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Abstract: Recently, the Whitham and capillary-Whitham equations were shown to accurately model the
evolution of surface waves on shallow water [1,2]. In order to gain a deeper understanding of these
equations, we compute periodic, traveling-wave solutions to both and study their stability. We present
plots of a representative sampling of solutions for a range of wavelengths, wave speeds, wave heights,
and surface tension values. Finally, we discuss the role these parameters play in the stability of these
solutions.
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1. Introduction

The dimensionless Korteweg-deVries equation (KdV) including surface tension,

Up + Uy + (% — %)Mxxx + 2uu, =0, (1)
is an asymptotic approximation to the surface water-wave problem including surface tension in the
small-amplitude, long-wavelength limit. The variable u = u(x,t) represents dimensionless surface
displacement, t represents the dimensionless temporal variable, x represents the dimensionless spatial
variable, and T > 0 represents the dimensionless coefficient of surface tension (the inverse of the Bond
number). This equation only accurately reproduces the unidirectional, linear phase velocity of the
full water wave problem for a small range of wavenumbers near zero. In order to address this issue,
Whitham [3,4] proposed a generalization of KdV that is now known as the Whitham equation for water
waves. In dimensionless form, this equation is given by

ur + Kuy + 2uu, =0, )

where K is the Fourier multiplier defined by the symbol

b fe). ©)

Kf(k) = \/(1 + Tk?)
We refer to equation (2) with T = 0 as the Whitham equation and (2) with T > 0 as the capillary-Whitham,

or cW, equation. Equation (2) reproduces the unidirectional phase velocity of the water wave problem
with T > 0 for all k.
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In summarizing the recent work on these equations, we focus on the results that are most directly
related to what we present below. Ehrnstrom & Kalisch [5] proved the existence of and computed
periodic, traveling-wave solutions to the Whitham equation. Ehrnstrom et al. [6] proved the existence of
solitary-wave solutions to the Whitham equation and showed that they are conditionally energetically
stable. Arnesen [7] proved the existence of solitary-wave solutions to the capillary-Whitham equation and
showed that they are conditionally energetically stable. Johnson & Hur [8] proved that all small-amplitude,
periodic, traveling-wave solutions of the Whitham equation are stable if their wavelength is above a critical
value and are unstable below the critical value. Sanford et al. [9] numerically corroborated the Johnson &
Hur [8] result and numerically established that all large-amplitude, periodic, traveling-wave solutions
of the Whitham equation are unstable regardless of wavelength. Kalisch et al. [10] present numerical
results which suggest that large-amplitude solutions of the Whitham equation are unstable. Moldabayev
et al. [11] presented a scaling regime in which the Whitham equation can be derived from the water wave
problem and compared its dynamics with those from other models including the Euler equations. Klein
et al. [12] proved that the Whitham equation is a rigorous model of water waves in the KdV regime.
The validity of the Whitham equation outside the KdV regime remains an open question. Deconinck &
Trichtchenko [13] proved that the unidirectional nature of the Whitham equation causes it to miss some of
the instabilities of the Euler equations. Dinvay et al. [14] extended the work of Moldabayev et al. [11] to
include surface tension and show that the capillary-Whitham equation gives a more accurate reproduction
of the free-surface problem than the KdV and Kawahara (fifth-order KdV) equations. Trillo et al. [1]
compared Whitham predictions with measurements from laboratory experiments and showed that the
Whitham equation provides an accurate model for the evolution of initial waves of depression, especially
when nonlinearity plays a significant role. Additionally, Carter [2] compared predictions with another set
of laboratory measurements and showed that both the Whitham and capillary-Whitham equations more
accurately model the evolution of long waves of depression than do the KdV and Serre (Green-Naghdi)
equations.

