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Abstract
The oribatid mite Alaskozetes antarcticus, one of the most abundant terrestrial invertebrates in Antarctica, survives extreme 
temperature fluctuation and desiccation, and thrives in the short growing season characteristic of this polar environment. 
Several aspects of the mite’s ecology and physiology are well studied, but little is known about its reproduction. In this study, 
we utilize sex- and development-specific next-generation RNA-sequencing (RNA-seq) analyses to identify differentially regu-
lated transcripts underlying reproduction of A. antarcticus. Pairwise comparisons between males, females, and tritonymphs 
revealed more than 4000 enriched transcripts based on different transcriptional levels among sexes and developmental stages. 
More than 500 of these enriched transcripts were differentially upregulated over 1000-fold. Many of the highly enriched 
and sex-specific transcripts were previously uncharacterized or have no known orthology. Of the transcripts identified, gene 
ontology-based analyses linked the transcriptional distinctions to differences in reproduction, chemosensation, and stress 
response. Our comparative approach allowed us to determine sexually dimorphic transcript expression in A. antarcticus. 
We anticipate that this study will provide a baseline to better understand the mechanisms that underlie reproduction in both 
polar and non-polar oribatid mites.

Keywords  RNA-seq · Reproduction · Testis-specific serine/threonine protein kinases · Mite · Antarctic reproductive 
biology

Introduction

The Antarctic oribatid mite Alaskozetes antarcticus is among 
the most common terrestrial invertebrates in the sub-Antarc-
tic and maritime Antarctica. It is one of the largest terrestrial 
arthropods in Antarctica, measuring approximately 1 mm 
in length and weighing 200–300 μg. As an herbivore and 
detritivore, A. antarcticus feeds on organic debris including 
penguin guano, algae, and lichens (Strong 1967; Goddard 
1977, 1980, 1982; Block and Convey 1995). Large aggrega-
tions, with hundreds to thousands of individuals, contain all 
developmental stages, with adults comprising approximately 
30% of the individuals present (Block and Convey 1995). 
Many studies of this mite have focused on environmental 
stress tolerance (Young and Block 1980; Block and Convey 
1995; Benoit et al. 2008; Everatt et al. 2013).

Most studies on acarine reproduction have focused on 
ticks due to their medical importance and their large size 

Hannah E. Meibers and Geoffrey Finch have contributed equally.

Electronic supplementary material  The online version of this 
article (doi:https​://doi.org/10.1007/s0030​0-018-2427-x) contains 
supplementary material, which is available to authorized users.

 *	 Joshua B. Benoit 
	 joshua.benoit@uc.edu

1	 Department of Biological Sciences, University of Cincinnati, 
Cincinnati, OH, USA

2	 Department of Biology, Miami University, Oxford, OH, USA
3	 Departments of Entomology and Evolution, Ecology 

and Organismal Biology, The Ohio State University, 
Columbus, OH, USA

4	 Center for Autoimmune Genomics and Etiology 
and Divisions of Biomedical Informatics and Developmental 
Biology, Cincinnati Children’s Hospital Medical Center, 
Cincinnati, OH, USA

5	 Department of Pediatrics, University of Cincinnati College 
of Medicine, Cincinnati, OH, USA

http://orcid.org/0000-0002-4018-3513
http://crossmark.crossref.org/dialog/?doi=10.1007/s00300-018-2427-x&domain=pdf
https://doi.org/10.1007/s00300-018-2427-x


358	 Polar Biology (2019) 42:357–370

1 3

in comparison to other mites. Reproduction in females has 
been examined more thoroughly than in males, and most 
work on females has focused on hormonal regulation and 
the production of vitellogenin (Roe et al. 2008; Cabrera et al. 
2009). Male-associated studies have examined specific fac-
tors that increase in ticks following blood feeding and those 
that impact female blood feeding (Weiss and Kaufman 2001, 
2004; Roe et al. 2008). For non-tick acarines, studies have 
been limited to morphological-based observations of male 
and female reproductive processes (Pound and Oliver Jr. 
1976; Mother-Wagner and Seitz 1984; Walzl 1992; Norton 
1994), impact of Wolbachia on reproduction (Breeuwer 
1997; Weeks and Breeuwer 2001), and studies on the basic 
reproductive output of specific mite species (Norton 1994).

Females of A. antarcticus may develop up to 14 eggs at 
a time but commonly as few as 4–6 eggs can be found when 
females are dissected (Block 1980; Convey 1994b, c). Egg 
maturation appears to occur only during the adult’s second 
year (Convey 1994a; Block and Convey 1995). A synchro-
nous burst of egg production occurs early in the austral 
spring and summer, with low levels and less synchronous 
egg production persisting into late summer and winter (Con-
vey 1994a; Block and Convey 1995). Female mites collected 
from sub-Antarctic islands had a higher reproductive invest-
ment than those from maritime Antarctica (Convey 1998), 
suggesting that harsher environments reduce investment in 
reproduction. Only a single molt can be achieved each year; 
thus, mite maturation requires at least 4–5 years (Convey 
1994a, b). Transfer of sperm occurs through an indirect pro-
cess, where males deposit a stalked spermatophore on the 
substrate and females take up the spermatophore through 
their genital aperture (Norton 1994; Block and Convey 
1995), a strategy that is similar to that of other oribatid mites 
(Søvik 2002; Søvik and Leinaas 2003a, b; Pfingstl 2013), 
except for those that undergo asexual reproduction (Maraun 
et al. 2003; Cianciolo and Norton 2006; Brandt et al. 2017). 
Though some specific aspects of reproduction have been 
examined for A. antarcticus and other oribatid mites, tran-
scriptional aspects underlying reproduction in these mites 
have not been examined.

