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Abstract— Converter-interfaced power sources (CIPS) are
hybrid control systems as they may switch between multiple
operating modes. Due to increasing penetration, the hybrid
behavior of CIPS, such as wind turbine generators (WTGs), may
have significant impact on power system dynamics. In this paper,
the frequency dynamics under inertia emulation and primary
support from WTG is studied. A mode switching for WTG to
ensure adequate frequency response is proposed. The switching
instants are determined by our proposed concept of a region of
safety (ROS), which is the initial set of safe trajectories. The
barrier certificate methodology is employed to derive a new
algorithm to obtain and enlarge the ROS for the given desired
safe limits and the worst case disturbance scenarios. Then, critical
switching instants and a safe recovery procedure are found.
In addition, the emulated inertia and load-damping effect are
derived in the time frame of inertia and primary frequency
response, respectively. The theoretical results under critical cases
are consistent with simulations and can be used as guidance for
a practical control design.

Index Terms— System frequency response, deadband, hybrid
system, inertia emulation, primary frequency support, safety
verification, sum of squares decomposition, semidefinite program-
ming, wind turbine generator.

I. INTRODUCTION

HYBRID behaviors in complex power networks have not
been carefully studied. However, with the increasing

connection of converter-interfaced power sources (CIPS), such
as, wind turbine generators (WTGs), into the power grid,
complex switching behaviors have been introduced as CIPS
can operate in many different modes such as grid-feeding,
grid-forming and grid-supporting [1]. The complex hybrid
behaviors from integrated CIPS will have more significant
impact on the traditional grid due to increasing penetration [2].
Analysis of the existing modes and corresponding switchings
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is important to understand system limits and guidelines for
control design.

Wind power is a dominant source among all renewable
sources. Variable speed wind turbine generators (WTG) are
mechanically decoupled from the grid and do not automati-
cally respond to frequency changes. With increasing penetra-
tion of wind power, the natural frequency support of traditional
synchronous generators is decreasing. Configuring the WTG
controls to participate in frequency control could benefit power
system dynamics by reducing frequency excursions [3]. This
participation can be realized by adding supplementary control
loops to the normal maximum power point tracking (MPPT)
mode of the WTG as shown in Fig. 1 [4].

Wind farm should operate at MPPT mode during most
times for efficient energy extraction, but provide enough active
power to form a synthetic inertia during certain events to
ensure system frequency stay within safe limits to avoid trig-
gering protection [5]. Such performance guaranteed control

concept have proposed as a new objective for highly control-
lable converters [6], [7]. The physical component corresponds
to this hybrid dynamics is a deadband. It is necessary for
efficient operation by guaranteeing more power extraction
from the wind and less mechanical stress on the gearbox;
however, a large deadband may limit the opportunity for the
WTG to provide sufficient inertia during a disturbance [8].
This is a crucial trade-off between economics and reliable
operations.

The aforementioned issues lead to the following two ques-
tions: Under a certain disturbance, can the designed inertia
emulation preserve the desired frequency limits? If so, what
is the largest deadband that preserves these limits? These
questions arise from actual power system operations faced
by transmission system operators (TSO) such as, Hydro-
Québec (HQ) [9]. However, as pointed out in [7], available
time (equivalent to deadband setting) for CIPS to maintain
bounded frequency is usually unknown. Few methods have
been proposed to answer the above questions beyond extensive
simulations.

In this paper, we propose a systematic theoretical analysis
to find precise answers to the above questions by considering
hybrid dynamic models. Based on selected modal analy-
sis (SMA) [10], a computationally truncable reduced-order
model is obtained and the above questions become tractable
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Fig. 1. Active power control of wind turbine generator with inertia emulation
and primary frequency control.

and solvable based on the barrier certificate approaches for
hybrid system safety verification [11]. In addition, the syn-
thetic inertia and damping provided by CIPS is derived based
on the reduced-order model.

A. Related Works

1) Hybrid System Safety Verification: A hybrid system
consists of continuous dynamic subsystems and discrete events
that capture interactions between them. Safety verification of
hybrid systems combines the automatic verification techniques
for finite state concurrent systems (so-called model checking
techniques) and computation of reachable sets for continuous
dynamic systems [12]. The mode transitions of controller
in Fig. 1 is shown in Fig. 2. Some switchings take place
autonomously due to physical limits (solid lines), while others
(dash lines) are designed for specific purposes, which are in the
scope of this paper. Due to the relatively simple transition map,
safety verification reduces down to reachable sets computation
under different vector fields.

The different approaches in reachability analysis of con-
tinuous dynamic system can be categorized into Lagrangian
and Eulerian methods [13]. Lagrangian methods seek efficient
over-approximation of the reachable set by propagating certain
initial sets represented usually by polygons or ellipses under
system vector field. Lagrangian methods are computationally
feasible for high-dimensional systems, and have been success-
fully applied to large scale power systems [14]–[16]. These
approximations lack accuracy when the shape of the reachable
set is not a polygon or an ellipse. On the other hand, the
goal of Eulerian methods (also known as level set method)
is to calculate as closely as possible the true reachable set
by computing a numerical solution to the Hamilton-Jacobi
partial differential equation (HJ PDE), where the initial sets
are implicitly represented by zero sublevel sets of an appro-
priate function. This is known as convergent approximation.
Transient [17], [18] and voltage [19] stability can be precisely
analyzed with the help of this method. To obtain numerical
solutions to the HJ PDEs, one needs to discretize the state
space, which leads to exponentially increasing computational
complexity and limits its application to systems with no more
than four continuous variables [14].

