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Abstract

GPS-equipped smartphones provide new methods to collect data about travel behavior, including travel survey apps that
incorporate automated location sensing. Previous approaches to this have involved proprietary or one-off tools that are
inconsistent and difficult to evaluate. In contrast, e-mission is an open-source, extensible software platform that consists of (a)
an app for survey participants to install on their Android or iOS smartphones and (b) cloud-hosted software for managing the
collected data. e-mission collects continuous location data, user-initiated annotations, and responses to contextual, platform
initiated survey questions. New studies can be set up using the existing University of California, Berkeley, infrastructure with
no additional coding, or the platform can be extended for more complex projects. This paper reviews the requirements
for smartphone travel data collection, describes the architecture and capabilities of the e-mission platform, and evaluates
its performance in a pilot deployment. The results show that the platform is usable, with over |50 installations in a month;
stable, with over 85% of users retaining it for more than 3 days; and extensible, with interface and survey customizations
accomplished in a little over a week of full-time work by a transportation engineering researcher. We hope that e-mission

will be a useful tool for app-based data collection and will serve as a catalyst for related research.

The rapid adoption of GPS-equipped smartphones is trans-
forming data collection for travel behavior research and analy-
sis. As of 2016, in the USA, 77% of all adults, and 92% of
adults under 30, owned a smartphone (/). Passive records of
the approximate locations of smartphones are compiled by ser-
vice providers (as well as by certain location-based app plat-
forms), but purpose-built travel survey apps remain the best
way to obtain detailed data. Travel survey apps allow research-
ers to collect high-precision GPS traces and pose contextual,
on-device survey questions for data validation or to gather
supplementary information. Technical challenges include a
lack of standardization in smartphone sensing systems, shorter
battery life than stand-alone GPS devices, and the complexity
of building a comprehensive software platform.

This paper introduces e-mission', an open-source plat-
form for collecting prompted, user-reported, and automati-
cally sensed travel data from smartphones. It consists of an
app for survey participants to install on their Android or iOS
smartphones and cloud-hosted software for managing the
collected data. e-mission improves on existing tools by being
entirely open, modular, and extensible. This provides two
important benefits: (@) its algorithms for collecting sensor
data, managing power drain, and processing GPS traces can
be fully documented, benchmarked, and reproduced; and (b)
project-specific modifications to the software are easy to

implement and re-use. This is consistent with the case for
open computing programs for reproducible research outlined
in (2). At the same time, e-mission already provides an exten-
sive suite of functionality and can be quickly deployed for
new studies that follow a standard template.

Travel Survey Data Collection

Transportation planners and researchers use data from travel
surveys to build predictive models of travel behavior and
infrastructure needs. Typical surveys collect information
about trip origin, destination, purpose, timing, travel mode,
route, and other related information, using paper- or phone-
based or electronic tools. This human-based data collection
may contain errors and biases, but is ideal for understanding
people’s perceptions of their own travel (3).

Technologies like GPS can reduce the burden on respon-
dents while providing more precise, accurate, and complete
records of survey participants’ travel. Travel surveys increas-
ingly supplement self-reported information with automatically
sensed location data from stand-alone GPS devices (e.g., [4, J]).
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However, these devices have their own drawbacks, such as
expense, that make them difficult to use at scale (6).

e-mission is part of a new category of smartphone-based
tools that combine the expressiveness of surveys with the
detail and precision of location sensing. Most smartphones
now have GPS chipsets, as well as other sensors like acceler-
ometers that can facilitate travel mode detection. Smartphone-
based data collection can provide better data quality and
better ease of use for survey participants, at lower overall
cost than stand-alone GPS devices.

User Engagement

Survey participants are recruited to studies that use the e-mis-
sion platform in the same manner as a traditional survey, but
the platform includes a number of features designed to reduce
enrollment friction and keep participants engaged in the study.
e-mission facilitates on-boarding through (@) direct installa-
tion of the app from standard app stores, (b) optional study-
specific interface customization, and (¢) a clean user
experience.

It also includes features to facilitate long-term user engage-
ment through information provision or gamification, for stud-
ies where this is appropriate. Personal travel analytics may
appeal to users who are interested in physical activity or envi-
ronmental sustainability, or just curious about their own
mobility patterns. Gamification through personal targets or
social competition can make these apps into tools for behav-
ior modification (e.g., [7, §]), and experiments in this area are
the topic of active research (e.g., [9]). These features can be
disabled in cases where they could interfere with a study.