In this study, we utilized RNA-seq to examine the molec-
ular mechanisms underlying Antarctic mite reproduction. 
Males and females were examined, along with tritonymphs, 
to establish female-, male-, and tritonymph-specific tran-
script libraries. Although these studies revealed few female-
specific transcripts, many male-specific transcripts were 
identified. Transcripts with distinctly sex-specific expression 
were validated through polymerase chain reaction (PCR) and 
quantitative PCR. These sex-specific libraries were also 
compared to other mites using two methods: 1. examination 
of overlapping differences in transcript levels between male 
and female mites, and 2. orthology analysis with gene sets 
from mites with sequenced genomes. This study presents a 

sex-specific analysis of this Antarctic oribatid mite, along 
with comparative analyses of putative sex-specific gene sets 
among multiple mite species. We anticipate that this study 
will provide the groundwork for future studies focusing on 
Antarctic and oribatid mite reproduction.

Materials and methods

Mite collections and RNA extraction

Antarctic mites were collected from Humble Island, near 
Palmer Station, Antarctica (64°45′59″S, 64°05′60″W) in 
January 2017 and maintained in the laboratory at 4 °C under 
long day length (20-h light:4-h dark), conditions typical of 
summer at Palmer Station. Mites were provided access to 
algae (Prasiola crispa) and other organic debris collected 
with the mites. To ensure standardization, mites were held 
under these conditions for two weeks before examination. 
Males, females, and tritonymphs (final juvenile stage) were 
separated based on described morphological characteristics 
(Block and Convey 1995). Male and female were denoted 
by the characters of the genital areas. Males have a smaller, 
more rounded, genital area with six or more setae. Females 
have a larger, more oblong, genital area with only two setae 
(Block and Convey 1995). Females were examined for the 
presence of developing eggs within the body cavity. Select 
males from each cohort (Five mites per sample) were placed 
within Petri dishes, which were examined for the presence 
of deposited spermatophores (males were only used if exam-
ined mites deposited spermatophores). Samples were frozen 
at − 70°C until used. Each sample consisted of 40–50 mites.

RNA was extracted by homogenization (BeadBlaster 24, 
Benchmark Scientific) in Trizol (Invitrogen), based on the 
manufacturer’s protocol and modifications based on other 
acarid studies (Rosendale et  al. 2016). Extracted RNA 
was treated with DNase I (Thermo Scientific) and cleaned 
with a GeneJet RNA Cleanup and Concentration Micro Kit 
(Thermo Scientific) according to the manufacturer’s proto-
cols. RNA concentration and quality were examined with 
a NanoDrop 2000 (Thermo Scientific). Two independent 
biological replicates were generated for the male, female, 
and tritonymph samples.

Poly(A) libraries were prepared by the DNA Sequenc-
ing and Genotyping Core at Cincinnati Children’s Hospi-
tal Medical Center. RNA was quantified using a Qubit 3.0 
Fluorometer (Life Technologies). Total RNA (150–300 ng) 
was poly(A) selected and reverse transcribed using a TruSeq 
Stranded mRNA Library Preparation Kit (Illumina). An 
8-base molecular barcode was added to allow multiplex-
ing, and following 15 cycles of PCR amplification each 
library was sequenced on a HiSeq 2500 sequencing system 
(Illumina) in Rapid Mode. For each sample, 30–40 million 
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paired-end reads of 75 bases in length were generated. Raw 
RNA-seq data have been deposited at the National Center for 
Biotechnology Information (NCBI) Sequence Read Archive 
(Bioproject: PRJNA428758).

De novo contig assembly and annotation of A. 
antarcticus

RNA-seq reads were trimmed for quality (Phred score limit 
of 0.05) and sequences with ambiguities were removed. In 
addition, five and eight nucleotides were removed from the 
5′ and 3′ ends, respectively, and sequences shorter than 45 
bases were removed. Reads before and after cleaning and 
trimming were examined with FastQC (S. Andrews https​
://www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c) to 
verify each set had Phred scores near 40. Contig sets were 
generated with a combination of CLC Genomics Workbench 
(Qiagen), Trinity (Grabherr et al. 2011), and Velvet-Oases 
(Schulz et al. 2012). The minimum contig length for each 
program was set at 150 base pairs; settings used were based 
upon a previous study (Rosendale et al. 2016). Following 
assembly, each contig set was further processed individu-
ally or as a combined set. Protein-coding gene sets were 
predicted using Transdecoder (Haas et al. 2013). Sequence 
redundancy was reduced by removing sequences with 
minimum similarity cut-off of 95%, 93%, and 90% using 
CD-HIT-EST (Huang et al. 2010; Fu et al. 2012). BUSCO 
(Simão et al. 2015) against the arthropod dataset was utilized 
to evaluate the completeness of each assembly.