Fig. 2. Mode transitions of a WTG.

If the system dynamics and safety specifications can be
represented as polynomials, references [20] and [11] propose a
passivity-based approach that formulates safety verification as
a sum of squares (SOS) optimization problem. As long as the
SOS program is feasible, the safety property can be verified
and a polynomial barrier certificate is obtained such that no
trajectory of the system starting from the initial set can cross
this barrier to reach an unsafe region. The formulation in [11]
leads to an arbitrary barrier certificate, which can not rep-
resent the maximum safety preserving capability. The safety
supervisors for wind turbine emergency shutdown is designed
in [21] where the conservatism is reduced by maximizing
the volume of an elliptical reference shape inside the barrier
certificate. Still, no trajectory evaluation is attempted and
because of the shape limitation of the ellipsoid, it is difficult
to attain satisfactory results. In addition, the formulations
in [11] and [21] require a specific initial set. In a hybrid
system, the initial conditions after switching depend on the
switching instant. This requires a framework that builds the
condition without specific initial sets. Despite these issues,
the framework provides useful flexibility between accuracy
and computational complexity by choosing an appropriate
polynomial order.

2) Frequency Control With Participation of WTG Consid-

ering Deadband and Safety Limits: Accurate modeling of
deadband and other thresholds as hybrid systems can be done
using piecewise linear approximation [22]. GE has proposed
a detailed WTG model with inertia emulation and primary
frequency controllers, where the deadband is included. A sim-
plified structure is shown in Fig. 1 [8]. Recommended values
are 0.15 Hz for inertia emulation and 0.24 Hz for primary
frequency control, respectively, but the justification for these
values is not clear. Based on this control configuration, a
unified deadband of 0.1 Hz has been studied through sim-
ulation [23]. In [9] Hydro-Québec identified the need for
quantifying inertia emulation with deadband under the safety
requirement. In their approach, a frequency excursion limit
of 1.5 Hz is set up to prevent load shedding, then a certain
amount of inertia emulation and deadband are determined
based on simulation studies. A second drop of grid frequency
will occur once the primary frequency control of a partially
loaded WTG is deactivated [4], [8], [24]. A soft recovery
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procedure, i.e., deactivating primary frequency control of
different WTGs at different times, is proposed in [25] and [26].
The safety region has not been considered in this scenario.

B. Our Contributions

We propose the very concept region of safety to clarify the
hybrid system safety verification. A convergent approximation
algorithm is developed to estimate the largest region of safety
instead of achieving an arbitrary barrier certificate containing
a specific initial set. From the practical engineering point of
view, the established framework is applied to solve the hybrid
mode synthesis problem. The switching criteria or equivalent
deadbands for bounded response are built and explained.
The framework and analysis in this paper provide a general
guideline for the unclear safe switching problem.

C. Outline

The outline of the paper is as follows. In Section II, the
barrier certificate methodology and our proposed algorithm
is introduced. In Section III-A, the concept of representing
deadband as a hybrid systems is presented. Then selected
modal analysis (SMA) based model reduction is employed.
The controller gain is preserved under certain assumptions and
their equivalent emulated inertia and load-damping coefficient
is calculated. A case study is presented in Section IV and
followed by the conclusions in Section V.

II. PRINCIPLE OF SAFE MODE SWITCHING SYNTHESIS

Safety denotes the property that all system trajectories stay
within given bounded regions, thus, equipment damage or
relay trigger can be avoided (Note this is similar, but not
identical, to what is called security in power industry but
for purposes of this paper we will assume satisfying safety
conditions ensures secure operation). Consider the dynamics
of a power system governed by a set of ordinary differential
equations (ODEs) as

ẋ(t) = f (x(t), d(t)) (1)

where x(t) ∈ R
n denotes the vector of state variables and

d(t) ∈ R
m denotes certain disturbances, such as, generation

loss or an abrupt load change. Such a disturbance may be
assumed to be piecewise constant and bounded in the set D.
Let X ⊆ R

n be the computational domain of interest, XI ⊆ X

be the initial set, XU ⊆ X be the unsafe set, X(XI , t, d(t))

be the set of trajectories initialized in XI . Then the formal
definition of the safety property is given as follows.

Definition 1 (Safety): Given (1), X , XI , XU and D, the
safety property holds if there exists no time instant T ≥ 0 and
no piecewise constant bounded disturbance d : [0, T ] −→ D

such that X(XI , t, d(t)) ∩ XU �= ∅ for any t ∈ [0, T ].
Definition 2 (Region of Safety): A set that only initializes

trajectories with the property in Definition 1 is called a region

of safety.
Within the bounded set D, the safety property above is

defined in the worse-case scenario as well as the region of
safety since there is no further limits on disturbance value.
Then safety can be verified by the following theorem.

Theorem 3: Let the system ẋ = f (x, d), and the sets X ,
XI , XU and D be given, with f continuous. If there exists a
differentiable function B : R

n −→ R such that

B(x) ≤ 0 ∀x ∈ XI (2)

B(x) > 0 ∀x ∈ XU (3)
∂ B

∂x
f (x, d) < 0 ∀(x, d) ∈ X × D s.t. B(x) = 0 (4)

then the safety of the system in the sense of Definition 1 is
guaranteed [11].

