2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

Graph Theoretic Concepts as the Building Blocks for
Disease Initiation and Progression at Protein Network Level:
Identification and Challenges

Ananda Mohan Mondal”
School of Computing and
Information Sciences
Florida International University
Miami, USA

amondal@fiu.edu

Jasmine Carson
Department of Mathematics and
Computer Science
Claflin University

Cornelia Ada Schultz
Department of Mathematics and
Computer Science
Claflin University
Orangeburg, USA

Cornelia.ada.schultz@gmail.com

Raihanul Bari Tanvir
School of Computing and
Information Sciences
Florida International University

Markea Sheppard
Department of Mathematics and
Computer Science
Claflin University
Orangeburg, USA

markeasheppard@gmail.com

Tasmia Aqila
School of Computing and
Information Sciences
Florida International University

Orangeburg, USA Miami, USA Miami, USA
jacarson50@gmail.com rtanv003@fiu.edu taqil001 @fiu.edu

Abstract --- Protein networks that mirror the
transitions between disease stages hold the key to early
diagnosis and make it easy to understand the essential
mechanisms of disease progression at protein network
level. But, identifying critical transitions between disease
stages and corresponding protein networks during the
initiation and progression of a complex disease like
cancer is a challenging task. This preliminary work
identifies the possible building blocks for disease
initiation and progression at the protein network level
based on biological rationale that a group of proteins are
localized at a specific subcellular location to accomplish
a function, which could be beneficial to human body or
adversarial to cause a disease. We discovered that three
graph-theoretic concepts — i) Clique-like structures, ii)
Bipartite-like structures, and iii) Diffusion Kernels could
be possible building blocks for disease progression at the
protein network level. Using these building blocks,
disease progression can be modeled as an event-schedule-
like structure, meaning that each of the disease stages
corresponds to an event, where each event is completed
by a set of proteins by forming a clique-like structure.
Once an event or disease stage is completed by a group
of proteins, disease signals go to the next group of
proteins to cause the next event or disease stage and so
on. The transfer of signals can be represented by
bipartite-like structure and diffusion kernels can be used
to find the strength of disease signals. Further study is
required to fully explore the application of these building
blocks to analyze the disease progression.

Keywords --- bipartite graph, clique, diffusion kernel,
disease progression, protein network.

I. INTRODUCTION

Studies on disease progression [1-5] for different
diseases using time-series gene expression profiles on
human and mouse genomes show that there exists a

Funding Agency: NSF-iAAMCS, NSF CAREER.

978-1-5386-5488-0/18/$31.00 ©2018 IEEE

2713

dynamical network biomarker (DNB), a group of
proteins whose behavior, unlike other groups of
proteins, changes at the pre-disease state of a three-
state (normal, pre-disease, and disease) model for
disease progression. The major limitation of studies
based on DNB is that the researchers hypothesized that
disease progression is composed of three states only -
normal state, pre-disease state, and disease state. In
reality, disease progression may have more than three
states. According to the sixth edition of the cancer
staging system by American Joint Committee on
Cancer (AJCC), the disease state of colon cancer has
7 different stages (I, Ila, IIb, IIla, IIIb, Illc, and IV)
[6]. Similarly, lung cancer also has 7 stages (Ia, Ib, Ila,
IIb, Ila, IIb, and IV) in the disease state devised by
International System for Staging Lung Cancer [7]. The
second limitation of the studies based on the three-
state model is that, in the disease state, the member
proteins of a DNB behave normally like the rest of the
proteins in the network. Thus, it is clear that DNBs fail
to differentiate among different stages of the disease
state.