Much work has been done on equations related to the capillary-Whitham equation. Vanden-Broeck
[15] provides a detailed review of gravity-capillary free surface flows. In the absence of gravity,
Crapper [16] found a family of exact solutions to the water wave problem with surface tension. Trulsen
et al. [17] presented an equation for weakly nonlinear waves on deep water with exact linear dispersion
including gravity, but not surface tension. This equation is to the NLS equation, see for example Sulem
& Sulem [18], as the Whitham equation is to the KdV equation. Akers et al. [19] prove the existence of
gravity-capillary waves that are nearby to Crapper waves when the gravity effect is small. They showed
numerically that these solutions are waves of depression and that there exists a wave of highest amplitude.
Akers & Milewski [20,21] derive and study solitary-wave solutions of multiple full-dispersion models of
gravity-capillary waves. The papers [17,20,21] all approach capillary-gravity problem from the deep-water
viewpoint as opposed to the capillary-Whitham equation which comes from the shallow-water viewpoint.

Finally, the recent work by Ehrnstrom et al. [22] includes many theoretical results on solutions
to the capillary-Whitham equation. It gives a complete description of all small-amplitude, periodic,
traveling-wave solutions to the capillary-Whitham equation and then extends these small-amplitude
results to global curves. Further, they analytically describe some secondary bifurcations that connect
different branches. These results tie in nicely with the numerical results we present below.

The remainder of the paper is outlined as follows. Section 2 describes the solutions we examine, their
properties, and the linear stability calculations. Section 3 contains plots of solutions to the Whitham and
capillary-Whitham equations, plots of the corresponding stability spectra, and a discussion of these results.
Section 3 contains the main results of the paper. Section 4 concludes the paper by summarizing the results.
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2. Traveling waves and their stability

We consider periodic, traveling-wave solutions of the form

u(x, t) = f(x —ct), 4)

where f is a smooth, periodic function with period L and c is the speed of the solution. Ehrnstrom &
Kalisch [5] proved that the Whitham equation admits solutions of this form and Remonato & Kalisch [23]
computed a variety of cW solutions of this form. Substituting (4) into (2) and integrating once gives

—cf+Kf+f>=B, (5)
where B is the constant of integration. This equation is invariant under the transformation
f—=f+v c¢—=c+2y, B—-B+y(1l—-c—7). (6)

Therefore, we consider the entire family of solutions of the form given in equation (4) by considering only
solutions with zero mean, that is solutions such that

L
/0 f(z)dz=0. (7)

In order to study the stability of these solutions, change variables to a moving coordinate frame by
introducing the coordinates, z = x — ct and T = ¢t. In the moving coordinate frame, the cW equation is
given by

U — cuy + Ku, + 2uu, = 0. (8)

We consider perturbed solutions of the form
upert(z, T) = f(z) +ew(z, 7) + (’)(ez), 9)

where f(z) is a zero-mean, periodic, traveling-wave solution of the cW equation (i.e. a stationary solution
of (8)), w(z, T) is a real-valued function, and € is a small, positive constant. Substituting (9) into (8) and
linearizing gives

wr — cw; + Kw, + 2fw, + 2f,w = 0. (10)

Without loss of generality, assume
w(z,7) = W(z)e! +cc, (11)

where W(z) is a complex-valued function, A is a complex constant, and c.c. denotes complex conjugate.
Substituting (11) into (10) and simplifying gives

(c=2f)W —=2f'W - KW' = AW, (12)
where prime means derivative with respect to z. In operator form, equation (12) can be written as

LW =AW, where L = (c—2f)d;—2f —KO,. (13)

We are interested in finding the set of A that lead to bounded solutions of (13). In other words, we are
interested in finding the spectrum, o, of the operator £. The spectrum determines the spectral stability
of the solutions. If ¢(£) has no elements with positive real part, then the solution is said to be spectrally
stable. If (L) has one or more elements with positive real part, then the solution is said to be unstable.
Since the capillary-Whitham equation is Hamiltonian, see Hur & Pandey [24], 0(£) is symmetric under
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reflections across both the real and imaginary axes. We use this fact as one check on the numerical stability
results in the next section.