Related Work

A 2014 TRB report (3) provides the most extensive review to
date of approaches for collecting and analyzing GPS data to
study travel behavior. They identify key challenges for
smartphone data collection, including: (a) market fragmen-
tation (different mobile operating systems and hardware
capabilities make it difficult to collect equivalent data from
all survey participants); (b) power drainage (continuous col-
lection of GPS data will rapidly drain a smartphone’s bat-
tery); (c¢) costly data plans (cellular data transmission may
not be feasible); and (d) sampling biases (ownership of
smartphones varies by age, income, and education).

Many studies have used smartphones to collect travel
data, typically falling into three categories: («) automatically
generated travel diaries that avoid the errors and biases of
self-reporting (e.g., [1/0, 11]); (b) behavior modification
based on gamifying travel and providing incentives for par-
ticular mode choices (e.g., [7, §]); and (¢) understanding
human perceptions by building route choice models for
active transportation modes such as bicycling (e.g., [12, 13]).

Technological advancement and increasing market pene-
tration of smartphones are leading to steady progress on each

of the four challenges identified in the TRB report. However,
we identify a fifth, related challenge: collection platform
robustness. The complexities of cross-device data collection,
power management, and data analysis are best addressed by
open, modular, extensible software platforms that encourage
widespread adoption. Such platforms can easily be deployed
for new projects and reliably benchmarked and adapted as
technologies change. Importantly, open-source software can
improve reproducibility and provide an opportunity for
scholars and practitioners to build a collaborative platform
that is controlled by the community.

The remainder of this paper is organized as follows. The
next section describes the e-mission platform architecture
and data collection capabilities. The subsequent section
describes usage and extensibility, and the final sections eval-
uate pilot deployments, identify future work, and conclude.

System Architecture and Collected
Data

The core functionality of the e-mission platform is to collect
and assemble travel data. In this section, we identify key data
requirements and briefly describe the architecture of the soft-
ware platform. Important categories of data are: automatically
sensed information, user-initiated reports, and platform-initi-
ated requests such as survey questions. For further use, e-mis-
sion assembles the raw data into travel diary components,
personalized tour models, and other meaningful outputs.

Categories of Human Travel Data

We divide human travel data into three broad categories,
based on the technical requirements and user experience of
collecting it from a smartphone (see Figure 1).

Automatically Sensed. This represents data, such as location,
accelerometer, or microphone readings, obtained automati-
cally from smartphone sensors without any user intervention.
Since this data is obtained automatically, it does not repre-
sent a cognitive burden on the user and can be collected in
large quantities. However, a naive approach of reading data
at high frequency from all possible sensors will lead to sig-
nificant power drain, and represent its own burden on the
user—their smartphone may become unusable during the
course of the day. Therefore, the data collection processes
need algorithms that can strike a balance between data qual-
ity and power drain.

Further, this data is typically not useful in itself; inference
algorithms need to be run on top of it to generate useful
insights. Multiple inferences can be drawn from the same set
of base data—for example, accelerometer data can be used
for both road quality (/4) and for travel mode detection (/5).
However, such inferences are inherently inaccurate, so the
inference algorithm needs to be able to quantify its uncer-
tainty, and any action on the inference needs to take this into
account.
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Figure 1. Supported data collection types. Left to right: automatically sensed, user initiated, platform-initiated.

User Initiated. This is data that the user is motivated to report
based on his/her surroundings. It is typically perceptual and
cannot be inferred by sensor data alone. Examples could be:
“The sidewalk here feels empty,” “A truck has blocked the
bike lane,” and so on. Open-ended perceptual data has not
typically been integrated into transportation engineering
studies but its usage is growing, largely because of data gen-
erated on smartphones (e.g., [16]).

This type of data is currently collected primarily by com-
mercial projects, such as (a) proprietary issue reporting and
tracking systems deployed by local public agencies (e.g.
SeeClickFix, Comcate, etc.), (b) proprietary real-time auto-
mobile incident reporting (e.g. Waze), and (¢) rating systems
for points of interest (e.g. Yelp). Including a qualitative com-
ponent in travel data collection has the potential to provide a
richer understanding of human behavior, while supporting
new research areas related to data correctness, bias, and het-
erogeneity of experience (e.g., the four types of cyclists
described in [77]).

Platform Initiated. This is data that is requested from the user
by the platform, such as survey questions. One use of requests
is to increase the accuracy of inferred data. Examples of such
requests are: (a) to obtain ground truth for inferences to
boost their accuracy; and (b) to obtain confirmation of unex-
pected behavior. However, requesting large amounts of
ground truth re-introduces cognitive load on the user. Ground
truth acquisition needs to balance accuracy and cognitive
load, especially for long- term data collection.

