ εys(x̃, t)) = u(x̃+ εys(x̃, t), εη(x̃+ εys(x̃, t), t), t),

since the kinematic condition derived from z = εη(x, t) naturally gives us the other mean
velocity component via

w̄Ls = ε(uηx̃)ys + ε∂tη̄
L.
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0 10 20
0
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6

Figure 2. Plot of the zero set uL
p (k0, ω) = 0. The dot denotes the point (k0, ω) = (1, 1.6818).

Using the formula for the velocity at the surface, and noting that we readily see that
ūLs = O(ε2), gives us the evolution equation for the surface fluctuations ys as

∂tys = (ω − sΩ)
(
η1e

iθ + η∗1e
−iθ)+O(ε),

so that

ys ∼ −
i(ω − sΩ)

Ω

(
η1e

iθ − η∗1e−iθ
)
.

This then gives the mean Lagrangian surface as

η̄L(ξ, τ) = ε

(
η0(ξ, τ)− 2k0(ω − sΩ)

Ω
|η1(ξ, τ)|2

)
+O(ε2),

and the mean Lagrangian horizontal surface speed is found to be

ūLs (ξ, τ) = ωη0(ξ, τ)− 2k0Ω

(
1 +

(
1− sω

Ω

)2
)
|η1(ξ, τ)|2.

We can condense this formula into the form

ūLs (x, t) = uLp (k0, ω)|η1(ξ, τ)|2,

where the scaling factor uLp is given by

uLp (k0, ω) =
ω2(2sΩ − ω)

1 + ωcg
− 2k0Ω

(
1 +

(
1− sω

Ω

)2
)
.

The LDV determines the mean horizontal velocity of a particle at or near the surface,
and this is then controlled by the magnitude of the solution to the NLS equation we
study and the magnitude of uLp . Of particular interest given the puzzling results on the
existence of drift quenching Eulerian counterflows, see Monismith et al. (2007); Smith
(2006), we can also then determine vorticity values ω for a given wavenumber k0 such
that uLp (k0, ω) = 0, which corresponds to the presence of an Eulerian counterflow which
counters the effect of the SDV. We plot this zero level set for 0 6 k0 6 20 in Figure 2.
As can be seen, shear strengths which contribute to the suppression of particle drift are
always counter-propagating relative to a positively elevated surface.

At this point, in order to properly couple our mean surface formulation to the bulk
GLM formulation described above, we then require

ūL
∣∣
z̃=εη̄L

= ūLs (x̃, t).

Thus, we then find the integration constant C̃(ξ, τ) in the formula for the horizontal LDV
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ūL2 to be

C̃(ξ, τ) = 2k0ω
(
−s+

ω

Ω

)
|η1(ξ, τ)|2 + ωη0(ξ, τ).

Thus, we can find ūL2 as

ūL2 (ξ, τ, z) = 2k0ω
(
−s+

ω

Ω

)
|η1(ξ, τ)|2 + ωη0(ξ, τ)

2Ω2

cp − ωz

(
2 +

3ω

|k0|(cp − ωz)
+

2ω2

k2
0(cp − ωz)2

)
|η1(ξ, τ)|2e2|k0|z.

We note that if we take the vorticity ω = 0, we then get for a left-traveling wave

ūL2 (ξ, τ, z) = −4k0Ω|η1(ξ, τ)|2e2|k0|z

Thus, at zero vorticity, we recreate the classic result for the Stokes drift in an irrotational
fluid; see Longuet-Higgins (1953). Likewise, even in the case of zero vorticity, we see the
impact of the slowly varying envelope introduced by the NLS equation in the need to solve
the, in part, slow-variable dependent FMEs, which allows for a more complex relationship
between ūL2 and the pseudomomentum; see Bühler (2009) for further discussion of
this issue. We likewise note that it is in Bühler (2009) that one sees a clear program
for determining ūL via the vorticity and divergence equations we used above in the
FMEs. Aside from computations not appearing in Bühler (2009), the novel contribution
presented herein was in connecting the FMEs to the lifted surface equations, thereby
allowing for the connection of the bulk mean velocity to an unambiguously averaged
surface result, and allowing for a continuously defined LDV.

Following Andrews & McIntyre (1978), we define the Stokes drift of a quantity, say ϕ̄S

to be

ϕ̄S = ϕ̄L − ϕ̄.
Thus, if we average the fluid velocity in the bulk of the fluid, Equations (2.31) and (2.32)
show that the bulk Eulerian mean horizontal velocity is given by ū(ξ, τ, z) where

ū(ξ, τ, z) = ωz +O(ε3).