B(x) is called a barrier certificate. The zero level set of B(x)

defines an invariant set containing XI , that is, no trajectory
starting in XI can leave. Thus, XI is a region of safety (ROS)
due to the existence of B(x). Eq. (4) relaxes the passivity
condition from the state space to the zero level set of B(x) and
thus, reduces conservatism. The other source of conservatism
is the initial set XI usually represented by a ball containing
the equilibrium point. However, this set could change under
disturbances. Based on this observation, we propose to solve
the following problem.

Problem 4: Let ẋ = f (x, d), X , XU and D be given. The
region of safety XI is obtained by solving:

max
XI ,B(x)

Volume(XI )

subject to B(x) ≤ 0 ∀x ∈ XI

B(x) > 0 ∀x ∈ XU

∂ B

∂x
f (x, d) < 0 ∀(x, d) ∈ X × D s.t. B(x) = 0

Remark 5: The importance of introducing the concept of
ROS and Problem 4 stems from the fact that we have need to
work with the initial sets instead of the invariant sets. Consider
the invariant sets {x ∈ R

n : Bi (x) ≤ 0} and ROS XI,i (green
regions) with i = 1, 2 calculated under different vector field
(or modes) f1(x) and f2(x) with the same safety limits and
D as shown in Fig. 3. Consider set up an emergency alert
for f1(x). Based on Theorem 3 once the trajectory crosses
B1(x) = 0, the alert is triggered. The dynamics after the alert
is not our concern (black dash lines in Fig. 2). The safety
supervisor of wind turbine shutdown in [21] is based on this
principle. Now consider a transition from f1(x) to f2(x), since
the state variables are continuous, they will evolve according to
f2(x) beginning at the last points before transition. As a result,
safety can be guaranteed only if this initial value belongs to
the ROS under f2(x). In Fig. 3, only the point b is safe under
f1(x) and after switching. The point a is safe under f1(x)

but unsafe after the transition to f2(x). The point c is a safe
switching point but not safe under f1(x).

Proposition 6: In a hybrid system with several modes, safe
switching to mode i is guaranteed if the trajectory of the
current mode belongs to the ROS of mode i . Moreover, if ROS
is represented by some sublevel set of a continuous function
in terms of system states, then this function represents a safe
switching guard.

Proposition 6 illustrates the fundamental principle for
switching analysis in a hybrid system. Hence, the purpose
of Problem 4 is to lessen conservatism. Before we introduce
the proposed iterative algorithm to approximate the solution
to Problem 4, the computational techniques for Theorem 3
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Fig. 3. Region of safety and corresponding barriers under different vector
fields.

under polynomial data is introduced. Polynomial data denotes
that all sets are basic closed semi-algebraic sets (hence
defined by finitely many polynomial inequalities and equal-
ity constraints) and vector fields are polynomial [27]. Then
the property that the polynomials are non-negative on the
given semi-algebraic sets can be checked by sums of squares
decomposition, which can be further converted to semidefinite
programming (SDP) [20]. From now on all functions are
assumed to be polynomial unless specified otherwise. Then
the conditions in Theorem 3 can be written into a sums of
squares programming (SOSP) problem. First let us denote by
Σ2 [x] the space of SOS polynomials, and by Σ2 [x]p the
space of SOS polynomials of degree at most 2 p.

Problem 7: Let X = {x ∈ R
n : gX (x) ≥ 0}, XI =

{x ∈ R
n : gI (x) ≥ 0}, XU = {x ∈ R

n : gU (x) ≥ 0}, and D =

{d ∈ R
m : gD(d) ≥ 0}, which are represented by the zero

superlevel set of the polynomials gX (x), gI (x), gU (x), and
gD(d), respectively, and some small positive number ε be
given. Then

−B(x) − λI (x)gI (x) ∈ Σ2 [x] (5)

B(x) − ε − λU (x)gU (x) ∈ Σ2 [x] (6)

−
∂ B

∂x
(x) f (x, d) − λD(x, d)gD(d)

−λX (x, d)gX (x) − λB(x, d)B(x) ∈ Σ2 [x] (7)

with multipliers λI (x), λU (x), λX (x, d), λD(x, d) and
λB(x, d) SOS polynomials.

Conversion of Problem 7 to SDP has been implemented
in solvers such as SOSTOOLS [28] or the sum of squares
module [29] in YALMIP [30]. Then the powerful SDP solver
MOSEK [31] can be employed. Now let us introduce the
algorithm to approximate the solution of Problem 4.

Algorithm 8: Let X = {x ∈ R
n : gX (x) ≥ 0}, XU =

{x ∈ R
n : gU (x) ≥ 0}, D = {d ∈ R

m : gD(d) ≥ 0}, which are
represented by the zero superlevel of the polynomials gX (x),
gU (x) and gD(d), respectively, some small positive number ε,
initial order 2 p and maximal order 2 pmax for barrier certificate
computation be given.

