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Abstract—Many modern parallel systems, such as MapRe-
duce, Hadoop and Spark, can be modeled well by the MPC
model. The MPC model captures well coarse-grained compu-
tation on large data — data is distributed to processors, each
of which has a sublinear (in the input data) amount of memory
and we alternate between rounds of computation and rounds
of communication, where each machine can communicate an
amount of data as large as the size of its memory. This model is
stronger than the classical PRAM model, and it is an intriguing
question to design algorithms whose running time is smaller
than in the PRAM model.

One fundamental graph problem is connectivity. On an
undirected graph with n nodes and m edges, O(log n) round
connectivity algorithms have been known for over 35 years.
However, no algorithms with better complexity bounds were
known. In this work, we give fully scalable, faster algorithms
for the connectivity problem, by parameterizing the time
complexity as a function of the diameter of the graph. Our main
result is a O(logD log logm/n n) time connectivity algorithm

for diameter-D graphs, using Θ(m) total memory. If our
algorithm can use more memory, it can terminate in fewer
rounds, and there is no lower bound on the memory per
processor.

We extend our results to related graph problems such as
spanning forest, finding a DFS sequence, exact/approximate
minimum spanning forest, and bottleneck spanning forest. We
also show that achieving similar bounds for reachability in di-
rected graphs would imply faster boolean matrix multiplication
algorithms.

We introduce several new algorithmic ideas. We describe
a general technique called double exponential speed problem
size reduction which roughly means that if we can use total
memory N to reduce a problem from size n to n/k, for

k = (N/n)Θ(1) in one phase, then we can solve the problem in
O(log logN/n n) phases. In order to achieve this fast reduction
for graph connectivity, we use a multistep algorithm. One key
step is a carefully constructed truncated broadcasting scheme
where each node broadcasts neighbor sets to its neighbors
in a way that limits the size of the resulting neighbor sets.
Another key step is random leader contraction, where we choose
a smaller set of leaders than many previous works do.

Keywords-MPC model; MapReduce; graph connectivity;
parallel algorithm; diameter;

I. INTRODUCTION

Recently, several parallel systems, including MapReduce

[DG04], [DG08], Hadoop [Whi12], Dryad [IBY+07], Spark

[ZCF+10], and others, have become successful in practice.

This success has sparked a renewed interest in algorithmic

ideas for these parallel systems.

One important theoretical direction has been to develop

good models of these modern systems and to relate them

to classic models such as PRAM. The work of [FMS+10],

[KSV10], [GSZ11], [BKS13], [ANOY14] have led to the

model of Massive Parallel Computing (MPC) that balances

accurate modeling with theoretical elegance. MPC is a

variant of the Bulk Synchronous Parallel (BSP) model

[Val90]. In particular, MPC allows Nδ space per machine

(processor), where δ ∈ (0, 1) and N is the input size,

with alternating rounds of unlimited local computation, and

communication of up to N δ data per processor. An MPC

algorithm can equivalently be seen as a small circuit, with

arbitrary, N δ-fan-in gates; the depth of the circuit is the par-

allel time. Any PRAM algorithm can be simulated on MPC

in the same parallel time [KSV10], [GSZ11]. However, MPC

is in fact more powerful than the PRAM: even computing

the XOR of N bits requires near-logarithmic parallel-time

on the most powerful CRCW PRAMs [BH89], whereas it

takes constant, O(1/δ), parallel time on the MPC model.

The main algorithmic question of this area is then:

for which problems can we design MPC algorithms that

are faster than the best PRAM algorithms? Indeed, this

question has been the focus of several recent papers, see,

e.g., [KSV10], [LMSV11], [EIM11], [ANOY14], [AG18],

[AK17], [IMS17], [CLM+18]. Graph problems have been

particularly well studied and one fundamental problem is

connectivity in a graph. While this problem has a standard

logarithmic time PRAM algorithm [SV82], we do not know

whether we can solve it faster in the MPC model.

While we would like fully scalable algorithms—which

work for any value of δ > 0—there have been graph

algorithms that use space close to the number of vertices

n of the graph. In particular, the result of [LMSV11]

showed a faster algorithm for the setting when the space

per machine is polynomially larger than the number of

vertices, i.e., s ≥ n1+Ω(1), and hence the number of edges is

necessarily m ≥ n1+Ω(1). In fact, similar space restrictions

are pervasive for all known sub-logarithmic time graph algo-
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rithms, which require s = Ω( n
logO(1) n

) [LMSV11], [AG18],

[AK17], [CLM+18] (the only exception is [ANOY14] who

consider geometric graphs). We highlight the work of

[CLM+18], who manage to obtain slightly sublinear space

of n/ logΩ(1) n in logO(1) log n parallel time, for the approx-

imate matching problem and [ABB+17] who obtain slightly

sublinear space of n/ logΩ(1) n in O(log log n) parallel time.

We note that the space of ∼ n also coincides with the space

barrier of the semi-streaming model: essentially no graph

problems are solvable in less than n space in the streaming

model, unless we have many more passes; see e.g. the survey

[McG09].

It remains a major open question whether there exist fully

scalable connectivity MPC algorithms with sub-logarithmic

time (e.g., for sparse graphs). There are strong indications

that such algorithms do not exist: [BKS13] show logarithmic

lower bounds for restricted algorithms. Alas, showing an

unconditional lower bound may be hard to prove, as that

would imply circuit lower bounds [RVW16].

In this work, we show faster, fully scalable algorithms

for the connectivity problem, by parameterizing the time

complexity as a function of the diameter of the graph. The

diameter of the graph is the largest diameter of its connected

components. Our main result is an O(logD log logm/n n)
time connectivity algorithm for diameter-D graphs with m
edges. Parameterizing as a function of D is standard, say,

in the distributed computing literature [PRS16], [HHW18].

In fact, some previous MPC algorithms for connectivity in

the applied communities have been conjectured to obtain

O(logD) time [RMCS13]; alas, we show that the algorithm

of [RMCS13] has a lower bound of Ω(logn) time (see the

full version [ASS+18]).

Our algorithms exhibit a tradeoff between the total amount

of memory available and the number of rounds of computa-

tion needed. For example, if the total space is Ω(n1+γ′

) for

some constant γ′ > 0, then our algorithms run in O(logD)
rounds only.

A. The MPC model

Before stating our full results, we briefly recall the

MPC model [BKS13]. A detailed discussion appears in

Section IV, along with some core primitives implementable

in the MPC model.

Definition I.1 ((γ, δ)−MPC model). Fix parameters γ ≥
0, δ > 0, and suppose N ≥ 1 is the input size. There

are p ≥ 1 machines (processors) each with local memory

size s = Θ(N δ), such that p · s = O(N1+γ). The space

size is measured by words, each of Θ(log(s · p)) bits. The

input is distributed on the local memory of Θ(N/s) input

machines. The computation proceeds in rounds. In each

round, each machine performs computation on the data in

its local memory, and sends messages to other machines

at the end of the round. The total size of messages sent or

received by a machine in a round is bounded by s. In the next

round, each machine only holds the received messages in its

local memory. At the end of the computation, the output is

distributed on the output machines. Input/output machines

and other machines are identical except that input/output

machine can hold a part of the input/output. The parallel

time of an algorithm is the number of rounds needed to

finish the computation.