Thus, in the bulk, the horiontal SVD, say ūS2 (ξ, τ, z) = ūL2 (ξ, τ, z). We emphasize that z
is a mean coordinate, and thus we do not evaluate the LVD or SVD at the free surface
z = εη(x, t), but instead at the lifted surface z̃ = εη̄L. Near the lifted free surface, by
removing the Eulerian mean term ωη0, we have that the surface SDV in the horizontal
direction, say ūSs is

ūSs (ξ, τ) = −2ε2k0Ω

(
1 +

(
1− sω

Ω

)2
)
|η1(ξ, τ)|2. (3.8)

Note, this multi-part definition for the SDV reflects the intricacies of averaging around a
freely evolving surface. This explains our privileging of the LDV over the SDV. Our result
then provides support for the phenomenological choices of how the SDV of a plane-wave
varies in depth made in Breivik et al. (2014). There, the classic formula for the SDV
was modified by multiplying it by terms like 1/(1 + c̃z), where c̃ was then chosen to
improve agreements with observed data. Our result provides a physical motivation for
the appearance of such terms. However, while we can put forth a physical mechanism,
whether unresolved shear currents near the surface are truly responsible for disagreements
between theory and observation is a matter for future work.
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Figure 3. Log plot of the surface SDV parameter ũS(k0, ω). The curves along which
ũS(k0, ω) = 0 mirror the transitions between MI stable and unstable regions seen in Figure
1. The surface SDV is most augmented near the curves corresponding to αnl(k0, ω) = 0.

The Surface SDV for Modulated Surface Waves

The surface SDV in Equation (3.8) for the Jacobi elliptic function solutions with β = 1
is given by

ūSs (ξ, τ) = −4ε2κ2k0Ω

∣∣∣∣ αdαnl
∣∣∣∣ (1 +

(
1− sω

Ω

)2
)
φ(ξ;κ),

where

φ(ξ;κ) =

{
cn2(ξ;κ), αd/αnl > 0,
sn2(ξ;κ), αd/αnl < 0,

where ξ is defined in Equation (2.11). Defining the parameter

ũS(k0, ω) = −4k0Ω(k0, ω)

∣∣∣∣ αd(k0, ω)

αnl(k0, ω)

∣∣∣∣
(

1 +

(
1− sω

Ω(k0, ω)

)2
)
,

and choosing the positive branch of the dispersion relationship, Figure 3 shows that
this term exhibits a wide variation in magnitude. The curves along which the largest
magnitudes are seen correspond to the level set αnl(k0, ω) = 0. Thus, for the class of
Jacobi elliptic solutions, there appears to be a kind of nonlinear resonance between the
shear current and the carrier wave. We point out that along this curve though, the
assumptions we used to derive the NLS equation are no longer valid. Therefore, more
work should be done to better elucidate the affiliated dynamics associated with parameter
choices defining said curve. Throughout the remainder of this paper, we choose parameter
values that do not place us too close to the zero set of αnl(k0, ω) = 0.

To get a more detailed understanding of how the surface SDV depends on the shear
current strength, we choose k0 = 1 and use the positive branch of the dispersion
relationship. Figure 4 contains plots of ũS(1, ω) for −1 6 ω 6 4, −1 6 ω 6 1.1, and
1.2 6 ω 6 4. We choose these particular ranges of shear values to in particular examine
the behavior of ũS around the resonance curve seen in Figure 3. The singularity seen
in Figure 4 (a) corresponds to the value ω such that αnl(1;ω) = 0, namely ω ≈ 1.1550.
Figure 4 (b) shows the focusing side and that increasing the shear strength increases
the Stokes drift velocity. Figure 4 (c) shows that this relationship is reversed on the
defocusing side.
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Figure 4. Plots of ũS(1, ω) for −1 6 ω 6 4 (a), −1 6 ω 6 1.12 (b), and 1.17 6 ω 6 4 (c). Note,
αnl(1; 1.1550) = 0. This shows that the magnitude of the SDV increases with increasing shear
on the focusing side of the singularity (b), and decreases with increasing shear on the defocusing
side (c).