Our work is motivated by the prospective
applications of protein-protein interaction (PPI)
networks or, simply, protein networks to diseases [8].
Ideker and Sharan [8] enumerated four different
applications of protein networks to diseases: 1)
identifying new disease genes, ii) studying the
network properties of disease genes, iii) classifying
diseases based on protein network, and iv) identifying
disease-related subnetworks. Genome-wide protein-
protein interaction (PPI) networks come with rich
information about the dynamic processes such as the
behavior of genetic networks in response to DNA



damage [9] and exposure to arsenic [10], the
prediction of protein function [11], genetic interaction
[12], protein subcellular localization [13-18], the
process of aging [19], and protein network biomarkers
[20, 21]. Based on these literatures, it is quite
reasonable to claim that the signature of disease
progression, which is dynamic, is also left behind in
static PPI network. In this paper, we used PPI network
as the backbone for discovering the building blocks for
disease initiation and progression. We leverage the
motivation of a group of proteins to be localized at a
specific subcellular location to accomplish a common
goal or function which is similar for a group of
proteins to be involved in initiating a disease and
subsequent progression from one stage to the next.

Limitations of Computational Studies

According to the supplementary document of [2], a
DNB network is neither a set of disease genes nor a
driving factor. It only provides early-warning signals
of the pre-disease state based on its dynamical features
from the observable data such as time-series gene

expression. The second limitation of the studies based
on the three-state model is that, in the disease state,
according to [1-5], the member proteins of a DNB
behave normally like the rest of the proteins in the
network. The third limitation is that the disease state
itself has more stages; for example, both colon cancer
and liver cancer have seven stages. This means that
DNBs fail not only to identify the genes/proteins that
initiate the disease but also genes/proteins responsible
for each stage of disease progression.

II. HYPOTHESIS AND CHALLENGES

To overcome the limitations of the state-of-the-art
computational studies on disease progression, one
needs to have a network biomarker that is capable of
representing the whole disease progression from its
initiation. This is possible if the network biomarker
has an event-schedule-like structure, meaning that
each of the disease stages corresponds to an event,
where each event is completed by a set of proteins as
shown in Fig. 1.

(b)

Fig. 1. Hypothetical protein network model for colon cancer. (a) Event-schedule-like protein network
model for colon cancer. Seven stages (I, lla, lib, llla, llib, lllc, IV) of colon cancer are represented by seven
different colors. (b) Event-schedule-like structure collapsed into a single clique-bipartite-like graph.

Fig. 1a represents the hypothetical event-schedule-
like protein network depicting seven stages (I, Ila, IIb,
IIa, IIb, lIc, and IV) of colon cancer. Once the green
event (Stage I) is completed by the green group of
proteins, signals go to the yellow group of proteins to
cause the yellow event (Stage Ila) and to the purple
group of proteins to cause the purple event (Stage I1b).
Once the blue and purple events are complete, signals
go to the orange group of proteins to cause the orange
event (Stage IIla), to the brown group of proteins to
cause the brown event (Stage I1Ib) and to the olive
group of proteins to cause the olive event (Stage Illc).
Finally, signals go to the red group of proteins to cause
the red event (Stage IV). For an event, a group of
proteins works together forming a clique or clique-like
structure and transfer of signals from a stage to the
next form a bipartite graph. It is noticeable that the
whole disease progression represented by multiple
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clique-bipartite graphs (Fig. 1a) can be collapsed into
a single clique-bipartite-like graph as shown in Fig.
1b. This phenomenon leads to the algorithmic
challenge of identifying the most likely event-
schedule-like structure for disease progression given a
protein network for a disease.

III. METHODOLOGY

Datasets Preparation: Two sets of data, namely 1)
list of biomarkers or single protein biomarkers (SPBs)
and ii) protein-protein interaction data are required for
identifying protein subnetwork biomarkers for a
disease. The list of biomarkers, 84 key genes
commonly involved in the dysregulation of signal
transduction and other normal biological processes
during disease, is obtained from SABiosciences of
Qiagen [22]. Genome-wide PPI networks for human
are obtained from STRING database [23]. Protein



subcellular locations, needed to annotate the proteins
of protein network biomarker, are obtained from the
cellular components of GO (Gene Ontology) database
[24]. The details of cleaning these data can be found in
[21].

Original PPI dataset, downloaded from STRING
database version 9.0, contains 3,281,414 PPIs. For the
present study, direction of interaction is not important.
After removing direction and some erroncous data
(860 in total: some are missing scores, some do not
conform to STRING names etc.), final dataset contains
1,640,129 PPIs with 18,595 proteins.

STRING PPIs do not come with official protein
names but disease proteins procured from Qiagen [22]
are in official protein names. A mapping between
STRING and official protein names is required.
Another file from STRING database with GO
annotation contains both STRING and official protein
names, which is used as the mapping file. Original
mapping file contains 17919 unique records. After
cleaning some erroneous data (some protein names are
in numbers i.e., not in official protein names), left with
17839 unique records. Finally, STRING PPIs are
converted to PPIs in official protein names and
working network is composed of 1,568,065 PPIs and
16,614 proteins. So, on an average, there are 94
interactions per protein. PERL program was used to
clean the data.

Constructing Protein Network Biomarker: The
disease genes obtained from Qiagen were overlaid on
top of PPI network obtained from STRING database
to construct the protein network biomarker for a
disease.

Filtering Proteins Using Cytoscape: Cytoscape
[25], an open-source software, is a tool for analyzing
biomolecular networks. Protein network biomarker
(list of PPIs) obtained above and a list of protein
annotated with subcellular locations are loaded in
Cytoscape. Then a filter was created by grouping the
proteins based on their locations. The rationale of
using this approach is that the group of proteins
localized at the same subcellular location is more
likely to interact with each other to cause a function,
which could be beneficial to our body or adversarial to
initiate a disease.

IV. RESULTS AND DISCUSSIONS

Clique and Bipartite Graph as Building Blocks: Fig.
2 shows the filtered proteins as grouped by locations
from a protein network biomarker for liver cancer. It
is clear that the groups of proteins at different locations
form two distinct network structures, namely, clique-
like structure and bipartite graph. The largest group
(group-1) of 21 proteins is located at Cytoplasm. The
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2md 3 and 4™ groups of proteins are located at
Nucleus, Plasma Membrane, and Extracellular,
respectively.

Fig. 2. Clique and bip.

for liver cancer

of protein k bi
based on protein locations: (a) Protein network biomarker, extracted from whole-genome
PPl network using the 84 key genes adopted from QIAGEN [22]. The Largest group (group-
1) of 21 proteins is located at Cytoplasm. The 2™, 3" and 4™ groups of proteins are
located at Nucleus, Plasma Memb . and E llular, respectively. (b) A clique-
bipartite-like structure with four clique-like and six bipartite-like structures, isolated from
{a). () A clique-bipartite-like structure with two clique-like and one bipartite-like
structure, (d) A clique-like structure among the proteins in the 1% group. (e) A clique-like
structure ameng the proteins in the 4" group.

First, intra-group proteins form a clique-like
structure, Fig. 2(d, ¢), meaning they form a cluster in
the protein network and interact with each other,
usually, to accomplish a function. Second, each group
of proteins is connected with other groups by forming
a bipartite-like structure, Fig. 2c. Four groups of
proteins together form a clique-bipartite-like structure
composed of four clique-like and six bipartite-like
structures among themselves, as isolated in Fig. 2b.

Usually, proteins at a location, work together as a
group, are responsible for a specific function or event
to occur, maybe a specific disease stage. The bipartite
structure between two groups of proteins at two
different locations can be thought of as cross-talks or
the flow of signals between two groups or events or
disease stages. These together with the literatures
mentioned in introduction motivate the authors to
come up with the hypothesis that different stages of a
disease or whole disease progression process can be
represented in terms of clique-like and bipartite-like
structures at the protein network level. Assumption-1:
Each of these clusters of proteins or clique-like
structures corresponds to one disease stage, which can
also be thought of as an event. Since the disease is a
complex phenomenon, the formation of a clique-like
structure representing a disease stage should not be
based on location only. Other factors, both genetic and
epigenetic, such as gene expression, mutation, DNA
methylation, histone modification, and miRNA
dysregulation should be accounted for. Assumption-2:
Once an event is complete or a disease stage is
complete by a cluster of proteins, they send the signal,
by forming a bipartite graph, to the next group of
proteins to start the next event or next disease stage
and so on. Assumption-3: The signal or potential to



cause a disease associated with individual
gene/protein will be evaluated considering both
genetic and epigenetic factors mentioned in
assumption-1.

Diffusion Kernel as the Building Block: We
discovered two possible building blocks, clique-like
structure and bipartite graph, for disease progression
based on protein localization. In case of actual disease
initiation and progression, the formation of clique-like
structures and bipartite-like structures will be based on
disease-causing factors/signals both genetic (gene
expression and mutation) and epigenetic (DNA
methylation, histone modification, and microRNA
dysregulation). In a genome-wide PPI network, there
will be a lot of clique-like and bipartite-like structures.
The overarching question is — how to find clique-like
and bipartite-like structures that are related to a
specific ~ disease  given the  disease-causing
factors/signals associated with each protein of the
genome-wide PPI network? To address this question,
the factors and signals can be thought of as potentials
that can travel/diffuse in any random direction in a
graph or protein network.

A diffusion kernel, explained later, on a protein
network is equivalent to a random walk on a graph
[26]. The kernel values are used by different
investigators as a measure of information flow
between two proteins in a network [11-18]. So, a
diffusion kernel can be considered as the
representation of flow of disease signal between
proteins and the kernel value between two proteins can
be considered as the strength of this signal. An
appropriate threshold on kernel values can be used to
identify the edges that will form possible clique-like
structures responsible for different stages of a disease
including initiation as well as bipartite-like structures
among the identified clique-like structures. The
rationale for using some threshold on kernel values is
also evidenced from [27], where the authors used a
threshold on kernel values in identifying the missing
connections in a protein network biomarker.

Diffusion Kernel on a Protein Network: Diffusion
kernel is a computational framework that is based on
the physical phenomenon of gas diffusion in a
medium, which is also equivalent to the Computer
Science concept of random walk on a graph [26]. PPI
network or protein network is a graph where each node
represents a protein and a connection or an edge
between two nodes represents the existence of an
interaction between two proteins. A genome-wide PPI
network comes with rich information about the
signature of the disease process [8], protein functions
[11], genetic interaction [12], protein subcellular
localization [13-18], etc. The randomness of the flow
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of this information from one protein to another is
hidden inside the complex structure of the PPI
network, which makes it difficult to decipher this
information. A diffusion kernel, since it is based on
random walk on a graph, provides a suitable
computational framework to extract meaningful
biological information from the PPI network.
Application of a diffusion kernel provides improved
results compared to the state-of-the-art methods for
predicting protein functions [11], genetic interaction
[12], and protein subcellular localization [13-18].
These factors motivate using a diffusion kernel to find
the strength of disease signal between two proteins in
a protein network.

The formal definition of diffusion kernel on a PPI
network [26], Fig. 3a, corresponds to a random walk
with an infinite number of infinitesimally small steps.
In the formula of Fig. 3a, / is the identity matrix, f is
the diffusion constant, L is a Laplacian matrix, and y;
is the number of interaction partners of protein i. Fig.
3b shows an example of a protein network and Fig. 3¢
is the corresponding kernel matrix.

BL\ 1 if tinteracts with j
Kﬁ=£irn(1+?) =efl, seN and Ly={-y, i=j
s-v0
0 otherwise

lprotein] P1 | P2 | P3 | Pa | P5 | Pe | P7 | P8 | P9 | P10 /SUM
Pl 0182 pla480.0790.1250.0300.0770.0680.05 2 RSN ! 000
P2 0.1480.1790.1280.0910.1220.0940.0410.0770.0760.0451,000
P3 0.0790.1280.1760.0610.0930.1310.0390.0920.1270.0731.000
| P4 0.1250.0910.0610.1370.1100.0780.1330.0990.0720.0931.000
| PS5 0.1300.1220.0930.1100.1210.1010.0700.0990.0830.0701.000
PG 0.0770.0940.1310.0780.1010.1370.0560.1110.126:0.0901.000
P7 _0.0680.0410.0390.1330.0700.0560.2630.0940.0770.1611.000
| P8 0.0820.0770.0920.0990.0990.1110.0940.1170.1140.115/1.000
| P9 0.0570.0760.1270.0720.0830.1260.0770.1140.1440.1231.000
| P10_0.0500.0450.0730.0930.0700.0900.1610.1150.1230.1801.000
SUM 1.00011.00011,0001.0001.000/1,0001.000 1.000/1,0001.000]
.