The highest quality contig set was searched (BLASTx) 
against the NCBI non-redundant (nr) database specified for 
arthropods. In addition, assembled sequences were searched 
against the SwissProt protein database and reference pro-
tein sets for the fruit fly (D. melanogaster) and two acarines 
(Ixodes scapularis and Tetranychus urticae). If a positive 
match was identified through BLAST, gene ontology (GO) 
terms were assessed with Blast2GO (Conesa et al. 2005) 
by merging results from the GO mapping tool (e value of 
1 × 10−5) and InterProScan. Along with these general analy-
ses, we performed more targeted analyses on gene catego-
ries that are likely to have differential expression based on 
previous sex-based RNA-seq for other invertebrates (Benoit 
et al. 2016; Schoville et al. 2018). Transcription factors were 
identified by methods previously described and utilized 
in other arthropod systems that focused on the identifica-
tion of specific motifs (Benoit et al. 2016; Schoville et al. 
2018). Gustatory and ionotropic receptors were identified by 
BLASTx comparisons of those annotated from I. scapularis 
and Metaseiulus occidentalis (Gulia-Nuss et al. 2016; Hoy 
et al. 2016), which are critical for chemosensation in mites 
and could have differential expression between sexes and 
developmental stages.

Expression and functional analyses

RNA-seq analyses were conducted using two distinct pipe-
lines. The first method used was CLC Genomics, as previ-
ously described (Benoit et al. 2014; Rosendale et al. 2016). 
Briefly, reads were mapped to the contigs with a cut-off of at 
least 80% of the reads matching at 90% identity, with a mis-
match cost of 2. Each read was permitted to align to only 20 
contigs. Expression values were based upon total read counts 
in each sample, calculated as transcripts per million reads 
mapped. A Baggerly’s test (a proportion-based statistical 
test) was used to test significance among samples. A multi-
ple comparison correction was performed (false discovery 
rate, FDR; Benjamini and Hochberg 1995). Contigs were 
considered to have differential expression if the fold change 
was greater than 2.0 and the FDR p value was < 0.05. In 
addition, contigs needed to have at least 5 mapped reads per 
sample to be retained in further analyses. Lastly, contigs 
were considered sample specific if enrichment was noted in 
relation to both the other datasets.

The second method for examining transcript expres-
sion involved RNA-seq tools available through the Galaxy 
software package (www.https​://usega​laxy.org/, Afgan et al. 
2016) with Salmon, using the suggested settings. Differ-
ential expression between contigs was examined with the 
DeSeq2 package (Love et al. 2014). A generalized linear 
model assuming a binomial distribution followed by false 
discovery rate (FDR) approach was used to account for mul-
tiple tests (Benjamini and Hochberg 1995). Cut-off values 
for significance, enrichment, and sample specificity were 
determined as described in the CLC-based analyses.

After analysis of the RNA-seq data, transcripts identified 
as sex specific or development specific by both pipelines 
were used for subsequent analyses. Pathways enriched within 
males, females, or tritonymphs were identified with a com-
bination of DAVID (Huang da et al. 2009a, b), Blast2GO 
enrichment analyses (Conesa et al. 2005), CLC gene set 
enrichment analysis (GSEA), and gProfiler (Reimand 
et al. 2016). Due to the taxonomic limitations of DAVID 
and gProfiler, sets of enriched transcripts were compared 
by BLASTx to the I. scapularis and the D. melanogaster 
RefSeq protein datasets to identify homologous sequences. 
BLAST hits (e value < 0.001) from these two species were 
submitted to DAVID for analysis.

Comparative analyses among mite species

While few studies have examined sex-specific gene expres-
sion in mites, a recent project focused on sexual conflict in 
bulb mites, Rhizoglyphus robini (Stuglik et al. 2014; Joag 
et al. 2016), and a recent study examined sex differences 
in the American dog tick, Dermacentor variabilis (Rosen-
dale et al. 2016). These mites are highly divergent from A. 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.https://usegalaxy.org/
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antarcticus as both R. robini and D. variabilis are within 
another order (Sarcoptiformes). RNA-seq datasets for the 
bulb mite (NCBI Bioproject: PRJNA330592) and American 
dog tick (NCBI Bioproject: PRJNA305720) were acquired 
for further analyses. Males and females (Stuglik et al. 2014; 
Joag et al. 2016) from both the fighter and scrambler phe-
notypes of the bulb mite were used in the analyses based 
upon previous descriptions (Joag et al. 2016). The acquired 
data were analyzed as described for A. antarcticus, with the 
exception of using a single de novo library built with Trinity 
(Grabherr et al. 2011; Haas et al. 2013). Contigs enriched 
at least 20-fold in males or females were compared to those 
from A. antarcticus. Sequences with BLAST matches at e 
value < 0.001 were considered orthologs and used in our 
comparisons to establish putative male- and female-specific 
contig sets for the mites.