3.1. Flow Near the Depth zc

Again the depth zc = cp/ω is the depth at which our approximations to the mean
particle path fluctuations in Equations (3.6) and (3.7) are no longer valid. Taking k0ω > 0
so that −∞ < zc < −1, it is illuminating to attempt to examine particle paths near this
depth. To do this, we look at the special case of a plane wave solution to the NLS
equation, so that we can readily write

ẋ =ωz − 2εsΩAe|k0|z cos(θ̃) +O(ε2)

ż =− 2εΩAe|k0|z sin(θ̃) +O(ε2),

where θ̃ = θ + ε2αnlA
2t. At this order, we can rewrite this system as

˙̃
θ =Ω + k0ωz − 2ε|k0|ΩAe|k0|z cos(θ̃) +O(ε2),

ż =− 2εΩAe|k0|z sin(θ̃) +O(ε2),

which to leading order is seen to have the Hamiltonian H(θ̃, z) where

H(θ̃, z) = Ωz +
k0ωz

2

2
− 2εΩAe|k0|z cos(θ̃).

This has critical points at

θ̃ = nπ, z = zc − ε
2cpe

|k0|zc

ω
(−1)n +O(ε2),

with even n corresponding to centers and odd n to saddles. This result then is a good
indication for the presence of ‘cats-eye’ patterns around the depth zc, a result echoing
the works of Simmen & Saffman (1985); da Silva & Peregrine (1988); Wahlén (2009) and
Ribeiro et al. (2017) among many other authors. This presents an interesting matching
problem with regards to finding uniform approximations to the LDV. This however is a
question beyond the scope of the present paper.

4. Numerical Results

In order to determine particle paths, say (x(t), z(t)), in general, the system in Equation
(2.24) must be solved. However, we focus on determining particle paths at the surface.
Thus, letting η̃ denote the truncation of Equation (2.10) up to and including O(ε) terms,
we approximate the vertical component of the path via the restriction

z(t) = εη̃(x(t), t).



20 C.W. Curtis and J.D. Carter and H. Kalisch

We then can readily find the scalar equation for the horizontal coordinate x(t) to be

ẋ = εωη̃(x, t) + εφ̃x(x, εη̃(x, t), t)

where the potential φ̃x is found using Equation (2.31). However, since the NLS solutions
are in terms of the coordinates ξ and τ , we rewrite the above equation in these coordinates
so that we have

dξ

dτ
=
cg
ε

+ ωη̃ (ξ, τ) + φ̃x(ξ, εη̃), (4.1)

ξ(0) = ξ0.

We use a fourth-order Runge-Kutta (RK4) scheme with a time step of δτ = 5× 10−4 to
solve this initial-value problem. To solve for the evolution of η1(ξ, τ), we use a pseudo-
spectral scheme with 1024 modes to discretize the VD Equation in space thereby allowing
it to be coupled to the RK4 scheme used in Equation (4.1). We can then determine η1(ξ, τ)
up to and including O(ε) effects on a O(1/ε2) timescale. We use the Jacobi elliptic or
plane wave solutions to the NLS equation as an initial condition to the VD equation. By
using the VD equation, we see that on the O(1) in τ , or O(1/ε2) in t, time scale of the
NLS equation, we anticipate that the error from truncation in Equation (4.1) should be
at worst O(ε2) in ξ and thus at worst O(ε) in x(t). Per our restriction on z(t), this implies
that at worst we should anticipate errors of O(ε2) on the longer time scales corresponding
to the nonlinear effects.

For the Jacobi elliptic function solutions, we chose the initial tracer position to be

ξ(0) =
K(κ)

128
, z(0) = εη̃(ξ(0), 0),

where K(κ) is the complete elliptic integral of the first kind and η̃ is defined by Equation
(2.10). For the plane-wave solutions, we chose ξ0 = 10/128 so the initial positions are
comparable across the different classes of solutions. We take the positive branch of the
dispersion relationship, which implies that k0 > 0 corresponds to a left-moving-carrier
wave. We choose k0 = 1 for the plane-wave solutions. In the case of the Jacobi elliptic
solutions to the NLS equation, we choose the integer m to be

m =

⌊
2K(κ)

πε

⌋
,

so that, using Equation (2.21), k0 ≈ 1. In practice, k0 ≈ 0.98 or 0.99. The results for the
tracer position in physical coordinates, (x(t), z(t)), are found using the transformations

x(t) =
ξ(τ)

ε
− cgτ

ε2
, t =

τ

ε2
.

Fourier transforms and their inverses are computed numerically using the fast Fourier
transform.