Fig. 3. Diffusion kernel on a PPl network. a) Definition of diffusion kernel. b) PPI
network with 10 proteins/nodes and 18 PPls/edges on which diffusion kernel is applied.
¢) Output of diffusion kemel, a global similarity matrix with weights on all possible edges.
A diffusion kernel generates edge weights
(interpretable as similarity) between two proteins of all
possible protein pairs as seen in Fig. 3¢, which is based
on a global perspective of the network. For example,
based on the direct use of a graph, proteins with the
same shortest path distance will have the same
similarity, while a diffusion kernel will produce a
different similarity. This property makes the diffusion
kernel perform better than the direct use of a graph.
For example, from the protein P1, the green proteins
(P9 and P10) at the shortest path distance of 3 (Fig. 3b)
will have the same similarity value of 1/3 (inverse of
distance) with the protein P1, but the diffusion kernel
produces different values of similarity (P9: 0.057and
P10: 0.050), as seen in Fig. 3¢. Similarly, the diffusion
kernel produces different values of similarity for the
brown proteins at the shortest path distance of 1 as well
as for the yellow proteins at the shortest path distance
of 2.



Big Data and Precision Medicine Perspective:
Though the protein network (for example — 84 nodes
and 1900 edges) for a disease is small in size, finding
the most likely event-schedule-like —structure
representing disease progression is combinatorial or
complex in nature, which makes this problem a big
data problem. At the same time, any of the
combinations (a  specific  event-schedule-like
structure) can be related to a specific patient, which
could be utilized for designing the right medicine and
right dose for a specific patient. An event-schedule-
like structure that matches the disease-causing
parameters for a specific patient both genetic (gene
expression and mutation) and epigenetic (DNA
methylation, histone modification, and miRNA
dysregulation) will be used for representing actual
model for the disease progression for that person.

Fig. 4c shows a clique-bipartite-like structure
developed from a protein network for breast cancer
composed of 84 proteins and 1900 PPIs using the two-
color technique [28]. Using breadth-first-search
(BFYS), Fig. 4a, and depth-first-search (DFS), Fig. 4b,
a network can be colored using only two colors such
that any two adjacent nodes will have different colors.
In Fig. 4, A and B represent the two colors; thus,
proteins in alternate levels are designated as A and B.

Fig. 4. Clique-bipartite-like structure using BFS and
DFS algorithms. a) Diagram of BFS. b) Diagram of
DFS. c) Clique-bipartite-like structure for protein
network for breast cancer.

Two sets of proteins, set A and set B in Fig. 4c,
representing clique-bipartite-like structure, can be
obtained using both BFS and DFS algorithms. Since
any protein can be the root node, a maximum of 168
(84x2) different clique-bipartite-like structures can be
generated for the given protein network.

Challenge-1: The desired single clique-bipartite-
like structure representing the collapsed network for
disease progression could be any of 168 different
single clique-bipartite-like structures. Challenge-2:
Once the single clique-bipartite-like structure
representing the collapsed network for disease
progression (Fig. 1b) is identified, it needs to be
unfolded to represent the event-schedule-like structure
(Fig. la) for the progression of disease. These two
challenges, which are combinatorial in nature, make
this problem a big data problem.

V. CONCLUSION AND FUTURE REMARKS

This paper discovered three graph theoretic concepts —
clique-like structures, bipartite-like structures, and
diffusion kernels — that can be used as the building
blocks for disease progression from stage to stage
including initiation. Biological rationale that a group
of proteins are localized at a subcellular compartment
to accomplish a specific function is wused in
discovering cliques or clique-like structures to
represent a disease stage. Cross-talks among these
clique-like structures are used in discovering bipartite-
like structures as the second building block. Bipartite-
like structures represent the transfer of disease signals
from one stage to the next. Finally, the physical
phenomenon of gas diffusion is used to discover the
third building block, diffusion kernels, which
represent the strength of disease signals to be
transferred from one stage to the next. Further
experiment is required for validating these building
blocks.
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