Practitioners can also initiate requests to obtain additional
information from a targeted audience. Examples of such
requests include: (a) obtaining stated preference data about
proposed changes from households that will be affected by
them; and (b) obtain additional demographic information
(e.g., bicycle availability) from sub-populations based on
their travel patterns (e.g., no recent bicycle trips). These
requests are not necessarily tied to sensed or inferred data,
and can be fairly complex.

Supported Outputs

The e-mission platform can process collected data into a
number of standard outputs (see Figure 2).

Travel Diary. This output is the canonical analysis result.
Every one of the prior projects from the literature features a
basic travel diary. It is also the building block for the other
outputs, so should be considered a core component of a
smartphone travel data collection platform.

A travel diary is a linked sequence of trips between places,
each potentially split into sections. Each section is associated
with a travel mode and each trip is associated with a travel
purpose or activity. We suggest using purpose to reduce
ambiguity because activity can have other meanings in a
travel context, as in [/8] and [/9].

The mobile systems community (since [20]) and travel
survey community (since [2/]) have developed several algo-
rithms for automatic mode inference. These typically use
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Figure 2. Supported outputs. Left to right: travel diary, tour model, statistics, and game leaderboard.

GPS information alone (20, 21) or a combination of GPS and
accelerometer data, as in (22). They typically support a small
number of modes (e.g., walk, bike, car, bus, train) and have
accuracies ranging from 70% to 80%. There are fewer algo-
rithms for inferring trip purpose, since it is typically not
reflected in sensor readings. Most automated approaches
such as (23) rely on land use and point-of-interest databases,
and the accuracy for locations other than home, work, and
school is below 70%.

Personalized Tour Model Graph. This output analyses the
trip diary to generate a graph of the common trips taken by
the user. This graph is effectively an amalgamation of tour
models, similar to the work in (24), but with common loca-
tions among the tours represented by single nodes in the
graph. Collapsing a long sequence of trips into a single
graph allows analysis and modeling to focus on a small
number of representative trips. For example, detailed
semantic data gathering such as stated preference ques-
tions can focus on trips in the tour, and reduce user burden.
Generating probability distributions over attributes of the
common trips (e.g., start and end times) converts it into a
Markov model that can be used potentially to predict future
behavior, as in (29).

Game/Motivation. This output uses the travel diary to gener-
ate personalized statistics to motivate travelers to think more
carefully about their travel patterns and associated choices.
Some projects, such as (26), calculate personalized calories
burned, carbon footprint, and cost for the traveler. Such proj-
ects also typically compare the personalized value to various
aggregate statistics to reinforce norm setting, as in (7). Other
projects, such as (&) or (27), use gamification techniques
such as badges, levels, and challenges to encourage long-
term behavior change.

Software Architecture

e-mission follows a sensor—server—client architecture that
is standard for Internet of Things (IoT) applications, where
everyday devices are used as digital instruments (see
Figure 3). In particular, the smartphone app is both the sen-
sor and a client, since personalized information can be
viewed on the phone. The server handles communication,
long-term storage, data processing, and aggregation. While
a detailed description of the architecture and the related
work is deferred to a forthcoming paper, we sketch the
components and their interaction in this section.

The phone app has a hybrid architecture built using the
Apache Cordova mobile app framework. Native plugins for
Android and i0OS (written in Java and Objective-C) sense
location and motion activity and buffer the data on the phone
in a SQLite database. The sensing is automatically turned on
at trip start and turned off at trip end to reduce battery con-
sumption. Buffered data is synced to the server after the end
of the trip. The trip start and end can also prompt a configu-
rable notification to collect additional information.

The server software is written in Python for ease of exten-
sibility by non-experts. It makes heavy use of Python scien-
tific processing libraries such as scikit-learn, and exposes a
REST API for client interaction. It receives data into an input
cache, and then saves it into a user-specific section of a shared
datastore. The user-specific datastore consists of multiple time
series, one for each type of object (e.g., background location,
manual incident, etc.). The newly arrived data is then run
through a pipeline that generates the applicable outputs. Travel
diary information can also be queried for individual or aggre-
gate statistics.

Finally, certain outputs are displayed as Dynamic HTML
views. The view in the phone client can display personalized
information such as the trip diary, the tour model, and the
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Figure 3. Components of the e-mission architecture.

user’s current status in the game. A web app provides a visual
display of aggregate, non-personal, usage data.

Usage and Extensibility

In addition to being full-featured, a successful software plat-
form for smartphone data collection must be easy to extend
so that it can meet the needs of a variety of projects. Small
configuration changes should be easy, and more significant
additions to functionality should be achievable using well-
defined extension points. Ideally, these changes should be
made publicly available for reuse and reproducibility (72).

