

Article

Stability of Periodic, Traveling-Wave Solutions to the Capillary-Whitham Equation

John D. Carter ^{1,*†} and Morgan Rozman ^{2,†}

¹ Seattle University; carterj1@seattleu.edu

² Seattle University; rozmanm@seattleu.edu

* Correspondence: carterj1@seattleu.edu; Tel.: +1-206-296-5956

† These authors contributed equally to this work.

Version March 12, 2019 submitted to Fluids

1 Abstract: Recently, the Whitham and capillary-Whitham equations were shown to accurately model the evolution of surface waves on shallow water [1,2]. In order to gain a deeper understanding of these equations, we compute periodic, traveling-wave solutions to both and study their stability. We present plots of a representative sampling of solutions for a range of wavelengths, wave speeds, wave heights, and surface tension values. Finally, we discuss the role these parameters play in the stability of these solutions.

7 Keywords: Whitham equation; fully-dispersive; surface tension; traveling-wave solutions; stability

8 1. Introduction

The dimensionless Korteweg-deVries equation (KdV) including surface tension,

$$u_t + u_x + \left(\frac{1}{6} - \frac{T}{2}\right)u_{xxx} + 2uu_x = 0, \quad (1)$$

is an asymptotic approximation to the surface water-wave problem including surface tension in the small-amplitude, long-wavelength limit. The variable $u = u(x, t)$ represents dimensionless surface displacement, t represents the dimensionless temporal variable, x represents the dimensionless spatial variable, and $T \geq 0$ represents the dimensionless coefficient of surface tension (the inverse of the Bond number). This equation only accurately reproduces the unidirectional, linear phase velocity of the full water wave problem for a small range of wavenumbers near zero. In order to address this issue, Whitham [3,4] proposed a generalization of KdV that is now known as the Whitham equation for water waves. In dimensionless form, this equation is given by

$$u_t + \mathcal{K}u_x + 2uu_x = 0, \quad (2)$$

where \mathcal{K} is the Fourier multiplier defined by the symbol

$$\widehat{\mathcal{K}f}(k) = \sqrt{(1 + Tk^2) \frac{\tanh(k)}{k}} \widehat{f}(k). \quad (3)$$

9 We refer to equation (2) with $T = 0$ as the Whitham equation and (2) with $T > 0$ as the capillary-Whitham,
10 or cW, equation. Equation (2) reproduces the unidirectional phase velocity of the water wave problem
11 with $T \geq 0$ for all k .

12 In summarizing the recent work on these equations, we focus on the results that are most directly
 13 related to what we present below. Ehrnström & Kalisch [5] proved the existence of and computed
 14 periodic, traveling-wave solutions to the Whitham equation. Ehrnström *et al.* [6] proved the existence of
 15 solitary-wave solutions to the Whitham equation and showed that they are conditionally energetically
 16 stable. Arnesen [7] proved the existence of solitary-wave solutions to the capillary-Whitham equation and
 17 showed that they are conditionally energetically stable. Johnson & Hur [8] proved that all small-amplitude,
 18 periodic, traveling-wave solutions of the Whitham equation are stable if their wavelength is above a critical
 19 value and are unstable below the critical value. Sanford *et al.* [9] numerically corroborated the Johnson &
 20 Hur [8] result and numerically established that all large-amplitude, periodic, traveling-wave solutions
 21 of the Whitham equation are unstable regardless of wavelength. Kalisch *et al.* [10] present numerical
 22 results which suggest that large-amplitude solutions of the Whitham equation are unstable. Moldabayev
 23 *et al.* [11] presented a scaling regime in which the Whitham equation can be derived from the water wave
 24 problem and compared its dynamics with those from other models including the Euler equations. Klein
 25 *et al.* [12] proved that the Whitham equation is a rigorous model of water waves in the KdV regime.
 26 The validity of the Whitham equation outside the KdV regime remains an open question. Deconinck &
 27 Trichtchenko [13] proved that the unidirectional nature of the Whitham equation causes it to miss some of
 28 the instabilities of the Euler equations. Dinvay *et al.* [14] extended the work of Moldabayev *et al.* [11] to
 29 include surface tension and show that the capillary-Whitham equation gives a more accurate reproduction
 30 of the free-surface problem than the KdV and Kawahara (fifth-order KdV) equations. Trillo *et al.* [1]
 31 compared Whitham predictions with measurements from laboratory experiments and showed that the
 32 Whitham equation provides an accurate model for the evolution of initial waves of depression, especially
 33 when nonlinearity plays a significant role. Additionally, Carter [2] compared predictions with another set
 34 of laboratory measurements and showed that both the Whitham and capillary-Whitham equations more
 35 accurately model the evolution of long waves of depression than do the KdV and Serre (Green-Naghdi)
 36 equations.

37 Much work has been done on equations related to the capillary-Whitham equation. Vanden-Broeck
 38 [15] provides a detailed review of gravity-capillary free surface flows. In the absence of gravity,
 39 Crapper [16] found a family of exact solutions to the water wave problem with surface tension. Trulsen
 40 *et al.* [17] presented an equation for weakly nonlinear waves on deep water with exact linear dispersion
 41 including gravity, but not surface tension. This equation is to the NLS equation, see for example Sulem
 42 & Sulem [18], as the Whitham equation is to the KdV equation. Akers *et al.* [19] prove the existence of
 43 gravity-capillary waves that are nearby to Crapper waves when the gravity effect is small. They showed
 44 numerically that these solutions are waves of depression and that there exists a wave of highest amplitude.
 45 Akers & Milewski [20,21] derive and study solitary-wave solutions of multiple full-dispersion models of
 46 gravity-capillary waves. The papers [17,20,21] all approach capillary-gravity problem from the deep-water
 47 viewpoint as opposed to the capillary-Whitham equation which comes from the shallow-water viewpoint.

48 Finally, the recent work by Ehrnström *et al.* [22] includes many theoretical results on solutions
 49 to the capillary-Whitham equation. It gives a complete description of all small-amplitude, periodic,
 50 traveling-wave solutions to the capillary-Whitham equation and then extends these small-amplitude
 51 results to global curves. Further, they analytically describe some secondary bifurcations that connect
 52 different branches. These results tie in nicely with the numerical results we present below.

53 The remainder of the paper is outlined as follows. Section 2 describes the solutions we examine, their
 54 properties, and the linear stability calculations. Section 3 contains plots of solutions to the Whitham and
 55 capillary-Whitham equations, plots of the corresponding stability spectra, and a discussion of these results.
 56 Section 3 contains the main results of the paper. Section 4 concludes the paper by summarizing the results.

57 2. Traveling waves and their stability

We consider periodic, traveling-wave solutions of the form

$$u(x, t) = f(x - ct), \quad (4)$$

where f is a smooth, periodic function with period L and c is the speed of the solution. Ehrnström & Kalisch [5] proved that the Whitham equation admits solutions of this form and Remonato & Kalisch [23] computed a variety of cW solutions of this form. Substituting (4) into (2) and integrating once gives

$$-cf + \mathcal{K}f + f^2 = B, \quad (5)$$

where B is the constant of integration. This equation is invariant under the transformation

$$f \rightarrow f + \gamma, \quad c \rightarrow c + 2\gamma, \quad B \rightarrow B + \gamma(1 - c - \gamma). \quad (6)$$

Therefore, we consider the entire family of solutions of the form given in equation (4) by considering only solutions with zero mean, that is solutions such that

$$\int_0^L f(z) dz = 0. \quad (7)$$

In order to study the stability of these solutions, change variables to a moving coordinate frame by introducing the coordinates, $z = x - ct$ and $\tau = t$. In the moving coordinate frame, the cW equation is given by

$$u_\tau - cu_z + \mathcal{K}u_z + 2uu_z = 0. \quad (8)$$

We consider perturbed solutions of the form

$$u_{\text{pert}}(z, \tau) = f(z) + \epsilon w(z, \tau) + \mathcal{O}(\epsilon^2), \quad (9)$$

where $f(z)$ is a zero-mean, periodic, traveling-wave solution of the cW equation (i.e. a stationary solution of (8)), $w(z, \tau)$ is a real-valued function, and ϵ is a small, positive constant. Substituting (9) into (8) and linearizing gives

$$w_\tau - cw_z + \mathcal{K}w_z + 2fw_z + 2f_zw = 0. \quad (10)$$

Without loss of generality, assume

$$w(z, \tau) = W(z)e^{\lambda\tau} + c.c., \quad (11)$$

where $W(z)$ is a complex-valued function, λ is a complex constant, and *c.c.* denotes complex conjugate. Substituting (11) into (10) and simplifying gives

$$(c - 2f)W' - 2f'W - \mathcal{K}W' = \lambda W, \quad (12)$$

where prime means derivative with respect to z . In operator form, equation (12) can be written as

$$\mathcal{L}W = \lambda W, \quad \text{where } \mathcal{L} = (c - 2f)\partial_z - 2f' - \mathcal{K}\partial_z. \quad (13)$$