Finally, the expansions in (2.31) and (2.32), and the associated approximations in
(2.33) and (2.34), show that the strength of the velocity field is largely determined by the
magnitude of the solution to the NLS equation which is the leading order approximation
to η1. In the case of the Jacobi elliptic function solutions, controlling for the elliptic
modulus κ, the term

√
2|αd/αnl| is the most significant contribution to the magnitude

of η1 since we have fixed β = 1; see Equations (2.19) and (2.20). Figure 5 contains
plots of

√
2|αd/αnl| versus ω for k0 = 1. Note, we take ω = O(1) to be consistent with

our derivation of the VD equation. In the focusing case, increasing the magnitude of
the Jacobi elliptic function solutions corresponds to increasing the shear strength. In
the defocusing case, decreasing the magnitude of the Jacobi elliptic function solutions
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Figure 5. Strength of the surface velocity as measured via plots of
√

2|αd/αnl| for k0 = 1 for
−1 6 ω 6 4 (a), −1 6 ω 6 1.12 (b), and 1.17 6 ω 6 4 (c). Increasing shear increases the velocity
on the focusing side, and decreases it on the defocusing side.

corresponds to increasing the shear strength. These two statements are justified by the
similarities of Figures 5 (b) and (c) and 4 (b) and (c). Therefore, relatively large amplitude
solutions inducing strong fluid particle drift is to be expected near the resonance curve.

4.1. Focusing Case

Using the solution given in equation (2.19) with k0 ≈ 1 ensures that ω = 0 and ω = ±1
are in the focusing regime. Figure 6 shows the paths of particles as well as there mean
paths for three values of ω found by setting ε = 0.1, κ = 0.5, and solving the dynamical
system for the particle and mean paths up to time t = 1/ε2. The carrier profile is
propagating to the left in this situation. Therefore, if ω = 1.12, then the shear current is
counter-propagating at the surface with respect to the carrier wave while if ω = −1, the
current is co-propagating. The counter-propagating current significantly enhances the
leftward horizontal motion of a tracer along the surface as seen by comparing Figures
6(b) and (c) with (a). This can be explained by comparing the values of the SDV and
the LDV parameters

ũS(1, 0) = −0.5222, ũL(1, 0) = −0.5222,
ũS(1, 1.12) = −10.7373, ũL(1, 1.12) = −5.2195,
ũS(1,−1) = −0.2836, ũL(1,−1) = −0.1636,

where the parameter ũL is defined to be

ũL(k0, ω) = 2

∣∣∣∣ αd(k0, ω)

αnl(k0, ω)

∣∣∣∣uLp (k0, ω).

Note that for the Jacobi elliptic solutions and controlling for κ and β, this will be the
most significant contribution to the magnitude of the LDV. This demonstrates why the
counter-propagating current so enhances the leftward drift since the LDV parameter
is an order of magnitude larger than in the other cases. Further, it demonstrates why
the co-propagating current, i.e. ω = −1, reduces the horizontal displacement of the
surface particle. This is somewhat surprising as one might intuitively imagine that the
co-propagating shear would enhance the particle drift, especially in comparison to the
zero vorticity case. However, we have effectively shown that nonlinearity makes the
surface/current interaction a more complicated one than one might at first suspect.

Choosing κ = 0.99 shows that similar results hold closer to the solitary wave solution;
see Figure 7, though the larger elliptic modulus results in the larger amplitudes and
leftward drifts. In particular, near the solitary wave limit, positive, counter-propagating
shear can greatly enhance both the impact of nonlinearity and the transport properties
of the waves.
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Figure 6. Focusing Case - Plots of particle paths correspond to the solution given in Equation
(2.19) with ε = 0.1, β = 1, k0 ≈ 1, κ = 0.5, with ω = 0 (a), ω = 1.12 (b), and ω = −1 (c). The
grey dots indicate the starting positions of the tracers while the black dots indicate their final
positions.

4.2. Defocusing Case

For the Jacobi elliptic solutions with k0 ≈ 1, the zero LDV solutions belong in the
defocusing case. Figure 8 shows the impact on surface flow particle paths when ω is chosen
to zero out the LDV. As can be seen, the particle paths, while not exactly closed, are
spirals and are constrained in their horizontal and vertical extent by an outer elliptical
perimeter. Similarly, the shear strength can be chosen so that the LDV is zeroed out
for the plane-wave solutions. Taking k0 = 1 and A = 1, this corresponds to choosing
ω = 1.6828. Figure 9 shows a nearly closed particle path. We emphasize that these results
are a confirmation of the predictions made in Figure 2. Thus, these numerical results
validate our choice to generalize the GLM approach in so far as we see the generalization
provides the correct predictions for when shear will quench surface drift.