Usage without Customization

If the standard e-mission interface and functionality meet
the needs for a study, the practitioner can simply file a
research protocol with her institution’s review board (IRB)
and specify that she will use the e-mission platform for
background location data collection. (This is similar to
specifying the use of a platform like Qualtrics to collect
survey responses.)

The practitioner would then instruct participants to down-
load the e-mission app from the Android or iOS app stores,
and obtain separate consent from the participants according
to the method specified in the protocol. This consent would
need to include the email address that the participant uses to
register in e-mission, in order to confirm which users are
associated with the study. At the end of the study, the practi-
tioner would show the consent documents to the e-mission
lead researcher® and receive a copy of the data from those
users.” (Full in-app consent can be done with simple UI cus-
tomization; see below.)

Thus, practitioners can collect automatically sensed loca-
tion and motion activity data without writing any code, sim-
ply by directing survey participants to use the app.

Extending the Smartphone App

Easy: Customizing the User Interface (Ul). Many practitioners
will want to customize the user interface of the app: to add a
study logo, to add custom consent, or remove unneeded fea-
tures. This can generally be done with HTML and CSS
changes alone, although functionality related to message
prompts involves Javascript.

Because the Ul is built using web components, it can be
updated without deploying a new app to the stores. The
e-mission platform supports multiple Ul channels, meaning
that practitioners can ask survey participants to install the
standard e-mission app and then switch to the study-specific
channel. A channel can be selected in the Ul or by following
a special URL or QR code. As soon as a user joins the chan-
nel, he/she is presented with study-specific information, con-
sent, and login choices.

Such extensions are shared with the community as new
branches on the “e-mission-phone” GitHub repository.*

Medium: Extending the Phone App using Existing Plugins. e-mis-
sion is built using the Apache Cordova mobile app frame-
work, which allows easy re-use of existing plugins.
Functionality like reading a user’s calendar or allowing users
to take photos can be added in this way. Cordova plugins are
controlled using Javascript.

A phone app that has been extended through the addition
of new plugins cannot be updated via the Ul channels.
Instead, a new app would need to be submitted to the stores
with a new name and signing key. For i0S, the app must pass
the App Store review process. The resulting app would have
no obvious connection to the e-mission platform—it could
have its own logo, and would be marked as owned by the
organization that is submitting it.

Code for such enhancements can be made available to the
community by forking the “e-mission-phone” GitHub
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repository and pushing changes to the fork. Once the project
is complete, the enhancement could even be added to the
standard e-mission app (in a new Ul pane, for example). This
would be done by submitting a pull request to the master
branch of the “e-mission-phone” repository.

Hard: Writing a New Native Plugin. Some projects may want
to use sensing capability that is not currently supported in the
Cordova ecosystem, for example, by integrating with a sen-
sor that measures stress from sweat, or using ambient noise
to determine whether a car trip is shared or not.

This would require writing native code (in Java and
Objective-C or Swift) that reads the appropriate sensors, buf-
fers them, and performs the inference either on the phone or
on the server. Such projects can reuse the authentication,
buffering, and communication components of the e-mission
platform. They can also use the notification component to
obtain additional information from the user.

Integration with the e-mission platform would allow the
new travel data to be placed in a spatio-temporal context with-
out having to re-write the location tracking and post-process-
ing components. On i0S, restrictions preclude most sensors
from being read in the background, but using the e-mission
platform would allow plugins to attach themselves to the loca-
tion tracking callbacks in order to read other sensor data.

Such an extension can be shared with the community by
structuring the code as a Cordova plugin and publishing it on
GitHub. Projects can then add the plugin like any other.

Extending the Server Functionality

Easy: Adding Queries or Analyses. Aspects of the server software
not related to the core outputs are structured as plugins, where
new functionality can be added by simply writing a stand-
alone Python script. Some examples are queries to find users
who are targets for platform-initiated surveys or notifications
to inform users about things related to their travel patterns.
New analyses can be added to e-mission by generating a pull
request from a fork of the “e-mission-server” repository.’

Medium: Modifying Data Pipelines. The existing pipelines for
creating travel diaries are open to improvement. Practitioners
may want to modify the segmentation, smoothing, or mode
inference algorithms used by the core platform. (These pipe-
lines are versioned in GitHub and can be reproduced at any
point on a practitioner’s own machine. e-mission always
retains the original raw data alongside any pipeline outputs.)

These improvements will be more complex to integrate
into the core platform, because we need to ensure that they
are empirically valid and enough of an improvement to make
the default. So while these changes can be contributed using
a standard pull request, additional testing will be required
before the changes can be merged.