- 58 We are interested in finding the set of λ that lead to bounded solutions of (13). In other words, we are
 59 interested in finding the spectrum, σ , of the operator \mathcal{L} . The spectrum determines the spectral stability
 60 of the solutions. If $\sigma(\mathcal{L})$ has no elements with positive real part, then the solution is said to be spectrally
 61 stable. If $\sigma(\mathcal{L})$ has one or more elements with positive real part, then the solution is said to be unstable.
 62 Since the capillary-Whitham equation is Hamiltonian, see Hur & Pandey [24], $\sigma(\mathcal{L})$ is symmetric under

63 reflections across both the real and imaginary axes. We use this fact as one check on the numerical stability
 64 results in the next section.

65 **3. Numerical results**

66 In this section, we present plots of periodic, traveling-wave solutions of the Whitham and
 67 capillary-Whitham equations along with their stability spectra. The solutions were computed using
 68 a generalization of the Newton-based method presented by Ehrnström & Kalisch [5]. Following the work
 69 of Sanford *et al.* [9], the stability of these solutions was computed using the Fourier-Floquet-Hill method of
 70 Deconinck & Kutz [25].

71 *3.1. The Whitham equation*

72 In order to best understand the role surface tension plays in the stability of periodic, traveling-wave
 73 solutions to the capillary-Whitham equation, we begin by reviewing results from the Whitham equation
 74 (i.e. the zero surface tension case). Hur & Johnson [8] proved that all small-amplitude Whitham solutions
 75 with $k < 1.145$ (where k is the wavenumber of the solution) are stable while all small-amplitude
 76 solutions with $k > 1.145$ are unstable. Sanford *et al.* [9] numerically corroborated this result, presented
 77 numerical results that suggest that all large-amplitude Whitham solutions are unstable, and established
 78 that 2π -periodic, traveling-wave solutions with “small” wave heights are spectrally stable while those
 79 with “large” wave heights are unstable.

80 Figure 1 contains plots of four 2π -periodic solutions to the Whitham equation with moderate wave
 81 heights. As the wave height, H , of the solution increases, so does the solution’s wave speed, c . Figure 2
 82 contains plots of the stability spectra corresponding to these solutions. The spectrum of the solution in
 83 Figure 1(a), see Figure 2(a), lies entirely on the imaginary axis and therefore this solution is spectrally stable.
 84 Further simulations (not included) show that all solutions with smaller wave heights (and period 2π)
 85 are also spectrally stable. The spectra corresponding to the other three solutions all include eigenvalues
 86 with positive real parts and therefore these solutions are unstable. As the wave height of the solution
 87 increases, the maximum instability growth rate (i.e. the real part of the eigenvalue with maximal real part)
 88 also increases. All of these spectra include the “figure 8” associated with the modulational (Benjamin-Feir)
 89 instability.

90 Whitham [4] conjectured that the Whitham equation admits a highest traveling-wave solution and
 91 that it is nonsmooth. Ehrnström and Wahlén [26] proved this hypothesis. Figure 3 includes plots of six
 92 solutions that are somewhat near this highest wave. The inset plots are zooms of the solutions near their
 93 crests and show that all of the solutions we consider are smooth. To our knowledge, this is the first time
 94 that the spectral stability of solutions of the Whitham equation with wave heights this large have been
 95 studied.

96 Figure 4 includes the stability spectra corresponding to the solutions in Figure 3. All six of these
 97 solutions are unstable. As wave height (or wave speed) increases, the maximal instability growth rate also
 98 increases. The stability spectra undergo two bifurcations as the wave height increases. The first bifurcation
 99 is shown in Figure 4(a) and the second is shown in Figure 4(b). The first occurs when the top part of
 100 the figure 8 bends down and touches the bottom part on the $\mathcal{R}(\lambda)$ axis at around $\lambda = \pm 0.05$. (See the
 101 transition from the spectrum in Figure 2(d) to the blue spectrum in Figure 4(a).) This causes the vertical
 102 figure 8 to transition into a horizontal figure 8 inside of a vertical “peanut”. (See the orange spectrum
 103 in Figure 4(a).) The second bifurcation occurs when the horizontal figure 8 collapses toward the origin
 104 and the peanut pinches off into two ovals centered on the $\mathcal{R}(\lambda)$ axis. (See Figure 4(b).) Note that the two
 105 yellow “dots” near $\lambda = \pm 0.32$ are actually small ovals. As wave height increases even further, these ovals
 106 decrease in diameter and move further away from the $\mathcal{I}(\lambda)$ axis. The solution with maximal wave height
 107 is cusped and therefore a very large number of Fourier modes would be required to resolve it accurately.

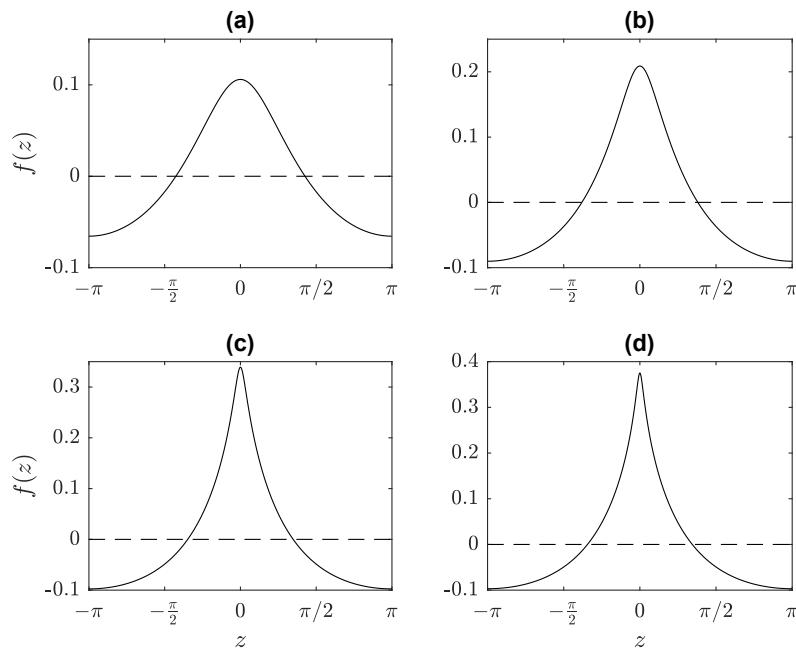


Figure 1. Plots of four moderate wave height, 2π -periodic, zero-mean solutions of the Whitham equation. The wave speeds and wave heights of these solutions are (a) $c = 0.89236, H = 0.17148$, (b) $c = 0.92685, H = 0.29901$, (c) $c = 0.96612, H = 0.43667$, and (d) $c = 0.97249, H = 0.47203$. Note that the vertical scale is different in each of the plots.

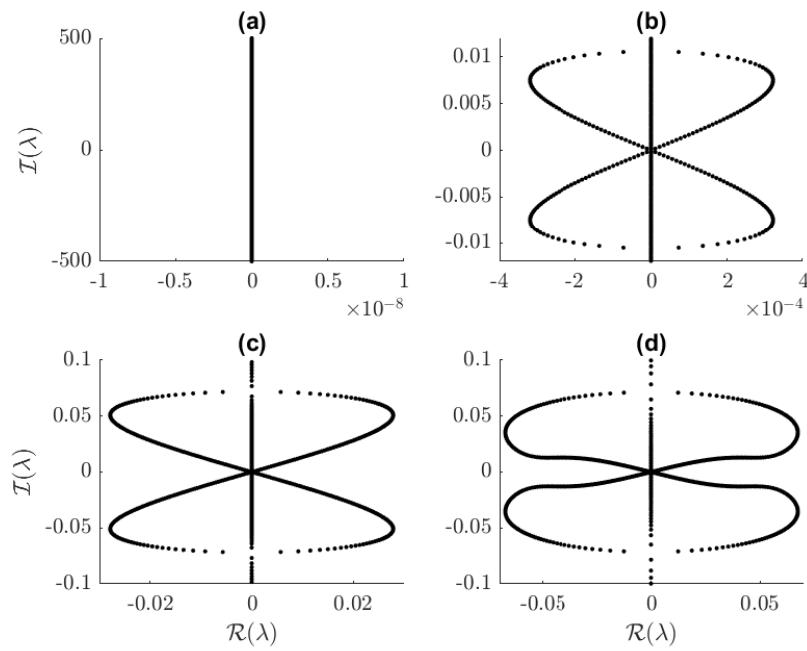


Figure 2. Spectra of the solutions shown in Figure 1. Note that both the horizontal and vertical scales vary from plot to plot.

