

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTISCALE MODEL. SIMUL. c© 2019 Society for Industrial and Applied Mathematics
Vol. 17, No. 2, pp. 620–649

A MULTISCALE DOMAIN DECOMPOSITION ALGORITHM FOR

BOUNDARY VALUE PROBLEMS FOR EIKONAL EQUATIONS∗

LINDSAY MARTIN† AND YEN-HSI R. TSAI‡

Abstract. In this paper, we present a new multiscale domain decomposition algorithm for
computing solutions of static Eikonal equations. In our new method, the decomposition of the domain
does not depend on the slowness function in the Eikonal equation or the boundary conditions. The
novelty of our new method is a coupling of coarse grid and fine grid solvers to propagate information
along the characteristics of the equation efficiently. The method involves an iterative parareal-like
update scheme in order to stabilize the method and speed up convergence. One can view the new
method as a general framework where an effective coarse grid solver is computed “on the fly” from
coarse and fine grid solutions that are computed in previous iterations. We study the optimal weights
used to define the effective coarse grid solver and the stable update scheme via a model problem.
To demonstrate the framework, we develop a specific scheme using Cartesian grids and the fast
sweeping method for solving Eikonal equations. Numerical examples are given to show the method’s
effectiveness on Eikonal equations involving a variety of multiscale slowness functions.

Key words. Eikonal equation, parallel algorithms, domain decomposition, multiscale algorithms

AMS subject classifications. 65N22, 65N55, 65N12, 35F30, 65Y05

DOI. 10.1137/18M1186927

1. Introduction. The Eikonal equation has many applications in optimal con-
trol, path planning, seismology, geometrical optics, etc. The equation is fully nonlinear
and classified as a Hamilton–Jacobi equation. Usually, classical solutions do not exist,
and the unique viscosity solution is sought after. Our goal is to numerically solve the
following boundary value problem for the static Eikonal equation:

|∇u(x)| = rε(x), x ∈ Ω ⊂ R
d,(1.1)

u(x) = g(x), x ∈ Γ ⊂ ∂Ω.(1.2)

In particular, we are interested in the case where

rε(x) = r0(x) + aε(x),

where r0 is smooth and aε describes multiscale features in which the scales cannot be
separated easily.

Many serial algorithms exist for computing numerical solutions to Eikonal equa-
tions. However, these algorithms have limitations when applied to large scale dis-
cretized systems. Since we are interested in Eikonal equations that have multiscale
features, a very fine grid discretization is needed in order to accurately capture the
fine scale features. This creates a large system of coupled nonlinear equations to

∗Received by the editors May 14, 2018; accepted for publication (in revised form) March 19, 2019;
published electronically April 25, 2019.

http://www.siam.org/journals/mms/17-2/M118692.html
Funding: This research is partially supported by National Science Foundation grants DMS-

1620396 and DMS-1720171.
†Department of Mathematics, The University of Texas at Austin, Austin, TX 78712 (lmartin@

math.utexas.edu).
‡Department of Mathematics and Oden Institute for Computational Engineering and Sciences,

The University of Texas at Austin, Austin, TX 78712, and KTH Royal Institute of Technology,
Sweden (ytsai@math.utexas.edu).

620

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 621

solve. Therefore, the numerical solutions are expensive to compute and speed-up is
desired. The most popular serial algorithms are the fast sweeping method (FSM)
[24, 27] and the fast marching method (FMM) [25, 22], which have complexity O(N)
or O(N logN), respectively. Here, N is the total number of grid points. Hidden in
the O(N) complexity of FSM is a constant that corresponds to the number of times
a characteristic curve of (1.1) “turns around.”

There are several approaches to reducing the computational cost of numerically
solving Eikonal equations. For certain periodic functions rε, one approach is homoge-
nization [18, 20]. The goal of homogenization is to derive an effective function, r, that
accurately describes the effective properties of rε in the solution. Once r is known,
the homogenized equation can be solved on the coarse grid which is independent of
the small parameter ε. For more general rε, we consider domain decomposition meth-
ods. The development of domain decomposition algorithms for Eikonal equations is
nontrival because of the causal nature of the equations. Standard domain decompo-
sition methods can be difficult to apply because information may not be known at
the boundaries of subdomains a priori. Furthermore, the causal relations among the
subdomains may change depending on the solutions.