Hardest: Running a Custom Server. Some projects may have
data storage and privacy requirements that differ from the

core platform and are best achieved by running their own
server. Projects that need special external integrations—with
an Open Street Maps editor, for example—would also want
to run their own server. Projects that modify the core data
pipelines could also run a custom server to avoid integrating
their changes with the core e-mission platform.

The e-mission server software can run on any Linux,
macOS, or other Unix-like system. However, to manage a
production backend, you need to be comfortable setting up
SSL, obtaining the correct keys for authentication, and moni-
toring the pipeline logs for errors. Changes to the server soft-
ware can be shared with the community by publishing the
forked code so that it can be used to inform other projects
that require similar integrations.

Evaluation

In this section, we evaluate the performance of the platform
in two main areas. First, we evaluate its usability and stabil-
ity using metrics from a pilot deployment with more than 100
users. Second, we assess the extensibility of the platform
through a qualitative and quantitative evaluation of the effort
required for a non-expert to modify it.

It is also important to note what we do not evaluate: the
travel behavior captured by the platform during the pilot.
This is because the goal of the pilot was not to generate gen-
eralizable results about travel behavior, but to evaluate the
use of the platform as a tool to enable others to generate such
results. We also do not currently evaluate the accuracy of
data collection or trip diary creation, which will be the focus
of a future paper. Finally, our goal with this pilot was to
assess the installation process and technical stability under
varied user interaction patterns. In the upcoming year, we
hope to partner with researchers who want to use the plat-
form in their studies. This will allow us to generate usability
metrics across more representative populations.

App Usage Metrics

The e-mission platform was launched in a pilot deployment
on the U.C. Berkeley campus in fall 2016, covering all the
categories of data and outputs described earlier.® Participants
were not compensated in cash or in kind. The pilot study was
linked to an initiative to encourage walking and bicycling to
campus. There was no dedicated marketing team or market-
ing budget associated with the pilot—all publicity was done
by researchers associated with the platform. Recruitment was
done through email to campus mailing lists, and there was no
official endorsement of the pilot as a university initiative.

Installation Rate. This metric captures the rate at which users
signed up during the pilot. Ideally, we would use metrics
from the app stores to measure this, but the iOS store only
reports metrics from users who have opted in to share statis-
tics, so it is not very accurate. Instead, we use calls to the
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profile creation API endpoint,’” which is invoked when a user
first launches the app (see Figure 4). This is not a perfect
metric because it includes app re-installs but it is close (see
Table 1). We use calls to the game registration endpoint® to
detect when a user signed up for the game.

This metric is important because recruitment for tradi-
tional travel surveys, and for human- subject research in gen-
eral, is time-consuming and expensive. While this platform
does not claim to solve all problems with recruitment, pain-
less installation ensures that there are no barriers to adoption
once participants have been recruited.

These results show that (a) the app was installed by more
than 150 participants; (b) the installations continued for a
month after the initial recruitment, presumably through word
of mouth; and (¢) the gamification was interesting to just
50% of users.

Length of Install. This metric evaluates the stickiness of the
app by measuring the number of days the app was installed.
Since the phone app automatically uploads data to the server
periodically, we use calls to the data upload API endpoint’
as a proxy for the app being active. The install duration for
a particular user is thus the length of time between the first
and last APT call. This does not distinguish between a user
having suspended tracking, and having no trips for a partic-
ular period, so a user who reported exactly two trips 10 days
apart would have an install duration of 10 days. If the last
call was during the final two days of the analysis period, we
assume that the app was not uninstalled.

This metric is important because longer-term data collection
enables researchers to capture variability in daily travel pat-
terns. Most GPS-enabled household travel surveys now cover
multiple days: for example, the wearable GPS component of
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Table I. Evaluation Metrics for the Phone Application

Users

Number of calls from unique users 172
Number of sign-ups 170
Number of new clients sending data 151
Number of unique sign-ups for the game 63
Pages Lines changed

CSS style +971

Settings +160

Trip list =95

Trip detail +70

the 2012 California Household Travel Survey (CHTS) spanned
three days (5). Since the recruitment for the pilot was ad-hoc
and no compensation was provided to participants, we expect
that the duration of data collection would be robust if the app is
used for classic travel surveys.

The results are promising. More than 85% of users had
the app installed for at least three days. Twenty-three users
(not shown in the histogram) still had the app installed at the
end of the analysis period. Of the users whose install dura-
tion is known, half had the app installed for ~ 20 days, and a
third had it installed for over a month. There were also 16
users who had the app installed for just one day.