Putative orthologs of male- and female-associated genes 
identified from A. antarcticus were compared to predicted 
protein sets from five Acari species: I. scapularis (Gulia-
Nuss et al. 2016), M. occidentalis (Hoy et al. 2016), Sar-
coptes scabiei (Rider et al. 2015), T. urticae (Grbić et al. 
2011), and Varroa destructor (Cornman et  al. 2010). 
tBLASTp analyses (e value < 0.001) were performed using 
CLC Genomics Workbench (Qiagen). Protein sequences 
were defined as orthologs if they were reciprocal-best 
BLASTp hits having an e value < 10−10. Overlap was com-
pared between these five analyses to produce putative sex-
specific transcript sets.

PCR and qPCR analyses

Select genes of interest that were highly enriched in males 
or females were examined by PCR using samples collected 
independently from those utilized in initial RNA-seq analy-
ses. Total RNA was extracted from males, females, and tri-
tonymphs as before and used as a template for Superscript 
III reverse transcriptase according to the manufacturer’s pro-
tocol (Invitrogen). PCR was performed with gene-specific 
primer pairs (Online Resource 1) using a DNA polymerase 
kit (Promega). The PCR conditions were 95 °C for 3 min, 
35 cycles of 30 s at 95 °C, 52–56 °C for 1 min, and 1 min 
at 70 °C using an Eppendorf Mastercycler Pro Series. Four 
independent (biological) replicates were conducted for each 
sex.

qPCR analyses were conducted based on previously 
developed methods (Rosendale et  al. 2016). RNA was 
extracted as before for independent biological replicates. 
Complementary DNA (cDNA) was generated with a 
DyNAmo cDNA Synthesis Kit (Thermo Scientific). Each 
reaction used 250 ng RNA, 50 ng oligo (dT) primers, with 
the reaction buffer containing dNTPs and 5 mmol l−1 MgCl2, 
and M-MuLV RNase H+ reverse transcriptase. KiCqStart 
SYBR Green qPCR ReadyMix (Sigma Aldrich), along with 

300 nmol l−1 forward and reverse primers, cDNA diluted 
1:25, and nuclease–free water was used for all reactions. 
Primers were designed with the use of Primer3 based on 
contigs obtained from the transcriptome analysis (Online 
Resource 1). qPCR reactions used an Illumina Eco quantita-
tive PCR system. Reactions were run according to previous 
studies (Rosendale et al. 2016). Four biological replicates 
were examined for each sex. Expression levels were normal-
ized to alpha-tubulin using the ΔΔCq methods as previously 
described (Schmittgen and Livak 2008). Fold change was 
compared between males and females, followed by calcula-
tion of Pearson’s correlation coefficient (r).

Results

De novo assembly

Six cDNA libraries, generated from tritonymphs, females, 
and males (two independent biological replicates), yielded 
a combined 341,103,288 reads after removal of low-quality 
reads. Benchmarking Universal Single-Copy Orthologs 
(BUSCO)-based analysis of the assemblies revealed that 
Trinity generated the highest quality individual assembly. 
Combining multiple assemblies led to an improvement 
of ~ 10% (Fig. 1). Transdecoder had a minimal impact on the 
number of matches to BUSCO genes (Fig. 1), indicating that 
this step used to obtain protein-coding genes had little influ-
ence on the quality of the de novo library. These combined 
analyses yielded a final set of 51,418 contigs. Annotation 
using BLASTx and the NCBI nr database for arthropods 
revealed that A. antarcticus contigs had highest similarities 
to the spider mite, T. urticae, and the scabies mite, S. scabiei 
(Fig. 1). The total number of contigs with matches was only 
~ 50%, based on an e value of < 0.001, which is similar to 
the number of matches reported for other acarine species 
(Cabrera et al. 2011; Bu et al. 2015; He et al. 2016; Rosen-
dale et al. 2016). Of the sequences with BLAST hits, 12,140 
were annotated with GO terms and used for subsequent GO 
enrichment studies.

RNA‑seq analyses

Differential transcript levels were determined between 
males, females, and tritonymphs using two independent 
pipelines (Fig. 2, Online Resource 2-S). Of importance, the 
two pipelines yielded 95–98% overlap at our significance 
cut-off (two-fold difference, combined TPM among all 
samples of at least 5, and a FDR correction-based p value 
< 0.05). There was a high correlation in transcript levels for 
specific genes between each of the replicates for each sex and 
the tritonymphs (Pearson correlation coefficient over 0.94 
in all cases). Between 43 and 45% of the reads from each 
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RNA-seq set were mapped to assembled contigs for both 
analysis methods. At the 20-fold level or greater for stage 
specificity, the overlap between the two methods exceeded 
99%, thus we used the Galaxy-based pipeline for the remain-
ing analyses. Transcripts with significant enrichment were 
examined at 20-, 100-, 500-, 1000-, and 5000-fold differ-
ences between developmental stages. For females, com-
pared to males and nymphs, 143 transcripts were enriched 
20-fold and 31 were enriched 1000-fold, but no transcripts 
were enriched over 5000-fold (Fig. 3). These transcripts 
included matches to female-associated genes, vitellogenin 

and multiple peroxinectins (Online Resource 3). Sixty-eight 
of the transcripts did not have matches to sequences from 
other arthropods. 