• Initialization Let x i
0 for i = 1, · · · , N be sev-

eral initial points with safety verified, and XI,i =
{

x ∈ R
n : gI,i (x) ≥ 0

}

represent a small ball centered
at x i

0. Choose λB(x, d) equal to a sufficiently small

positive real number r and solve the following SOS
optimization for i = 1, · · · , N :

−B(0)(x) − λ
(0)
I,i (x)gI,i (x) ∈ Σ2 [x]

B(0)(x) − ε − λ
(0)
U (x)gU (x) ∈ Σ2 [x]

−
∂ B(0)

∂x
(x) f (x, d) − λ

(0)
D (x, d)gD(d)

−λ
(0)
X (x, d)gX (x) − r B(0)(x) ∈ Σ2 [x]

• Iteration k

(a) Fix the barrier certificate B(k−1)(x) from k − 1 step,
solve the SOS optimization for multiplier λ

(ka )
B (x, d):

−
∂ B(k−1)

∂x
(x) f (x, d) − λ

(ka )
D (x, d)gD(d)

− λ
(ka )
X (x, d)gX (x)−λ

(ka)
B (x, d)B(k−1)(x)∈Σ2 [x]

(b) Fix the barrier certificate B(k−1)(x) from k − 1 step,
the multiplier λ

(ka )
B (x, d) from k (a) step, solve the

following SOS optimization for B(k)(x):

−B(k)(x) − λ
(k)
I (x)B(k−1)(x) ∈ Σ2 [x]

B(k)(x) − ε − λ
(k)
U (x)gU (x) ∈ Σ2 [x]

−
∂ B(k)

∂x
(x) f (x, d) − λ

(k)
D (x, d)gD(d)

−λ
(k)
X (x, d)gX(x) − λ

(ka )
B (x, d)B(k)(x) ∈ Σ2 [x]

(c) If step k (b) is feasible, then let k = k + 1.
If infeasible, then increase the polynomial order of
B(k) by two, i.e., 2p = 2 p + 2. If p = pmax but
step k (b) is still infeasible, then the algorithm stops
and X ∗

I =
{

x : B(k−2)(x) ≤ 0
}

with B(k−1)(x) the
barrier.

The key idea of the proposed algorithm is to use the zero
level set of a feasible barrier certificate as an initial condition
and to search for a larger invariant set. Once feasible, this
initial condition becomes the ROS due to the existence of
corresponding invariant sets. A judicious choice of the initial
points in the initialization step can reduce the number of
iterations, and also helps to have a precise estimate in certain
sub-dimensions, if a full dimensional estimate is hard due to
computational complexity.

III. HYBRID REDUCED-ORDER MODEL OF WTG VIA

SMA-BASED MODEL REDUCTION

Consider the active power control in Fig. 1. The WTG is
assumed to operate at partial loaded condition, which means
Pgen < Pmax

gen and ωmin
r < ωr < ωmax

r . And no pitch angle
control is considered. The control signal sent to the voltage-
source converter (VSC) is given by

Pref = Coptω
3
r + Kie(ωgrid)�ω̇ + Kpc(ωgrid)�ω (8)

where Coptω
3
r , Kie(ωgrid)�ω̇, and Kpc(ωgrid)�ω provide func-

tionalities of maximum power point tracking (MPPT), inertia
emulation (IE) and primary frequency control (PFC), respec-
tively. Kie and Kpc are equal to zero when | �ωgrid |<

�ωdeadband, or equal to certain pre-set values otherwise.
The deadband effect is equivalent to the switching
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Fig. 4. Modelling deadband as a hybrid transition system.

guard Gdb(x) in the hybrid system illustrated in Fig. 4.
Gda1(x) and Gda2(x) represent signals (dash line in Fig. 1) for
deactivating the corresponding support in order to have a faster
frequency restoration after safety is preserved. It is worth men-
tioning that if ROSs of corresponding modes are employed for
those guards, then by Proposition 6, safety can be guaranteed.

A. Model Reduction

As shown in [32], there is a trade-off between system
dimension and the order of polynomials for set representation.
Since the active power variations and frequency dynamics
in power system are dominantly governed by mechanical
dynamics and modes, a reduced-order system is desired in
analysis so that higher order polynomials can be used for better
estimation of the ROS. The selective modal analysis (SMA)
based model reduction has proven to be successful in capturing
active power dynamics of WTG [10] and is chosen for
our study.

Consider a type-3 WTG connected to a reference bus. The
detailed model and the meaning of each variable is given in
Appendix B. Linearize (33), (34), (35) and (36) about the
equilibrium point given in Appendix A. Keep �ω̇ and �ω

as input variables and omit the variations of vwind. Then the
following model is obtained:

[

�ẋ

0

]

=

[

As Bs

Cs Ds

] [

�x

�y

]

+

[

Ms1

Ns1

]

�ω̇

+

[

Ms2

Ns2

]

�ω (9a)

�Pgen = [Es Fs ]

[

�x

�y

]

(9b)

where

x =
[

Eq D, Ed D, ωr , x1, x2, x3, x4
]T

(10)

y =
[

Vqr , Vdr , Iqr , Idr , Pgen, Qgen, Ids , Iqs , VD, θD

]T
(11)

Using Kron reduction [33] on Eq. (9) yields the following
state-space model:

�ẋ = Asys�x + Bsys1�ω̇ + Bsys2�ω (12a)