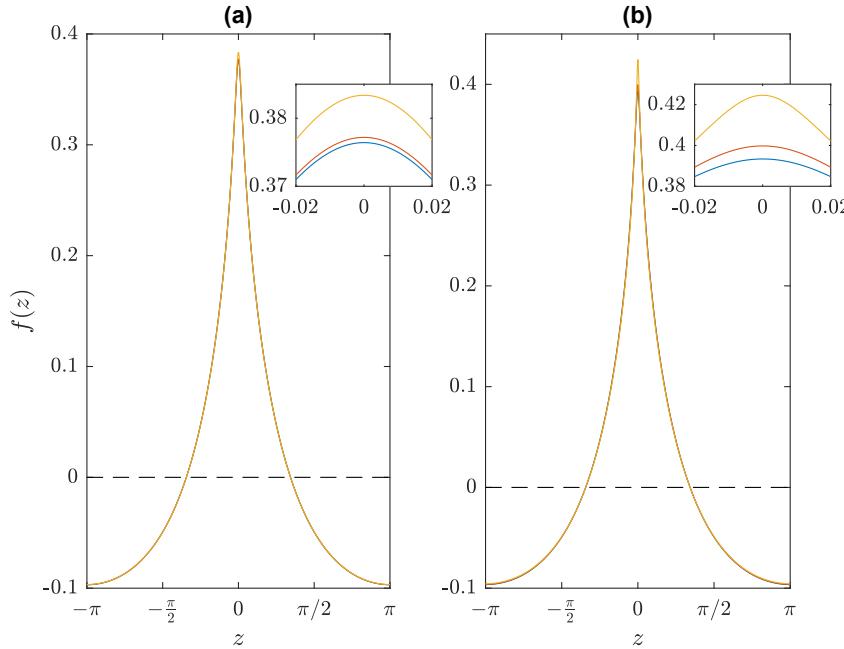


Figure 3. Figures (a) and (b) each contain three plots of large wave height, 2π -periodic, zero-mean solutions of the Whitham equation. The solutions are very similar and nearly lie on top of one another. The inset plots are zooms of the intervals surrounding the crests of the solutions. The wave speeds and heights of these solutions, in order of increasing speed, are (a) $c = 0.97266$ and $H = 0.47330$ (blue); $c = 0.97276$ and $H = 0.47405$ (orange); and $c = 0.97351$ and $H = 0.48007$ (yellow); and (b) $c = 0.97451$ and $H = 0.50058$ (blue); $c = 0.97501$ and $H = 0.499599$ (orange); and $c = 0.97596$ and $H = 0.52013$ (yellow).

108 This makes computing solutions near the solution with maximal wave height prohibitively expensive.
 109 The stability calculation is even more computationally expensive. Because of this, exactly what happens to
 110 the stability spectra as the wave height approaches the maximal wave height remains an open question

111 *3.2. The capillary-Whitham equation*

112 In this subsection, we study periodic, traveling-wave, zero-mean solutions of the cW equation and
 113 their stability. Due to the massive number of solutions this equation admits, this study is not meant
 114 to be exhaustive. We present plots of solutions and their stability spectra and end with a discussion
 115 that summarizes our observations. Ehrnström *et al.* [22] prove that small-amplitude solutions to the
 116 capillary-Whitham equation exist for all values of $T > 0$. Note that the solutions presented herein cannot
 117 be directly compared with those of Remonato & Kalisch [23] because we required the solutions to have
 118 zero mean while they did not. However, the two sets of solutions are related via the transformation given
 119 in equation (6).

120 We begin by justifying the values we selected for the capillarity/surface tension parameter, T . The
 121 Fourier multiplier \mathcal{K} undergoes a bifurcation at $T = \frac{1}{3}$. When $T=0$, \mathcal{K} decreases monotonically to zero as
 122 the wavenumber of the solution, $k > 0$, increases. When $T \in (0, \frac{1}{3})$, \mathcal{K} achieves a unique local minimum at
 123 some wavenumber $k^* \in (0, \infty)$. When $T > \frac{1}{3}$, \mathcal{K} increases monotonically for all $k > 0$ and therefore \mathcal{K} has
 124 no local minimum. Because of this behavior, we selected $T = 0.2$, $\frac{1}{3}$, and 0.4 . Additionally, we study
 125 solutions for $T \approx 0.1582$ (see Section 3.2.4 for details). Figure 5 contains plots of \mathcal{K} versus k for each of
 126 these T values and demonstrates the bifurcation.

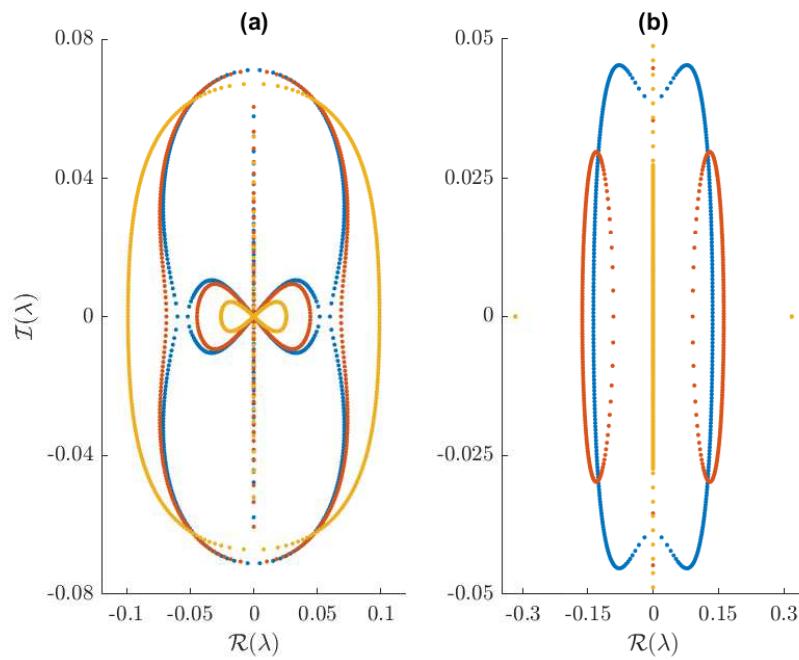


Figure 4. Spectra of the solutions shown in Figure 3.

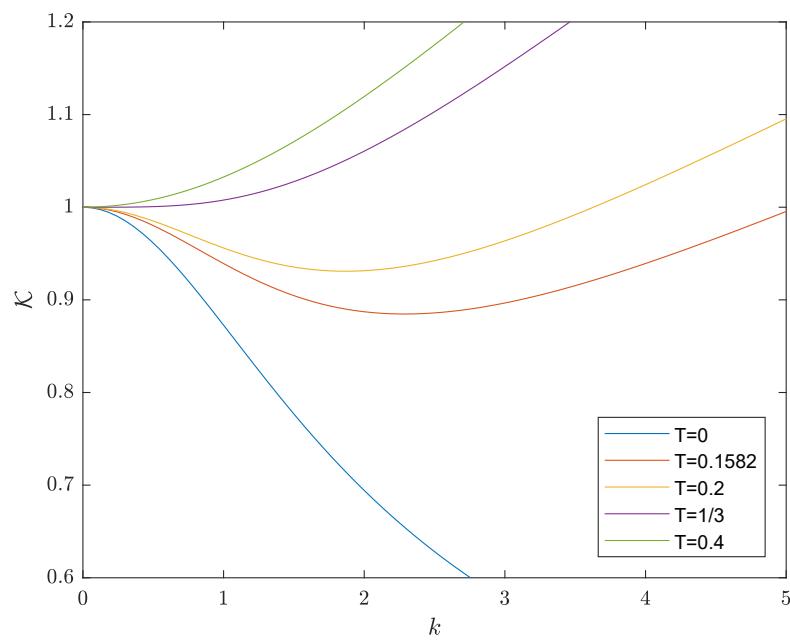


Figure 5. Plots of \mathcal{K} versus k for each of the five values of T examined herein.