In this model, the space per machine is sublinear in N ,

and the total space is only an O(Nγ) factor more than the

input size N . In this paper, we consider the case when δ
is an arbitrary constant in (0, 1). Our results are for both

the most restrictive case of γ = 0 (total space is linear in

the input size), as well as γ > 0 (for which our algorithms

are a bit faster). The model from Definition I.1 matches the

model MPC(ε) from [BKS13] with ε = γ/(1 + γ − δ) and

the number of machines p = O(N1+γ−δ).

B. Our Results

While our main result is a ∼ logD time connectivity MPC

algorithm, our techniques extend to related graph problems,

such as spanning forest, finding a DFS sequence, and

exact/approximate minimum spanning forest. We also prove

a lower bound showing that, achieving similar bounds for

reachability in directed graphs would imply faster boolean

matrix multiplication algorithms.

We now state our results formally. For all results below,

consider an input graph G = (V,E), with n = |V |, N =
|V |+ |E|, and D being the upper bound on the diameter of

any connected component of G.

Connectivity: In the connectivity problem, the goal is to

output the connected components of an input graph G, i.e.

at the end of the computation, ∀v ∈ V, there is a unique

tuple (x, y) with x = v stored on an output machine, where

y is called the color of v. Any two vertices u, v have the

same color if and only if they are in the same connected

component.

Theorem I.2 (Connectivity in MPC model). For any

γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a

randomized (γ, δ) − MPC algorithm which outputs the

connected components of the graph G in O(min(logD ·
log logn

log(N1+γ/n) , log n)) parallel time. The success probabil-

ity is at least 0.98. In addition, if the algorithm fails, then

it returns FAIL.

Notice that in the most restrictive case of γ = 0 and m =
n, we obtain O(min(logD·log logn, log n)) time. When the

total space is slightly larger, or the graph is slightly denser—

i.e. γ > c or logn m > c, where c > 0 is an arbitrarily small

constant—then we obtain O(logD) time.

Remark I.3. We note the concurrent and independent work

of [ASW18], who also give a connectivity algorithm in the

MPC model but with different guarantees. In particular,
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their runtime is parameterized as a function of λ, which

is a lower bound on the spectral gap1 of the connected

components of G. For a graph G with n vertices and m =
Õ(n) edges, their algorithm runs in O(log log n+log(1/λ))
parallel time and uses Õ(n/λ2) total space. In contrast, our

algorithm has a runtime of O(logD·log logN/n n), where D
is the largest diameter of a connected component of G, and

N = Ω(m) is the total space available. To compare the two

runtimes, we note that: 1) D ≤ O( logn
λ ) for any undirected

graph G; and 2) there exist sparse graphs G2 with n vertices

and O(n) edges such that 1
λ ≥ D ·nΩ(1) and D ≤ O(log n).

Thus, our results subsume [ASW18] in the case when total

space is N = n1+Ω(1), but are incomparable otherwise.

We note another concurrent and independent work of

[ŁMW18], who also give a graph connectivity algorithm

in the MPC model and with different guarantees. 1. Our

algorithm has O(logD · log logN/n n) parallel running time

for general undirected graphs while the analysis of their

algorithm can only achieve an O(log n) parallel time. 2.

Their algorithm has an O(log log n) parallel time for ran-

dom graphs while the analysis of ours can only achieve

an O((log log n)2) bound. However, we conjecture that our

algorithm can also achieve O(log logn) parallel time for

such random graphs.

Spanning forest problem: In the spanning forest problem,

the goal is to output a subset of edges of an input graph

G such that the output edges together with the vertices of

G form a spanning forest of the graph G. In the rooted

spanning forest problem, in addition to the edges of the

spanning forest, we are also required to orient the edge from

child to parent, so that the parent-child pairs form a rooted

spanning forest of the input graph G.

Theorem I.4 (Spanning Forest, restatement of Theo-

rem V.5). For any γ ∈ [0, 2] and any constant δ ∈ (0, 1),
there is a randomized (γ, δ)−MPC algorithm which outputs

the rooted spanning forest of the graph G in O(min(logD ·
log logn

log(N1+γ/n) , log n)) parallel time. The success probabil-

ity is at least 0.98. In addition, if the algorithm fails, then

it returns FAIL.

Our spanning forest algorithm can also output an approx-

imation to the diameter, as follows.

Theorem I.5 (Diameter Estimator, restatement of Theo-

rem V.6). For any γ ∈ [0, 2] and any constant δ ∈ (0, 1),
there is a randomized (γ, δ) − MPC algorithm which

outputs a diameter estimator D′ of the input graph G in

O(min(logD · log logn
log(N1+γ/n) , log n)) parallel time such

that D ≤ D′ ≤ DO(log(1/γ′)), where γ′ = log(N1+γ/n)
logn .

1The spectral gap of a graph G is the second smallest eigenvalue of the
normalized Laplacian of G.

2We can construct G as the following: a bridge connects two 3-regular
expanders where each expander has n/2 vertices.

The success probability is at least 0.98. In addition, if the

algorithm fails, then it returns FAIL.

Depth-First-Search sequence: If the input graph G is a tree,

then we are able to output a Depth-First-Search sequence of

that tree in O(logD) + T parallel time, where T is parallel

time to compute a rooted tree (see Theorem I.4 for our upper

bound of T ) for G.

Theorem I.6 (DFS Sequence of a Tree, restatement of The-

orem V.7). Suppose the graph G is a tree. For any γ ∈ [β, 2]
and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−
MPC algorithm that outputs a Depth-First-Search sequence

for the input graph G in O(min(logD · log(1/γ), log n))
parallel time, where β = Θ(log log n/ log n). The success

probability is at least 0.98. In addition, if the algorithm fails,

then it returns FAIL.

Applications of DFS sequence of a tree include lowest

common ancestor, tree distance oracle, the size of every

subtree, and others.

Minimum Spanning Forest: In the minimum spanning for-

est problem, the goal is to compute the minimum spanning

forest of a weighted graph G.

Theorem I.7 (Minimum Spanning Forest, restatement of

Theorem VI.2). Consider a weighted graph G with weights

w : E → Z such that ∀e ∈ E, |w(e)| ≤ poly(n). For any

γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized

(γ, δ)−MPC algorithm which outputs a minimum spanning

forest of G in O(min(logDMSF · log( logn
1+γ logn ), log n) ·

logn
1+γ logn ) parallel time, where DMSF is the diameter (with

respect to the number of edges/hops) of a minimum spanning

forest of G. The success probability is at least 0.98. In

addition, if the algorithm fails, then it returns FAIL.

We note that we require the bounded weights condition

merely to ensure that each weight is described by one word.

Theorem I.8 (Approximate Minimum Spanning Forest,

restatement of Theorem VI.3). Consider a weighted graph

G with weights w : E → Z≥0 such that ∀e ∈
E, |w(e)| ≤ poly(n). For any ε ∈ (0, 1), γ ∈ [β, 2] and

any constant δ ∈ (0, 1), there is a randomized (γ, δ) −
MPC algorithm which can output a (1 + ε) approximate

minimum spanning forest for G in O(min(logDMSF ·
log( logn

log(N1+γ/(ε−1n logn)) ), log n)) parallel time, where β =

Θ(log(ε−1 log n)/ log n), and DMSF is the diameter (with

respect to the number of edges/hops) of a minimum spanning

forest of G. The success probability is at least 0.98. In

addition, if the algorithm fails, then it returns FAIL.