App Launches over Time. This metric measures user engage-
ment with the app. It tracks two related metrics: app launches
and screen switches (the latter measures how many times a user
switched between screens while using the app). App launches
are measured by calls to the server API that populates the dash-
board, while screen switches are indicated by client stats.'

This metric is important because not all the data is obtained
through passive sensors. If we want to interact with the user
to capture semantic and perceptual data, we need to have a
platform that engages with the user and encourages him or her
to provide the information that we seek. Designing for such
engagement is challenging, and one goal of the platform is to
facilitate it.

However, given the expectations about novelty in user
interaction, the results (see Figure 5) are promising. First,
they show that although app launches go down after the initial
install, they never stop completely, and continue even several
months after launch. Second, they show that the distribution
of app launches across users is highly skewed—80% of users
opened the app fewer than five times, but 10% of users opened
it more than 150 times. Finally, they show that in addition to
opening the app, users consistently navigate to other screens,
even months after the install. However, the screen switching
is an order of magnitude lower than the app launches. Finally,
we see a marked drop off in both metrics around the end of
the study period, which coincided with the winter break.

Extensibility Metrics

In this section, we evaluate the effort required for a trans-
portation engineering student with no prior front-end
experience, specifically in HTML/CSS/Javascript, and
who has not worked in app or web development before, to
build a custom UI for the app. We use quantitative met-
rics, such as lines of code, in addition to a brief, open-
ended qualitative evaluation of the challenges encountered
while completing the task. The results show that less than
1500 lines of code and one and a half weeks of full-time
work are sufficient to generate a dramatically different
user interface. This includes the learning curve for HTML,
CSS, and some Javascript, and the platform Ul in particu-
lar. We estimate that the time can be reduced to little more
than a day with better documentation or better examples
to draw from.

Lines of Code. Changes to the Ul are shown in Figure 6.
These changes consisted mainly of eliminating interface
panes, keeping only the main ones (profile and diary).
Panes were removed by commenting out the relevant sec-
tions of code. The contents of the profile pane were modi-
fied as well, along with color schemes, element sizes, and
certain icons.

The diary tab gives users access to the list of trips they
have taken on each date, and to the details of these trips
such as speed profiles and travel modes. This tab was also
modified to a new theme that changed the flow and amount
of information provided to the user. The “details” page in
the modified version displays the trip breakdowns in HTML
tables. The new page also includes a button that allows
users to fill out a survey about that specific trip. Table 1
illustrates the number of lines of code adjusted for each
page in addition to the styles page.

Time Required. Another metric to evaluate the amount of
effort put into the customization is to measure the amount of
time spent understanding the source code, modifying it, and
reviewing changes. In this case, getting up to speed with the
existing code took approximately 75% of the total time, or 40
hours. Once the source code was understood, implementing
modifications was fairly straightforward. Writing new code,
debugging it, and testing the results took the remaining 25%
of the time, or 15 hours.

Qualitative Comments. The major hurdles in customizing the
UI were setting up the development environment and under-
standing the source code. This may have been due to relative
inexperience with this type of software development, but
improvements to the documentation would assist newcomers
in navigating through the project and reduce the time required
to make modifications.
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Figure 5. Metrics for user interaction and engagement. Top: Number of app launches per week. Middle: Histogram of the number of

app launches per user. Bottom: Screen switches per day, starting in November, when we started tracking that data.
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Figure 6. Screenshots of customized Ul. Top: Base Ul on the ma
Ul in the joangroup branch of the e-mission-phone repository.

Conclusion

The e-mission platform'' aims to make state-of-the-art smart-
phone travel data collection broadly available to researchers
and other practitioners. It supports data collection through ()
background sensing, (b) user-initiated reporting, and (c)
contextual, platform-initiated survey questions. Its architecture

ster branch of the e-mission-phone repository. Bottom: Customized

includes native apps for Android and iOS as well as cloud-
hosted software for managing the collected data, all of which is
modular, extensible, and open-source. e-mission can be used
without modification to the interface or functionality simply by
instructing participants to download the app (and providing
consent documents to the corresponding author, to confirm
which users are involved in the study). New UI “channels” can
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be created with minimal effort, providing study-specific con-
sent forms, branding, and feature combinations.

Future development priorities span the data collection and
output categories defined earlier. To streamline collection of
user-initiated data, we are looking into a “shake-to-report” fea-
ture. This would allow users who want to report open-ended
perceptual data to shake the phone to report it immediately. In
order to guard against false positives, the system can generate
a notification for the user to confirm the report. For travel
diary creation, we plan to add support for more travel modes,
and to evaluate the collected data against various benchmarks.
We also plan to improve aspects of the server architecture,
including scalability. Additionally, we would like to explore
issues of privacy and data ownership, especially in the context
of aggregated results.