3. Numerical results

In this section, we present plots of periodic, traveling-wave solutions of the Whitham and
capillary-Whitham equations along with their stability spectra. The solutions were computed using
a generalization of the Newton-based method presented by Ehrnstrom & Kalisch [5]. Following the work
of Sanford et al. [9], the stability of these solutions was computed using the Fourier-Floquet-Hill method of
Deconinck & Kutz [25].

3.1. The Whitham equation

In order to best understand the role surface tension plays in the stability of periodic, traveling-wave
solutions to the capillary-Whitham equation, we begin by reviewing results from the Whitham equation
(i.e. the zero surface tension case). Hur & Johnson [8] proved that all small-amplitude Whitham solutions
with k < 1.145 (where k is the wavenumber of the solution) are stable while all small-amplitude
solutions with k > 1.145 are unstable. Sanford et al. [9] numerically corroborated this result, presented
numerical results that suggest that all large-amplitude Whitham solutions are unstable, and established
that 27r-periodic, traveling-wave solutions with “small” wave heights are spectrally stable while those
with “large” wave heights are unstable.

Figure 1 contains plots of four 27t-periodic solutions to the Whitham equation with moderate wave
heights. As the wave height, H, of the solution increases, so does the solution’s wave speed, c. Figure 2
contains plots of the stability spectra corresponding to these solutions. The spectrum of the solution in
Figure 1(a), see Figure 2(a), lies entirely on the imaginary axis and therefore this solution is spectrally stable.
Further simulations (not included) show that all solutions with smaller wave heights (and period 27)
are also spectrally stable. The spectra corresponding to the other three solutions all include eigenvalues
with positive real parts and therefore these solutions are unstable. As the wave height of the solution
increases, the maximum instability growth rate (i.e. the real part of the eigenvalue with maximal real part)
also increases. All of these spectra include the “figure 8” associated with the modulational (Benjamin-Feir)
instability.

Whitham [4] conjectured that the Whitham equation admits a highest traveling-wave solution and
that it is nonsmooth. Ehrnstréom and Wahlén [26] proved this hypothesis. Figure 3 includes plots of six
solutions that are somewhat near this highest wave. The inset plots are zooms of the solutions near their
crests and show that all of the solutions we consider are smooth. To our knowledge, this is the first time
that the spectral stability of solutions of the Whitham equation with wave heights this large have been
studied.

Figure 4 includes the stability spectra corresponding to the solutions in Figure 3. All six of these
solutions are unstable. As wave height (or wave speed) increases, the maximal instability growth rate also
increases. The stability spectra undergo two bifurcations as the wave height increases. The first bifurcation
is shown in Figure 4(a) and the second is shown in Figure 4(b). The first occurs when the top part of
the figure 8 bends down and touches the bottom part on the R(A) axis at around A = +0.05. (See the
transition from the spectrum in Figure 2(d) to the blue spectrum in Figure 4(a).) This causes the vertical
figure 8 to transition into a horizontal figure 8 inside of a vertical “peanut”. (See the orange spectrum
in Figure 4(a).) The second bifurcation occurs when the horizontal figure 8 collapses toward the origin
and the peanut pinches off into two ovals centered on the R (A) axis. (See Figure 4(b).) Note that the two
yellow “dots” near A = 1-0.32 are actually small ovals. As wave height increases even further, these ovals
decrease in diameter and move further away from the Z(A) axis. The solution with maximal wave height
is cusped and therefore a very large number of Fourier modes would be required to resolve it accurately.



Version March 12, 2019 submitted to Fluids 50f19

(a) (b)

c d
(© 5 (d)
0.3
0.3
0.2
— 0.2
N
+ 0.1 0.1
0 — =~/ —— 2\ — — — O —— == — — -
-0.1 -0.1
- -3 0 /2 ™ - -3 0 /2 ™

Figure 1. Plots of four moderate wave height, 27t-periodic, zero-mean solutions of the Whitham equation.
The wave speeds and wave heights of these solutions are (a) ¢ = 0.89236, H = 0.17148, (b) ¢ = 0.92685,
H = 0.29901, (c) ¢ = 0.96612, H = 0.43667, and (d) ¢ = 0.97249, H = 0.47203. Note that the vertical scale is
different in each of the plots.
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Figure 2. Spectra of the solutions shown in Figure 1. Note that both the horizontal and vertical scales vary
from plot to plot.
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Figure 3. Figures (a) and (b) each contain three plots of large wave height, 27t-periodic, zero-mean solutions
of the Whitham equation. The solutions are very similar and nearly lie on top of one another. The inset
plots are zooms of the intervals surrounding the crests of the solutions. The wave speeds and heights of
these solutions, in order of increasing speed, are (a) ¢ = 0.97266 and H = 0.47330 (blue); ¢ = 0.97276 and
H = 0.47405 (orange); and ¢ = 0.97351 and H = 0.48007 (yellow); and (b) ¢ = 0.97451 and H = 0.50058
(blue); c = 0.97501 and H = 0.499599 (orange); and ¢ = 0.97596 and H = 0.52013 (yellow).

This makes computing solutions near the solution with maximal wave height prohibitively expensive.
The stability calculation is even more computationally expensive. Because of this, exactly what happens to
the stability spectra as the wave height approaches the maximal wave height remains an open question

3.2. The capillary-Whitham equation

In this subsection, we study periodic, traveling-wave, zero-mean solutions of the cW equation and
their stability. Due to the massive number of solutions this equation admits, this study is not meant
to be exhaustive. We present plots of solutions and their stability spectra and end with a discussion
that summarizes our observations. Ehrnstrom et al. [22] prove that small-amplitude solutions to the
capillary-Whitham equation exist for all values of T > 0. Note that the solutions presented herein cannot
be directly compared with those of Remonato & Kalisch [23] because we required the solutions to have
zero mean while they did not. However, the two sets of solutions are related via the transformation given
in equation (6).

We begin by justifying the values we selected for the capillarity /surface tension parameter, T. The
Fourier multiplier K undergoes a bifurcation at T = 1. When T=0, K decreases monotonically to zero as
the wavenumber of the solution, k > 0, increases. When T € (0, %), IC achieves a unique local minimum at
some wavenumber k* € (0,c0). When T > %, K increases monotonically for all k > 0 and therefore X has
is no local minimum. Because of this behavior, we selected T = 0.2, %, and 0.4. Additionally, we study
solutions for T ~ 0.1582 (see Section 3.2.4 for details). Figure 5 contains plots of K versus k for each of
these T values and demonstrates the bifurcation.
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Figure 4. Spectra of the solutions shown in Figure 3.
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Figure 5. Plots of K versus k for each of the five values of T examined herein.
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C

Figure 6. A portion of the wave height versus wave speed bifurcation diagram for the cW equation with
T = 0.2. The colored dots correspond to solutions that are examined in more detail in Figures 7-9.

3.2.1. Surface tension parameter T = 0.2

When T = 0.2, we were able to compute solutions with wavenumbers greater than k ~ 1.9, but were
not able to compute solutions with wavenumber less than k ~ 1.9. (Note that we computed solutions with
both integer and non-integer wavenumbers.) This may be related to Proposition 5.2 of Ehrnstrom et al. [22]
which states that there are regions of (k, T)-space where no periodic solutions of the capillary-Whitham
equation exist. This may also be related to the fact that k* ~ 1.9. (Recall that k* is the location of the
local minimum of X when T < %.) Figure 6 includes a portion of the wave height versus wave speed
bifurcation diagram for this case. It includes the bifurcation branches corresponding to the k = 2,...,6
solutions as well as an additional branch that splits off from the k = 4 branch when H > 0. The colored
dots correspond to solutions that are examined in more detail below. Unlike the Whitham (T = 0) case,
the diagram shows that as the speed of the solution decreases, the wave height increases. Ehrnstrom
Wahlén [26] proved that, in the small-amplitude limit, the relationship between wave height and speed is
determined by the ratio of the wave number and period of the solution.