Theorem I.9 (Bottleneck Spanning Forest, restatement of

Theorem VI.4). Consider a weighted graph G with weights

w : E → Z such that ∀e ∈ E, |w(e)| ≤ poly(n). For

any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a

randomized (γ, δ) − MPC algorithm which can output a
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bottleneck spanning forest for G in O(min(logDMSF ·
log( logn

1+γ logn ), log n) · log(
logn

1+γ logn )) parallel time, where

DMSF is the diameter (with respect to the number of

edges/hops) of a minimum spanning forest of G. The success

probability is at least 0.98. In addition, if the algorithm fails,

then it returns FAIL.

Conditional hardness for directed reachability. We also

consider the reachability question in the directed graphs, for

which we show similar to the above results are unlikely.

In particular, we show that if there is a fully scalable

multi-query directed reachability (0, δ) − MPC algorithm

with no(1) parallel time and polynomial local running time,

then we can compute the Boolean Matrix Multiplication in

n2+ε+o(1) time for arbitrarily small constant ε > 0. We note

that the equivalent problem for undirected graphs can be

solved in O(logD log logn) parallel time via Theorem I.2.

Theorem I.10 (Directed Reachability vs. Boolean Matrix

Multiplication, restatement of Theorem VII.1). Consider a

directed graph G = (V,E). If there is a polynomial local

running time, fully scalable (γ, δ)−MPC algorithm that can

answer |V |+|E| pairs of reachability queries simultaneously

for G in O(|V |α) parallel time, then there is a sequential

algorithm which can compute the multiplication of two n×n
boolean matrices in O(n2 · n2γ+α+ε) time, where ε > 0 is

a constant which can be arbitrarily small.

C. Our Techniques

In this section, we give an overview of the various

techniques that we use in our algorithms. More details, as

well as some of the low level details of the implementation

in the MPC model, are defered to later sections.

Before getting into our techniques, we mention two stan-

dard tools to help us build our MPC subroutines. The first

one is sorting: while in the PRAM model it takes ∼ logN
parallel time, sorting takes only constant parallel time in the

MPC model [Goo99], [GSZ11]. The second tool is index-

ing/predecessor search [GSZ11], which also has a constant

parallel time in MPC model. Furthermore, these two tools

are fully scalable, and hence all the subroutines built on

these two tools are also fully scalable. See Section IV for

how to use these two tools to implement the MPC operations

needed for our algorithms.

Graph Connectivity: A natural approach to the graph

connectivity problem is via the classic primitive of con-

tracting to leaders: select a number of leader verteces, and

contract every vertex (or most vertices) to a leader from its

connected component (this is usually implemented by label-

ing the vertex by the corresponding leader). Indeed, many

previous works (see e.g. [KSV10], [RMCS13], [KLM+14])

are based on this approach. There are two general questions

to address in this approach: 1) how to choose leader vertices,

and 2) how to label each vertex by its leader. For example,

the algorithm in [KSV10] randomly chooses half of the

vertices as leaders, and then contracts each non-leader vertex

to one of its neighbor leader vertex. Thus, in each round of

their algorithm, the number of vertices drops by a constant

fraction. At the same time, half of the vertices are leaders,

and hence their algorithm still needs at least Ω(logn) rounds

to contract all the vertices to one leader. Note that a constant

fraction of leaders is needed to ensure that there is a constant

fraction of non-leader vertices who are adjacent to at least

one leader vertex and hence are contracted. This leader

selection method appears optimal for some graphs, e.g. path

graphs.

To improve the runtime to � log n, one would have to

choose a much smaller fraction of the vertices to be leaders.

Indeed, for a graph where every vertex has a large degree,

say at least d 	 log n, we can choose fewer leaders: namely,

we can choose each vertex to be a leader with probability

p = Θ((log n)/d). Then the number of leaders will be about

Õ(n/d), while each non-leader vertex has at least one leader

neighbor with high probability. After contracting non-leader

vertices to leader vertices, the number of remaining vertices

is only a 1/d fraction of original number of vertices.

By the above discussion, the goal would now be to modify

our input graph G so that every vertex has a uniformly large

degree, without affecting the connectivity of the graph. An

obvious such modification is to add edges between pairs of

vertices that are already in the same connected component.

In particular, if a vertex v learns of a large number of vertices

which are in the same connected component as v, then we

can add edges between v and those vertices to increase the

degree of v. A naïve way to implement the latter is via

broadcasting: each vertex v first initializes a set Sv which

contains all the neighbors of v, and then, in each round,

every vertex v updates the set Sv by adding the union of

the sets Su over all neighbors u of v (old and new). This

approach takes log-diameter number of rounds, and each

vertex learns all vertices which are in the same connected

component at the end of the procedure. However, in a single

round, the total communication needed may be as huge as

Ω(n3) since each of n vertices may have Ω(n) neighbors,

each with a set of size Ω(n).
Since our goal of each vertex v is to learn only d vertices

in the same component (not necessarily the entire compo-

nent), we can therefore implement a “truncated” version of

the above broadcasting procedure:

1) If Sv already had size d, then we do not need any further
operation for Sv .

2) If u is in Sv , and Su already has d vertices, then we can just
put all the elements from Su into Sv and thus Sv becomes
of size d.

3) If |Sv| < d, and for every u ∈ Sv , the set Su is also smaller
than d, then we can implement one step of the broadcasting
— add the union of Su’s, for all neighbors u ∈ Sv , to Sv .

In the above procedure, if the number of vertices in Sv is

smaller than d after the ith round, then we expect Sv to

contain all the vertices whose distance to v is at most 2i.
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Thus, the above procedure also takes at most log-diameter

rounds. Furthermore, the total communication needed is at

most O(n · d2).
Our full graph connectivity algorithm implements the

above “truncated broadcasting” procedure iteratively, for

values d that follow a certain “schedule”, depending on

the available space. At the beginning of the algorithm, we

have an n vertex graph G with diameter D, and a total

of Ω(m) space. The algorithm proceeds in phases, where

each phase takes O(logD) rounds of communication. In

the first phase, the starting number of vertices is n1 = n.
We implement a truncated broadcasting procedure where

the target degree d is d1 = (m/n1)
1/2, using O(logD)

rounds and O(m) total space. Then we can randomly select

Õ(n1/d1) leaders, and contract all the non-leader vertices

to leader vertices. At the end of the first phase, the total

number of remaining vertices is at most n2 = Õ(n1/d1) =
Õ(n1.5

1 /m0.5). In general, suppose, at the beginning of the

ith phase, the number of remaining vertices is ni. Then we

use the truncated broadcasting procedure for value d set

to di = (m/ni)
1/2, thus making each vertex have degree

at least di = (m/ni)
1/2 in O(logD) number of commu-

nication rounds and O(m) total space. Then we choose

Õ(ni/di) leaders, and, after contracting non-leaders, the

number ni+1 of remaining vertices is at most Õ(n1.5
i /m0.5).

Let us look at the progress of the value di. We have that

di+1 = Ω̃((m/ni+1)
1/2) = Ω̃((m1.5/n1.5

i )1/2) = Ω̃(d1.5i ).
Thus, we are making double exponential progress on di,
which implies that the total number of phases needed is at

most O(log logm/n n), and the total parallel time is thus

O(logD · log logm/n n).
This technique of double-exponential progress is more

general and extends to other problems beyond connectivity.