As described above, improvements to the platform can be
contributed by anyone. Valuable independent projects could
include an adaptive sampling routine for longer trips or an
option to sync data only over WiFi. Finally, we welcome feed-
back about the potential to assemble general-purpose travel
behavior datasets using e-mission. For example, some study
participants may be comfortable with a research protocol stip-
ulating that, after a certain time delay, their data be available to
outside researchers who agree to restrictions on its use.

Notes

1. See https://e-mission.eecs.berkeley.edu or https:/github.
com/e-mission

2. K. Shankari, shankari@eecs.berkeley.edu

3. The standard e-mission consent document is available here:
https://e-mission.eecs.berkeley.edu/consent

4.  See https://github.com/e-mission/e-mission-phone

5. See https://github.com/e-mission/e-mission-server

6. To aid reproducibility, the Jupyter notebook used to generate
these results is available at https://github.com/e-mission/e-
mission-eval. The underlying data can be obtained from the
corresponding author, subject to restrictions on use.

7. /profile/create

8. /habiticaRegister

9. /usercache/put

10. /results/metrics/timestamp populates the dashboard on app

launch. Note that there is also an app launched client stat,
but it does not appear to correspond directly to server calls, so
we use the more conservative stat in our analysis. The state
changed client stat, filtered to remove changes to and from the
splash state provides the basis for measuring screen switches.

11.  See https://e-mission.eecs.berkeley.edu or https://github.
com/e-mission

References

1. Pew Research Center. Mobile Fact Sheet. Pew Research
Center, Washington, D.C., 2017.

2. Ince, D. C., L. Hatton, and J. Graham-Cumming. The Case for
Open Computer Programs. Nature, Vol. 482, No. 7386, 2012,
pp. 485-488.

3. Wolf, J., W. Bachman, M. S. Oliveira, J. Auld, A. K.
Mohammadian, and P. Vovsha. NCHRP 775: Applying GPS

10.

11.

12.

13.

14.

15.

16.

17.

. Kunzmann, M., and V. Daigler.

Data to Understand Travel Behavior, Volume I: Background,
Methods, and Tests. Transportation Research Board of the
National Academies, Washington, D.C., 2014.

. Wolf, J. Using GPS Data Loggers to Replace Travel Diaries in

the Collection of Travel Data. PhD thesis. Georgia Institute of
Technology, Atlanta, Ga., 2000.

2010-2012 California
Household Travel Survey Final Report. California Department
of Transportation, Sacramento, CA, 2013.

. Couper, M. P, D. A. Dillman, L. P. Erhard, P. J. Lavrakas, S.

Polzin, G. Rousseau, and C. Tucker. Expert Panel Review of
the 2016 National Household Travel Survey. Federal Highway
Administration, Washington, D.C., 2015.

. Jariyasunant, J., M. Abou-Zeid, A. Carrel, V. Ekambaram, D. Gaker,

R. Sengupta, and J. L. Walker. Quantified Traveler: Travel Feedback
Meets the Cloud to Change Behavior. Journal of Intelligent
Transportation Systems, Vol. 19, No. 2, 2015, pp. 109-124.

. Jylhd, A., P. Nurmi, M. Sirén, S. Hemminki, and G. Jacucci.

MatkaHupi: A Persuasive Mobile Application for Sustainable
Mobility. ACM Press, New York, NY, 2013, pp. 227-230.

. Bucher, D., F. Cellina, F. Mangili, M. Raubal, R. Rudel,

A. E. Rizzoli, and O. Elabed. Exploiting Fitness Apps for
Sustainable Mobility-Challenges Deploying the GoEco! App.
Proc., 4th International Conference on ICT for Sustainability
(ICT4S), Atlantis Press, Amsterdam, The Netherlands, 2016,
pp- 89-98.

Cottrill, C. D., F. Pereira, F. Zhao, 1. Dias, H. B. Lim, M.
Ben-Akiva, and P. C. Zegras. The Future Mobility Survey:
Experiences in Developing a Smartphone-Based Travel
Survey in Singapore. Presented at 92nd Annual Meeting of the
Transportation Research Board, Washington, D.C., 2013.
Winters, P., S. Barbeau, and N. Georggi. Testing the Impact
of Personalized Feedback on Household Travel Behavior
(TRAC-IT Phase 2). National Center for Transit Research,
Tampa, Fla., 2008.

Hood, J., E. Sall, and B. Charlton, A GPS-Based Bicycle Route
Choice Model for San Francisco, California. Transportation
Letters: The International Journal of Transportation Research,
Vol. 3, No. 1, 2011, pp. 63-75.