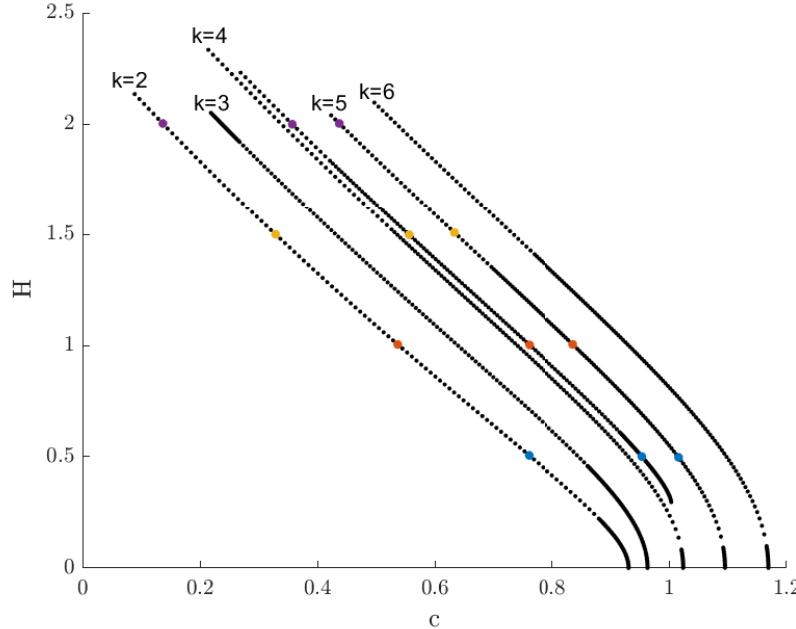


Figure 6. A portion of the wave height versus wave speed bifurcation diagram for the cW equation with $T = 0.2$. The colored dots correspond to solutions that are examined in more detail in Figures 7-9.

127 3.2.1. Surface tension parameter $T = 0.2$

128 When $T = 0.2$, we were able to compute solutions with wavenumbers greater than $k \approx 1.9$, but were
 129 not able to compute solutions with wavenumber less than $k \approx 1.9$. (Note that we computed solutions with
 130 both integer and non-integer wavenumbers.) This may be related to Proposition 5.2 of Ehrnström *et al.* [22]
 131 which states that there are regions of (k, T) -space where no periodic solutions of the capillary-Whitham
 132 equation exist. This may also be related to the fact that $k^* \approx 1.9$. (Recall that k^* is the location of the
 133 local minimum of \mathcal{K} when $T < \frac{1}{3}$.) Figure 6 includes a portion of the wave height versus wave speed
 134 bifurcation diagram for this case. It includes the bifurcation branches corresponding to the $k = 2, \dots, 6$
 135 solutions as well as an additional branch that splits off from the $k = 4$ branch when $H > 0$. The colored
 136 dots correspond to solutions that are examined in more detail below. Unlike the Whitham ($T = 0$) case,
 137 the diagram shows that as the speed of the solution decreases, the wave height increases. Ehrnström
 138 Wahlén [26] proved that, in the small-amplitude limit, the relationship between wave height and speed is
 139 determined by the ratio of the wave number and period of the solution.

140 Figure 7(a) includes plots of four different $k = 2$ (i.e. period π), traveling-wave solutions to the cW
 141 equation with $T = 0.2$. Unlike solutions of the Whitham equation which are waves of elevation, these
 142 solutions are waves of depression. As the wave height increases, the solution speed decreases. Although
 143 the bifurcation diagram suggests that a maximal wave height does not exist, we were not able to prove it,
 144 numerically or otherwise. As wave speed decreases, the solutions become steeper waves of depression
 145 with increasing wave height. This is consistent with the Ehrnström *et al.* [22] result that the solutions limit
 146 to a constant solution in the L^2 , but not L^∞ , sense. However, note that Ehrnström *et al.* [22] proved that
 147 all periodic, traveling-wave solutions to the cW equation are smooth. Figure 7(b) contains plots of the
 148 corresponding linear stability spectra. All four of these solutions are unstable. Just as with solutions to the
 149 Whitham equation, the maximal instability growth rate of these solutions increases as their wave heights

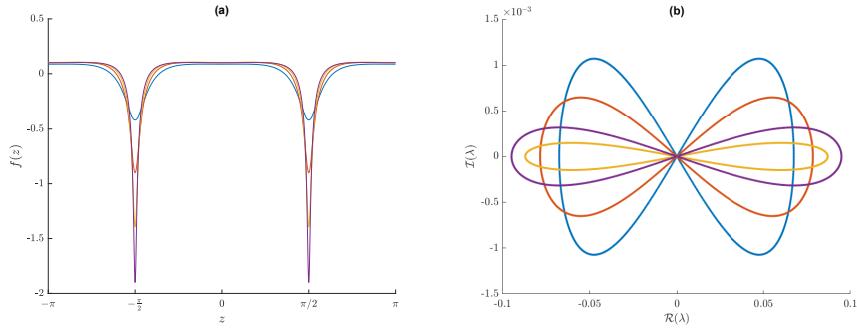


Figure 7. Plots of (a) four representative solutions of the cW equation with $T = 0.2$ and $k = 2$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 0.7609$ and $H = 0.5060$ (blue), $c = 0.5369$ and $H = 1.004$ (orange), $c = 0.3289$ and $H = 1.499$ (yellow), and $c = 0.1369$ and $H = 2.002$ (purple).

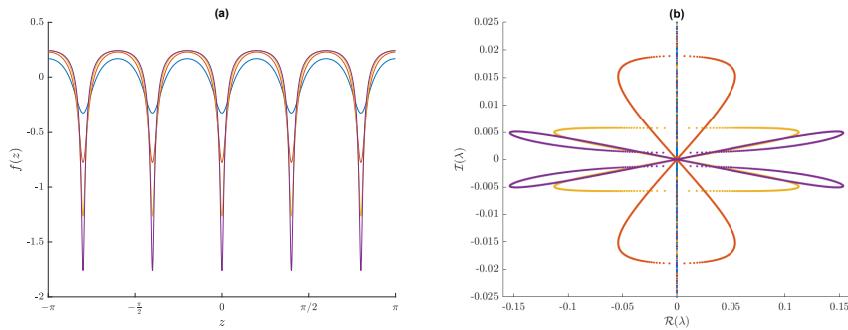


Figure 8. Plots of (a) four representative solutions of the cW equation with $T = 0.2$ and $k = 5$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 1.016$ and $H = 0.4972$ (blue), $c = 0.8364$ and $H = 1.005$ (orange), $c = 0.6334$ and $H = 1.508$ (yellow), and $c = 0.4374$ and $H = 2.002$ (purple).

150 increase. Additional numerical simulations (not shown) establish that all small-amplitude, traveling-wave
151 solutions with $k = 2$ and $T = 0.2$ are unstable.

152 Figure 8(a) includes plots of four $k = 5$, traveling-wave solutions to the cW equation with $T = 0.2$.
153 Figure 7(b) shows the corresponding stability spectra. These four solutions have approximately the same
154 wave heights as the four $k = 2$ solutions shown in Figure 7(a). Other than their period and speeds, the
155 $k = 5$ solutions are qualitatively similar to the $k = 2$ solutions. The solution with the smallest wave
156 height (blue) is spectrally stable. This is qualitatively different than what happens in the $T = 0$ case where
157 all small-amplitude solutions with $k > 1.145$ are unstable. The three solutions with larger wave height
158 are unstable and the maximal instability growth rate increases with wave height. Additional numerical
159 simulations (not shown) establish that solutions with $k \in (2, 5)$ have similar properties to the solutions
160 presented in Figures 7–8. There exists a $k^* \in (2, 5)$ where the small-amplitude solutions switch from being
161 unstable to spectrally stable.