Our analysis identified 3836 transcripts that were 20-fold 
enriched in males compared to females and juveniles, and 45 
transcripts were enriched 5000-fold or more. Many factors 
previously associated with male reproduction were identi-
fied as enriched compared to the females and tritonymphs 
(Online Resource 2). Lastly, transcripts with enrichment 
in tritonymphs compared to adults revealed 228 enriched 
20-fold, 11 enriched over 1000-fold, and none over 5000-
fold (Fig. 3). Many of these contigs matched factors asso-
ciated with cuticle development and growth. Similar to 
females, ~ 30% of the male and tritonymph sets did not 
have matches to other arthropods (Online Resources 2-4). 
This high level of species-specific transcripts is common in 
acarine transcriptome studies (Gibson et al. 2013; Rosendale 
et al. 2016), which likely represent novel oribatid and/or A. 
antarcticus-specific transcripts.

GO enrichment analyses revealed many categories 
differentially regulated between our sample groups. For 
males, there were over 200 GO categories with altered 
levels (Fig. 4, Online Resource 5) at the 20-fold enrich-
ment level and nearly 80 with 500-fold enrichment. These 
GO categories included the monooxygenase and oxida-
tion–reduction process, metal/ion/small molecular bind-
ing, nucleotide binding, and transferase and kinase activ-
ity (Online Resource 5). GO category enrichment shifted 
for both tritonymphs and females and showed only a few 
enriched categories (Fig. 4; Online Resource 6–7). Tri-
tonymph transcriptomes demonstrated a distinct enrich-
ment in categories associated with chitin metabolism 
(Online Resource 6), while females showed a distinct 
enrichment of GO categories associated with response 

Fig. 1   Quality metrics of de 
novo assembly from Alaskozetes 
antarcticus. a BUSCO-based 
results among Trinity, CLC 
Genomics, Oases, and a com-
bined set. b Top BLAST hits for 
the combined contig set (Color 
figure online)

Fig. 2   Hierarchical clustering RNA-seq gene expression patterns 
for male, female, and tritonymphs of Alaskozetes antarcticus based 
on sample distance (Euclidean distance matrix) of log transformed 
expression from transcripts based on DeSeq (Love et al. 2014) (Color 
figure online)
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to oxidative stress. Transcription factor analyses revealed 
very few with sex-biased expression (Fig.  5, Online 
Resources 8,9). Along with transcription factor analy-
ses, we examined expression differences between contigs 
associated with chemical reception, gustatory (GRs) and 
ionotropic receptors (IRs) (Fig. 5). No GRs or IRs were 
specifically enriched in any stage compared to the two 
others, but many of the IRs showed differential expression 
between males and females (Fig. 5). 

PCR and qPCR validation

Validation of the RNA-seq data was performed using both 
PCR and qPCR with independent biological replicates. 
Seven genes with female- and male-specific gene expres-
sion, the known functions of which included sperm-asso-
ciated processes and vitellogenin, were examined. PCR-
based analyses validated that male- and female-specific 
contigs have significant enrichment in each sex (Fig. 6). 
qPCR-based analyses correlated directly with the RNA-seq 

Fig. 3   Contigs with enriched expression in females, males, and tri-
tonymphs of Alaskozetes antarcticus at varying expression levels. T 
versus F, significant between tritonymph and female; M versus F, sig-

nificant between male and female; T versus M, significant between 
tritonymph and male. Specific details of contig expression are pre-
sented in Online Resources 1–3 (Color figure online)
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analyses (Pearson correlation coefficient = 0.931, Fig. 6). 
Thus, results from our RNA-seq studies were validated by 
both PCR and qPCR analyses.

Comparative analyses among sex‑specific 
transcriptomes of different mite and tick species

We compared our results from the Antarctic mite with 
male- and female-enriched gene sets of the American dog 
tick, D. variabilis, and a mite, R. robini (fighters and scram-
blers; Stuglik et al. 2014; Joag et al. 2016). The number 
of female-enriched genes conserved between the three sex-
specific comparisons was low (Fig. 7). This set included a 
superoxide dismutase, glycogen phosphorylase, and nesprin 
(Online Resource 10). Male-associated transcripts had much 
greater overlap, with over 140 transcripts enriched in all 
three species surveyed for sex-specific expression (Fig. 7, 
Online Resource 11). This included many previously identi-
fied testis-specific (19 total) and uncharacterized contigs (50 
total). Distinct enrichment in males for contigs identified as 
testis-specific serine kinase (TSSK) was noted between the 
mites. Importantly, there may be limitations to these com-
parative RNA-seq studies due to differences in experimental 

design, variation in reproductive biology among the mites, 
and/or the phylogenetic differences between species.