�Pgen = Csys�x + Dsys1�ω̇ + Dsys2�ω (12b)

where

Asys = As − Bs D−1
s Cs Csys = Es − Fs D−1

s Cs

Bsys1 = Ms1 − Bs D−1
s Ns1 Dsys1 = −Fs D−1

s Ns1

Bsys2 = Ms2 − Bs D−1
s Ns2 Dsys2 = −Fs D−1

s Ns2

The WTG rotor speed �ωr dynamic is closely related to
its active power output, and the mode where �ωr has the
highest participation would capture the relevant active power
dynamics. Therefore, �ωr is considered as the most relevant
state, and the other states are less relevant and denoted as z(t).
Eq. (12) can be rearranged as

[

�ω̇r

ż

]

=

[

A11 A12

A21 A22

] [

�ωr

z

]

+

[

Br1
Bz1

]

�ω̇ +

[

Br2
Bz2

]

�ω (13a)

�Pgen =
[

Cr Cz

]
[

�ωr

z

]

+ Dsys1�ω̇ + Dsys1�ω (13b)

The less relevant dynamics are:

ż = A22z + A21�ωr + Bz1�ω̇ + Bz2�ω (14)

Thus, the most relevant dynamic is described by:

�ω̇r = A11�ωr + A12z + Br1�ω̇ + Br2�ω (15)

In (15), z can be represented by the following expression:

z(t) = eA22(t−t0)z(t0) +

∫ t

t0

eA22(t−τ ) A21�ωr (τ )dτ

︸ ︷︷ ︸

response without control input

+

∫ t

t0

eA22(t−τ )Bz1�ω̇(τ)dτ

︸ ︷︷ ︸

response under inertia emulation

+

∫ t

t0

eA22(t−τ )Bz2�ω(τ)dτ

︸ ︷︷ ︸

response under primary frequency control

(16)

Using the most relevant mode, �ωr (τ ) can be expressed
as [10]:

�ωr (τ ) = crvr eλrτ (17)

where λr is the relevant eigenvalue, vr is the corresponding
eigenvector and cr is an arbitrary constant. The accuracy
of (17) is guaranteed by the dominant term of �ωr , which
can be used in solving the first integral in (16). Since A22 is
Hurwitz and its largest eigenvalue is much smaller than λr ,
the natural response will decay faster and can be omitted.
The essential reason is that A22 represents electrical dynamics
which are faster than the electro-mechanical dynamic repre-
sented by λr . Then the response without control input in (16)
will approximately equal to the forced response represented
as follows:

eA22(t−t0)z(t0) +

∫ t

t0

eA22(t−τ ) A21�ωr (τ )dτ

︸ ︷︷ ︸

response without control input

(18)

≈ (λr I − A22)
−1 A21�ωr (19)

The rate of change of frequency (RoCoF) �ω̇ and the stabi-
lized frequency deviation �ω are assumed to be fixed during
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the time window of interest, then the other two integrals are
easily calculated as

∫ t

t0

eA22(t−τ )Bz1�ω̇(τ)dτ

︸ ︷︷ ︸

response under inertia emulation

≈ (−A22)
−1 Bz1�ω̇ (20)

∫ t

t0

eA22(t−τ )Bz2�ω(τ)dτ

︸ ︷︷ ︸

response under primary frequency control

≈ (−A22)
−1 Bz2�ω (21)

Finally, the reduced-order WTG model with control inputs is

�ω̇r = Ard�ωr + Brd1�ω̇ + Brd2�ω (22a)

�Pgen = Crd�ωr + Drd1�ω̇ + Drd2�ω (22b)

where

Ard = A11 + A12(λr I − A22)
−1 A21

Crd = Cr + Cz(λr I − A22)
−1 A21

Brd1 = Br1 + A12(−A22)
−1 Bz1

Drd1 = Dsys1 + Cz(−A22)
−1 Bz1

Brd2 = Br2 + A12(−A22)
−1 Bz2

Drd2 = Dsys2 + Cz(−A22)
−1 Bz2

B. Quantification of Frequency Support From WTG

Consider the swing equation with the active power incre-
ment �Pgen from WTGs

�ω̇ =
ωs

2H
(�Pm + �Pgen − �Pe −

D

ωs

�ω) (23)

The WTG active power output in (23) due to the sig-
nal �ω̇ and �ω will influence the values of H and D

independently.
To evaluate the emulated inertia, the terms related to the

PFC, i.e., Brd2 and Drd2 in (22), are set to zero. The explicit
forced output response of (22) due to �ω̇ is given by

�Pgen(t) = Crd

∫ t

t0

eArd(t−τ )Brd1�ω̇(τ)dτ +Drd1�ω̇(t) (24)

During the time window of inertia response Th =

{t : 0 ≤ t ≤ th}, the RoCoF is approximately fixed. Then �ω̇

can be pulled outside the integral and integrating (24) with
t0 = 0 yields

�Pgen(t) = (Drd1 − Crd A−1
rd (I − eArdt )Brd1)�ω̇ (25)

Substituting (25) back into (23) and rearranging the state yields

�ω̇ =
ωs

2H + 2He(t)
(�Pm − �Pe −

D

ωs

�ω) (26)

where

He(t) = 0.5ωs(−Drd1 + Crd A−1
rd (I − eArdt )Brd1) (27)

To evaluate the emulated load-damping effect, the terms
related to inertia emulation, i.e., Brd1 and Drd1 in (22), are set

to zero. The explicit forced output response of (22) due to �ω

is given as

�Pgen(t) = Crd

∫ t

t0

eArd(t−τ )Brd2�ω(τ)dτ + Drd2�ω(t)

(28)

After the frequency is stabilized by the governor, i.e., t ∈

Tp =
{

t : tp ≤ t ≤ ts
}

, the term �ω can be pulled outside of
the integral and integrating (29) with t0 = tp yields

�Pgen(t) = (Drd2 − Crd A−1
rd (I − eArd(t−tp))Brd2)�ω (29)

Substituting (29) into (23) yields

�ω̇ =
ωs

2H
(�Pm − �Pe −

(D + De(t))

ωs

�ω) (30)

where

De(t) = ωs(−Drd2 + Crd A−1
rd (I − eArd(t−tp))Brd2) (31)

Eq. (30) and (31) have clearly illustrated that PFC is actually
emulating load-damping characteristic.