In particular, for a problem, suppose its size is character-

ized by a parameter n (not necessarily the input size—

e.g. in connectivity problem, n is the number of vertices).

When n is a constant, the problem can be solved in O(1)
parallel time. If there is a procedure that uses total space

Θ(m) to reduce the problem size to at most n/k for

k = (m/n)c, c = Ω(1), then we can repeat the procedure

O(log logm/n n) times to solve the overall problem. In

particular, after repeating the procedure i times, the problem

size is ni ≤ ni−1/(m/ni−1)
c ≤ n · (n/m)(1+c)i−1. We

call this technique double-exponential speed problem size

reduction.

Remark I.11. For any problem characterized by a size

parameter n, if we can use parallel time T and total space

Θ(m) to reduce the problem size such that the reduced

problem size is n/k for k = (m/n)Ω(1), then we can solve

the problem in O(m) total space and O(T · log logm/n n)
parallel time.

Spanning Forest and Diameter Estimator: Extending

a connectivity algorithm to a spanning forest algorithm is

usually straightforward. For example, in [KSV10], they only

contract a non-leader vertex to an adjacent leader vertex, thus

their algorithm can also give a spanning forest, using the

contracted edges. Here however, extending our connectivity

algorithm to a spanning forest algorithm requires several new

ideas. In our connectivity algorithm, because of the added

edges, we only ensure that when a vertex u is contracted to a

vertex v, u and v must be in the same connected component;

but u and v may not be adjacent in the original graph.

Thus, we need to record more information to help us build

a spanning forest.

We can represent a forest as a collection of parent pointers

par(v), one for each vertex v ∈ V . If v is a root in the forest,

then we let par(v) = v. We use deppar(v) to denote the

depth of v in the forest, i.e. deppar(v) is the distance from

v to its root. Let distG(u, v) denote the distance between

two vertices u and v in a graph G.

Our connectivity algorithm uses the “neighbor increment”

procedure described above. We observed that if the set Sv

has fewer than d vertices after the ith round, then Sv should

contain all the vertices with distance at most 2i to v. This

motivates us to maintain a shortest path tree for Sv, with

root v. In the ith round, if we need to update Sv to be⋃
u∈Sv

Su, then we can update the shortest path tree of Sv

in the following way:

1) For each x ∈ Su for some u ∈ Sv, we can create a tuple
(x, u).

2) Then, for each x ∈
(⋃

u∈Sv
Su

)
\ Sv, we can sort all the

tuples (x, u1), (x, u2), · · · , (x, uk) such that u1 minimizes
minu∈Sv distG(v, u) + distG(u, x). Since u is in Sv, x is
in Su, it is easy to get the value of distG(v, u), distG(u, x)
by the information of shortest path tree for Sv and Su. Then
we set the new parent of x in the shortest path tree for Sv

to be the parent of x in the shortest path tree for Su1 .

Since Sv before the update contains all the vertices which

have distance to v at most 2i−1, the union of the shortest

path from x to u1 and the shortest path from u1 to v must

be the shortest path from x to v. Then by induction, we can

show that the parent of x in the shortest path tree for Su1

is also the parent of x in the shortest path tree for updated

Sv. Thus, this modified “neighbor increment” procedure can

find n local shortest path trees where there is a tree with root

v for each vertex v. Furthermore, the procedure still takes

O(logD) rounds. And we can still use O(nd2) total space

to make each shortest path tree have size at least d. Next, we

show how to use these n local shortest path trees to construct

a forest with the roots in the forest being the leaders.

As discussed in the connectivity algorithm, if every local

shortest path tree has size at least d, we can choose each

vertex as a leader with probability p = Θ((log n)/d) and

then every tree will contain at least one leader with high

probability. Let L be the set of sampled leaders, and let

distG(v, L) be defined as minu∈L distG(v, u). Let v be a

non-leader vertex, i.e. v ∈ V \ L. According to the shortest
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path tree for Sv
3, since L∩Sv �= ∅, we can find a child u of

the root v such that distG(v, L) > distG(u, L); in this case

we set par(v) = u. For vertex v ∈ L, we can set par(v) = v.
We can see now that par denotes a rooted forest where

the roots are sampled leaders. Furthermore, since ∀v �∈ L,
(v, par(v)) is from the shortest path tree for Sv, we know

that v and par(v) are adjacent in the original graph G.

After doing the above for all nodes v, the forest denoted

by the resulting vector par must be a subgraph of the

spanning forest of G. We then apply the standard doubling

algorithm to contract all the vertices to their leaders (roots),

in O(logD) rounds. Therefore, the problem is reduced

to finding a spanning forest in the contracted graph. The

number of vertices remaining in the contracted graph is

at most Õ(n/d), where d = (m/n)Θ(1). By Remark I.11,

we can output a spanning forest in O(logD · log logm/n n)
parallel time.

Although the above algorithm can output the edges of a

spanning forest, it cannot output a rooted spanning forest.

To output a rooted spanning forest, we follow a top-down

construction. Suppose now we have a rooted spanning forest

of the contracted graph. Since we have all the information

of how vertices were contracted, we know the contraction

trees in the original graph. To merge these contraction trees

into the rooted spanning forest of the contracted graph, we

only need to change the root of each contraction tree to a

proper vertex in that tree. This changing root operation can

be implemented by the doubling algorithm via a divide-and-

conquer approach.

Since the spanning forest algorithm needs

O(log logm/n n) phases to contract all vertices to a

single vertex, the total parallel time to compute a rooted

spanning forest is O(logD · log logm/n n). Furthermore,

the depth of the rooted spanning forest will be at most

O(DO(log logm/n n)). Thus, we can use the doubling

algorithm to calculate the depth of the tree, and output this

depth as an estimator of the diameter of the input graph.

Depth-First-Search Sequence: Here, when the input

graph G is a tree, our goal is to output a DFS sequence for

this tree. Once we have this sequence, it is easy to output

a rooted tree. Thus, computing a DFS sequence is at least

as hard as computing a rooted tree, and all the previous

algorithms need Ω(logn) parallel time to do so.

First of all, we use our spanning forest algorithm to

compute a rooted tree, reducing the problem to computing

a DFS sequence for a rooted tree. The idea is motivated by

TeraSort [O’M08]. If the size of the tree is small enough

such that it can be handled by a single machine, then

we can just use a single machine to generate its DFS

sequence. Otherwise, our algorithm can be roughly described

3 The construction of Sv for spanning forest algorithm is slightly
different from that described in the connectivity algorithm. Sv in spanning
forest algorithm has a stronger property: ∀u ∈ V \ Sv , distG(u, v) must
be at least distG(u′, v) for any u′ ∈ Sv .

as follows. (Recall that δ is the parameter such that each

machine has Θ(nδ) local memory.)
1) Sample nδ/2 leaves l1, l2, · · · , ls.
2) Determine the order of sampled leaves in the DFS sequence.

3) Compute the DFS sequence Ã of the tree which only
consists of sampled leaves and their ancestors.

4) Compute the DFS sequence Av of every root-v subtree
which does not contain any sampled leaf.

5) Merge Ã and all the Av.

The first and second steps go as follows. Since we only

sample nδ/2 leaves, we can send them to a single machine.