Figure 7(a) includes plots of four different k = 2 (i.e. period ), traveling-wave solutions to the cW
equation with T = 0.2. Unlike solutions of the Whitham equation which are waves of elevation, these
solutions are waves of depression. As the wave height increases, the solution speed decreases. Although
the bifurcation diagram suggests that a maximal wave height does not exist, we were not able to prove it,
numerically or otherwise. As wave speed decreases, the solutions become steeper waves of depression
with increasing wave height. This is consistent with the Ehrnstrom et al. [22] result that the solutions limit
to a constant solution in the L2, but not L*®, sense. However, note that Ehrnstrom et al. [22] proved that
all periodic, traveling-wave solutions to the cW equation are smooth. Figure 7(b) contains plots of the
corresponding linear stability spectra. All four of these solutions are unstable. Just as with solutions to the
Whitham equation, the maximal instability growth rate of these solutions increases as their wave heights
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Figure 7. Plots of (a) four representative solutions of the cW equation with T = 0.2 and k = 2 and (b) their
stability spectra. The wave speeds and heights of these solutions are c = 0.7609 and H = 0.5060 (blue),
¢ = 0.5369 and H = 1.004 (orange), c = 0.3289 and H = 1.499 (yellow), and ¢ = 0.1369 and H = 2.002

(purple).

@ ®)
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Figure 8. Plots of (a) four representative solutions of the cW equation with T = 0.2 and k = 5 and (b) their
stability spectra. The wave speeds and heights of these solutions are ¢ = 1.016 and H = 0.4972 (blue),
¢ = 0.8364 and H = 1.005 (orange), c = 0.6334 and H = 1.508 (yellow), and ¢ = 0.4374 and H = 2.002

(purple).

increase. Additional numerical simulations (not shown) establish that all small-amplitude, traveling-wave
solutions with k = 2 and T = 0.2 are unstable.

Figure 8(a) includes plots of four k = 5, traveling-wave solutions to the c(W equation with T = 0.2.
Figure 7(b) shows the corresponding stability spectra. These four solutions have approximately the same
wave heights as the four k = 2 solutions shown in Figure 7(a). Other than their period and speeds, the
k = 5 solutions are qualitatively similar to the k = 2 solutions. The solution with the smallest wave
height (blue) is spectrally stable. This is qualitatively different than what happens in the T = 0 case where
all small-amplitude solutions with k > 1.145 are unstable. The three solutions with larger wave height
are unstable and the maximal instability growth rate increases with wave height. Additional numerical
simulations (not shown) establish that solutions with k € (2,5) have similar properties to the solutions
presented in Figures 7-8. There exists a k' € (2,5) where the small-amplitude solutions switch from being
unstable to spectrally stable.

Figure 9 contains plots of four representative solutions from the bifurcation branch that splits off
from the k = 4 branch. These solutions are qualitatively different than the solutions examined above,
but have approximately the same wave heights as the solutions shown in Figures 7(a) and 8(a). These
solutions are similar to the mixed-mode solutions examined by Remonato & Kalisch [23]. For solutions
with crests of multiple heights, we define wave height to be the maximum value of the solution minus the
minimum value of the solution. Figure 9(b), shows that the stability spectra are also qualitatively different
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Figure 9. Plots of (a) four representative solutions of the cW equation with T = 0.2 from the solution
branch that does not touch the horizontal axis in Figure 6 and (b) their stability spectra. The wave speeds
and heights of these solutions are ¢ = 0.9540 and H = 0.5008 (blue), ¢ = 0.7614 and H = 1.002 (orange),
¢ = 0.5563 and H = 1.498 (yellow), and c = 0.3574 and H = 1.999 (purple).

than those examined above. The spectra for each solution includes a horizontal figure 8 centered at the
origin. (In the figure, these figure 8s appear as horizontal lines along Z(A) = 0 due to scaling.) Thus,
each solution is unstable with respect to the modulational instability. Each spectrum has six additional
“bubbles” centered on the Z(A) axis. (Only four of the blue bubbles are easily visible due to scaling.) The
solution with smallest wave height (the blue solution) has the largest maximum instability growth rate.
But, there does not appear to be a simple relationship between wave height and the maximum instability
growth rate in this case.