162 Figure 9 contains plots of four representative solutions from the bifurcation branch that splits off
163 from the $k = 4$ branch. These solutions are qualitatively different than the solutions examined above,
164 but have approximately the same wave heights as the solutions shown in Figures 7(a) and 8(a). These
165 solutions are similar to the mixed-mode solutions examined by Remonato & Kalisch [23]. For solutions
166 with crests of multiple heights, we define wave height to be the maximum value of the solution minus the
167 minimum value of the solution. Figure 9(b), shows that the stability spectra are also qualitatively different

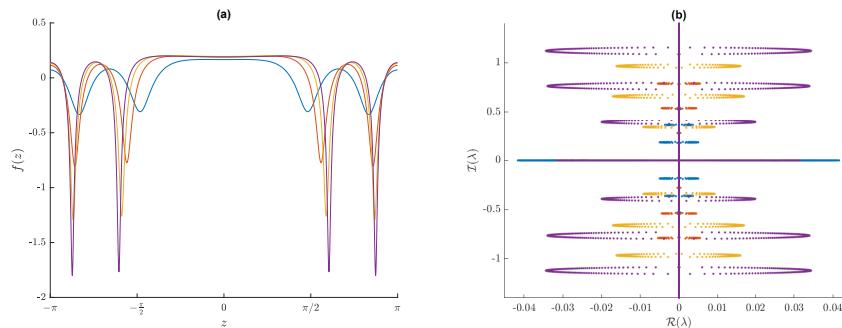


Figure 9. Plots of (a) four representative solutions of the cW equation with $T = 0.2$ from the solution branch that does not touch the horizontal axis in Figure 6 and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 0.9540$ and $H = 0.5008$ (blue), $c = 0.7614$ and $H = 1.002$ (orange), $c = 0.5563$ and $H = 1.498$ (yellow), and $c = 0.3574$ and $H = 1.999$ (purple).

168 than those examined above. The spectra for each solution includes a horizontal figure 8 centered at the
 169 origin. (In the figure, these figure 8s appear as horizontal lines along $I(\lambda) = 0$ due to scaling.) Thus,
 170 each solution is unstable with respect to the modulational instability. Each spectrum has six additional
 171 “bubbles” centered on the $I(\lambda)$ axis. (Only four of the blue bubbles are easily visible due to scaling.) The
 172 solution with smallest wave height (the blue solution) has the largest maximum instability growth rate.
 173 But, there does not appear to be a simple relationship between wave height and the maximum instability
 174 growth rate in this case.

175 3.2.2. Surface tension parameter $T = \frac{1}{3}$

176 Figure 10 includes a portion of the bifurcation diagram for $T = \frac{1}{3}$. The colored dots correspond to
 177 solutions that are examined in more detail below. These solutions have approximately the same wave
 178 heights as the colored solutions examined in other sections. The bifurcation diagram shows that as wave
 179 speed decreases, wave height increases for all branches (that we examined). This is consistent with the
 180 Ehrnström *et al.* [22] result that the solutions limit to a constant solution in the L^2 , but not L^∞ , sense.

181 Figures 11 and 12 include plots of $k = 1$ and $k = 2$ solutions and their stability spectra for $T = \frac{1}{3}$. All
 182 eight of these solutions are unstable and their spectra are shaped like horizontal figure 8s. As wave height
 183 increases, the maximal instability growth rate also increases. The $k = 2$ solutions have larger instability
 184 growth rates than the $k = 1$ solutions with the same wave height.

185 Figures 13 includes plots of the $k = 5$ solutions and their stability spectra for $T = \frac{1}{3}$. Other than their
 186 periods, these solutions appear to be qualitatively similar to the $k = 1$ and $k = 2$ solutions. However, their
 187 stability spectra lie completely on the $I(\lambda)$ axis. This means that all four of these solutions, regardless of
 188 their wave height, are spectrally stable. This numerically establishes that when $T = \frac{1}{3}$ there are some
 189 intervals of k space in which the small-amplitude, periodic, traveling-wave solutions are spectrally stable
 190 and other regions of k space in which these solutions are unstable.

191 3.2.3. Surface tension parameter $T = 0.4$

192 Figure 14 includes a portion of the bifurcation diagram for $T = 0.4$. The colored dots correspond to
 193 solutions that are examined in more detail below. These solutions have approximately the same wave
 194 heights as the colored solutions examined in other sections. The bifurcation diagram shows that as wave
 195 speed decreases, wave height increases for all branches (that we examined).

196 Figure 15 includes plots of four representative $k = 1$ solutions to the cW equation with $T = 0.4$ and
 197 their stability spectra. All four of these solutions are unstable and the growth rate of the instabilities

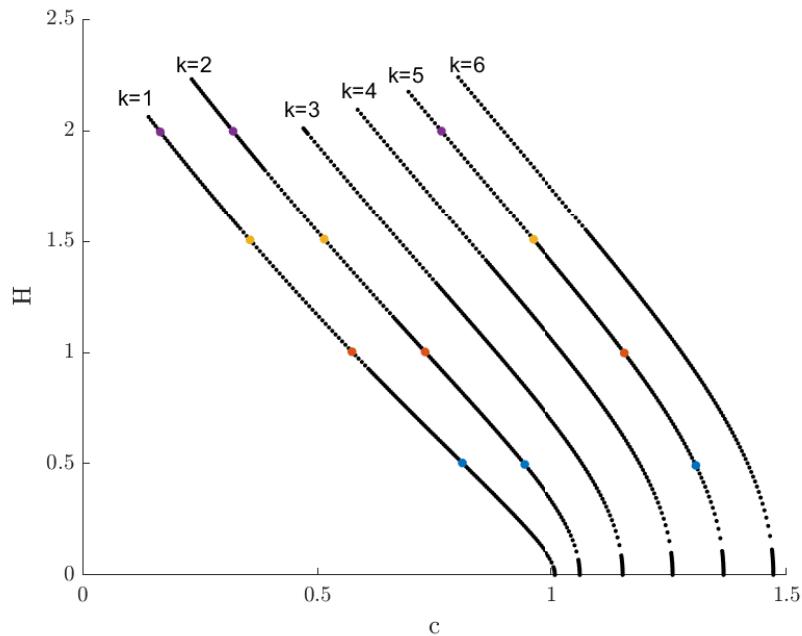


Figure 10. A portion of the bifurcation diagram for the capillary Whitham equation with $T = \frac{1}{3}$. The colored dots correspond to solutions that are examined in more detail in Figures 11-13.

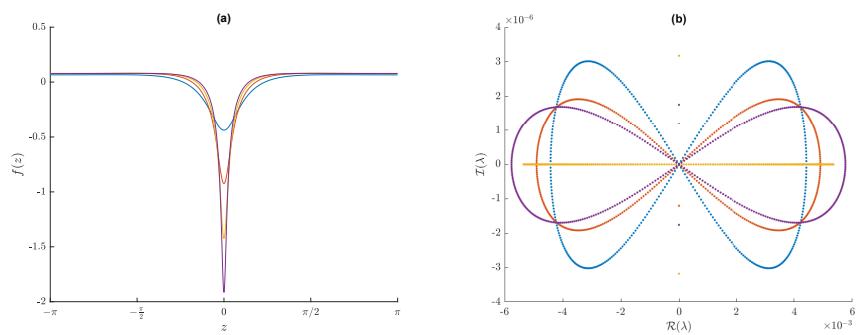


Figure 11. Plots of (a) four representative solutions of the cW equation with $T = \frac{1}{3}$ and $k = 1$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 0.8087$ and $H = 0.5036$ (blue), $c = 0.5737$ and $H = 1.003$ (orange), $c = 0.3567$ and $H = 1.506$ (yellow), and $c = 0.1657$ and $H = 1.994$ (purple).