We generate queries for every pair of sampled leaves where

each query (li, lj) queries the lowest common ancestor of

(li, lj). We have nδ such queries in total. Since the input tree

is rooted, we can use a doubling algorithm to preprocess a

data structure in O(logD) parallel time and answer all the

queries simultaneously in O(logD) parallel time. Thus, we

know the lowest common ancestor of any pair of sampled

leaves, and we can store this all on a single machine. Based

on the information of lowest common ancestors of each pair

of sampled leaves, we are able to determine the order of the

leaves.
For the third step, suppose the sampled leaves have order

l1, l2, · · · , ls. Let v be the root of the tree. Then the DFS

sequence Ã should be: the path from v to l1, the path from l1
to the lowest common ancestor of (l1, l2), the path from the

lowest common ancestor of (l1, l2) to l2, the path from l2 to

the lowest common ancestor of (l2, l3), ..., the path from ls
to v. We can find these paths simultaneously by a doubling

algorithm together with a divide-and-conquer algorithm in

O(logD) parallel time.
In the fourth step, we apply the procedure recursively.

Suppose the total number of leaves in the tree is q ≤ n. Since

we randomly sampled nδ/2 number of leaves, with high

probability, each subtree which does not contain a sampled

leaf will have at most O(q/nδ/2) number of leaves. Thus,

the depth of the recursion will be at most a constant, O(1/δ).
Minimum Spanning Forest and Bottleneck Spanning

Forest: Recall that the input is a graph G = (V,E =
(e1, e2, · · · , em)) together with a weight function w on E.

Without loss of generality, we only consider the case when

all the weights of edges are different, i.e. w(e1) < w(e2) <
· · · < w(em). Since the weights of edges are different,

the minimum spanning forest of the graph is unique. By

Kruskal’s algorithm, the diameter of the graph induced by

the first i edges for any i ∈ [m] is at most the depth of the

minimum spanning forest. Now, let us use D to denote the

depth of the minimum spanning forest.
We first discuss the minimum spanning forest algorithm.

A crucial observation of Kruskal’s algorithm is: if we want

to determine which edges in ei, ei+1, · · · , ej are in the

minimum spanning forest, we can always contract the first

i− 1 edges to obtain a graph G′, run a minimum spanning

forest algorithm on the contracted graph G′, and observe

whether an edge is included in the spanning forest of G′.
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Thus, if the total space is Θ(m1+γ), we can have mγ

copies of the graph, where the ith copy contracts the first

(i− 1) ·m1−γ edges. Thus, we are able to divide the edges

into mγ groups where each group has m1−γ number of

edges. We only need to solve the minimum spanning forest

problem for each group. Then in the second phase, we can

divide the edges into m2γ groups where each group has

m1−2γ number of edges. Thus, the total number of phases

needed is at most O(1/γ). In each phase, we just need to

run our connectivity algorithm to contract the graph.
For the approximate minimum spanning forest algorithm,

we use a similar idea. If we want a (1 + ε) approximation,

then we round each weight to the closest value (1 + ε)i for

some integer i. After rounding, there are only O(1/ε · log n)
edge groups. Since our total space is at least Ω(m log(n)/ε),
we can make O(1/ε·log n) copies of the graph. The ith copy

of the graph contracts all the edges in group 1, 2, · · · , i− 1.
Then, we only need to run our spanning forest algorithm on

each copy to determine which edges should be chosen in

each group.
Another application of our double exponential speed prob-

lem size reduction technique is bottleneck spanning forest.

For the bottleneck spanning forest, suppose we have Θ(km)
total space. We can have k copies of the graph where the ith

copy contracts the first (i−1)·m/k number of edges. We can

determine the group of O(m/k) edges which contains the

bottleneck edge. Thus, we reduce the problem to O(m/k).
According to Remark I.11, the number of phases is at most

O(log logk m), and each phase needs T parallel time, where

T is the parallel time for spanning forest.
Directed Reachability vs. Boolean Matrix Multiplica-

tion: If there is a fully scalable multi-query directed reach-

ability MPC algorithm with almost linear total space, we

can simulate the algorithm in sequential model. Thus, it will

imply a good sequential multi-query directed reachability

algorithm which implies a good sequential Boolean Matrix

Multiplication algorithm.

II. NOTATIONS

[n] denotes the set {1, 2, · · · , n}. Let G be an undirected

graph with vertex set V and edge set E. For v ∈ V, ΓG(v)
denotes the set of neighbors of v in G, i.e. ΓG(v) = {u ∈
V | (v, u) ∈ E}. For any u, v ∈ V, distG(u, v) denotes the

distance between u, v in graph G. If u, v are not in the same

connected component, then distG(u, v) = ∞. If u, v are in

the same connected component, then distG(u, v) < ∞. For

v ∈ V, {u ∈ V | distG(u, v) < ∞} is the set of all the

vertices in the same connected component as v. The diameter

diam(G) of G is the largest diameter of its components, i.e.

diam(G) = maxu,v∈V :distG(u,v)<∞ distG(u, v).

III. GRAPH CONNECTIVITY

In this section, we describe a batch version of a graph

connectivity algorithm which can be easily implemented in

the MPC model.

Algorithm 1 Neighbor Increment Operation

1: procedure NEIGHBORINCREMENT(m,G = (V,E))

2: Initially, n = |V |, E′ = ∅ and S
(0)
v = {v} for all v ∈ V .

3: for v ∈ V, u ∈ ΓG(v) do � Initialize S
(0)
v to be the set

(or a subset) of direct neighbors of v
4: If |S

(0)
v | < �(m/n)1/2�, then let S

(0)
v ← S

(0)
v ∪ {u}.

5: end for
6: r ← 1. � r denotes the number of iterations.
7: for true do
8: for v ∈ V do
9: if ∃u ∈ S

(r−1)
v , |S

(r−1)
u | ≥ �(m/n)1/2� then

10: S
(r)
v = S

(r−1)
u ∪ {v}.

11: If |S
(r)
v | > |S

(r−1)
u |, then S

(r)
v ← S

(r)
v \ {u}.

12: else
13: S

(r)
v =

⋃
u∈S

(r−1)
v

S
(r−1)
u .

14: end if
15: end for
16: if ∀v ∈ V, either |S

(r)
v | ≥ �(m/n)1/2� or |S

(r)
v | =

|S(r−1)
v | then Let E′ = E ∪

⋃
v∈V {(v, u) | v ∈ S

(r)
u or u ∈

S
(r)
v , u �= v}. return G′ = (V,E′).

17: else
18: r ← r + 1.
19: end if
20: end for
21: end procedure

A. Neighbor Increment Operation

In this section, we describe a procedure (see Algorithm 1)

which can increase the number of neighbors of every vertex

and preserve the connectivity at the same time. The input

of the procedure is an undirected graph G = (V,E) and

a parameter m which is larger than |V |. The output is a

graph G′ = (V,E′) such that for each vertex v, either the

connected component which contains v is a clique or v has

at least �(m/|V |)1/2� − 1 neighbors. Furthermore, the total

space of the procedure is O(m), and the number of iterations

is at most min(�log(diam(G))�, �log(m/n)�) + 1.

B. Random Leader Selection

Given an undirected graph G = (V,E), to design a

connected component algorithm, a natural way is constantly

contracting the vertices in the same component. One way to

do the contraction is that we randomly choose some vertices

as leaders, then contract non-leader vertices to the neighbor

leader vertices. In this section, we show that if ∀v ∈ V,
the number of neighbors of v is large enough, then we can

just sample a small number of leaders such that for each

non-leader vertex v ∈ V, there is at least one neighbor of v
which is chosen as a leader. A more generalized statement

is stated in the following lemma.