3.2.2. Surface tension parameter T = %

Figure 10 includes a portion of the bifurcation diagram for T = 1. The colored dots correspond to
solutions that are examined in more detail below. These solutions have approximately the same wave
heights as the colored solutions examined in other sections. The bifurcation diagram shows that as wave
speed decreases, wave height increases for all branches (that we examined). This is consistent with the
Ehrnstrom et al. [22] result that the solutions limit to a constant solution in the L2, but not L%, sense.

Figures 11 and 12 include plots of k = 1 and k = 2 solutions and their stability spectra for T = % All
eight of these solutions are unstable and their spectra are shaped like horizontal figure 8s. As wave height
increases, the maximal instability growth rate also increases. The k = 2 solutions have larger instability
growth rates than the k = 1 solutions with the same wave height.

Figures 13 includes plots of the k = 5 solutions and their stability spectra for T = % Other than their
periods, these solutions appear to be qualitatively similar to the k = 1 and k = 2 solutions. However, their
stability spectra lie completely on the Z(A) axis. This means that all four of these solutions,regardless of
their wave height, are spectrally stable. This numerically establishes that when T = % there are some
intervals of k space in which the small-amplitude, periodic, traveling-wave solutions are spectrally stable
and other regions of k space in which these solutions are unstable.

3.2.3. Surface tension parameter T = 0.4

Figure 14 includes a portion of the bifurcation diagram for T = 0.4. The colored dots correspond to
solutions that are examined in more detail below. These solutions have approximately the same wave
heights as the colored solutions examined in other sections. The bifurcation diagram shows that as wave
speed decreases, wave height increases for all branches (that we examined).

Figure 15 includes plots of four representative k = 1 solutions to the cW equation with T = 0.4 and
their stability spectra. All four of these solutions are unstable and the growth rate of the instabilities
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Figure 10. A portion of the bifurcation diagram for the capillary Whitham equation with T = % The
colored dots correspond to solutions that are examined in more detail in Figures 11-13.
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Figure 11. Plots of (a) four representative solutions of the cW equation with T = % and k = 1 and (b) their
stability spectra. The wave speeds and heights of these solutions are c = 0.8087 and H = 0.5036 (blue),
¢ = 0.5737 and H = 1.003 (orange), ¢ = 0.3567 and H = 1.506 (yellow), and ¢ = 0.1657 and H = 1.994

(purple).
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Figure 12. Plots of (a) four representative solutions of the cW equation with T = % and k = 2 and (b) their
stability spectra. The wave speeds and heights of these solutions are c = 0.9415 and H = 0.4970 (blue),
¢ = 0.7295 and H = 1.002 (orange), ¢ = 0.5145 and H = 1.509 (yellow), and ¢ = 0.3205 and H = 1.997

(purple).
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Figure 13. Plots of (a) four representative solutions of the cW equation with T = % and k = 5 and (b) their
stability spectra. The wave speeds and heights of these solutions are ¢ = 1.307 and H = 0.4924 (blue),
¢ = 1.155 and H = 0.9975 (orange), ¢ = 0.9602 and H = 1.508 (yellow), and ¢ = 0.7642 and H = 1.998

(purple).
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Figure 14. A portion of the bifurcation diagram for the cW equation with T = 0.4. The colored dots
correspond to solutions that are examined in more detail in Figures 15-17.

increases as the wave height of the solution increases. Figure 16 shows that all four k = 2 solutions
are spectrally stable while Figure 17 shows that all four k = 5 solutions are unstable. This numerically
establishes that when T = 0.4 there are some intervals of k space in which the small-amplitude, periodic,
traveling-wave solutions are spectrally stable and other regions of k space in which these solutions are
unstable.