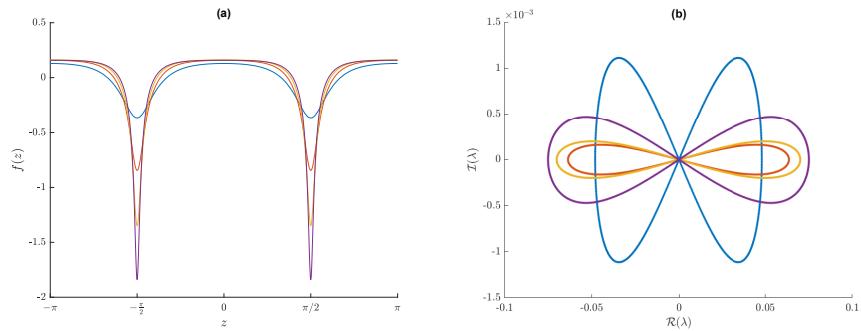


Figure 12. Plots of (a) four representative solutions of the cW equation with $T = \frac{1}{3}$ and $k = 2$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 0.9415$ and $H = 0.4970$ (blue), $c = 0.7295$ and $H = 1.002$ (orange), $c = 0.5145$ and $H = 1.509$ (yellow), and $c = 0.3205$ and $H = 1.997$ (purple).

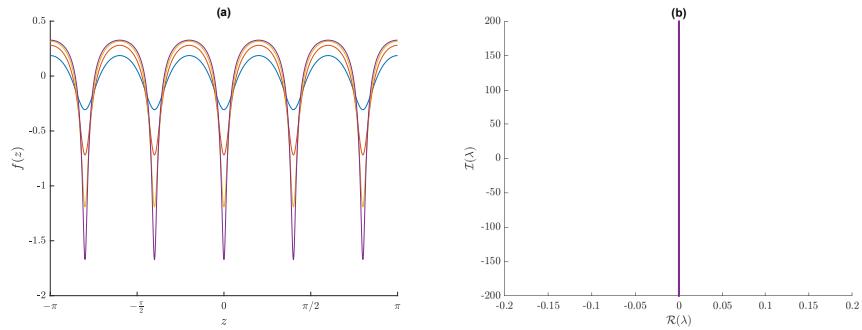


Figure 13. Plots of (a) four representative solutions of the cW equation with $T = \frac{1}{3}$ and $k = 5$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 1.307$ and $H = 0.4924$ (blue), $c = 1.155$ and $H = 0.9975$ (orange), $c = 0.9602$ and $H = 1.508$ (yellow), and $c = 0.7642$ and $H = 1.998$ (purple).

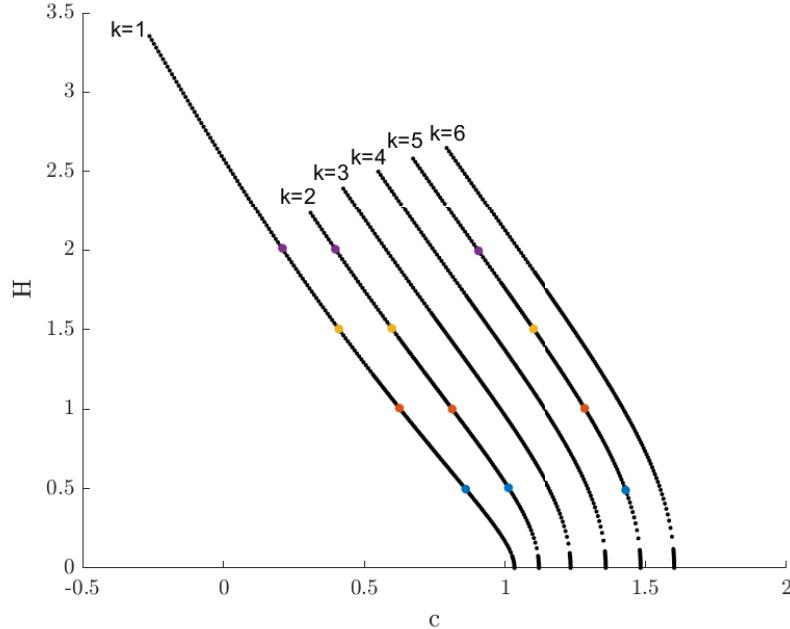


Figure 14. A portion of the bifurcation diagram for the cW equation with $T = 0.4$. The colored dots correspond to solutions that are examined in more detail in Figures 15–17.

198 increases as the wave height of the solution increases. Figure 16 shows that all four $k = 2$ solutions
 199 are spectrally stable while Figure 17 shows that all four $k = 5$ solutions are unstable. This numerically
 200 establishes that when $T = 0.4$ there are some intervals of k space in which the small-amplitude, periodic,
 201 traveling-wave solutions are spectrally stable and other regions of k space in which these solutions are
 202 unstable.

203 3.2.4. Surface tension parameter $T \approx 0.1582$

Remonato & Kalisch [23] presented the following formula which allows T values to be chosen so that solutions corresponding to any two k values will have the same wave speed in the small-amplitude limit

$$T = T(k_1, k_2) = \frac{k_1 \tanh(k_2) - k_2 \tanh(k_1)}{k_1 k_2 (k_1 \tanh(k_1) - k_2 \tanh(k_2))}. \quad (14)$$

204 Using this formula with $k_1 = 1$ and $k_2 = 4$ gives $T \approx 0.1582$, which is the final T value we examine. A
 205 portion of the corresponding bifurcation diagram is included in Figure 18. The fact that the $k = 1$ and
 206 $k = 4$ solutions have the same speed in the small-amplitude limit is exemplified by the fact that there are
 207 two branches leaving the same point on the c axis near $c = 0.94$. These branches correspond to the $k = 4$
 208 solution and a $k = (1, 4)$ branch. Here, the notation $k = (a, b)$ means that the solution is composed of a
 209 linear combination of the $k = a$ and $k = b$ wavenumbers in the small-amplitude limit. We were unable
 210 to isolate the $k = 1$ solution. We note that Remonato & Kalisch [23] made a similar observation for their
 211 $(1, 7)$ solution.

212 Figure 19 shows that solutions on the $k = 4$ branch with small wave height are spectrally stable,
 213 while those with large wave height are unstable. These solutions do not have the striking increasingly
 214 steep wave of depression form that the cW solutions presented above have. As wave height increases, the
 215 growth rates of the instabilities also increase.

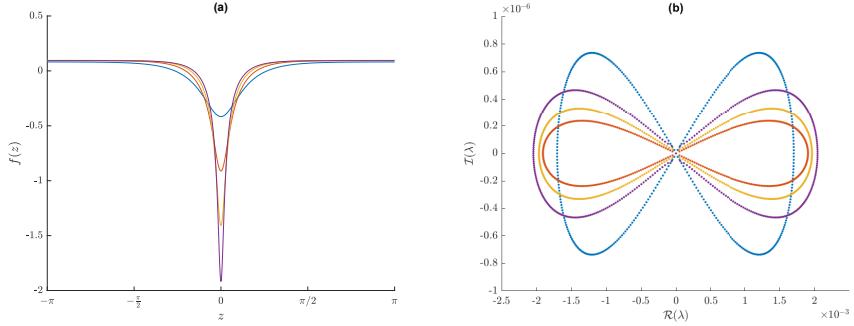


Figure 15. Plots of (a) four representative solutions of the cW equation with $T = 0.4$ and $k = 1$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 0.8596$ and $H = 0.4969$ (blue), $c = 0.6246$ and $H = 1.006$ (orange), $c = 0.4096$ and $H = 1.504$ (yellow), and $c = 0.2096$ and $H = 2.011$ (purple).

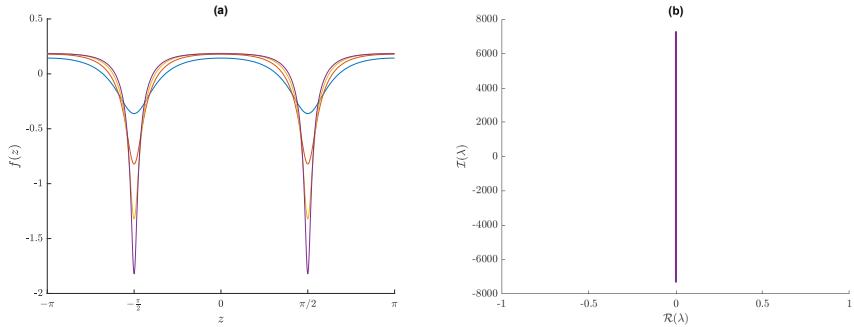


Figure 16. Plots of (a) four representative solutions of the cW equation with $T = 0.4$ and $k = 2$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 1.012$ and $H = 0.5051$ (blue), $c = 0.8115$ and $H = 1.000$ (orange), $c = 0.5975$ and $H = 1.507$ (yellow), and $c = 0.3975$ and $H = 2.005$ (purple).