Our new algorithm works on general Eikonal equations, i.e., equations with mul-
tiple scales with or without scale separation. The algorithm combines features from
parareal methods and standard Eikonal solvers in order achieve speed-up and main-
tain accuracy. A set of coarse grids is used to set up boundary conditions for each
subdomain. Since the structure of the characteristics of the equation are gener-
ally less complex in a subdomain compared to the overall domain, we expect that
FSM on the subdomain grids will require less sweeping iterations than FSM on the
overall fine grid. After each subdomain is processed in parallel, the method uses a
parareal-like update in order to speed up the accuracy of the solution on the coarse
grids.

Next we give an overview of the discretization of (1.1) and FSMs, followed by a
review of current parallel methods for Eikonal equations. The paper is organized as
follows. In section 2, we give an overview of parareal methods. Our new algorithm
is presented in section 3. The stability analysis, complexity, and speed-up are given
in section 4, experimental results are in section 5, and the summary and conclusion
follow in section 6.

1.1. Upwind discretization and FSM. The Eikonal equation (1.1) can be de-
rived from an optimal control problem. Suppose a particle travels at speed F : Ω → R

and its direction of travel is the control of the system. Let g : Γ → R be the penalty
charged once the particle reaches Γ. Then the value function u(x) is defined to be the
minimum time it takes to travel from x to Γ. In [10], it is shown that the viscosity
solution to (1.1) coincides with the value function of the optimal control problem and
the characteristics of the PDE coincide with the optimal paths for moving through
Ω.

In our case F (x) = 1/rε(x). Thus, we refer to rε as the slowness function. For this
paper, we choose the following first-order upwind discretization on a uniform Cartesian
grid. Let ui,j denote the numerical solution at xi,j . For the sake of notation, we will
omit the numerical solution’s dependence on the grid size h. We use a Godunov
upwind scheme to discretize the Eikonal equation at points in the interior of the
computational domain [21]:

(1.3)
√
max(a+, b−)2 +max(c+, d−)2 = ri,j ,

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

622 LINDSAY MARTIN AND YEN-HSI R. TSAI

where

a = D−
x ui,j =

ui,j − ui−1,j

h
,

b = D+
x ui,j =

ui+1,j − ui,j

h
,

c = D−
y ui,j =

ui,j − ui,j−1

h
,

d = D+
y ui,j =

ui,j+1 − ui,j

h
,

for i = 1, . . . , I − 1 and j = 1, . . . , J − 1. Here, we have x+ = max(x, 0) and
x− = max(−x, 0). On the boundary nodes, we will use a one-sided difference, i.e.,
in (1.3) we use b− in place of max(a+, b−) if i = 0, a+ in place of max(a+, b−) if i = I,
d− in place of max(c+, d−) if j = 0, and c+ in place of max(c+, d−) if j = J .

This discretization is consistent and monotone and converges to the viscosity
solution as h → 0 [5]. The upwind scheme is also causal, i.e., ui,j depends only on
the neighboring grid values that are smaller. After discretization, we have a system
of N = (I +1)(J +1) coupled nonlinear equations. A simple approach is to solve the
system iteratively [21]. However, it is important to take advantage of the causality of
the solution. In the FMM [25, 22], the solution is updated one grid node at a time
and the ordering of grid nodes is given by whichever grid node has the smallest value
at the time of updating. Because a heapsort algorithm is needed, the complexity is
O(N logN). Next we describe the FSM [24, 27], which we have chosen to use in our
method. FSM uses Gauss–Seidel updates following a predetermined set of grid node
orderings. For simplicity, we will describe the algorithm in two dimensions.

Initialization. Set ui,j = gi,j for xi,j on or near the computational boundary.
These values are fixed in later iterations. For all the other grid nodes, assign a large
positive value.

Sweeping iterations. A compact way of writing the grid orderings in
C/C++ is

for(s1=-1;s1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for(i=(s1<0?I:0);(s1<0?i>=0:i<=I);i+=s1)

for(j=(s2<0?J:0);(s2<0?j>=0:j<=J);j+=s2)

Update formula. For each grid node xi,j whose value is not fixed during the
initialization, compute the solution to (1.3) using the current values at the neighboring
grid nodes. Denote the solution by ũ; then the update formula is as follows:

(1.4) unew
i,j = min(ucurr

i,j , ũ).