3.2.4. Surface tension parameter T ~ 0.1582

Remonato & Kalisch [23] presented the following formula which allows T values to be chosen so that
solutions corresponding to any two k values will have the same wave speed in the small-amplitude limit

T — T(kl,kz) . k] tanh(kz) - k2 tanh(kl) (14)

 kiko(kq tanh(kq) — kp tanh(ky))

Using this formula with k; = 1 and k, = 4 gives T ~ 0.1582, which is the final T value we examine. A
portion of the corresponding bifurcation diagram is included in Figure 18. The fact that the k = 1 and
k = 4 solutions have the same speed in the small-amplitude limit is exemplified by the fact that there are
two branches leaving the same point on the ¢ axis near ¢ = 0.94. These branches correspond to the k = 4
solution and a k = (1,4) branch. Here, the notation k = (a, b) means that the solution is composed of a
linear combination of the k = a and k = b wavenumbers in the small-amplitude limit. We were unable
to isolate the k = 1 solution. We note that Remonato & Kalisch [23] made a similar observation for their
(1,7) solution.

Figure 19 shows that solutions on the k = 4 branch with small wave height are spectrally stable,
while those with large wave height are unstable. These solutions do not have the striking increasingly
steep wave of depression form that the cW solutions presented above have. As wave height increases, the
growth rates of the instabilities also increase.
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Figure 15. Plots of (a) four representative solutions of the cW equation with T = 0.4 and k = 1 and (b) their
stability spectra. The wave speeds and heights of these solutions are c = 0.8596 and H = 0.4969 (blue),
¢ = 0.6246 and H = 1.006 (orange), ¢ = 0.4096 and H = 1.504 (yellow), and ¢ = 0.2096 and H = 2.011
(purple).
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Figure 16. Plots of (a) four representative solutions of the cW equation with T = 0.4 and k = 2 and (b)
their stability spectra. The wave speeds and heights of these solutions are ¢ = 1.012 and H = 0.5051 (blue),
¢ = 0.8115 and H = 1.000 (orange), c = 0.5975 and H = 1.507 (yellow), and ¢ = 0.3975 and H = 2.005

(purple).
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Figure 17. Plots of (a) four representative solutions of the cW equation with T = 0.4 and k = 5 and (b)
their stability spectra. The wave speeds and heights of these solutions are ¢ = 1.430 and H = 0.4897 (blue),
¢ = 1.285 and H = 1.004 (orange), c = 1.100 and H = 1.504 (yellow), and ¢ = 0.9052 and H = 1.995
(purple).
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Figure 18. A portion of the bifurcation diagram for the cW equation with T ~ 0.1582. The colored dots
correspond to solutions that are examined in more detail in Figures 19-22.
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Figure 19. Plots of (a) four representative solutions of the cW equation with T ~ 0.1582 and k = 4 and (b)
their stability spectra.
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Figure 20. Plots of (a) four representative solutions of the cW equation with T ~ 0.1582 and k = (1,4) and
(b) their stability spectra.
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Figure 21. Plots of (a) four representative solutions of the cW equation with T ~ 0.1582 and k = (1,5) and
(b) their stability spectra.

Figure 20 includes plots of four representative k = (1,4) solutions and their stability spectra. These
solutions do not have the increasingly steep wave of depression form of the majority of the other cW
solutions. The spectra of these k = (1,4) solutions are similar to those in Figure 9(b). This is likely due to
the fact that both of these sets of solutions have more than one dominant Fourier mode. Each spectrum
has a horizontal figure 8 centered at the origin and six bubbles centered on the Z(A) axis. The solution
with the largest wave height is not the most unstable solution.