Lemma III.1. Let V be a vertex set with n vertices. Let

0 < γ ≤ n, δ ∈ (0, 1). For each v ∈ V, let Sv be a subset of

V \{v} with size at least γ−1. Let l : V → {0, 1} be a ran-

dom hash function such that ∀v ∈ V, l(v) are i.i.d. Bernoulli
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random variables, i.e. l(v) =

{
1 with probability p;

0 otherwise.
If

p ≥ min((10 log(2n/δ))/γ, 1), then, with probability at

least 1− δ,
1)

∑
v∈V l(v) ≤ 3

2
pn;

2) ∀v ∈ V, ∃u ∈ Sv ∪ {v} such that l(u) = 1.

If the number of neighbors of each vertex is not large,

then we can still have a constant fraction of vertices which

can contract to a leader.

Lemma III.2. Let V be a vertex set with n vertices.

Let Sv be a subset of V \ {v} with size at least 1. Let

l : V → {0, 1} be a random hash function such that

∀v ∈ V, l(v) are i.i.d. Bernoulli random variables, i.e.

l(v) =

{
1 with probability 1

2
;

0 otherwise.
Let L = {v ∈ V | l(v) =

1} ∪ {v ∈ V | ∀u ∈ Sv ∪ {v}, l(u) = 0}. E(L) ≤ 0.75n.

C. Contraction Operation

In this section, we introduce the contraction operation.

Firstly, let us introduce the concept of the parent pointers

which can define a rooted forest.

Definition III.3. Given a set of vertices V, let par : V → V
satisfy that ∀v ∈ V, ∃i > 0 such that par(i)(v) =
par(i+1)(v), where ∀v ∈ V, j > 0, par(j)(v) is defined as

par(par(j−1)(v)), and par(0)(v) = v. Then, we call such

par a set of parent pointers on V . For v ∈ V, if par(v) = v,
then we say v is a root of par . par can have more than

one root. The depth of v ∈ V, deppar(v) is the smallest

i ∈ Z≥0 such that par(i)(v) = par(i+1)(v). The root of

v ∈ V, par(∞)(v) is defined as par(deppar(v))(v). The depth

of par, dep(par) is defined as maxv∈V deppar(v).

It is easy to see that a set of parent pointers par on V
formed a rooted forest on V . For a vertex v ∈ V, if par(v) =
v, then v is a root in the forest. Otherwise par(v) is the

parent of v in the forest.

Now we focus on the parent pointers which can preserve

the connectivity of the graph.

Definition III.4. Given a graph G = (V,E) and a

set of parent pointers par on V, if ∀v ∈ V, we have

distG(v, par(v)) < ∞, then par is compatible with G.

It is easy to show the following fact:

Fact III.5. Given a graph G = (V,E) and a set of parent

pointers par which is compatible with G, then ∀u, v ∈ V
with par(∞)(u) = par(∞)(v), we have distG(u, v) < ∞.

Now, we describe a procedure (see Algorithm 2) which

can contract vertices to reduce the number of vertices. The

input of the procedure is an undirected graph G = (V,E)
and a set of parent pointers par : V → V , where par is com-

patible with G. The output of the procedure will be the root

of each vertex in V and an undirected graph G′ = (V ′, E′)
which satisfies V ′ = {v ∈ V | par(v) = v}, E′ = {(u, v) ∈

Algorithm 2 Tree Contraction Operation

1: procedure TREECONTRACTION(G = (V,E), par : V → V )

2: Initially, ∀v ∈ V, g(0)(v) ← par(v). Let V ′ = ∅, E′ = ∅.
3: l ← 0.
4: for ∃v ∈ V, par(g(l)(v)) �= g(l)(v) do
5: l ← l + 1.
6: For v ∈ V, compute g(l)(v) = g(l−1)(g(l−1)(v)).
7: end for
8: r ← l. � r denotes the number of iterations.
9: For v ∈ V, if par(v) = v, let V ′ ← V ′ ∪ {v}.

10: For (u, v) ∈ E, if g(r)(u) �= g(r)(v), let E′ ← E′ ∪
{(g(r)(u), g(r)(v))}.

11: return g(r)(v) as par(∞)(v) for v ∈ V, and G′ =
(V ′, E′)

12: end procedure

V ′ × V ′ | u �= v, ∃(p, q) ∈ E, par(∞)(p) = u, par(∞)(q) =
v}. Notice that V ′ only contains all the roots in the forest

induced by par, and |E′| ≤ |E|. Furthermore, the number of

iterations is at most �log dep(par)�, the total space is linear

in the input size, and diam(G′) ≤ diam(G).

D. Connectivity Algorithm

In this section, we described a batch algorithm for graph

connectivity/connected components problem. The input is

an undirected graph G = (V,E), a space/rounds trade-

off parameter m, and the rounds parameter r ≤ |V |. The

output is a function col : V → V such that ∀u, v ∈
V, distG(u, v) < ∞ ⇔ col(u) = col(v).

The algorithm is described in Algorithm 3. The following

theorem shows the correctness of Algorithm 3.

Theorem III.6 (Correctness of Algorithm 3). Let G =
(V,E) be an undirected graph, m ≥ 4|V |, and r ≤ |V |
be the rounds parameter. If CONNECTIVITY(G,m, r) (Al-

gorithm 3) does not output FAIL, then ∀u, v ∈ V, we have

distG(u, v) < ∞ ⇔ col(u) = col(v).

Now let us consider the number of iterations of Algo-

rithm 3 and the success probability.

Definition III.7 (Total iterations). Let G = (V,E)
be an undirected graph, poly(n) ≥ m > 4n, and

r ≤ n be the rounds parameter where n is the

number of vertices in G. The total number of itera-

tions of CONNECTIVITY(G,m, r) (Algorithm 3) is de-

fined as
∑r

i=1(ki + r′i), where ki denotes the num-

ber of iterations of NEIGHBORINCREMENT(m,Gi−1) (see

line 10), and r′i denotes the number of iterations of

TREECONTRACTION(G′′
i , pari) (see line 21).

Theorem III.8 (Success probability and total itera-

tions). Let G = (V,E) be an undirected graph,

poly(n) ≥ m > 4n, and r ≤ n be the rounds

parameter where n = |V |. Let c > 0 be a suf-

ficiently large constant. If r ≥ c log logm/n(n), then

with probability at least 0.98, CONNECTIVITY(G,m, r)
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Algorithm 3 Graph Connectivity

1: procedure CONNECTIVITY(G = (V,E),m, r)
2: Output: FAIL or col : V → V.
3: n ← |V |
4: ∀v ∈ V, h0(v) ← null.
5: G0 = (V0, E0) = G, i.e. V0 = V,E0 = E.
6: n0 = n.
7: for i = 1 → r do
8: ∀v ∈ V, hi(v) ← null.
9: //Neighbor Increment:

10: G′
i = (V ′

i , E
′
i) = NEIGHBORINCREMENT(m,Gi−1).