Remark 9: The controller gain is preserved under the
approximations that the RoCoF �ω̇ and the stabilized fre-
quency deviation �ω is constant within the time window of
interest. The comparison to the full order model will show
that this approximation is accurate within these windows.
Then the emulated inertia He and load-damping coefficient De

are expressed in term of Brd1, Drd1 and Brd2, Drd2, which
correspond to Kie and Kpc. Note that He(t) and De(t) are
time-varying and their values are considered to be accurate
only within the corresponding time windows, i.e., Th and Tp .

IV. CASE STUDY

Consider the four-bus system with a 600 MW thermal plant
made up of four identical units in Fig. 5. The frequency
dynamics of the above system can be represented by the classic
system frequency response (SFR) model [34] as follows:

�ω̇ =
ωs

2H
(�Pm − �Pe −

D

ωs
�ω) (32a)

�Ṗm =
1

τch
(�Pv − �Pm) (32b)

�Ṗv =
1

τg

(−�Pv −
1

R
�ω) (32c)

The power flow equation is �Pe = �Pd −�Pgen, where �Pd

denotes a large disturbance, such as, generation loss or abrupt
load changes, and �Pgen given in (22b) represents the active
power variation due to the frequency control loop. Although
a one-area case is studied, the SFR model has the potential
to describe system frequency response in a complex power
network as shown in many recent studies [35]–[37]. In this
one-area system, as shown in Fig. 6, the response of the SFR
model and two-axis nonlinear model are the same under the
same disturbance.

The wind farm is assumed to be an aggregation of 200
individual GE 1.5 MW WTGs with rated speed of 450 rad/s
(or 72 Hz) and rated output of 300 MW. Under the operating
condition given in Appendix A, the reduced-order WTG model
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Fig. 5. Case study: four-bus system [10].

Fig. 6. Response comparison of system frequency response model
and two-axis model.

TABLE I

GAIN OF FREQUENCY SUPPORT MODE AND CORRESPONDING

MATRIX VALUE

Fig. 7. Time-varying emulated inertia and load-damping coefficient.

can be obtained with Ard = −0.0723 and Crd = 0.0127.
Brd1, Drd1 and Brd2, Drd2 with the corresponding Kie and Kpc

are listed in Table I. The emulated He and De are time-varying
and shown in Fig. 7.

The worst-case scenario is assumed to be the loss of one
unit (150 MW), which occurs at 1 s. The safety limit is
set to be a 0.5 Hz deviation [38] to avoid triggering load
shedding [5]. The frequency response of all modes under
this scenario is given in Fig. 8. The inertia emulation effect
can be observed as the RoCoF becomes slower from the
response of Modes 1-3. The ROS (safety switching guard)
is calculated under the reduced-order model in Eq. (32),
but the full-order linearized model in Fig. 5 is used for
verification. Denote xrd = [�ω,�Pm ,�Pv ,�ωr ] and x =[

�ω,�Pm ,�Pv ,�E ′
q D,�E ′

d D,�ωr ,�x1,�x2,�x3,�x4

]

for theoretical analysis and simulation verification,
respectively.

Fig. 8. Frequency response of different modes under the worst-case
scenario: 150 MW generation loss.

Fig. 9. Iteration in calculating ROS with different initializations.

Fig. 10. ROS of Mode 1 under normal condition obtained by proposed
Algorithm 8 and extensive simulations.

A. Model and Algorithm Validation

To validate the reduced-order model, consider the worst-
case scenario above. The four state variables �ω, �Pm , �Pv ,
�ωr between reduced-order and full-order model of Mode 2-5
in Table I are compared in Fig. 11. The excellent agreement in
mode behaviour ensures the reduced-order model based ROS
should be sufficient to find the switching for the full-order
dynamics.

With the given safety limit, the ROS calculation for Mode 1
under no disturbance can be projected onto the plane �ω-�Pm

as illustrated in Fig. 9 with two different initializations. The
iteration sequence indicates that if more initial guess points
are used, the fewer iterations needed and a better estimation
can be achieved (as shown in the blue case). The final result
is shown in Fig. 10. The green region is the ROS obtained by
extensive simulations and can be regarded as the true one. The
comparison shows that the proposed algorithm successfully
reduces conservatism in the estimate for the corner effect in
the polynomial-based set study.
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Fig. 11. Dynamics between full-order and reduced-order model: (a) Frequency deviation; (b) WTG rotor speed; (c) Turbine-governor mechanical power;
(d) Turbine-governor valve position.

Fig. 12. ROS of Mode 2 and 3 under given scenario.