Figure 18 shows that there is a secondary branch that splits off from the k = 5 branch at H ~ 0.39.
As expected, the solutions along this branch do not have a single dominant wavenumber. The solutions
on this branch are k = (1,5) solutions until the branch curves around and heads upward. The solutions
after this turning point are k = (1,5, 6) solutions. Figure 21(a) includes plots of four k = (1,5) solutions
and their stability spectra. All four of these solutions are unstable and have complicated spectra. Figure
22 includes plots of four representative k = (1,5, 6) solutions and shows that they are unstable. All four
solutions have horizontal figure 8s centered at the origin and four bubbles centered along the Z(A) axis.
The solution with smallest wave height is the most unstable.

4. Summary

Bottman & Deconinck [27] proved that all traveling-wave solutions of the KdV equation are stable.
This is quite different than the Whitham equation where all large-amplitude solutions are unstable [9] and
only small-amplitude solutions with a wavenumber k > 1.145 are stable [8,9].

We began by examining large-amplitude, 27t-periodic, traveling-wave solutions to the Whitham
equation (with zero surface tension). We found that all such solutions are unstable and that their stability
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Figure 22. Plots of (a) four representative solutions of the c(W equation with T =~ 0.1582 and k = (1,5, 6)
and (b) their stability spectra.

k
T 1 2 3 4 5
0 SsuU uu uu uu uu
0.1582... uu uu  su  su
0.2 uu uu uu  su
1/3 uu uu ss SS  SS
0.4 uu  ss ss ss  uu

Table 1. A summary of stability results for single-mode, periodic, traveling-wave solutions with period 27,
wavenumber k, and surface tension parameter T. The first letter in each cell signifies if small-amplitude
solutions are spectrally stable (s) or unstable (u). The second letter in each cell signifies if moderate- and
large-amplitude solutions are spectrally stable or unstable. We were unable to compute the solutions
corresponding to the cells that are left blank.

spectra undergo two bifurcations as wave height increases. We also found that the instability growth rate
increases with wave height.

Next, we examined periodic, traveling-wave solutions to the capillary-Whitham equation with four
different nonzero values of the surface tension parameter, T. We found that the cW solutions and their
stability were more diverse than in the Whitham (T = 0) case. Most of the solutions we examined were
waves of depression. In contrast, all periodic, traveling-wave solutions to the Whitham equation are
waves of elevation. We found that as wave height increases, wave speed decreases (and can become
negative). We were not able to determine if the cW equation admits a solution with maximal wave height.
In contrast, the Whitham equation has a solution with maximal wave height. We computed periodic,
traveling-wave solutions with for a wide range of wavenumbers, but were not able to compute solutions of
all wavenumbers for all values of T. In addition to computing a variety of solutions with a single dominant
wavenumber, we computed four families of solutions that had multiple dominant wavenumbers.

We examined the stability of all of the cW solutions we computed. Table 1 contains a summary of
our results. We found that some solutions were spectrally stable and others were unstable. There are
regions of (k, T)-space where small-amplitude, periodic, traveling-wave solutions are spectrally stable
and large-amplitude solutions are unstable. There appear to be other regions of (k, T)-space where all
solutions, regardless of amplitude, are spectrally stable. The exact topology of these regions remains an
open question. If the solutions had a single dominant wavenumber, then the maximal instability growth
rate increased with wave height. If the solutions had multiple dominant wavenumbers, there was not a
simple relationship between instability growth rates and wave heights. Finally, we found some solutions
for which the modulational instability was the dominant instability and other solutions that had other
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dominant instabilities. However, all unstable solutions we examined were unstable with respect to the
modulational instability.

We thank Mats Ehrnstrom, Vera Hur, Mat Johnson, Logan Knapp, and Olga Trichtchenko for helpful

discussions. This material is based upon work supported by the National Science Foundation under grant
DMS-1716120.
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