� Algorithm 1
11: V ′′

i = {v ∈ V ′
i | |ΓG′

i
(v)| ≥ �(m/ni−1)

1/2� − 1}.
12: E′′

i = {(u, v) ∈ Ei−1 | u ∈ V ′′
i , v ∈ V ′′

i }.
13: G′′

i = (V ′′
i , E′′

i ).
14: //Random Leader Selection:
15: Set γi = �(m/ni−1)

1/2�, pi = min((30 log(n) +
100)/γi, 1/2).

16: Let li : V
′′
i → {0, 1} be a random hash function such

that ∀v ∈ V ′′
i , li(v) are i.i.d. Bernoulli random variables, and

Pr(li(v) = 1) = pi.
17: Let Li = {v ∈ V ′′

i | li(v) = 1} ∪ {v ∈ V ′′
i | ∀u ∈

ΓG′

i
(v) ∪ {v}, li(u) = 0}. � Li is a set of all the leaders

18: ∀v ∈ V ′′
i with v ∈ Li, let pari(v) = v.

19: ∀v ∈ V ′′
i with v �∈ Li, let pari(v) =

minu∈Li∩(ΓG′

i
(v)∪{v}) u. � Non-leader finds a leader.

20: //Vertices Contraction:

21: ((Vi, Ei), g
(r′i)
i ) = TREECONTRACTION(G′′

i , pari).
� Algorithm 2

22: Gi = (Vi, Ei).
23: ni = |Vi|.
24: For v ∈ V ′

i \ V ′′
i , hi(v) ← minu∈ΓG′

i
(v)∪{v} u.

25: For v ∈ V ′′
i \ Vi, hi(v) ← g

(r′i)
i (v).

26: For v ∈ V, if hi−1(v) �= null, hi(v) → hi−1(v).
27: end for
28: If nr �= 0, return FAIL.
29: ((V̂ , Ê), col) = TREECONTRACTION(G, hr).

� Algorithm 2
30: return col .
31: end procedure

(Algorithm 3) will not return FAIL. Furthermore, with

probability at least 0.98, the total number of itera-

tions (see Definition III.7) of CONNECTIVITY(G,m, r) is

O(min(r log(diam(G)), log n)).

IV. THE MPC MODEL

In this section, let us introduce the computational model

studied in this paper. Suppose we have p machines indexed

from 1 to p each with memory size s words, where n is the

number of words of the input and p · s = O(n1+γ), s =
Θ(nδ). Here δ ∈ (0, 1) is a constant, γ ∈ R≥0, and a

word has Θ(log(s · p)) bits. Thus, the total space in the

system is only O(nγ) factor more than the input size n,

and each machine has local memory size sublinear in n.

When 0 ≤ γ ≤ O(1/ log n), the total space is just linear in

the input size. The computation proceeds in rounds. At the

beginning of the computation, the input is distributed on the

local memory of Θ(n/s) input machines. Input machines

and other machines are identical except that input machine

can hold a part of the input in its local memory at the

beginning of the computation while each of other machines

initially holds nothing. In each round, each machine per-

forms computation on the data in its local memory, and sends

messages to other machines (including the sender itself when

it wants to keep the data) at the end of the round. Although

any two machines can communicate directly in any round,

the total size of messages (including the self-sent messages)

sent or received of a machine in a round is bounded by s,
its local memory size. In the next round, each machine only

holds the received messages in its local memory. At the end

of the computation, the output is distributed on the output

machines. Output machines and other machines are identical

except that output machine can hold a part of the output in

its local memory at the end of the computation while each

of other machines holds nothing. We call the above model

(γ, δ)−MPC model. The model is exactly the same as the

model MPC(ε) defined by [BKS13] with ε = γ/(1+γ− δ)
and the number of machines p = O(n1+γ−δ). Since we

care more about the total space used by the algorithm, we

use (γ, δ) to characterize the model, while in [BKS13] they

use parameter ε to characterize the repetition of the data.

The main complexity measure is the number of rounds R
required to solve the problem.

V. IMPLEMENTATIONS IN MPC MODEL

In this section, we show the theoretical guarantees of im-

plementations of previous batch algorithms in MPC model.

A. Graph Connectivity

The following lemma shows the number of rounds needed

to implement Algorithm 1 in MPC model.

Lemma V.1. Let graph G = (V,E), n = |V |, N =
|V | + |E| and m = Θ(Nγ) for some arbitrary γ ∈ [0, 2].
NEIGHBORINCREMENT(m,G) (Algorithm 1) can be imple-

mented in (γ, δ)−MPC model for any constant δ ∈ (0, 1).
Furthermore, the parallel running time is O(r), where r
is the number of iterations (see line 6 of Algorithm 1) of

NEIGHBORINCREMENT(m,G).

As mentioned in Section III-A, the number of it-

erations of NEIGHBORINCREMENT(m,G) is at most

min(�log(diam(G))�, �log(m/n)�) + 1. Thus, the num-

ber of rounds needed to implement the procedure

NEIGHBORINCREMENT(m,G) in MPC model is at most

O(min(�log(diam(G))�, �log(m/n)�)).
The following lemma shows the number of rounds needed

to implement Algorithm 2 in MPC model.

Lemma V.2. Let graph G = (V,E) and par : V → V
be a set of parent points (see Definition III.3) on the vertex

set V . TREECONTRACTION(G, par) (Algorithm 2) can be

implemented in (0, δ) − MPC model for any constant δ ∈
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(0, 1). Furthermore, the parallel running time is O(r), where

r is the number of iterations (see line 8 of Algorithm 2) of

TREECONTRACTION(G, par).

As mentioned in Section III-C, the number of iterations

of TREECONTRACTION(G, par) is O(log dep(par)) which

implies that it needs O(log dep(par)) rounds to implement

in MPC model.

By following Lemma V.1, Lemma V.2 and Theorem III.8,

we can get the following theorem which shows the number

of rounds needed to implement Algorithm 3 in MPC model.

Theorem V.3. Let graph G = (V,E), n = |V |, N =
|V | + |E| and m = Θ(Nγ) for some arbitrary γ ∈ [0, 2].
Let r > 0 be a round parameter. CONNECTIVITY(G,m, r)
(Algorithm 3) can be implemented in (γ, δ)−MPC model for

any constant δ ∈ (0, 1). Furthermore, the parallel running

time is O(R), where R is the total number of iterations (see

Definition III.7) of CONNECTIVITY(G,m, r).

Here, we are able to conclude the following theorem for

graph connectivity problem.

Theorem V.4. For any γ ∈ [0, 2] and any constant δ ∈
(0, 1), there is a randomized (γ, δ) −MPC algorithm (see

Algorithm 3) which can output the connected components for

any graph G = (V,E) in O(min(logD · log(1/γ′), log n))
parallel time, where D is the diameter of G, n = |V |,
N = |V |+ |E| and γ′ = (1+ γ) logn

2N
n1/(1+γ) . The success

probability is at least 0.98. In addition, if the algorithm fails,

then it will return FAIL.

B. Spanning Forest Algorithm

Our spanning forest algorithm was outlined a bit in

Section I. In the following, we just state our results. Please

see the full version [ASS+18] for details.

Theorem V.5. For any γ ∈ [0, 2] and any constant δ ∈
(0, 1), there is a randomized (γ, δ)−MPC algorithm which

can output the rooted spanning forest for any graph G =
(V,E) in O(min(logD · log 1

γ′
, log n)) parallel time, where

D is the diameter of G, n = |V |, N = |V | + |E| and

γ′ = (1 + γ) logn
2N

n1/(1+γ) . The success probability is at

least 0.98. In addition, if the algorithm fails, then it will

return FAIL.