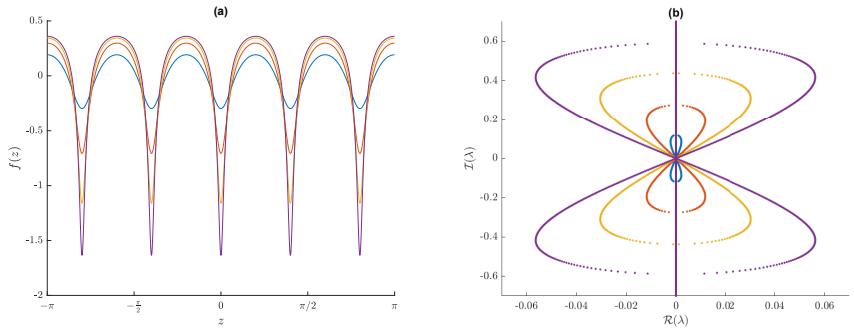


Figure 17. Plots of (a) four representative solutions of the cW equation with $T = 0.4$ and $k = 5$ and (b) their stability spectra. The wave speeds and heights of these solutions are $c = 1.430$ and $H = 0.4897$ (blue), $c = 1.285$ and $H = 1.004$ (orange), $c = 1.100$ and $H = 1.504$ (yellow), and $c = 0.9052$ and $H = 1.995$ (purple).

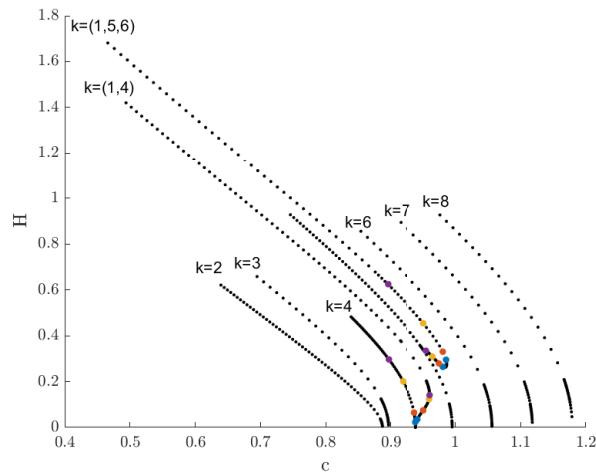


Figure 18. A portion of the bifurcation diagram for the cW equation with $T \approx 0.1582$. The colored dots correspond to solutions that are examined in more detail in Figures 19–22.

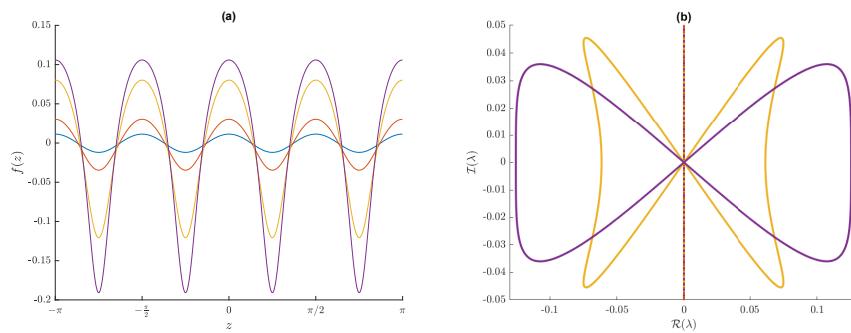


Figure 19. Plots of (a) four representative solutions of the cW equation with $T \approx 0.1582$ and $k = 4$ and (b) their stability spectra.

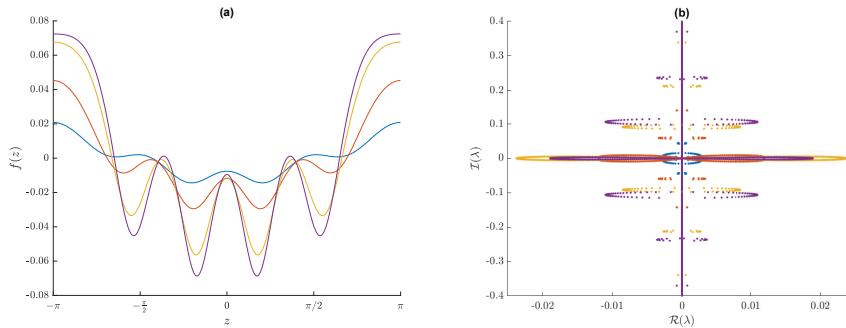


Figure 20. Plots of (a) four representative solutions of the cW equation with $T \approx 0.1582$ and $k = (1, 4)$ and (b) their stability spectra.

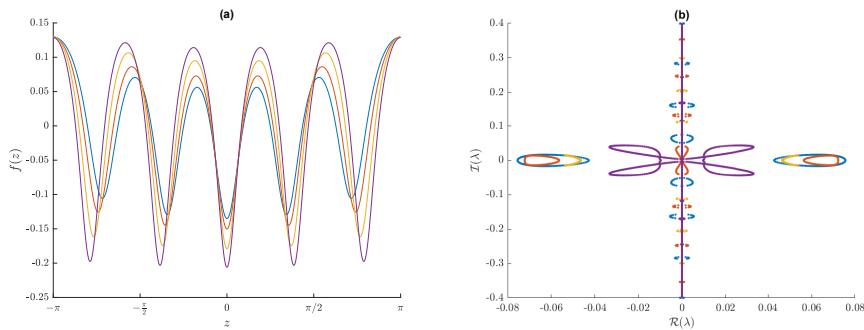


Figure 21. Plots of (a) four representative solutions of the cW equation with $T \approx 0.1582$ and $k = (1, 5)$ and (b) their stability spectra.

216 Figure 20 includes plots of four representative $k = (1, 4)$ solutions and their stability spectra. These
 217 solutions do not have the increasingly steep wave of depression form of the majority of the other cW
 218 solutions. The spectra of these $k = (1, 4)$ solutions are similar to those in Figure 9(b). This is likely due to
 219 the fact that both of these sets of solutions have more than one dominant Fourier mode. Each spectrum
 220 has a horizontal figure 8 centered at the origin and six bubbles centered on the $\mathcal{I}(\lambda)$ axis. The solution
 221 with the largest wave height is not the most unstable solution.

222 Figure 18 shows that there is a secondary branch that splits off from the $k = 5$ branch at $H \approx 0.39$.
 223 As expected, the solutions along this branch do not have a single dominant wavenumber. The solutions
 224 on this branch are $k = (1, 5)$ solutions until the branch curves around and heads upward. The solutions
 225 after this turning point are $k = (1, 5, 6)$ solutions. Figure 21(a) includes plots of four $k = (1, 5)$ solutions
 226 and their stability spectra. All four of these solutions are unstable and have complicated spectra. Figure
 227 22 includes plots of four representative $k = (1, 5, 6)$ solutions and shows that they are unstable. All four
 228 solutions have horizontal figure 8s centered at the origin and four bubbles centered along the $\mathcal{I}(\lambda)$ axis.
 229 The solution with smallest wave height is the most unstable.

230 4. Summary

231 Bottman & Deconinck [27] proved that all traveling-wave solutions of the KdV equation are stable.
 232 This is quite different than the Whitham equation where all large-amplitude solutions are unstable [9] and
 233 only small-amplitude solutions with a wavenumber $k > 1.145$ are stable [8,9].

234 We began by examining large-amplitude, 2π -periodic, traveling-wave solutions to the Whitham
 235 equation (with zero surface tension). We found that all such solutions are unstable and that their stability

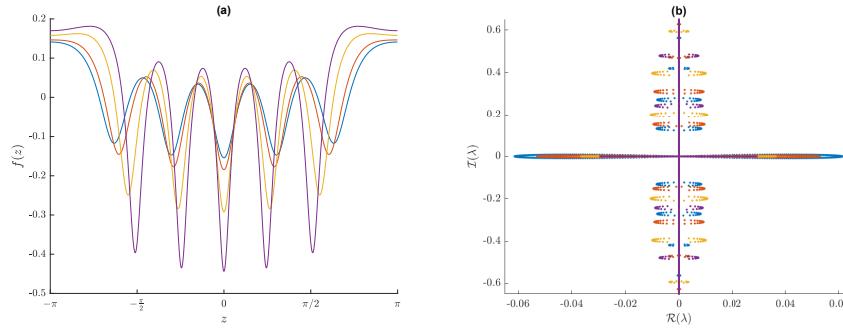


Figure 22. Plots of (a) four representative solutions of the cW equation with $T \approx 0.1582$ and $k = (1, 5, 6)$ and (b) their stability spectra.

$T \backslash k$	1	2	3	4	5
0	su	uu	uu	uu	uu
0.1582...		uu	uu	su	su
0.2		uu	uu	uu	su
1/3	uu	uu	ss	ss	ss
0.4	uu	ss	ss	ss	uu

Table 1. A summary of stability results for single-mode, periodic, traveling-wave solutions with period 2π , wavenumber k , and surface tension parameter T . The first letter in each cell signifies if small-amplitude solutions are spectrally stable (s) or unstable (u). The second letter in each cell signifies if moderate- and large-amplitude solutions are spectrally stable or unstable. We were unable to compute the solutions corresponding to the cells that are left blank.

236 spectra undergo two bifurcations as wave height increases. We also found that the instability growth rate
 237 increases with wave height.

238 Next, we examined periodic, traveling-wave solutions to the capillary-Whitham equation with four
 239 different nonzero values of the surface tension parameter, T . We found that the cW solutions and their
 240 stability were more diverse than in the Whitham ($T = 0$) case. Most of the solutions we examined were
 241 waves of depression. In contrast, all periodic, traveling-wave solutions to the Whitham equation are
 242 waves of elevation. We found that as wave height increases, wave speed decreases (and can become
 243 negative). We were not able to determine if the cW equation admits a solution with maximal wave height.
 244 In contrast, the Whitham equation has a solution with maximal wave height. We computed periodic,
 245 traveling-wave solutions with for a wide range of wavenumbers, but were not able to compute solutions of
 246 all wavenumbers for all values of T . In addition to computing a variety of solutions with a single dominant
 247 wavenumber, we computed four families of solutions that had multiple dominant wavenumbers.

248 We examined the stability of all of the cW solutions we computed. Table 1 contains a summary of
 249 our results. We found that some solutions were spectrally stable and others were unstable. There are
 250 regions of (k, T) -space where small-amplitude, periodic, traveling-wave solutions are spectrally stable
 251 and large-amplitude solutions are unstable. There appear to be other regions of (k, T) -space where all
 252 solutions, regardless of amplitude, are spectrally stable. The exact topology of these regions remains an
 253 open question. If the solutions had a single dominant wavenumber, then the maximal instability growth
 254 rate increased with wave height. If the solutions had multiple dominant wavenumbers, there was not a
 255 simple relationship between instability growth rates and wave heights. Finally, we found some solutions
 256 for which the modulational instability was the dominant instability and other solutions that had other

257 dominant instabilities. However, all unstable solutions we examined were unstable with respect to the
258 modulational instability.

259 We thank Mats Ehrnström, Vera Hur, Mat Johnson, Logan Knapp, and Olga Trichtchenko for helpful
260 discussions. This material is based upon work supported by the National Science Foundation under grant
261 DMS-1716120.

262

- 263 1. Trillo, S.; Klein, M.; Clauss, G.; Onorato, M. Observation of dispersive shock waves developing from initial
264 depressions in shallow water. *Physica D* **2016**, *333*, 276–284.
- 265 2. Carter, J. Bidirectional Whitham equations as models of waves on shallow water. *Wave Motion* **2018**, *82*, 51–61.
- 266 3. Whitham, G. Variational methods and applications to water waves. *Proceedings of the Royal Society of London, A*
267 **1967**, *299*, 6–25.
- 268 4. Whitham, G. *Linear and Nonlinear Waves*; John Wiley & Sons, Inc., New York, 1974.
- 269 5. Ehrnström, M.; Kalisch, H. Traveling waves for the Whitham equation. *Differential and Integral Equations* **2009**,
270 *22*, 1193–1210.
- 271 6. Ehrnström, M.; Groves, M.; Wahlén, E. On the existence and stability of solitary-wave solutions to a class of
272 evolution equations of Whitham type. *Nonlinearity* **2012**, *25*, 2903–2936.
- 273 7. Arnesen, M. Existence of solitary-wave solutions to nonlocal equations. *Discrete and Continuous Dynamical
274 Systems. Series A* **2016**, *36*, 3483–3510.
- 275 8. Johnson, M.; Hur, V. Modulational instability in the Whitham equation for water waves. *Studies in Applied
276 Mathematics* **2015**, *134*, 120–143.
- 277 9. Sanford, N.; Kodama, K.; Carter, J.; Kalisch, H. Stability of traveling wave solutions to the Whitham equation.
278 *Physics Letters A* **2014**, *378*, 2100–2107.
- 279 10. Kalisch, H.; Moldabayev, D.; Verdier, O. A numerical study of nonlinear dispersive wave models with
280 SpecTraVVave. *Electronic Journal of Differential Equations* **2017**, *62*, 1–23.
- 281 11. Moldabayev, D.; Kalisch, H.; Dutykh, D. The Whitham equation as a model for surface water waves. *Physica D*
282 **2015**, *309*, 99–107.
- 283 12. Klein, C.; Linares, F.; Pilod, D.; Saut, J.C. On Whitham and related equations. *Studies in Applied Mathematics*
284 **2017**, *140*, 133–177.
- 285 13. Deconinck, B.; Trichtchenko, O. High-frequency instabilities of small-amplitude Hamiltonian PDEs. *Discrete
286 and Continuous Dynamical Systems* **2015**, *37*, 1323–1358.
- 287 14. Dinvay, E.; Moldabayev, D.; Dutykh, D.; Kalisch, H. The Whitham equation with surface tension. *Nonlinear
288 Dynamics* **2017**, *88*, 1125–1138.
- 289 15. Vanden-Broeck, J.M. *Gravity-Capillary Free-Surface Flows*; Cambridge University Press, 2010.
- 290 16. Crapper, G. An exact solution for progressive capillary waves of arbitrary amplitude. *Journal of Fluid Mechanics*
291 **1957**, *2*, 532–540.
- 292 17. Trulsen, K.; Kliakhandler, I.; Dysthe, K.; Verlarde, M. On weakly nonlinear modulation of waves on deep water.
293 *Physcs of Fluids* **2000**, *12*, 2432.
- 294 18. Sulem, C.; Sulem, P.L. *The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse*; Springer, 1999.
- 295 19. Akers, B.; Ambrose, D.; Wright, J. Gravity perturbed Crapper waves. *Proceedings of the Royal Society A* **2014**,
296 *470*, 20130526.
- 297 20. Akers, B.; Milewski, P. Model equations for gravity-capillary waves in deep water. *Studies in Applied
298 Mathematics* **2008**, *121*, 49–69.
- 299 21. Akers, B.; Milewski, P. A model equation for wavepacket solitary waves arizing from gracity-capillary flows.
300 *Studies in Applied Mathematics* **2009**, *122*, 249–274.
- 301 22. Ehrnström, M.; Johnson, M.; Maehlen, O.; Remonat, F. On the bifurcation diagram of the capillary-gravity
302 Whitham equation. *arXiv:1901.03534 [math.AP]* **2019**.
- 303 23. Remonato, F.; Kalisch, H. Numerical bifurcation for the capillary Whitham equation. *Physica D* **2017**, *343*, 51–62.

- 304 24. Hur, V.; Pandey, A. Modulational instability in a full-dispersion shallow water model. *Studies in Applied*
305 *Mathematics* **2019**, *142*, 3–47.
- 306 25. Deconinck, B.; Kutz, J. Computing spectra of linear operators using Hill’s method. *Journal of Computational*
307 *Physics* **2006**, *219*, 296–321.
- 308 26. Ehrnström, M.; Wahlén, E. On Whitham’s conjecture of a highest cusped wave for a nonlocal shallow water
309 wave equation. *Annales de l’Institut Henri Poincaré C, Analyse non linéaire* **2019**, p. In press.
- 310 27. Bottman, N.; Deconinck, B. KdV cnoidal waves are linearly stable. *Discrete and Continuous Dynamical Systems A*
311 **2009**, *25*, 1163–1180.

312 © 2019 by the authors. Submitted to *Fluids* for possible open access publication under the terms and conditions of
313 the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).