Fig. 13. Value of Bd2(x) (upper) and Bd3(x) (lower) w.r.t the disturbed
trajectory Xd1.

B. IE Mode Only

The ROS under the worst-case scenario of Modes 1-3 are
calculated with representation of polynomials in terms of xrd

up to degree 8. Denote these regions as

Worst-case ROS 1: Sd1 = {xrd : Bd1(xrd) ≤ 0}

Worst-case ROS 2: Sd2 = {xrd : Bd2(xrd) ≤ 0}

Worst-case ROS 3: Sd3 = {xrd : Bd3(xrd) ≤ 0}

where Bd1(xrd), Bd2(xrd) and Bd3(xrd) serve as safety switch-
ing guards.

To determine if the safety limits can be preserved, one
needs to check whether the intersection between Sd1 and the
pre-disturbed operating point x0 is empty. In our case, the
fact that Sd1 ∩ {x0} = ∅ is graphically shown in Fig. 15
and mathematically verified by Bd1(x0) > 0. According to
Proposition 6, the safety of frequency cannot be preserved
without inertia emulation as shown in Fig 8.

Fig. 14. Frequency dynamics of full-order model under calculated critical
deadband.

Fig. 15. ROS of Mode 1 under the given scenario.

To verify the largest deadband or equivalently the critical
switching instant from Mode 1 to Mode 2 or 3, the values of
Bd2(xrd) and Bd3(xrd) with respect to the disturbed trajectory
of Mode 1, denoted as Xd1 (dash line in Fig. 12), is calculated.
Note that Xd1 is from the full-order model and only relevant
states X̄d1 = [Xd1(1), Xd1(2), Xd1(3), Xd1(6)] are substituted
into the guards. The zero-crossing point from negative to pos-
itive values denotes the critical switching instant tcr, or equiv-
alently largest deadband with the value �ω(tcr). As shown
in Fig. 13, the largest deadband (critical switching instant) is
0.30 Hz (1.29 s) if Mode 2 is used, and 0.42 Hz (1.44 s)
if Mode 3 is used. Simulation of each scenario with the
suggested largest deadband as well as the recommended value
from GE (0.15 Hz) is carried out and shown in Fig. 14. As seen
the system safety is preserved, but the recommended values
are conservative especially when Mode 3 is activated. On the
other hand, the fact that the largest frequency excursion point
is extremely close to the limit indicates that the estimated ROS
is not overly conservative.
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Fig. 16. Value of Bd1(x) w.r.t. the disturbed trajectories Xd12 (upper)
and Xd13 (lower).

Fig. 17. Frequency dynamics under critical deadband and threshold.

Beyond safety, the earliest support deactivation (earliest
switching instant) is established so that the emulated inertia
can be shed to obtain faster frequency restoration. Let the tra-
jectories in Fig. 14 be denoted as Xd12 (left) and Xd13 (right)
and substituted into Bd1(xrd) to find the zero-crossing point
from positive to negative, which occurs approximately at 2 s
for both cases as shown in Fig. 16. Negativity of the safety
switching guard Bd1(X̄d1i) guarantees safe switching from
Mode i to Mode 1. Early switching when Bd1(X̄d1i) > 0 will
lead to an unsafe trajectory. Both cases are shown in Fig. 17.

C. IEPFC Mode and Safety Recovery

The additional PFC loop will artificially create additional
load-frequency sensitivity and the maximum frequency excur-
sion will decrease. The deadband analysis procedure is sim-
ilar and will not be repeated. However, when it comes to
support deactivation, due to the additional constant frequency
deviation, a safe switching time window appears. Thus, the
PFC mode needs to be deactivated before a critical time. The
mechanism is illustrated in Fig. 18.

The WTG attempts to draw the total energy that is pulled
out during support mode to restore the rotor speed so the
upper area and lower areas have to be equal. When the PFC is
deactivated, Pgen decreases to satisfy this equal area criterion.
This sudden shortage of active power, if large enough, will
lead to an unsafe trajectory. Let Mode 5 be designed with
a deadband of 0.3 Hz and substitute the disturbed trajectory
X̄d15 into Bd1(xrd), then the critical switching window can
be observed as in the upper plot of Fig. 19, where the
critical deactivating instants suggested by the guard is 15.2 s.
A deactivation at 22 s leads to an unsafe trajectory. Frequency

Fig. 18. An equal-area criterion in support-deactivation procedure.

Fig. 19. Upper: Value of Bd1(x) and Bd3(x) w.r.t. the disturbed
trajectory Xd15.

Fig. 20. Frequency dynamics under 0.3 Hz deadband and critical deac-
tivation: normal sequence Mode 1-5-1 (Upper) and safe recovery sequence
Mode 1-5-3-1 (lower).

dynamics of both cases are shown in the upper plot of
Fig. 20.