A byproduct is an estimator of the diameter of the graph.

Theorem V.6. For any γ ∈ [0, 2] and any constant δ ∈
(0, 1), there is a randomized (γ, δ)−MPC algorithm which

can output an diameter estimator D′ for any graph G =
(V,E) in O(min(logD·log(1/γ′), log n)) parallel time such

that D ≤ D′ ≤ DO(log(1/γ′)), where D is the diameter of

G, n = |V |, N = |V |+ |E| and γ′ = (1+ γ) logn
2N

n1/(1+γ) .
The success probability is at least 0.98. In addition, if the

algorithm fails, then it will return FAIL.

C. DFS Sequence

As stated in Section I, we can output a DFS sequence for

a tree graph in MPC model. In the following, we just state

our results. Please see the full version [ASS+18] for details.

Theorem V.7. For any γ ∈ [β, 2] and any constant δ ∈
(0, 1), there is a randomized (γ, δ)−MPC algorithm which

can output a Depth-First-Search sequence for any tree graph

G = (V,E) in O(min(logD · log(1/γ′), log n)) parallel

time, where n = |V |, β = Θ(log log n/ log n), D is the

diameter of G, and γ′ = γ + Θ(1/ log n). The success

probability is at least 0.98. In addition, if the algorithm

fails, then it will return FAIL.

VI. MINIMUM SPANNING FOREST

In this section, we discuss how to apply our connectiv-

ity/spanning forest algorithm to the Minimum Spanning For-

est (MSF) and Bottleneck Spanning Forest (BSF) problem.

The input of MSF/BSF problem is an undirected graph

G = (V,E) together with a weight function w : E → Z,
where E contains m edges e1, e2, · · · , em with w(e1) ≤
w(e2) ≤ · · · ≤ w(em). The goal of MSF is to output a

spanning forest such that the sum of weights of the edges

in the forest is minimized. The goal of BSF is to output a

spanning forest such that the maximum weight of the edges

in the forest is minimized. D is the diameter (with respect to

the number of hops/edges) of the minimum spanning forest.

If there are multiple choices of the MSF, then let D be the

minimum diameter among all the MSFs.

Lemma VI.1. Given a graph G = (V,E) for E =
{e1, e2, · · · , em} together with a weight function w which

satisfies w(e1) ≤ w(e2) ≤ · · · ≤ w(em), ∀1 ≤ i < j ≤ m,
an edge e from {ei, ei+1, · · · , ej} is in the minimum span-

ning forest of G if and only if e′ from {e′i, e
′
i+1, · · · , e

′
j} is in

the minimum spanning forest of G′, where the vertices of G′

is obtained by contracting all the edges e1, e2, · · · , ei−1 of

G, and e′, e′i, · · · , e
′
j are the edges (or vertices) in G′ which

corresponds to edges e, ei, · · · , ej before contraction.

A natural way to apply Lemma VI.1 to parallel min-

imum spanning forest algorithm is that we can divide

the edges into several groups, and recursively solve the

minimum spanning forest for each group of edges. More

precisely, suppose we have total space Θ(km), we can

divide E into k groups E1, E2, · · · , Ek, where Ei =
{e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. We can compute

graph G1, G2, · · · , Gk where the vertices of Gi is obtained

by contracting all the edges from e1 to e(i−1)·m/k, the

edges of Gi are corresponding to the edges in Ei. Then by

Lemma VI.1, we can obtain the whole minimum spanning

forest by solving these k size O(m/k) minimum spanning

forest problems. For each sub-problem, we can assign it

Θ(m) working space, so each sub-problem has Θ(k) factor

more space. We can recursively apply the above argument.
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Theorem VI.2. For any γ ∈ [0, 2] and any constant

δ ∈ (0, 1), there is a randomized (γ, δ) − MPC algo-

rithm which can output a minimum spanning forest for any

weighted graph G = (V,E) with weights w : E → Z in

O(min(logD · log(1/γ′), log n) · 1/γ′) parallel time, where

n = |V |, ∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a

minimum spanning forest of G, and γ′ = γ/2+Θ(1/ log n).
The success probability is at least 0.98. In addition, if the

algorithm fails, then it will return FAIL.

In the following, we show that Lemma VI.1 can also be

applied in approximate minimum spanning forest problem.

Theorem VI.3. For any γ ∈ [β, 2] and any constant δ ∈
(0, 1), there is a randomized (γ, δ)−MPC algorithm which

can output a (1 + ε) approximate minimum spanning forest

for any weighted graph G = (V,E) with weights w : E →
Z≥0 in O(min(logD·log(1/γ′), log n)) parallel time, where

n = |V |, N = |V | + |E|, β = Θ(log(ε−1 log n)/ log n),
∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a minimum

spanning forest of G, and γ′ = (1+ γ−β) logn
2N

n1/(1+γ−β) .
The success probability is at least 0.98. In addition, if the

algorithm fails, then it will return FAIL.

In the following, we show that if we only need to find the

largest edge in the minimum spanning tree, then we are able

to get a better parallel time. It is an another application of our

double exponential speed problem size reduction technique.

Theorem VI.4. For any γ ∈ [0, 2] and any constant

δ ∈ (0, 1), there is a randomized (γ, δ) − MPC algorithm

which can output a bottleneck spanning forest for any

weighted graph G = (V,E) with weights w : E → Z in

O(min(logD · log(1/γ′), log n) · log(1/γ′)) parallel time,

where n = |V |, ∀e ∈ E, |w(e)| ≤ poly(n), D is the

diameter of a minimum spanning forest of G, and γ′ =
γ/2+Θ(1/ log n). The success probability is at least 0.98.
In addition, if the algorithm fails, then it will return FAIL.

VII. DIRECTED REACHABILITY VS. BOOLEAN MATRIX

MULTIPLICATION

Consider the multi-query directed graph reachability prob-

lem. In this problem, we are given a directed graph G =
(V,E) together with |V | + |E| queries where each query

queries the reachability from vertex u to vertex v. The

goal is to answer all these queries. A similar problem in

the undirected graph is called multi-query undirected graph

connectivity problem. According to Theorem V.4, there is a

polynomial local running time fully scalable ∼ logD paral-

lel time (0, δ)−MPC algorithm for multi-query undirected

graph connectivity problem. Here polynomial local running

time means that there is a constant c > 0 (independent

from δ) such that every machine in one round can only have

O((nδ)c) local computation. For multi-query directed graph

reachability problem, we show that if there is a polynomial

local running time fully scalable (γ, δ) − MPC algorithm

which can solve multi-query reachability problem in O(nα)
parallel time, then we can solve all-pair directed graph

reachability problem in O(n2 ·n2γ+α+ε) sequential running

time for any arbitrarily small constant ε > 0.

Theorem VII.1. If there is a polynomial local running time

fully scalable (γ, δ) − MPC algorithm which can answer

|V |+|E| pairs of reachability queries simultaneously for any

directed graph G = (V,E) in O(|V |α) parallel time, then

there is a sequential algorithm which can compute the mul-

tiplication of two n×n boolean matrices in O(n2 ·n2γ+α+ε)
time, where constant ε ∈ R>0 can be arbitrarily small.
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