Orthology-based analyses identified putative male- and 
female-specific gene sets that overlapped between the Ant-
arctic mite and five other acarine species with sequenced 
genomes (Figs. 8, 9, Online Resources 12, 13). Male-specific 
orthology analyses were conducted with both male-enriched 
gene sets from only A. antarcticus and a smaller set gen-
erated by comparisons between the bulb mite, American 
dog tick, and Antarctic mite. Among five acarine genomes, 
orthologs were identified for 851 and 112 contigs from the 
Antarctic-specific and the smaller comparative acarine sets, 
respectively (Fig. 8). Along with enrichment of TSSK, this 
ortholog set includes matches to many proteins previously 
identified as critical to male reproduction, underlying sperm 
development and production of seminal proteins (Online 
Resource 12). 

Female orthology analyses were conducted only with the 
Antarctic mite since few overlapping enriched transcripts 
were found in analyses comparing the bulb mite, American 
dog tick, and Antarctic mite. Only 27 putative orthologs 
were identified between the female-specific set from A. ant-
arcticus and the genome-associated protein sets from the 
other acarines (Fig. 9). This putative female-enriched mite 
transcript set included transcripts known to be critical for 
egg production such as vitellogenin, peroxinectin, chitin-
associated proteins, transporters, and cuticle hydrocarbon 
synthesis (Online Resource 13).

Discussion

This study, using RNA-seq to examine the molecular mecha-
nisms underlying reproduction in A. antarcticus, generated 
a rather complete de novo contig library, featuring over 80% 
of the BUSCO benchmarking genes for arthropods. Analy-
ses of overlapping expression between females, males, and 
tritonymphs established distinct sex-specific contig sets. 
Expression patterns of specific genes from our RNA-seq 
analyses were validated using RT-PCR and qPCR. Targeted 
bioinformatic analyses of transcription factors and chem-
osensory genes have identified specific components that may 
underlie differences in male and female biology. Lastly, we 
provide a comparative analysis of male- and female-spe-
cific RNA-seq analyses among three members of the Acari 
and an orthology-based survey including five species with 
sequenced genomes to identify male and female contig sets 
that overlap among the acarines. These results suggest puta-
tive molecular mechanisms associated with reproduction in 
oribatid mites, which will be critical for understanding basic 
reproductive mechanisms in mites.

Female-enriched transcripts for the Antarctic mite 
included contigs associated with biological processes such 

Fig. 4   Gene ontology (GO) enrichment in males (top) and females 
(bottom) of Alaskozetes antarcticus. C, cellular component; F, molec-
ular function; P, biological process. Specific details of GO analyses 
are presented in Online Resources 4–6
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as chitin metabolic processing, antioxidant responses, and 
amino-sugar metabolic processes. These specific GO catego-
ries are all critical for egg production (Urbanski et al. 2010; 
Petrella et al. 2015; Chauhan et al. 2016; Leader et al. 2017; 
Papa et al. 2017). Other specific transcripts of interest were 
differentially regulated in female mites. First, two unique 
enriched transcripts identified as vitellogenin underscore the 
active process of oocyte development occurring within the 
female (Roe et al. 2008; Cabrera et al. 2009, 2011). Four 
peroxinectins were also enriched in the females; these pro-
teins play roles both in immunity as well as in development 
of ovarian follicle cells during Drosophila oogenesis (Tootle 
and Spradling 2008; Tootle et al. 2011; Park et al. 2014). 
The female-enriched set generated from a comparison of 
expression data from all available mite and tick databases 
included very few genes. Vitellogenin-like genes were 
enriched in Antarctic and bulb mites, but they are absent in 
ticks, most likely because expression of these genes does not 
increase until after blood feeding (Roe et al. 2008; Cabrera 
et al. 2009; Seixas et al. 2018). Of note is the fact that nearly 

30% of transcripts enriched for females did not match pro-
teins for other arthropods or only matched hypothetical/
uncharacterized proteins, indicating that many of the under-
lying molecular aspects associated with reproduction in the 
Antarctic mite are novel or may be mite specific.

Male-enriched transcripts were more prevalent: over 
3500 transcripts showed greater than 20-fold enrichment 
in males compared to females or nymphs. The combined 
generation of sperm and seminal fluid likely requires expres-
sion of many male-specific transcripts (Findlay et al. 2008, 
2009; Takemori and Yamamoto 2009; Avila et al. 2011; 
Sonenshine et al. 2011; Scolari et al. 2016). There were 
many specific GO categories that were either enriched or 
showed reduced representation in males, a feature common 
to several other RNA-seq studies on arthropods examining 
male specificity (Koutsos et al. 2007; Graveley et al. 2011; 
Petrella et al. 2015; Scolari et al. 2016). The enriched cat-
egories of monooxygenase and oxidation–reduction process, 
metal/ion/small molecular binding, nucleotide binding, and 
transferase and kinase activity all have been identified in 