In some respects then, we have also shown that by appropriately choosing the shear, we
can replicate the dynamics of a Gerstner wave, see Constantin (2011) by looking instead
at a plane-wave solution moving over a counter-propagating shear current. This could
point towards resolving some of the questions raised in Monismith et al. (2007); Smith
(2006), though this is a subject of future research.

Looking beyond cases in which Eulerian counterflows quench drift, we now consider
the defocusing NLS Jacobi elliptic function solutions given in Equation (2.20). We choose
k0 ≈ 1, ε = 0.1, κ = 0.99 (near the dark-soliton limit). Solving the dynamical system
for the particle paths up to time t = 1/ε2 generates Figure 10 (a) and (b) for ω = 1.17
and ω = 4 respectively. While the particle path motion seen in Figure 10(a) is rapidly
oscillating, the net transport and amplitude is quite small.
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Figure 7. Focusing Case - Plots of particle paths correspond to the solution given in Equation
(2.19) with ε = 0.1, β = 1, k0 ≈ 1, κ = 0.99, with ω = 0 (a), ω = 1.12 (b), and ω = −1 (c).
The grey dot indicates the starting position of the tracer while the black dot indicates the final
position.
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Figure 8. Defocusing Case - Plots of particle paths correspond to the solution given in
Equation (2.20) with ε = 0.1, β = 1, k0 ≈ 1, with κ = 0.5 (a), κ = 0.99 (b). The choices of ω
ensure that ũL(1, ω) = 0, see Figure 2, thereby leading to the nearly closed, elliptical particle
paths. The grey dots indicate the starting positions of the tracers while the black dots indicate
their final positions.

However, if ω = 4 in the case of a plane wave, we do not necessarily get the
same diminished response seen for the Jacobi elliptic solutions; see Figure 11. The
highly oscillatory plane-wave profile induces a particle path which ultimately exhibits
a strong rightward drift which follows the strong counter-propagating shear current. The
associated SDV and LDV at the surface for the plane wave with these parameters are
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Figure 9. Defocusing Case - Plot of a particle path corresponding to a plane-wave solution
with ε = 0.1, A = 1, k0 = 1 , and ω = 1.6818, which ensures that ũL(1, ω) = 0, see Figure 2,
thereby leading to the nearly closed, elliptical particle paths. The grey dots indicate the starting
positions of the tracers while the black dots indicate their final positions.
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Figure 10. Defocusing - Near dark soliton solution for k0 ≈ 1, κ = .99 and ω = 1.17 (a)
and ω = 4 (b). The grey dot indicates the starting position of the tracer while the black dot
indicates the final position.

given by

ūSs =− 8.4985ε2 +O(ε3),

ūLs =29.2719ε2 +O(ε3).

This explains the stronger net rightward drift of the particle shown in Figure 11. Finally,
note that this shows the SDV and the LDV can oppose one another, thereby clarifying
the need to use both velocities to fully understand the drift properties associated with a
surface wave.

5. Conclusion and Future Directions

In this paper, to better understand the transport properties of nonlinear waves moving
over constant-vorticity currents, we have derived an asymptotically self-consistent higher-
order model for the interaction between the mean wave height and the leading order
modulated carrier wave in the presence of surface tension and a constant vorticity current.
Using this, a NLS equation is derived, and the role of surface tension in determining the
existence of modulational instability is fully explored. A formula for the Stokes drift
velocity at the surface is derived allowing for the identification of shear profiles which
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Figure 11. Defocusing Case - Plane-wave solution for k0 = 1, ω = 4, A = 1, with (b)
providing a detail of (a). The grey dot indicates the starting position of the tracer while the
black dot indicates the final position.

enhance or quench horizontal surface transport. Numerical simulations corroborate the
surface theory developed in this paper.

The work in this paper provides possible explanatory mechanisms for otherwise unex-
plained oceanic phenomena observed in Smith (2006) and justification for phenomeno-
logical choices in oceanographic modeling put forward in Breivik et al. (2014). Assessing
how accurate a constant-vorticity-modulational-nonlinear wave model describes these
real world problems is an important future research direction. Likewise, while a higher-
order model describing the coupled evolution of the mean and modulated carrier wave is
derived, the properties of this equation are not studied directly.
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