The alternating ordering of sweeping ensures that all the directions of charac-
teristics are captured. In [27] it is shown that with the first-order Godunov upwind
scheme, 2d sweeps are sufficient to compute the numerical solution to first order in h.
The exact number of sweeps needed is related to the number of times characteristics
change directions. Thus in general the computational complexity of the FSM is O(N)
with the caveat that the constant in front of N can be very large depending on the
characteristics of the equation. In section 3, we will describe how we use the FSM as
the Eikonal equation solver in our method.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 623

1.2. Review of current parallel methods. Here we give a brief overview of
existing parallel approaches. In [28], the author proposes two parallelizations of FSM.
The first performs the 2d sweeps of the domain on different processors and after each
iteration information is shared by taking the minimum value at each grid node from
each sweep. The second is a domain decomposition method that performs FSM on
each subdomain in parallel. The information is shared along mutual boundaries after
each iteration. The drawbacks to this method are that subdomains have to wait to be
updated until the information propagates to that part of the domain and the number
of sweeping iterations may be more than the number needed in serial FSM.

In [12], a method is introduced that takes advantage of the following fact: for
the upwind scheme (1.3), certain slices of the grid nodes do not directly depend on
each other. The method uses FSM where the sweeping ordering is designed to allow
these sets of grid nodes to be updated simultaneously. The advantage of this method
is that the number of iterations needed in the parallel implementation is equal to
the serial FSM. In a later paper [11], the domain decomposition approach of [28] is
used to couple the subdomain computations done in parallel; furthermore, in each
subdomain, the parallel algorithm of [12] is applied.

Several algorithms have been developed to parallelize FMM. In [6], a domain
decomposition method for FMM is proposed. The main idea is to split the boundary
among different processors, which leads to an equation dependent method. In [26],
another domain decomposition algorithm is presented for FMM. In this method, the
computational domain is split among different processors and a novel restarted narrow
band approach which coordinates the communications among the boundaries of the
domains is used.

Domain decomposition methods that utilize two scales can be found in [7, 9]. In
[7], the method taks advantage of the optimal control formulation of Eikonal equa-
tions. First, the algorithm computes the solution of (1.1) on a coarse grid. Next,
the domain decomposition is determined by the feedback optimal control. Last, the
solution of the equation is computed on a fine grid in each subdomain. However,
the algorithm can lead to complex division of the domain. The method in [9] is a
parallelization of the heap cell method (HCM) [8]. HCM maintains a list of cells to
be processed. The order of processing is determined by an assigned cell value that
is given by an estimate of the likelihood that that cell influences other cells. If it is
determined that a cell highly influences other cells it should be processed first. The
method mimics FMM on the coarse level, and FSM is used at the cell level. This
choice is motivated by the observation that the characteristics of the equation typi-
cally do not “wind” around as much in each cell due to the smaller domain size, and
FSM needs fewer iterations. On the coarse level, the characteristics are expected to
be followed more efficiently by the FMM. The parallelization of HCM divides the cells
evenly among p heaps and performs HCM among each individual heap. If a cell is
tagged for reprocessing, then it is added to the heap with the current lowest number
of cells. This method was found to achieve the best speed-up on problems where the
amount of work per cell is high.

In the above methods, only adjacent subdomains exchange information. Thus, if
an iterative approach such as the one in [28] is used, the subdomains further downwind
of the characteristics will get the correct information update only after a sufficient
number of iterations. If a fast marching type strategy is used, those subdomains
will have to wait until the information is propagated there. Our method employs an
entirely different way of coupling the subdomains. In our method, an effective coarse
grid solver (see (2.6), (4.3), and (4.7)–(4.10)) computes solutions on the fly using

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

624 LINDSAY MARTIN AND YEN-HSI R. TSAI

information from previous coarse and fine grid computations and allows information
to propagate efficiently throughout the domain. In this regard, our method looks
more like a heterogeneous multiscale method [13], with the difference that no wide
scale separation is assumed and (therefore) larger subdomains are used. An example
of a different scheme under this framework is given in the first example in section 5.3.
Last, the decomposition of the domain in our new method is simple since it does not
rely on the specific characteristics of the given equation as in some previous methods.

2. Overview of parareal methods. Parareal methods [17, 4] were developed
to parallelize numerical computations of the solutions to ODEs of the form

(2.1)
d

dt
u = f(u), u(0) = u0

on bounded time interval [0, T]. Let uk
n be the computed solution at iteration k at

time tn = nH . Let CH and FH be the numerical coarse and fine integrators, over
time step H . The idea is that CH is less accurate and inexpensive to compute, and
FH is very accurate and expensive to compute. The parareal update scheme is then
defined as

(2.2) uk+1
n+1 = CH(uk+1

n) + FH(uk
n)− CH(uk

n), n, k = 0, 1, 2, . . . , N,

with initial conditions

(2.3) uk
0 = u0, k = 0, 1, 2, . . . , N.

The zeroth iteration is given by

(2.4) u0
n+1 = CH(u0

n), n = 0, 1, 2, . . . , N.

The integrations FH(uk
n) are independent for each n and can be computed in

parallel. IfCH is of order 1, then under certain assumptions, the error after k iterations
of the parareal scheme is of order o(Hk+ef), where ef is the global error from solving
(2.1) with the fine integrator FH [19]. The method provides speed-up only if k is much
smaller than N .

The method is generally unstable for hyperbolic problems and problems with
imaginary eigenvalues [23, 3]. Parareal methods for highly oscillatory ODEs can be
found in [1, 15]. In [14], analysis of the parareal method on a class of ODEs originating
in Hamiltonian dynamical systems is presented, and in [16] the parareal method is
applied to stiff dissipative ODEs. Recently, a “weighted” parareal scheme, called
θ-parareal, was proposed in [2]. Following the scheme in [2], let

(2.5) uk+1
n+1 = θCH(uk+1

n) + (1 − θ)CH(uk
n) + FH(uk

n)− CH(uk
n),

which simplifies to

(2.6) uk+1
n+1 = θCH(uk+1

n) + FH(uk
n)− θCH(uk

n).

In [2], the “weight” θ is generalized to an operator which maps CHu to a small
neighborhood of FHu. In this paper, we only let θ be a real number which may vary
for each grid node, i.e., θ = θkn.

Several properties of the parareal scheme are appealing when solving Eikonal
equations.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 625

• Parareal methods use communications between the two scales in order to
propagate information quickly through time. Because the fine integrations
can be computed in parallel, the method is able to deal with a large number
of unknowns.

• The characteristics of Eikonal equations also have a “time-like” structure
which makes parareal methods attractive.

The main challenge in applying the parareal scheme to Eikonal equations is that
we are now dealing with an infinite number of characteristics simultaneously. We
also must be able to handle the collision of characteristics which should be captured
accurately in the numerical solution in order to compute the viscosity solution. We
adapt the θ-parareal scheme in order to stabilize the new method.

3. The new method. The method is a domain decomposition method that
uses two scales to resolve the fine scale features in rε and propagate information
through the computational domain. We use FSM as the Eikonal equation solver
on the coarse and the fine grid. An adapted version of the θ-parareal method is
used to propagate information along the characteristics efficiently where the weight
θ stabilizes the method. The optimal choice of weights for stability is studied in
section 4. First, we will demonstrate the method on a one-dimensional problem and
then explain how to set up the method in two dimensions, which can be generalized
to higher dimensions.

3.1. One-dimensional example. Consider the following one-dimensional
Eikonal equation:

|ux| = r(x), 0 < x < 1,(3.1)

u(0) = u(1) = 0,(3.2)

where

(3.3) rε(x) = 1 + 10e
−(x−.75)2

2(.01)2 .

Figure 1 shows the plot of the slowness function rε. Let the coarse grid be defined by

ΩH := {jH : j = 0, 1, . . . , N},
where H = 1/N and for i = 0, 1, . . . , N − 1. Define the fine grids by

Ωh
i := {iH +mh : m = 0, 1, . . . ,M},

where h = 1/(MN). Define Ωh :=
⋃N−1

i=0 Ωh
i . The solution to the upwind Godunov

scheme in one dimension is given by

(3.4) CH(Ui−1, Ui+1) := min(Ui−1, Ui+1) + r(Xi)H.

We see that if we only solve (3.1) on the coarse grid, the bump in the slowness
function is not seen and the solution is very inaccurate. There are also points in
ΩH where the flow of characteristics is incorrect. Therefore, we keep track of wind
direction, i.e., which neighboring grid node gives the minimum in (3.4). Let Xi = iH .
We denote the numerical solution at the kth iteration at the coarse grid node Xi by
Uk
i . For grid nodes on the subintervals, Ωh

i , let Xim = iH + mh and uk
im

be the
numerical solution at the kth iteration at the fine grid node Xim . For each coarse grid
node, Xi, i = 1, . . . , N − 1, we will get two values from the fine grid computations.
One value is from Ωh

i−1 and another from Ωh
i . Let u

k
i be the fine grid solution at the

kth iteration at Xi which we will define in Step 3. The method is as follows.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

626 LINDSAY MARTIN AND YEN-HSI R. TSAI

0 0.5 1

x

0

2

4

6

8

10

12

r

Fig. 1. rε(x) = 1 + 10e
−(x−.75)2

2(.01)2 .

Step 1: Initialization. Solve (3.1) with boundary conditions (3.2) via FSM on
the coarse grid ΩH , and denote the solution U0. If the left-hand neighboring grid
node is used to compute U0

i , denote the wind direction at Xi by W 0
i = 1. If the

right-hand neighboring grid node is used, define W 0
i = −1.

Step 2: Update boundary conditions for the subintervals. Once the
coarse grid has been initialized, we use the coarse grid values, Uk, as boundary values
for Ωh

i . The characteristics may flow into or out of Ωh
i . Thus, when setting the bound-

ary conditions, we check the wind direction to see if the coarse grid value should be
used as a boundary value. Intuitively, if a characteristic at a coarse grid node, xi0 or
xiM , is arriving into the subinterval, then we set the boundary value to Ui or Ui+1 at
xi0 or xiM , respectively. Otherwise, we set the boundary value to be ∞.

Step 3: Solve for u
k in parallel. In parallel for each i = 0, 1, . . . , N − 1, we

solve via FSM on Ωh
i

(3.5) |ux| = r(x), x ∈ (iH, (i + 1)H)

with the boundary conditions described in Step 2. Denote the solutions after sweeping
by uk

im for m = 0, . . . ,M . We keep track of the fine wind directions, wk
im , in the same

manner as in Step 1. For each coarse grid node, Xi, i = 1, . . . , N − 1, we will get two
values from the fine grid computations. One value is from Ωh

i−1 and another from Ωh
i .

Consider a coarse grid point, Xi:
• If wk

i−1M
= wk

i0
= 1, then we choose uk

i to be uk
i−1M

since the wind is flowing
from left to right.

• If wk
i−1M

= wk
i0

= −1, then we choose uk
i to be uk

i0
since the wind is flowing

from right to left.
• Otherwise, we take the minimum of uk

i−1M
and uk

i0 .

• We set wk
i to be the wind value corresponding to the fine grid point used to

define uk
i .

For the given example, U0 is plotted in Figure 2(a) and u0 is plotted in Figure 2(b).

Step 4: Coarse grid updates. Now we compute Uk+1. We use the previous
coarse and fine wind directions to determine whether we will use a weighted correction.
We sweep the grid as in FSM and the update formula is as follows:

• Let Ũ = CH(Uk+1
i−1 , U

k+1
i+1). If the left-hand neighboring grid node was used to

compute Ũ , then denote the current wind direction W̃ = 1. If the right-hand
neighboring grid node was used, define W̃ = −1.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 627

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U
0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6
u

0

(b)

Fig. 2. (a) Plot of U0. (b) Plot of u0 using U0 as boundary conditions as defined in Step 2.

• If W k
i = wk

i = W̃ , then we use a weighted correction update, i.e.,

(3.6) Ui = θŨ + uk
i − θCH(Uk

i−1, U
k
i+1)

and Wi = wk
i .

• Otherwise we set Ui = uk
i and Wi = wk

i .
• After the weighted corrections, the solutions may have the wrong causality
because information on the fine grid that was not seen previously has now
been propagated to the coarse level. To correct this, we implement a causal
sweep after each coarse grid update. Sweeping the coarse grid in both direc-
tions, the causal update is as follows:

– If Wi = 1 and Ui < Ui−1, then Ui = Ui−1.
– If Wi = −1 and Ui < Ui+1, then Ui = Ui+1.

After the causal sweep on the coarse grid, denote the solution by Uk+1 and the wind
directions by W k+1. Repeat Steps 2–4 until convergence.

In Figure 3(a), we see that at X7 = 0.7 the effect of the Gaussian bump in rε has
been propagated to the coarse level. