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Abstract. In this paper, we present a new multiscale domain decomposition algorithm for
computing solutions of static Eikonal equations. In our new method, the decomposition of the domain
does not depend on the slowness function in the Eikonal equation or the boundary conditions. The
novelty of our new method is a coupling of coarse grid and fine grid solvers to propagate information
along the characteristics of the equation efficiently. The method involves an iterative parareal-like
update scheme in order to stabilize the method and speed up convergence. One can view the new
method as a general framework where an effective coarse grid solver is computed “on the fly” from
coarse and fine grid solutions that are computed in previous iterations. We study the optimal weights
used to define the effective coarse grid solver and the stable update scheme via a model problem.
To demonstrate the framework, we develop a specific scheme using Cartesian grids and the fast
sweeping method for solving Eikonal equations. Numerical examples are given to show the method’s
effectiveness on Eikonal equations involving a variety of multiscale slowness functions.
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1. Introduction. The Eikonal equation has many applications in optimal con-
trol, path planning, seismology, geometrical optics, etc. The equation is fully nonlinear
and classified as a Hamilton—Jacobi equation. Usually, classical solutions do not exist,
and the unique viscosity solution is sought after. Our goal is to numerically solve the
following boundary value problem for the static Eikonal equation:

(1.1) |Vu(z)| = rc(z), = € Q C RY,
(1.2) u(z) =g(x), x € I' C OQ.

In particular, we are interested in the case where
re(z) = ro(x) + ac(z),

where 7o is smooth and a. describes multiscale features in which the scales cannot be
separated easily.

Many serial algorithms exist for computing numerical solutions to Eikonal equa-
tions. However, these algorithms have limitations when applied to large scale dis-
cretized systems. Since we are interested in Eikonal equations that have multiscale
features, a very fine grid discretization is needed in order to accurately capture the
fine scale features. This creates a large system of coupled nonlinear equations to
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solve. Therefore, the numerical solutions are expensive to compute and speed-up is
desired. The most popular serial algorithms are the fast sweeping method (FSM)
[24, 27] and the fast marching method (FMM) [25, 22], which have complexity O(N)
or O(N log N), respectively. Here, N is the total number of grid points. Hidden in
the O(N) complexity of FSM is a constant that corresponds to the number of times
a characteristic curve of (1.1) “turns around.”

There are several approaches to reducing the computational cost of numerically
solving Eikonal equations. For certain periodic functions r., one approach is homoge-
nization [18, 20]. The goal of homogenization is to derive an effective function, 7, that
accurately describes the effective properties of 7. in the solution. Once T is known,
the homogenized equation can be solved on the coarse grid which is independent of
the small parameter e. For more general r., we consider domain decomposition meth-
ods. The development of domain decomposition algorithms for Eikonal equations is
nontrival because of the causal nature of the equations. Standard domain decompo-
sition methods can be difficult to apply because information may not be known at
the boundaries of subdomains a priori. Furthermore, the causal relations among the
subdomains may change depending on the solutions.

Our new algorithm works on general Eikonal equations, i.e., equations with mul-
tiple scales with or without scale separation. The algorithm combines features from
parareal methods and standard Eikonal solvers in order achieve speed-up and main-
tain accuracy. A set of coarse grids is used to set up boundary conditions for each
subdomain. Since the structure of the characteristics of the equation are gener-
ally less complex in a subdomain compared to the overall domain, we expect that
FSM on the subdomain grids will require less sweeping iterations than FSM on the
overall fine grid. After each subdomain is processed in parallel, the method uses a
parareal-like update in order to speed up the accuracy of the solution on the coarse
grids.

Next we give an overview of the discretization of (1.1) and FSMs, followed by a
review of current parallel methods for Eikonal equations. The paper is organized as
follows. In section 2, we give an overview of parareal methods. Our new algorithm
is presented in section 3. The stability analysis, complexity, and speed-up are given
in section 4, experimental results are in section 5, and the summary and conclusion
follow in section 6.

1.1. Upwind discretization and FSM. The Eikonal equation (1.1) can be de-
rived from an optimal control problem. Suppose a particle travels at speed F : @ — R
and its direction of travel is the control of the system. Let g : I' — R be the penalty
charged once the particle reaches I'. Then the value function u(x) is defined to be the
minimum time it takes to travel from x to I'. In [10], it is shown that the viscosity
solution to (1.1) coincides with the value function of the optimal control problem and
the characteristics of the PDE coincide with the optimal paths for moving through
Q.

In our case F(z) = 1/rc(x). Thus, we refer to r. as the slowness function. For this
paper, we choose the following first-order upwind discretization on a uniform Cartesian
grid. Let u; ; denote the numerical solution at x; ;. For the sake of notation, we will
omit the numerical solution’s dependence on the grid size h. We use a Godunov
upwind scheme to discretize the Eikonal equation at points in the interior of the
computational domain [21]:

(1.3) Vvmax(at,b7)2 + max(ct,d=)? = r;,
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where

a=D_u;;= G Rty _hUiil’j ;

b— D:Ui)j _ Ui+1,jh_ Us,j :

c=Dju;;= By~ Rigd _hUi’j_l ;

d=Djus; = S
fori = 1,...,] —1 and j = 1,...,J — 1. Here, we have 2+ = max(z,0) and
2~ = max(—z,0). On the boundary nodes, we will use a one-sided difference, i.e.,

in (1.3) we use b~ in place of max(a™,b™) if i = 0, a™ in place of max(a™,b7) if i = I,
d~ in place of max(c*,d™) if j = 0, and ¢ in place of max(ct,d™) if j = J.

This discretization is consistent and monotone and converges to the viscosity
solution as h — 0 [5]. The upwind scheme is also causal, i.e., u; ; depends only on
the neighboring grid values that are smaller. After discretization, we have a system
of N = (I +1)(J+ 1) coupled nonlinear equations. A simple approach is to solve the
system iteratively [21]. However, it is important to take advantage of the causality of
the solution. In the FMM [25, 22|, the solution is updated one grid node at a time
and the ordering of grid nodes is given by whichever grid node has the smallest value
at the time of updating. Because a heapsort algorithm is needed, the complexity is
O(Nlog N). Next we describe the FSM [24, 27], which we have chosen to use in our
method. FSM uses Gauss—Seidel updates following a predetermined set of grid node
orderings. For simplicity, we will describe the algorithm in two dimensions.

Initialization. Set u;; = g;; for z; ; on or near the computational boundary.
These values are fixed in later iterations. For all the other grid nodes, assign a large
positive value.

Sweeping iterations. A compact way of writing the grid orderings in
C/CH+is

for(sl=-1;s1<=1;s1+=2)

for(s2=-1;s82<=1;s2+=2)

for(i=(s1<07I:0); (s1<0?7i>=0:i<=I);i+=s1)

for (j=(s2<07J:0); (52<07j>=0:j<=J) ; j+=52)

Update formula. For each grid node x;; whose value is not fixed during the
initialization, compute the solution to (1.3) using the current values at the neighboring
grid nodes. Denote the solution by %; then the update formula is as follows:

(1.4) ug " = min(ug", @).

The alternating ordering of sweeping ensures that all the directions of charac-
teristics are captured. In [27] it is shown that with the first-order Godunov upwind
scheme, 2% sweeps are sufficient to compute the numerical solution to first order in h.
The exact number of sweeps needed is related to the number of times characteristics
change directions. Thus in general the computational complexity of the FSM is O(N)
with the caveat that the constant in front of IV can be very large depending on the
characteristics of the equation. In section 3, we will describe how we use the FSM as
the Eikonal equation solver in our method.
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1.2. Review of current parallel methods. Here we give a brief overview of
existing parallel approaches. In [28], the author proposes two parallelizations of FSM.
The first performs the 2¢ sweeps of the domain on different processors and after each
iteration information is shared by taking the minimum value at each grid node from
each sweep. The second is a domain decomposition method that performs FSM on
each subdomain in parallel. The information is shared along mutual boundaries after
each iteration. The drawbacks to this method are that subdomains have to wait to be
updated until the information propagates to that part of the domain and the number
of sweeping iterations may be more than the number needed in serial FSM.

In [12], a method is introduced that takes advantage of the following fact: for
the upwind scheme (1.3), certain slices of the grid nodes do not directly depend on
each other. The method uses FSM where the sweeping ordering is designed to allow
these sets of grid nodes to be updated simultaneously. The advantage of this method
is that the number of iterations needed in the parallel implementation is equal to
the serial FSM. In a later paper [11], the domain decomposition approach of [28] is
used to couple the subdomain computations done in parallel; furthermore, in each
subdomain, the parallel algorithm of [12] is applied.

Several algorithms have been developed to parallelize FMM. In [6], a domain
decomposition method for FMM is proposed. The main idea is to split the boundary
among different processors, which leads to an equation dependent method. In [26],
another domain decomposition algorithm is presented for FMM. In this method, the
computational domain is split among different processors and a novel restarted narrow
band approach which coordinates the communications among the boundaries of the
domains is used.

Domain decomposition methods that utilize two scales can be found in [7, 9]. In
[7], the method taks advantage of the optimal control formulation of Eikonal equa-
tions. First, the algorithm computes the solution of (1.1) on a coarse grid. Next,
the domain decomposition is determined by the feedback optimal control. Last, the
solution of the equation is computed on a fine grid in each subdomain. However,
the algorithm can lead to complex division of the domain. The method in [9] is a
parallelization of the heap cell method (HCM) [8]. HCM maintains a list of cells to
be processed. The order of processing is determined by an assigned cell value that
is given by an estimate of the likelihood that that cell influences other cells. If it is
determined that a cell highly influences other cells it should be processed first. The
method mimics FMM on the coarse level, and FSM is used at the cell level. This
choice is motivated by the observation that the characteristics of the equation typi-
cally do not “wind” around as much in each cell due to the smaller domain size, and
FSM needs fewer iterations. On the coarse level, the characteristics are expected to
be followed more efficiently by the FMM. The parallelization of HCM divides the cells
evenly among p heaps and performs HCM among each individual heap. If a cell is
tagged for reprocessing, then it is added to the heap with the current lowest number
of cells. This method was found to achieve the best speed-up on problems where the
amount of work per cell is high.

In the above methods, only adjacent subdomains exchange information. Thus, if
an iterative approach such as the one in [28] is used, the subdomains further downwind
of the characteristics will get the correct information update only after a sufficient
number of iterations. If a fast marching type strategy is used, those subdomains
will have to wait until the information is propagated there. Our method employs an
entirely different way of coupling the subdomains. In our method, an effective coarse
grid solver (see (2.6), (4.3), and (4.7)—(4.10)) computes solutions on the fly using
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information from previous coarse and fine grid computations and allows information
to propagate efficiently throughout the domain. In this regard, our method looks
more like a heterogeneous multiscale method [13], with the difference that no wide
scale separation is assumed and (therefore) larger subdomains are used. An example
of a different scheme under this framework is given in the first example in section 5.3.
Last, the decomposition of the domain in our new method is simple since it does not
rely on the specific characteristics of the given equation as in some previous methods.

2. Overview of parareal methods. Parareal methods [17, 4] were developed
to parallelize numerical computations of the solutions to ODEs of the form

(2.1) diu = f(u), u(0) = uo

t
on bounded time interval [0,T]. Let u® be the computed solution at iteration k at
time ¢, = nH. Let Cy and Fy be the numerical coarse and fine integrators, over
time step H. The idea is that Cp is less accurate and inexpensive to compute, and
F is very accurate and expensive to compute. The parareal update scheme is then
defined as

(2.2) ulty = Cu(ult™) + Fy(ul) — Cy(ul), n,k=0,1,2,...,N,
with initial conditions

(2.3) ufb =g, k=0,1,2,...,N.

The zeroth iteration is given by

(2.4) udy =Cph(ul), n=0,1,2,...,N.

The integrations Fy(uF) are independent for each n and can be computed in
parallel. If C is of order 1, then under certain assumptions, the error after k iterations
of the parareal scheme is of order o( H* +e/), where e/ is the global error from solving
(2.1) with the fine integrator Fiy [19]. The method provides speed-up only if k is much
smaller than N.

The method is generally unstable for hyperbolic problems and problems with
imaginary eigenvalues [23, 3]. Parareal methods for highly oscillatory ODEs can be
found in [1, 15]. In [14], analysis of the parareal method on a class of ODEs originating
in Hamiltonian dynamical systems is presented, and in [16] the parareal method is
applied to stiff dissipative ODEs. Recently, a “weighted” parareal scheme, called
O-parareal, was proposed in [2]. Following the scheme in [2], let

(2.5) upy = 0CH (uy™) + (1= 0)Crr(up) + Fu (uyy) — Crr (uy,),
which simplifies to
(2.6) ul Ty = 0CH () + Fr(uk) — 0CH (ul).

In [2], the “weight” 6 is generalized to an operator which maps Cyu to a small
neighborhood of Fyu. In this paper, we only let 6 be a real number which may vary
for each grid node, i.e., 6 = 6%.

Several properties of the parareal scheme are appealing when solving Eikonal
equations.
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e Parareal methods use communications between the two scales in order to
propagate information quickly through time. Because the fine integrations
can be computed in parallel, the method is able to deal with a large number
of unknowns.

e The characteristics of Eikonal equations also have a “time-like” structure
which makes parareal methods attractive.

The main challenge in applying the parareal scheme to Eikonal equations is that
we are now dealing with an infinite number of characteristics simultaneously. We
also must be able to handle the collision of characteristics which should be captured
accurately in the numerical solution in order to compute the viscosity solution. We
adapt the #-parareal scheme in order to stabilize the new method.

3. The new method. The method is a domain decomposition method that
uses two scales to resolve the fine scale features in r. and propagate information
through the computational domain. We use FSM as the Eikonal equation solver
on the coarse and the fine grid. An adapted version of the #-parareal method is
used to propagate information along the characteristics efficiently where the weight
0 stabilizes the method. The optimal choice of weights for stability is studied in
section 4. First, we will demonstrate the method on a one-dimensional problem and
then explain how to set up the method in two dimensions, which can be generalized
to higher dimensions.

3.1. One-dimensional example. Consider the following one-dimensional
Eikonal equation:

(3.1) lug| =7(z), 0 <z <1,
(3.2) u(0) = u(1) =0,
where

—(z—.75)2
(3.3) re(x) =14 10e 20007 |

Figure 1 shows the plot of the slowness function r.. Let the coarse grid be defined by
of .= {jH:j=0,1,...,N},
where H = 1/N and for ¢ =0,1,..., N — 1. Define the fine grids by
Q= {iH+mh:m=0,1,...,M},

where h = 1/(MN). Define Q" := (J¥ ;" QF. The solution to the upwind Godunov
scheme in one dimension is given by

(34) CH(Ui717Ui+1) = min(Uifl,UiH) +7’(X1)H

We see that if we only solve (3.1) on the coarse grid, the bump in the slowness
function is not seen and the solution is very inaccurate. There are also points in
O where the flow of characteristics is incorrect. Therefore, we keep track of wind
direction, i.e., which neighboring grid node gives the minimum in (3.4). Let X; = iH.
We denote the numerical solution at the kth iteration at the coarse grid node X; by
Uik. For grid nodes on the subintervals, Q?, let X;, = +H + mh and ufm be the
numerical solution at the kth iteration at the fine grid node X; . For each coarse grid
node, X;, i =1,...,N — 1, we will get two values from the fine grid computations.
One value is from QF | and another from Q. Let u¥ be the fine grid solution at the
kth iteration at X; which we will define in Step 3. The method is as follows.
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FIG. 1. re(z) = 1+ 10e 2(0D?

Step 1: Initialization. Solve (3.1) with boundary conditions (3.2) via FSM on
the coarse grid Q| and denote the solution U°. If the left-hand neighboring grid
node is used to compute U, denote the wind direction at X; by W = 1. If the
right-hand neighboring grid node is used, define W? = —1.

Step 2: Update boundary conditions for the subintervals. Once the
coarse grid has been initialized, we use the coarse grid values, U¥, as boundary values
for Q. The characteristics may flow into or out of Q. Thus, when setting the bound-
ary conditions, we check the wind direction to see if the coarse grid value should be
used as a boundary value. Intuitively, if a characteristic at a coarse grid node, z;, or
Ty, 1s arriving into the subinterval, then we set the boundary value to U; or U;1; at
Z;, Or Z;,,, respectively. Otherwise, we set the boundary value to be oo.

Step 3: Solve for u* in parallel. In parallel for each i = 0,1,..., N — 1, we
solve via FSM on QF

(3.5) lug| =r(z), x € ((H, (i +1)H)

with the boundary conditions described in Step 2. Denote the solutions after sweeping
by uf form =0,...,M. We keep track of the fine wind directions, wf , in the same
manner as in Step 1. For each coarse grid node, X;,i=1,..., N — 1, we will get two
values from the fine grid computations. One value is from Q| and another from Q.
Consider a coarse grid point, X;:

o Ifwf , =w} =1, then we choose uj to be uf ; since the wind is flowing
from left to right.
o If wfflM = wF = —1, then we choose u} to be uf since the wind is flowing

from right to left.
e Otherwise, we take the minimum of uf_lM and ufo.
e We set w¥ to be the wind value corresponding to the fine grid point used to
define uf.
For the given example, U is plotted in Figure 2(a) and u° is plotted in Figure 2(b).
Step 4: Coarse grid updates. Now we compute UF*1. We use the previous
coarse and fine wind directions to determine whether we will use a weighted correction.
We sweep the grid as in FSM and the update formula is as follows:
o Let U = Oy (UM, UFHY). If the left-hand neighboring grid node was used to
compute U, then denote the current wind direction W = 1. If the right-hand
neighboring grid node was used, define W = —1.
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FIG. 2. (a) Plot of U°. (b) Plot of u® using U° as boundary conditions as defined in Step 2.

o If Wi”C = wf = W, then we use a weighted correction update, i.e.,
(3.6) U; = 00U +uf — 00 (UF |, UE)

and W; = wk.

e Otherwise we set U; = u¥ and W; = wF.

e After the weighted corrections, the solutions may have the wrong causality
because information on the fine grid that was not seen previously has now
been propagated to the coarse level. To correct this, we implement a causal
sweep after each coarse grid update. Sweeping the coarse grid in both direc-
tions, the causal update is as follows:

— W, =1and U; < Ui—l, then U; = U;_1.

—IfW;,=—1and U; < U¢+1, then U; = Ui+1.
After the causal sweep on the coarse grid, denote the solution by U**! and the wind
directions by W*+1. Repeat Steps 2-4 until convergence.

In Figure 3(a), we see that at X7 = 0.7 the effect of the Gaussian bump in r. has
been propagated to the coarse level. Before the causal sweep, Ug < Uz, but Wg = —1.
Therefore, after the casual sweep, Ui = U:s. Figures 4 and 5 show the next two
iterations of the method which converges at k = 3.

The advantage of the coarse and fine grid coupling is clear in this example. Our
method is equivalent to the method in [28] if we let § = 0 and there is no coarse grid
initialization. When 6 = 0, it would take six iterations to converge since there are six
subintervals between the left boundary node and the subinterval where the charac-
teristics intersect in the overall fine solution. This is because there is no propagation
of the information at the coarse level after the fine grid simulations. The number of
iterations it takes to converge increases as the number of subintervals increases when
0 =0.

Next, we introduce the method in two dimensions in more detail.

3.2. New method in two dimensions. In two dimensions we solve
(3.7) |Vu(z)| = r(z), = €][0,1]°\I,
(3.8) u(z) =0, = €C[0,1]°T.

One of the main challenges of setting up the method in two dimensions and higher is
setting up the boundary conditions of the subdomains. We approach this by setting
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FiG. 3. (a) Plot of U% and U'. (b) Plot of u' using U as boundary conditions as defined in
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F1G. 4. (a) Plot of U and U2. (b) Plot of u? using U? as boundary conditions as defined in
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FiG. 5. (a) Plot of U% and U3. (b) Plot of u3 using U3 as boundary conditions as defined in

(a)

0 02 04 06 08
(b)

0 02 04 06 08
(b)

0 02 04 06 08
(b)

Step 2. We see that the method has converged and U3 = u3.
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FiG. 6. Shifted coarse grids in two dimensions.

up a coarse grid and shifting it vertically and horizontally M — 1 times each. Let
Of ={(iH,jH):i,5=0,1,...,N},
and H = 1/N. Then the horizontally shifted coarse grids are defined by
O+ (20,0) = {(iH 4+ x0,7H) :i=0,1,...,N -1, j=0,1,...,N},

where g =lh for i =1,..., M — 1 where h = 1/(MN). The vertically shifted coarse
grids are defined by

QT +(0,90) = {(iH,jH +yo):i=0,1,...,N, 5=0,1,...,N — 1},

where yo = mh for m = 1,..., M —1. The shifted grids are demonstrated in Figure 6.
Next we define the fine grids on the subdomains for 4,7 =0,1,..., N — 1:

h . N
Oy = {(Ilh +iH,mh + jH): 0 < l,m < M}.

The notation for the two-dimensional problem is as follows:

Xij=(iH,jH) € Qp,
Xiyj = (iH +1h,jH) € Qu + (11, 0),
X, = (iH,jH +mh) € Qu + (0,mh),

iy j,, = (IH + 1h, jH +mh) € Q' .
Ui]fj denotes the coarse solution at X; ; in the kth iteration,
Ui’ij denotes the coarse solution at Xj;, ; in the kth iteration,

Ui’fjm denotes the coarse solution at X ; = in the kth iteration,
uf j denotes the fine solution at X; ; in the kth iteration,

ufl i, denotes the fine solution at z;, ;,, in the kth iteration.

Now that we have the grids set up we begin the description of the method. The coarse
grid solver is given by the solution to (1.3):

%(a—i—b-l— \/27,12]H2_(a—b)2> lf|a_b| <ri,jH7
min(a, b) + 7 ; H if la = b =i H,

(3.9) Cu(nbrs™ (U ;) =
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where IlbI‘SH(Ui7j) = {Ui—l,ja Ui+1)j, Ui,j—l, Ui,j—i—l}a a = rnin(Ui_Lj, Ui+17j)a and
b= min(Um_l, Ui,j—i—l)-

The steps are the same as in the one-dimensional case, except we also have a
causal sweep in the initialization step. Step 1 is the initialization of the coarse grids
with a causal sweep, Step 2 is to update the boundary conditions for the subdomains,
and Step 3 is to compute the fine solutions on the subdomains in parallel. Step 4 is
to perform weighted corrections on the coarse grids where we allow 8 to vary for each
coarse grid node. The weighted update will be

(3.10) UMY = 011 Cp(abrs™ (UFTY) 4+ uf; — 057 C (nbrs™ (UF))).

Note that the weight function 6F ; acts as a multiplicative correction to the coarse

operator C'y so that ijlCH(nbrsH(Ui’fj) ideally approximates ufj

Step 1: Initialize coarse grids in parallel. Since the shifted coarse grids
are independent of each other, the values {U} ;}i; and {U; }i; are computed in
parallel for each [ and m. We solve (3.7) with boundary conditions (3.8) on each of
the coarse grids. Keeping track of the flow of characteristics is more complex than
in the one-dimensional problem. In two dimensions, the set of eight distinct wind
direction vectors is {(£1,+1),(%1,0),(0,£1)}. The wind direction at a coarse grid
node is determined by the solution to (1.3). We describe how to initialize the grid
Q. The initialization on Q¥ + (Ih,0) and Q¥ + (0,mh) for I =1,...,M — 1 and
m=1,...,M — 1 is the same.

e Initialize U as described in section 1.1.
e Sweep the grid as described in section 1.1. Algorithm 3.1 explains the update
formula as well as how to compute the wind directions WY ;- At each X; j,
we input nbrs” (U; ;),U;;, and H, using one sided differences if X;; is a
boundary grid node.
The solutions on the coarse grids may have the wrong causality because small scale fea-
tures in 7. may be sampled on some shifted coarse grids and not others. To correct this,
we implement a causal sweep. We must sweep the coarse grids sequentially in order to
capture the right causality. We sweep all the coarse grids in each of the four directions
just once. The update is given by inputting U; ;,._., Ui jny1s Ui g » Wi j,, into Algo-
rithm 3.2, which describes the update for a vertically shifted grid node. The updates
for the other coarse grid nodes are defined analogously. Note that since we are sweep-
ing the coarse grids sequentially, U; ;.. ., Ui j,..,, and U; ;.. belong to three different
vertically shifted coarse grids. Denote the solutions after sweeping by U° and WP.

Step 2: Update boundary conditions for subdomains. Now that we have
computed the solutions on all the coarse grids, we can set the boundary conditions
for each Qf] Intuitively, if a characteristic at a coarse grid point is arriving into
the boundary of the subdomain, 89?’ ;» then we set u at that node to be the value
from the coarse grid computations, U*. Otherwise, we set u to be oo at the coarse
grid point. To describe this mathematically for a vertically shifted coarse grid point,
define n,, ,,, to be the inward normal vector to the subdomain Qf ; at Xwr, € 692 -
Then define

sT'm

Ui Wy, Dy, >0,

Juw,r., (Uw7rm’Ww,Tm) = .
00 otherwise.

When X, is a horizontally shifted grid point, the definition of g, is the same as

above. For X, ,, a nonshifted coarse grid point on 8(2?} s the inward normal vector of
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Algorithm 3.1 Update and wind formula for initialization.
Input: IlbI‘SH(Ui_’j), Ui_’j, H
Output: Ui,j,Wi_’j
{Compute wind in = direction.}
if Ui*Lj < Ui+17j then
W,=1
else
W, =-1
end if
{Compute wind in y direction.}
if Ui,j,1 < Ui7j+1 then
W, =1
else
W, =-1
end if
{Compute in solution to (1.3) and define wW.}
U = Cy(nbrs™ (U, ))
a = min(Ui_l_,j, Ul'+1_’j)
b= min(Ui,j_l, Ui,j+1)

if U < b then

W = (W,,0)
else if U < a then

W = (0,W,)
else

W = (W,, W,)
end if

{Take minimum. }
if U < Ui,j then

Ui;j=U
W, =W
end if

Algorithm 3.2 Causal sweep update formula for vertically shifted coarse grid node.
Input: Ui j,, ,,UijniisUijo, Wi,
Output: U, ;,,

if Wi,jm . (0, —1) > 0 and Ui7jm < Ui7jm+1 then
Ui7j7n = Ui;j7n+1

end if

if Wi,jm . (0, 1) > 0 and Ui,jm < Ui-,jm_l then
Uijm = Uiy s

end if

Qf ; 1s not unique since the coarse grid point is a corner of the subdomain. There are
two possibilities for the inward normal vector. Denote them by n}w, and n2 _; then

w,r)

Uffj’r if Wﬁm -ny, . >0 or Wﬁm nZ >0,

w,r

k k
gw,T(Uw,f”Ww,T) = .
00 otherwise.
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Step 3: Solve for u* in parallel. In parallel for 4,5 = 0,...,N — 1, we solve
(3.11) [Vu(z)| =r(z), x€ (iH,(i+1)H) x (jH,(j+1)H),
(3.12) u=g, on O(iH, (i+1)H| x [jH, (j +1)H])

via FSM on the grid ij and g is defined in Step 2.

e Initialize u as described in section 1.1.

e Sweep the grid. To the update the solution at each z;, j,,, input nbrsh(uil, )
Ui, 4 and h into Algorithm 3.3. Use one sided differences if x;, j,, is a bound-
ary grid node. Here, nbrs" (u;, j, ) = {8y s Wiy o s Wiy o1 Wiy o1 ) -

Denote the solutions after sweeping by ufl jm and wfl i forl,m=0,...,M.

After the computations on each subdomain, we will have two or four values for
each coarse grid node, depending on whether the point is in a shifted or nonshifted
coarse grid. Intuitively, we define the value uf ; by the following:

e If the coarse wind and the fine wind flow into the same subdomain Q,
from Q7 ,,, then we set the value u}; to be the fine grid solution from the
subdomain QQ,)t,.

e Otherwise we set u¥ ; to be the minimum of the fine grid solutions at the
coarse grid point.

A vertically shifted coarse grid node, X ;. , is on the boundary of the two subdo-
mains, Q?_l’j, and Qﬁj,. Denote the two possibilities of an inward normal vector
by n' = (—1,0) and n® = (1,0). Algorithm 3.4 explains how to compute u}; at a
vertically shifted coarse grid node, Xj; ; . The computations at a horizontally shifted
and a nonshifted coarse grid point are similar.

Step 4: Coarse grid updates. Now we compute the coarse grid updates,
Uk+1. Again since the shifted coarse grids are independent of each other, the values
{Ui]jfg-l}i,j and {Uf;rn}}” can be computed in parallel for each [ and m.

e Initialize U as described in section 1.1.

e Sweep the grid and the update formula at a vertically shifted coarse grid node
is given by Algorithm 3.5. The computations at a horizontally shifted and
nonshifted coarse grid point are similar. Let n' and n? be the inward normal
vectors as defined in Step 3. We input nbrs™ (U; ),nbrSH(Ui”fjm),Wﬁjm,
Wf,jmv and H into Algorithm 3.5.

Again we must implement a sequential causal sweep to make sure the coarse grids
respect the causality of the solution. Sweep the coarse grids sequentially in each of the
four directions once. The update formula is given by inputting U; ;.. 1, Ui jony1s Ui g s
W, ,. into Algorithm 3.2 for a vertically shifted coarse grid point. The updates for
other coarse grid nodes are defined similarly. Denote the solutions after sweeping by
UF+1 and Wk+1, Repeat Steps 2-4 until convergence.

The method is demonstrated in Figure 7, which shows the contours for the fine
grid solution patched together for r! = 1+ .99 sin(27z) sin(27y) for k = 0,2,4, and
6. We see the solution contours begin to smooth out after a few iterations.

xjm

4. Analysis of the new method. We choose the following model problem to
study the choice of weight 6. Let Q = [0,1] x [0, H]. Then we numerically solve via
our method

(4.1) Vu(z,y)| =1, (z,y) € O\,
(4.2) u(r,y) = a2 +y?, (v,y) €T,
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Algorithm 3.3 Update and wind formula for fine grid compuations.

Input: nbrsh(uimm), Uiy s
Output: Wiy, 5m s Wip,jm
{Compute wind in z direction.}
if Wip_y,5 < Uiy q,5 then

a = Ui_,,j

Wy = —1
else

a = Uijp,,j

Wy =1
end if

{Compute wind in y direction.}
if Ui g1 < Ui jpin then
b= 23—
wy = —1
else
b= 2%
wy =1
end if
{Solve (1.3).}
if |a — b| < r; ;h then

= %(a—i—b—k \/27“1»27jh2 - (a—b)2>
(

= (wz, wy)

else
@ =min(a,b) +r; ;jh

if a < b then
w = (wg,0)
else
w = (Ov wy)
end if
end if
{Take minimum.}
if 4 <y, j, then

m
Uiy, j, = U
Wit gm — W
end if

where I' = {(2,0) : 0 < 2 <1}U{(0,y) : 0 <y < H}. The coarse grids can be defined
in one set by

Qff .= {(iH,jh):i=0,1,...,Nand j =0,1,...,M}
with X; ; = (¢H, jh). The overall fine grid is given by
Q" = {(lh,mh):1=0,1,...,NM and m =0,1,...,M}.

The advantage of this problem is that the characteristics can be captured in one sweep
of FSM, i.e., an upward right sweep. This fact means we can use a weighted correction

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/13/19 to 131.179.49.165. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

634 LINDSAY MARTIN AND YEN-HSI R. TSAI

k

Algorithm 3.4 Update formula for uf o and wis

grid node.

_ for a vertically shifted coarse

k k k k k

ifklM;jnl’uiOujnb’Wi71A47jnL7W7;O;j7n7 7;7jnz

output: ui; Wi,

if wh on!>0,wk . .n!'>0,and W¥. .n! >0 then
k:‘ 1as,dm ) 105Jm ? 2Jm

zkgm = z‘o];jm

im - Wioydm

elseif wf , . -n*>>0,w} . -n’>>0, and W}, -n?>0 then

. , ;

i;jnl = U’i*l]\{d}n

k _ ik
Wiujm, - WiflM;jnl
else

Input:

u

u

s k k
if Uim1nr,4m < Uig,jm then

Ui = Wie1ps,5m
D =W
else
”ij = ”fo,jm
Wﬁjm = Wfo,jm

end if
end if

t—=1ar,0m

Algorithm 3.5 Update formula for weighted corrections for a vertically shifted coarse
grid node.

Input: nbrsH(Ul-_’jm),nbrsH(Ui’fjm), Wk wi

Output: U ;.. , Wi,

Compute U and W as in Algorithm 3.1

if wh. .n! ZO,W’?» -n! >0, and W - n! >0 then

%) m & ©Jm . H
gkt L gkl &
Uijm = Gi,j}:U +ug g, — 0ij, Cr(brs™ (U )
Wi, = Widm
else if Wf,jm -n? > O,Wﬁjm -n%2>0,and W -n? >0 then
I g ko gkl H 17k
Uijn =03, U +uij, —0;; Cu(nbrs™ (U7 )
Wi, = Wi im
else
Lk
Uij,, = s 5o,
U
Wi, = Widm
end if

update for every coarse grid node. Let u/ be the overall fine solution on Q". Suppose
we allow 6 to vary for each coarse grid node and iteration and denote it by Hf ;- Then

fori=1,...,N and j =1,..., M, we have the following coarse grid solver:
Uii1,j4Ui j-m+y/2H2—(Ui_1 ;—Ui j_ )2 M
CrUi-1,5,Uij-m) = 2 v "
Ui1;+H otherwise,
where if j = 1,..., M — 1 we ignore the second argument of the coarse grid solver. Let
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0 0.5 1 0 0.5 1

(c) k=4 (d) k=6
Fia. 7. Contours for fine grid solutions patched together for the slowness function

ri(z,y) = 1+ .99sin(27wzx) sin(27wy) where in (a) k =0, (b)k =2, (c) k =4, and (d) k = 6.

Up; = Cu(Uy ;;UY;_ar)- The weighted update for this problem for j =1,..., M is

i—1,57
(4.3) UL = 085 [Cu(UERY, U ) = Cu(U 5, Ul )]+l
with initial conditions
(4.4) Ut =wuj forj=1,....,Mand k=0,1,2...
and
(4.5) Ufd' =ulgfori=1,...,Nand k=0,1,2....

Figure 8 shows the L., error plot for # = 1 which is analogous to the standard
parareal method. Note the error is large from the first iteration and increases for
later iterations. The error peaks around & = 10. This is because as k increases the
solutions in each successive subdomain converge to the exact solution, which then
allows the maximum error to begin to decrease. If we choose a small value for 6, the
solutions converge as seen in Figure 9. However, the convergence may be slow. Next,
we study how to choose Hﬁ ; for the coarse grid updates.

4.1. Analysis of 8 on model problem. First we prove a theorem that gives
an exactness property for the method on this model problem. Let u/ be the overall
fine solution on Q".
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10* ' ' '

error

relative L

0 5 10 15

Fic. 8. |U* —wf||L_ for & =1,H =1/20,h = 1/1000.

10° — 102 P\

108 3
—k,used

—— g
v

1 —_—9=1
9=3 9=.3

relative L1 error
)
&
relative L1 error

0 2 4 6 8 0 5 10 15
k k

(a) H=1/10 (b) H =1/20

102

7=.75,6=.01 =9

.
/7
f,used

108 \

relative L1 error
g Sel

10714
0 10 20 30 40 0 5 10 15 20

(¢) H = 1/50 (d)

F1G. 9. Error plots of ||U* —uf||L1 for specified values of H. In all three examples h = 1/1000.
For (a), (b), and (c), |[uf — ue¢t||,, =3.79 x 107%. (d) Parameters v, §, and o used to estimate
0. For (a)—(c), v =.75,6 = .01,z9 = .9.

THEOREM 4.1. Let Ui’fj be given by (4.3). Then for each j =1,..., M,

Ui’fj :u{)j for k > .
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Proof. First note U ; = UY; and U} = UY = uf ;. Now,

U117j = 9%,;‘ [CH(UOl,jﬂ Ull,ij) - CH(U(?,ja Ulo,ij)} + U?,j

:u?

=uf .

»J

The second equality comes from the fact that u?)j was computed using only the
boundary values.
Now assume

k _,f :
(4.6) Uiy = ; for k > i.
Let £ > ¢+ 1. We have

Uerl \J aerl,j [CH(UL]’ U+1 = M) CH(U'Lk,;] ! Uz+1 J— M) + uf—i-ll]
Now k > i+ 1 and (4.6) imply Uik» = Uf71 = u{J Also, (4.5) implies

ul
Uz+1 0 — Uerl 0= i+1,0'

Therefore,
ub1 uf
Uerl ] z+1 j i+1,j’

where the second equality comes from the fact that uf;ll ;s computed using the values

Uf;l and (4.6) implies Ul-’f;l = u{j for j =0,...,M — 1. Thus, we have our desired
result. d

Now that the exactness property for the method is proven, we have the following
theorem that proves existence of F . i; for each k such that the sequence of solutions
is monotonically decreasing for the model problem. The following fact is used in the
proof of the theorem: If a < b < ¢, then Cy(a,c) < Cr(b,c).

THEOREM 4.2. Forj =1,....,M and i = 1,...,N, there exists Hﬁj such that
Ui’f UklandUk >u foralll>k

Proof. First we note UOJ > uf] and uOJ > uf fori=1,...,Nandj=1,..., M.
We will proceed by induction on k. Let k = 1. We will bhOW the theorem holds for

all i > 1. Either uf ; > U3 ; or ug ; < U3 ;. If uf ; < U3, choose 65 ; > 0. Then

U217j = 9%,;‘ [OH(Ull,jv Uzl,ij) - OH(Ulo,jv Ug,ij)} + ug,j

0
< Uy

0
< Uz

where the first inequality comes from the fact that U} ; = u{j <UP;. g, > U3,

then define
Uy 2,5 U2 J

4 CH(UIJ’UZJ M) CH(UPijgj M)
Now mzj > 0. Thus, 1f92] >m23,then Uzj <U2j Now let

f 0
71 Ugj — U2

M, = .
7 OH(Ull,jaUzl,j—M) - OH(U{J,j’UZO,j—M)

—1 =1
Note M, ; > 0. If we choose 65 ; < M, ;, then Uy ; > uéf.
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Now assume U}, > U?; and U}; > u{] for all ¢ > 1. If u),, ; < U, ;, choose

6},1; > 0. Then

Ui1+1,j = 01'1+1,j |:CH(Uil,j7 Uil-H,j—M) - CH(UiO,ja 1’0+1,j—M)} + u?+1,j
0
< Uit

0
< Uiy

where the first inequality comes from the induction assumption. If uf,, ; > UP\,;,
then let

0 0
1 Uib1,j = Uit
it1,) = T 771 0 770 :
Cu(U; Uiy j-m) = Cu(Up: Uy o)

Now M, ; > 0. Thus, if 6}, , ; >, ;, then Uy ; < U3 ;. Next let

f 0
7! Wir1,j — Yit1,5

M., . = .
T Cu (U Uy i) — Cr(UD 5, Uy j_ag)

—1 ——1 .
Note M, ; > 0. If we choose 91»1“7]» < M, , then Ui1+17j > uzfﬂ)j. So if 0 <
01, < M}H)j, the theorem holds for k = 1.

Assume the theorem holds for k, ie., UF; < Ufj_l and Uf; > u{] for i > k. We

want to show it holds i > k + 1. Let i = k + 2. The induction hypothesis implies

U,fﬂ)j > u£+17j and Theorem 4.1 implies U,’jjr'll’j = u£+1’j. Thus,

k+1 k+1 k k
CH(Uk+1,j’ Uk+2,j—M) - CH(UkJrLj’ Uk+2,ij) <0.

k k k1
If ugyo ; < Upyo s choose 05 > 0. Then

k+1 _ pk+1 k+1 k+1 k k k
Uk+2,j - 9k+2,j [CH(Uk+1,jﬂ Uk+2,j—M) - CH(Uk-rLjv Uk+2,j—M) + Uk+1,5
k
< Upyo,j

k
< Ukyaj-

k k
I ug o > Uiy, let

k k
. Uky2,j = Ukt2,
k42,5 — k+1 k+1 k k ’
CH(UkJrl,j’ Uk+27ij) - CH(UIHLJ" Uk+2,ij)
—k+1 k+1 —k+1 k+1 k
Note my 5 ; > 0. If 0,35 ; >y, S, then Upls o < Uiy, ;.
k+1 f
Next we need Uk+27j > Uy i Let
f k
—htl Yk+2,5 — k42,5
k+2,5 = E+1  prk+1 % % .
CH(UkJrl,j’ Uk+27ij) - OH(UkJrLj’ Uk+2,ij)
— k41 . k+1 —k+1 k+1 f . k k
Note M5 ;. Then if 0,75 0 < Myyo;, Upls; > uppo ;- S0 if ugy 0 < Upls s,
k41 —k+1 k k | k+1 —k+1
choose 0 < 075 ; < Mo ;. g s > Ufys 5, choose Ty o < 033 0 < My, 5.
Therefore, the theorem holds. d
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The proof of Theorem 4.2 provides insight on the stability of the method and the
optimal choice for the weights 67 ;. Let

Sr {o_k if mf, <0,

e my; otherwise.

If mf; < 0F; <M”,

closer we choose 9’“ to M the more accurate U k

we have a monotonically convergent sequence of solutions. The

If we analyze the values for M ; we see in early iterations that M . can be very
small. For example, if k =1,h = 1/20, h = 1/1000, mlnxiijQH(Mij) = 5.6 x 1073.
This is a reason why we cannot use the standard parareal method where § = 1. In
practice, we do not know Mf . a priori since it relies on knowing u . Therefore, we
estimate Mk ; in order to choose 6} ; and create a sequence Uy, that converges very

quickly to u . Next, we explain how we estimate M - in practice.

4.2. Estimating Mi,j. Recall

f k—1
ig Y

M;; = F
CH( i— 1]7Ui,j—M) OH(U lj’U )

and we would like mf ; < oF ;< Ml ;- Since we do not know u{

—k .
M; ; by the following:

—k U,

;a priori, we estimate

. ufTl ko2

(4.7) 7, = SR .
7 CH( i— 1]7Uzk] 1M) CH( i— 1]’U1kj2M)

However, upon implementation this estimation produces very unstable solutions. The
—k .
values ¢; ; become extremely large and create sequences of solutions where Ui’fj < u{ j

or Ufj > Ui’fj_l. This occurs when the denominator of (4.7) is much smaller than the
numerator. We overcome this issue by using a weighted sum in the denominator, i.e.,

(4.8)
k=1 k=2
7k _ irj irj

2 .
Ei OwSOH( i— lij ) CH( flljs Ulkj 1MS) /(UJO—le +LU2)

—k
To further ensure that the estimated value 6; ; does not become too large we dampen
the values if they are beyond a threshold and apply a smooth approximation function.
Let

L 1
4.9 o, ;)= ———.
( ) ( Z’J) 1+ e(ei,j—zO)/’Y
Then
—k,used —k =k —k —k 1T
(4.10) 9i7j = [U(Hi,j)eiJ + (1 - U(Hi,j))éei;j} ’

where again a* = max(0, a) and zg,7, and § are parameters chosen experimentally.
Figure 9(d) shows the plot of gij versus ?Z’Jysed, and Figures 9(a) to 9(c) show
the error plots for various values of H. In all three examples h = 1/1000. We see the

. —kused
advantage of using 6; ;SG over a fixed value of 6.
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4.3. Complexity and speed-up. Let N = 1/H and M = 1/(Nh). Define
A[N,d] := C(24(N + 1)%) to be the number of flops for FSM where C' depends on
the characteristics of the given Eikonal equation. Then the number of flops for the
computations on all of the coarse grids, the causal sweep, and all of the subdomains

: (AM)A[N,d] +2°M(N + 1)%> + (N A[M, d].

If we solve the Eikonal equation on j,, then the number of flops is given by A(N M, d).
Theoretically suppose we have enough processors to compute the solution on each
coarse grid and each subdomain in parallel. Then after k iterations the computational
time is proportional to k(A[N, d]+2¢M (N +1)%2+ A[M, d]). For our method to achieve
speed-up via parallelization, we need

A[NM, d]

k .
< AN, 4 + 29M (N + 1) + A[M, d]

For example, suppose N = 20, M = 100, and d = 2 and we perform 10 sweeping itera-
tions on each coarse grid as well as on each subdomain; then with ideal parallelization
we need k < 266 in order to achieve speed up.

5. Numerical results.! Next we present some numerical results computed by
the method. Every example is computed on = [0, 1]> and T is a set of source points
chosen in each example. The focus of our examples is demonstrating the reduction in
error in a few iterations and the ability to handle some stereotypes of r.. We report
the L; relative error in each example, i.e., ||u* — uf||z,, where uf is the overall fine

solution. In every example, ?i fsed is chosen so the solution is stable and converges
to the overall fine solution.

We choose the examples in section 5.1 to demonstrate the method on smooth
slowness functions, where the coarse grids do not sufficiently resolve the oscillations.
The point is to show that the coupling scheme is able to correct the coarse grid
computation using the fine grid computations. The maze examples in section 5.2 are
chosen because the solutions have large changes in the direction of the characteristics.
This example highlights that when the initial coarse grid solve captures the direction
of the characteristics incorrectly, the scheme is able to correct those directions in later
iterations.

The examples in section 5.3 demonstrate the method in the case of multiscale
slowness functions with and without scale separation. The goal is to show that, at
the expense of parallelization, the method can be used to replace numerical homoge-
nization for a much wider class of multiscale problems.

Finally, we report some simple parallel computations where the method is tested
on the Marmousi velocity model amd a simple three-dimensional example. All parallel
computations were performed on Stampede2 at the Texas Advanced Computing Cen-
ter using a common shared memory hardware architecture. We used the OpenMP
default for loop scheduling to divide the work among the threads. For more de-
tails on the specifications of Stampede2 visit https://www.tacc.utexas.edu/systems/
stampede2.

Nevertheless, we emphasize that the focus of our paper is not on parallel imple-
mentation but rather to present a framework for a domain decomposition method
with the benefit that the method then can be easily parallelized. We believe that

IMATLAB/C++ code used to produce all numerical results can be found at https://github.
com/lindsmart/MartinTsaiEikonal.
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FiG. 10. (a) Solution contour for rl(z,y) =1+ .99sin(27z)sin(27y). (b) Solution contour for
r2(z,y) = 1 + .5sin(20mz) sin(20my).

107

relative L1 error

107

FIG. 11. Relative L1 error plots for rl and r2 for H = 1/10 and h = 1/500.

the major addition of our method to this area of research is the stable coupling of
the coarse and fine solvers where the stabilization is achieved through the use of data
computed “on the fly.”

5.1. Smooth slowness functions. We test the method on two smooth oscilla-
tory continuous slowness functions. Figures 10(a) and 10(b) show the contour plots
of the overall fine solution where

ri(z,y) = 1+ .99 sin(27z) sin(27y)
and
r2(z,y) = 1 + .5sin(207z) sin(207y).

Figure 11 shows the error plots for H = 1/10 and h = 1/500. The method is able
to handle small and large changes in direction of the characteristics. We see that the
performance is worse in earlier iterations for rl. This is because the solutions in the
upper left and bottom right corners depend on more subdomains than in the r? case.

5.2. Mazes and obstacles. We show the method’s performance on examples
that model optimal paths through a maze. Here, we define r.(x,y) = 1000 inside the
barriers so that all optimal paths choose to avoid them. We also test the method
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(a) rd (b)

FiG. 12. (a) Solution contour for r3. (b) Solution contour for r2.

relative L1 error

Fig. 13. Relative Ly error plots for the slowness functions r2 and r? for H = 1/10 and
h = 1/500.

on the case where an obstacle may be a “fast obstacle,” i.e., re(z,y) = 0.01 inside
and optimal paths near the obstacle choose to go through it. We set rc(z,y) = 1
everywhere else and let the source point be given by I' = {(0,0)}. These examples
show the performance of the method on problems when the coarse grid captures the
flow of characteristics in the opposite direction. The causal sweeps are critical in
order to capture the right flow of characteristics. This is because it is possible that in
some of the coarse grids the causality may never be computed correctly. The solution
contours for r and r! are shown in Figures 12(a) and 12(b), respectively.

For 73, there are coarse grid points which coincide with the obstacles as well as
points in the obstacles that do not coincide with a coarse grid point. The circle barrier
in Figure 12(a) contains an entire subdomain and the other circle is a fast obstacle
that is contained entirely in a subdomain. The nonmonotonicity of error is due to
the causal sweeps. The method provides speed-up only once the right characteristics
have been captured around the barriers. This is seen in Figure 13, where the error
starts to decrease monotonically around 20 iterations. For r?, it takes around 2/H
iterations for the coarse grid to “see” around the two curved barriers.

For r?, the fast obstacle is located at [0.26,0.27] x [0,0.6], and it affects the
characteristics throughout the majority of the domain, i.e., almost every optimal
path in Figure 12(b) must go through the obstacle. This example demonstrates that
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(b)

Fic. 14. (a) Solution contour for the squares slowness function where h = 1/1400 and
e =1/200. (b) Plot of squares slowness function for e = 1/5.

the method performs well when there is a large collision of characteristics that occurs
in several subdomains.

5.3. Multiscale slowness functions. We show the advantage of the method on
multiscale slowness functions. These examples arise in front propagation in multiscale
media problems. In our computations, we let the scale epsilon be seven fine grid points,
i.e., € = 7h, in order for the fine grid to fully capture the microscale behavior. As
mentioned in section 1, one approach for numerically resolving the multiscale behavior
in 7 is homogenization. We will first demonstrate our method on an example where
the homogenized slowness function, 7, can be computed.

Let the source point be given by I' = {(0.5,0.5)}, and define the slowness function

as follows: let
r(z,y) = 1 ifx=00ry=0,
¥ = 2 otherwise

and define r. by extending r by periodicity €. Figure 14(b) shows the slowness func-
tion for ¢ = 1/5. The homogenized slowness function is anisotropic and is equal to
7(a) = (a1 + ag), where a = (a1, a2) and |a] = 1. This is due to the optimal paths
moving only vertically or horizontally [20].

In our computations, we chose H = 1/14, h = 1/1400, and € = 1/200. The value
of r. on the coarse grid points is always equal to 1. Thus, the coarse grid solver is
always solving the equation

[Vu| = 1.

This equation is inaccurate as seen by the shape of the solution contour in Figure 14(a),
which is a diamond and not a circle. Suppose in the method we have the coarse solver
solve an equation that better describes the macroscale behavior of the solution. Since
in this example we know the homogenized equation, on the coarse grid we can solve
the homogenized equation

1 7 —

Denote the homogenized equation coarse solver by C'. Figure 15 shows the relative
L1 error plots for both the method that uses the C'y as described in section 3 and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/13/19 to 131.179.49.165. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

644 LINDSAY MARTIN AND YEN-HSI R. TSAI

107
S \.
o "\.
= S
@ ~
o 1077 S, ]
=2 \
= _ .
o Cu \
—_——— Cy .
\
107 :
0 2 4 6 8 10 12
k

relative L1 error

Fic. 16. Generalization of Figure 10(b): (a) Solution contour for re(z,y) = 1 +

+[y[|+0.001
|z |y5|0 i (b)

5 sin(TE) sin(™¥) where € = Relative L1 error plot for the given re where the

estimated 91-";‘36 and M.ﬁj — 0.001 are used.

the method that uses C'y; in place of Cy. As expected, we can see the method that
uses C'y performs better.

Next, we demonstrate the method on a generalization of r? as defined in section
5.1. Notice in Figure 10(b) that we can see the rough shape of the contours of the
solution to the homogenized equation. Let

re =14 .5sin (%) sin (%)

For r2, ¢ = 1/20. Now suppose we let € vary throughout the domain, i.e., the problem
cannot be solved via homogenization. Define

. |x] + |y| + 0.001
B 50

and I' = {(0.35,0.35), (0.65,0.65)}. Then € is very small near (0,0) and increases as
we move diagonally up and right through the domain. Figure 16(a) shows the solution
contour for this given r.. Since u/ can be computed a priori, we compare the error

plots of our method where we use formula (4.10) and Miyj — 0.001 as the choice of
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Fic. 17. (a) Solution contour plot of random periodic checkboard of scale €. (b) Plot of random
slowness function.
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F1a. 18. Relative L1 error plot for random re.

weights in the method. In this example, H = 1/14 and h = 1/1400. The error plots
in Figure 16(b) suggest that the proposed formula (4.10) has room for improvement

—k
in estimating M, ;. For example, if X; ; = (0,0), we have

—k,used

min([37; ; — 0.001 — 8, ;*““|) = 0.1053,
(| M :
but
—k —k,used 5
max([7;; — 0.001 — 7,°"|) = 2.508 x 10°.

Finally, we show the results of our method in a case where the values of the
slowness function are random. We follow the setup of the random slowness function
in [20]. Consider a periodic checkerboard where the slowness function is either 1 or 2
with probability 1/2. Let the scale of the periodicity be €. A solution contour and the
plot of a random slowness function are shown in Figures 17(a) and 17(b), respectively.
In [20], the authors showed experimentally the homogenized slowness function, 7, is
isotropic and its value is a little less than 1. Figure 18 shows the plot of the average
error over 20 trials where H = 1/14 and h = 1/1400.
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Fi1c. 19. (a) Reciprocal of the Marmousi velocity displayed as an image. (b) Ezecution time as
a function of the number of threads on an 11201 x 11201 grid with 142 fine subdomains.

TABLE 1
Time for each method on an 11201 x 11201 grid with 14% subdomains using 64 threads where
the tolerance prescribed in the new method is the relative L1 error.

FSM New method (1 x 107°) | New method (1 x 10716)
Time (sec) | 1016.08 | 132.42 169.20

TABLE 2
Comparison of the number of sweeping iterations in the FSM and the new method. FEach
sweeping iteration contains four sweeps in each sweeping direction.

FSM | Average number of coarse sweeps per | Average number of fine sweeps per fine
coarse grid subdomain
14 2.56 3.13

5.4. Parallel and three-dimensional simulations. We study the performance
of a parallelization of the method on the Marmousi velocity model.2 This model is a
data set used in seismic imaging and has different scales and many discontinuities. It
is widely used to test wave propagation algorithms in the seismic imaging community.
We define 7. as the reciprocal of the Marmousi velocity. Figure 19(a) displays r. as
an image. We test the scaling of the method on an 11201 x 11201 grid with 142 fine
subdomains. Figure 19(b) shows the execution time of the method as a function of
the number of threads.

Table 1 reports the time comparisons with the FSM and our new method. We
report the times of the new method with respect to L difference with the overall fine
solution computed with FSM. With relative L; error of 1 x 107°, we get a speed up
factor close to 7.7. Finally, we report the number of sweeps needed for convergence
of FSM on the coarse grids and fine subdomains during each iteration of the method
in Table 2. For the fine subdomains, the characteristic structure is less complex than
that of the overall fine grid. Thus, we do not need the same amount of sweeps that
the original FSM needs on the entire fine grid.

Finally, we verify the implementation of the method in three dimensions. Note
that in order to obtain the boundary conditions for each subdomain, we need (K +1)?

2Marmousi velocity data set source: http://www.agl.uh.edu/downloads/downloads.htm.
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Fi1c. 20. (a) Relative L1 error plot for three-dimensional problem with slowness function TED‘

(b) Execution time as a function of the number of threads on a 3012 grid with 103 fine subdomains.

coarse grid nodes on each face of a subdomain. This gives us a total of 3K (K —1)+1
shifted coarse grids. In this example, we place the source point at the origin, and
we use the slowness function, 3P (x,y,2) = 1, except for four spherical obstacles.
Centered at the points (.5, .4, .4) and (.3, .3,.3) are “fast” spheres of radius 0.025 where
r3P(z,y,2) = 0.001 and centered at the points (.7,.7,.5) and (.6,.3,.6) are “slow”
spheres of radius 0.025 where 3P (x,y, z) = 10. Figure 20(a) shows the error plot for
this slowness function when H = 1/10 and h = 1/300. We also test the scaling of the
method in three dimensions on a 3012 grid with 10% fine subdomains. Figure 20(b)
shows the execution time of the method as a function of the number of threads.

6. Summary and conclusion. In this paper, we presented a new domain de-
composition algorithm for solving boundary value Eikonal equations. We develop
a framework that couples a coarse and a fine grid solver to propagate information
from the subdomains into the coarse level. The use of the coarse solver distinguishes
our method from other existing domain decomposition algorithms. The coarse grid
is initialized using FSM, and the values and wind directions are used to define the
boundary conditions for the subdomains. Next, we perform fine grid computations in
each subdomain in parallel. In our coarse grid updates we apply an adapted weighted
parareal scheme to speed up convergence. A causality sweep is performed after each
coarse grid update in order to ensure the wind directions are captured correctly.

By clever choice of the weight, it is possible to stabilize parareal-like iterative
methods. The weight function Gi-f ; acts as a multiplicative correction to the coarse
operator C'y so that 8C'y ideally approximates the fine scale solution operator over a
subdomain. At each coarse grid node, Hf) ; 1s computed using previous coarse and fine

. . . . -k . .
grid solutions. It is an estimate of M, ; which is defined to be the upper bound for
Gi-f ; to create a monotonically decreasing sequence of solutions for the model problem.

We show via numerical examples on a model problem that the choice of Hf, ; stabilizes
the method and using a variable # has advantages over a fixed value. By improving

the estimate of Mij’ it is possible to further increase the speed-up of the method.
We demonstrated the method on several classes of slowness functions showing that

it performs well on general types of r. including multiscale slowness functions where

homogenization cannot be applied. The errors decrease to an acceptable tolerance

well within the limit of theoretical speed-up. Thus, we can solve efficiently through
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parallelization multiscale problems beyond the conventional multiscale methods. The
example in Figure 14 gives us a direction for future work. We would like to use the
coarse and fine grid computations to estimate the effective slowness function “on the
fly,” which could further speed up the method based on the evidence in Figure 15.
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