Broach, J., J. Gliebe, and J. Dill. Bicycle Route Choice Model
Developed Using Revealed Preference GPS Data. Presented at
90th Annual Meeting of the Transportation Research Board,
Washington, D.C., 2011.

Eriksson, J., L. Girod, B. Hull, R. Newton, S. Madden, and
H. Balakrishnan. The Pothole Patrol: Using a Mobile Sensor
Network for Road Surface Monitoring. Proc., 6th International
Conference on Mobile Systems, Applications, and Services,
Breckenridge, Colo., ACM, New York, 2008, pp. 29-39.
Hemminki, S., P. Nurmi, and S. Tarkoma. Accelerometer-
Based Transportation Mode Detection on Smartphones.
Proc., 11th ACM Conference on Embedded Networked Sensor
Systems, Roma, Italy, ACM Press, New York, 2013, pp. 1-14.
Coffey, C., and A. Pozdnukhov. Temporal Decomposition
and Semantic Enrichment of Mobility Flows. Proc., 6th ACM
SIGSPATIAL International Workshop on Location-Based Social
Networks, Orlando, Fla., ACM, New York, 2013, pp. 34-43.
Dill, J., and N. McNeil. Four Types of Cyclists? Examination
of Typology for Better Understanding of Bicycling Behavior
and Potential. Transportation Research Record: Journal of the
Transportation Research Board, 2014. 2387: 129-138.



Transportation Research Record 2672(42)

18.

19.

20.

21.

22.

23.

Zhong, M., J. Wen, P. Hu, and J. Indulska. Advancing Android
Activity Recognition Service with Markov Smoother. Proc.,
Pervasive Computing and Communication Workshops (PerCom
Workshops), 2015 IEEE International Conference on, St. Louis,
Mo., IEEE, New York, 2015, pp. 38-43.

Bao, L., and S. S. Intille. Activity Recognition from User-
Annotated Acceleration Data. In Per- Vasive Computing
(A. Ferscha and F. Mattern), Springer, Heidelberg, 2004,
pp. 1-17.

Zheng, Y., Y. Chen, Q. Li, X. Xie, and W.-Y. Ma.
Understanding Transportation Modes Based on GPS Data for
Web Applications. ACM Transactions on the Web, Vol. 4, No.
1,2010, pp. 1-36.

Stopher, P. R., Q. Jiang, and C. FitzGerald. Processing GPS
Data from Travel Surveys. Presented at 2nd International
Collogium on the Behavioural Foundations of Integrated Land-
Use and Trans- Portation Models: Frameworks, Models and
Applications, Toronto, Canada, 2005.

Reddy, S., M. Mun, J. Burke, D. Estrin, M. Hansen, and M.
Srivastava, Using Mobile Phones to Determine Transportation
Modes. ACM Transactions on Sensor Networks, Vol. 6, No. 2,
2010, pp. 1-27.

Krumm, J., and D. Rouhana, Placer: Semantic Place Labels
from Diary Data. Proc., 2013 ACM International Joint

24.

25.

26.

27.

Conference on Pervasive and Ubiquitous Computing, Zurich,
Switzerland, ACM, New York, 2013, pp. 163-172.

Stopher, P., Y. Zhang, and Q. Jiang. Tour-Based Analysis
of Multi-Day GPS Data. Proc., 12th World Congress on
Transport Research, Lisbon, Portugal, 2010.

Dash, M., K. K. Koo, J. B. Gomes, S. P. Krishnaswamy, D.
Rugeles, and A. Shi-Nash. Next place prediction by under-
standing mobility patterns. Proc., Pervasive Computing and
Communication Workshops (PerCom Workshops), 2015 IEEE
International Conference on, St. Louis, Mo., IEEE, New York,
2015, pp. 469-474.

Kononen, V., M. Ermes, J. Liikka, A. Lamsé, T. Rantalainen,
H. Paloheimo, and J. Mintyjérvi. Anatomy of Automatic
Mobile Carbon Footprint Calculator. Proceedings of the 6th
International Conference on Advances in Grid and Pervasive
Computing, Oulu, Finland, Springer, 2011, pp. 84-93.

Broll, G., H. Cao, P. Ebben, P. Holleis, K. Jacobs, J. Koolwaaij,
M. Luther, and B. Souville. Tripzoom: An App to Improve
Your Mobility Behavior. Proc., 11th International Conference
on Mobile and Ubiquitous Multimedia, Ulm, Germany, ACM,
New York, 2012, p. 57.

The Standing Committee on Travel Survey Methods (ABJ40) peer-
reviewed this paper (18-03257).