Fig. 5   Specific categories of 
interest that could vary between 
male and female Alaskozetes 
antarcticus. (top) Contigs with 
enriched expression for genes 
identified as likely transcrip-
tion factors in females, males, 
and tritonymphs at varying 
expression levels. T versus F, 
significant between tritonymph 
and female; M versus F, signifi-
cant between male and female; 
T versus M, significant between 
tritonymph and male. Specific 
details of contig expression are 
presented in Online Resource 
7-S8. (bottom) Ionotropic 
receptor differential expression 
between males and females. 
Open squares denote contigs 
with statistically different 
expression between the sexes 
following a false detection rate 
of p < 0.01 (Baggerly’s test) 
(Color figure online)
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other arthropod studies focusing on male-associated tissues 
(Mikhaylova et al. 2008; Sonenshine et al. 2011; Scolari 
et al. 2012, 2016). Male-enriched genes of interest include 
zonadhesin, a sperm-specific membrane protein associated 
with cell adhesion (Gao and Garbers 1998; Tardif et al. 
2010), and multiple genes associated with sperm motility. 
Of interest is the fact that the sperm are not yet motile when 
RNA-seq was conducted and will remain non-motile when 
deposited in the external spermatophore (Block and Convey 
1995). This suggests that either the sperm are primed for 
motility once female insemination occurs or also express 
these factors when sperm are held in a stationary state. 
Lastly, many water/solute and ion transporters were enriched 
in males, suggesting a role in male-specific processes. Of 
particular interest is the fact that over 50% (~ 1900) of the 
enriched male contigs have no match to other arthropods or 
only match hypothetical/unassigned proteins. This number 
is likely the combined result of the high number of species-
specific genes associated with male reproductive processes 
(Reinhardt et al. 2009; Takemori and Yamamoto 2009; Son-
enshine et al. 2011; Scolari et al. 2012, 2016) and the large 
number of unidentified genes in the genomes and transcrip-
tomes of other Acari (Grbić et al. 2011; Gibson et al. 2013; 
Chan et al. 2015; Gulia-Nuss et al. 2016).

Comparison of male-enriched genes among the Acari 
revealed an overall enrichment for genes associated with 
signal transduction, peptidyl-serine phosphorylation, 

serine/threonine kinase activity, and ATP binding. The 
increase in ATP binding is the result of multiple mem-
bers of the ATP-binding cassette (ABC) transporter family 
being enriched in male mites. Specific ABC transporters 
are critical components of spermatogenesis (Ban et al. 
2005; Xia et al. 2007). These transporters are likely essen-
tial for the ATP-dependent transport of substrates across 
biological membranes (Higgins 1992). In previous sperm 
studies, an ABC transporter was implicated in the removal 
of cholesteryl esters, fatty acid esters, and triacylglycerols 
from the cell (Ban et al. 2005). Enrichment of over 50 
contigs for ABC transporters in male Antarctic mites (18 
enriched in both male bulb and Antarctic mites) suggests a 
critical role in male physiology, possibly including sperm 
and seminal fluid generation.

Enrichment for both peptidyl-serine phosphorylation 
(PSPs) and serine/threonine kinase (TSSK) is indicative of 
increased expression for multiple testis-specific PSPs and 
TSSKs in male mites; both TSSKs and PSPs are linked to 
sperm viability (Spiridonov et al. 2005; Xu et al. 2008a; 
Li et al. 2016). Mutation or reduced expression of TSSKs 
can lead to low sperm abundance (McReynolds et al. 2014), 
likely through a negative impact on the centriole and micro-
tubule structures during spermatogenesis (Xu et al. 2008b). 
Serine/threonine kinase transcripts are one of the most 
abundant transcripts in male reproductive organs of ticks 
(Sonenshine et al. 2011). Thus, the processes of serine and 

Fig. 6   PCR- and qPCR-
based validation of RNA-seq 
analyses between male and 
female Alaskozetes antarcticus. 
(top) PCR-based gel image 
examination of male and female 
specificity and log2 fold changes 
were based on RNA-seq results 
(Online Resource 2-S4). 
(bottom) qPCR validation 
of select genes compared to 
log2 fold changes were based 
on RNA-seq results (Online 
Resource 2-S4). PCR and qPCR 
were based on four replicates. 
m0.35461, Transmembrane 
and coiled-coil domains 1; 
m0.42231, argonaute-2-like; 
m0.13497, Alaskozetes-specific 
male protein; m0.53057, 
Alaskozetes-specific male pro-
tein 2; m0.105556, Alaskozetes-
specific female protein; 
m0.53057, chemosensory recep-
tor; m0.170100, vitellogenin
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threonine protein phosphorylation are likely essential for 
successful spermatogenesis in mites as well.

We also performed targeted studies on contigs that were 
identified as transcription factors (TFs) and those involved 
in chemical sensation. Over 70 transcription factors had 
differential expression between male and female mites. 
We documented increased male expression of double-sex, 
a major gene in sexual differentiation (Salz 2011); other 
TFs enriched in males or females could provide novel tar-
gets to examine mechanisms underlying the regulation of 
sex-specific genes in mites. Expression analysis of specific 
chemosensory genes revealed no IRs or GRs that were spe-
cifically enriched in females, males, or nymphs when all 
three datasets were compared. There were nearly 20 IRs, 
and no GRs, with differing expression between males and 
females, but these are not uniquely expressed, as they were 
also detected at significant levels in the tritonymphs. This 

overall lack of sex- and developmental-specific enrichment 
among GRs is surprising but is perhaps due to the fact that 
specific chemical receptors have tissue-specific expression, 
which may be masked by our RNA-seq analyses targeting 
whole mites. Thus, differential expression of IRs between 
males and females and associated sex-specific differences 
warrant future study.

Reproduction in A. antarcticus has been linked to distinct 
environmental conditions (Block and Convey 1995); spe-
cifically, females accumulate eggs during late summer and 
winter, leading to a burst of oviposition during spring and 
early summer (Convey 1994b). The underlying mechanism 
for this increased oviposition is unknown. Our identifica-
tion of female-associated transcript sets could be critical 
for assessing specific factors prompting increased spring-
associated egg deposition. For example, if expression of 
female-enriched genes, such as vitellogenin, respond solely 
to increases in temperature, then thermal increases in spring 
may be responsible for increased oviposition. Other envi-
ronmental factors such as photoperiod or water availability 
could also contribute to this increase in egg deposition. Our 
studies provide resources for examining gene expression 
changes associated with reproduction during the transition 
from the austral winter to spring.

A unique aspect of reproduction in oribatid mites is that 
asexual reproduction has developed independently for multi-
ple species (Maraun et al. 2003; Cianciolo and Norton 2006; 
Brandt et al. 2017). Of interest, asexual oribatid mites seem 
resistant to accumulation of deleterious non-synonymous 
mutations, a feature attributed to large population sizes 
(Brandt et al. 2017). Our identification of male-associated 
factors in A. antarcticus could provide the framework to 
examine if there is a rapid breakdown in male-associated 
genes in asexual oribatid species compared to their sexual 
counterparts. Specifically, we would expect rapid accumula-
tion of deleterious non-synonymous mutations and eventual 
loss of genes associated with sperm generation and sper-
matophore development. Full genome sequencing will be 
necessary for these analyses as male-associated transcripts 
likely have no or reduced expression in asexual lineages.

Research on Antarctic organisms, specifically terrestrial 
arthropods, has predominantly focused on mechanisms 
underlying stress tolerance, basic aspects related to phe-
nology, and, in rare cases, on nutrition dynamics (Convey 
et al. 2003; Benoit et al. 2008; Michaud et al. 2008; Everatt 
et al. 2013; Teets et al. 2013; Zmudczyńska-Skarbek et al. 
2015; Chown and Convey 2016). Few studies have exam-
ined molecular aspects related to reproduction in Antarctic 
terrestrial arthropods (Pearse et al. 1991; Convey 1994c; 
Block and Convey 1995). Here, we established male- and 
female-specific transcript sets for the widely-distributed 
Antarctic species A. antarcticus, sets that include large-
scale and targeted experiments using comparative RNA-seq 

Fig. 7   Comparative analyses among male- and female-enriched tran-
scripts from Alaskozetes antarcticus with male and female RNA-seq 
analyses from the bulb mite Rhizoglyphus robini, and the American 
dog tick, Dermacentor variabilis. a Overlap in contigs with increased 
expression in male mites. b Overlap in contigs with increased expres-
sion in female mites. c Comparison of expression levels in relation 
to fold change between contigs identified in a. Black symbols are 
enriched in Antarctic and bulb mite males and red symbols are highly 
enriched in tick and mite males. d Comparison of expression levels in 
relation to fold change between contigs identified in b (Color figure 
online)
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Fig. 8   Comparative orthology 
analysis of male-associated 
genes in Alaskozetes antarcti-
cus, compared with the genomic 
gene sets for Ixodes scapularis 
(Gulia-Nuss et al. 2016), Meta-
seiulus occidentalis (Hoy et al. 
2016), Sarcoptes scabiei (Rider 
et al. 2015), Tetranychus urticae 
(Grbić et al. 2011), and Varroa 
destructor (Cornman et al. 
2010). a Pie charts depict the 
positive and negative BLAST 
hits between A. antarcticus 
and the other acarines; dark 
color is positive, and light color 
denotes no hit (negative). Full 
male set is the complete set of 
male-enriched transcripts from 
A. antarcticus, limited male set 
is following reduction based on 
analyses in Fig. 7. b and c Venn 
diagram illustrating common 
orthologs among all species. b, 
limited male set; c, full male set 
(Color figure online)

Fig. 9   Comparative orthology analysis of female-associated genes 
in Alaskozetes antarcticus compared with the genomic gene sets for 
Ixodes scapularis (Gulia-Nuss et  al. 2016), Metaseiulus occiden-
talis (Hoy et  al. 2016), Sarcoptes scabiei (Rider et  al. 2015), Tetra-
nychus urticae (Grbić et al. 2011), and Varroa destructor (Cornman 

et  al. 2010). a Pie charts depict the positive and negative BLAST 
hits between A. antarcticus and other acarines; dark color is positive, 
and light color denotes no hit (negative). b Venn diagram illustrating 
common orthologs among all species (Color figure online)
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analyses. Comparative transcript sets underlying female and 
male biology for mites were identified from our Antarctic 
mite sex-specific transcriptional studies, thus generating the 
first putative mite-specific gene sets underlying reproduc-
tion. This information provides the groundwork for future 
genomic and transcriptomic studies investigating interac-
tions between the environment and reproductive potential of 
A. antarcticus and may prove useful in future studies exam-
ining reproductive physiology of other acarines, specifically 
oribatids.
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