To extend the critical deactivating instant, we propose a
safety recovery procedure illustrated by Fig. 4. When the PFC
mode is deactivated, the corresponding IE mode is kept to
manage the sudden shortage of active power. By checking
the value of Bd3(xrd) with respect to the trajectory X̄d15
(lower plot of Fig. 19) this procedure extends the critical
deactivating instant by 15 s. The original unsafe switching
from Mode 5 directly to Mode 1 at 22 s is now safely
switched to Mode 3 as shown in the lower plot of Fig. 20.
The critical switching instant from Mode 5 to 3 is suggested
to be 30.21 s by the guard in Fig. 19 and verified by simulation
in Fig. 20.
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V. CONCLUSION

This paper proposes a principle of WTG mode switching
synthesis for safe frequency response. Given desired safety
limits of grid frequency and worst-case scenarios, an SOS
optimization based algorithm is developed to enlarge the
estimation of ROS, and then the critical switching instants,
equivalent to largest deadband, for safety preservation are
obtained. Simulation shows that the critical switching instants
are not overly conservative. A switching sequence for safe
recovery of WTG rotor speed is proposed as well. In addition,
the emulated inertia and load-damping effect is derived in
the time frame of inertia and primary frequency response,
respectively.

Future study will focus on analyzing larger power networks.
From a methodology point of view, instead of choosing
monomials as a dense basis to represent the set of continuous
functions on compact sets, other representations such as the
Handelman representation can be employed, which will lead
to linear relaxations of polynomial positivity rather than SOS
relaxations [39]. Coordination of multiple renewable sources
as a redundant actuator set under a severe contingency can be
considered as well [40].

APPENDIX A
SYSTEM PARAMETERS AND OPERATING CONDITION

A. Type-3 Wind Turbine Generator Parameters

Xm = 3.5092, Xs = 3.5547, Xr = 3.5859, Rs = 0.01015,
Rr = 0.0088, HD = 4(s), p = 4, ρ = 1.225(kg/m3), Rt =

38.5(m), SbD = 1(MVA), Copt = 3.2397 × 10−7(s3/Hz3),
k = 1/45, K P1 = K P2 = K P3 = K P4 = 1, K I 1 = K I 2 =

K I 3 = K I 4 = 5.

B. System Frequency Response Model Parameters

ωs = 60(Hz), D = 1, H = 4(s), τch = 0.3(s), τg = 0.1(s),
R = 0.05.

C. Network Parameters and Operating Condition

X t = 0.07, V̄ = 1, θ̄ = 0(rad), θ̄t = 0(rad), v̄wind =

12(m/s), ω̄r = 72(Hz), P̄gen = 0.3, Q̄set = 0, Sb =

1000(MVA).

APPENDIX B
WIND TURBINE GENERATOR MODEL

The standard wind turbine model is given as follows [10]

λ =
2kωr Rt

pvwind
(33a)

λi =

(
1

λ + 0.08θt

−
0.035

θ3
t + 1

)−1

(33b)

Cp = 0.22

(
116

λi

− 0.4θt − 5

)

e
− 12.5

λi (33c)

Tm =
1

2

ρπ R2
t ωbCpv

3
wind

Sbωr

(33d)

The type-3 wind turbine generator differential equations are
given as follows [10]

Ė ′
q D = −

1

T ′
0
(E ′

q D + (Xs − X ′
s)Ids) + ωs

Xm

Xr

Vdr

− (ωs − ωr )E ′
d D (34a)

Ė ′
d D = −

1

T ′
0
(E ′

d D + (Xs − X ′
s)Iqs) + ωs

Xm

Xr

Vqr

− (ωs − ωr )E ′
q D (34b)

ω̇r =
ωs

2HD

(Tm − E ′
d D Ids − E ′

q D Iqs) (34c)

ẋ1 = K I 1(Pref − Pgen) (34d)

ẋ2 = K I 2(K P1(Pref − Pgen) + x1 − Iqr ) (34e)

ẋ3 = K I 3(Qref − Qgen) (34f)

ẋ4 = K I 4(K P3(Qref − Qgen) + x3 − Idr ) (34g)

where E ′
d D, E ′

q D and ωr are d q axis voltage and rotor
speed of wind turbine generator, respectively. x1 to x4 are
proportional-integral regulator induced states. And Pref =

Coptω
3
r , Qref = Qset, T ′

0 = Xr

ωs Rr
and X ′

s = Xs −
X2

m

Xr
.

The type-3 wind turbine generator algebraic equations are
given as follows [10]

0 = K P2(K P1(Pref − Pgen) + x1 − Iqr )

+ x2 − Vqr (35a)

0 = K P4(K P3(Qref − Qgen) + x3 − Idr )

+ x4 − Vdr (35b)

0 = −Pgen + E ′
d D Ids + E ′

q D Iqs − Rs(I 2
ds + I 2

qs)

− (Vqr Iqr + Vdr Idr ) (35c)

0 = −Qgen + E ′
q D Ids + E ′

d D Iqs − X ′
s(I 2

ds + I 2
qs) (35d)

0 = −Idr +
E ′

q D

Xm

+
Xm

Xr

Ids (35e)

0 = −Iqr −
E ′

d D

Xm

+
Xm

Xr

Iqs (35f)

where Vdr , Vqr , Idr , Iqr are rotor d q axis voltage and current,
respectively. Vds , Vqs , Ids , Iqs are stator d q axis voltage and
current. Pgen and Qgen are WTG active and reactive power
output. VD and θD are voltage magnitude and angle of the
bus which WTGs are connected to.

The network algebraic equations are given as follows

E ′
q D − j E ′

d D = (Rs + j X ′
s)(Iqs − j Ids) + VD (36a)

VDe jθD = j X t(Iqs − j Ids − IGC )e jθD + V e jθ (36b)

where

IGC =
Vdr Iqr + Vdr Idr

VD
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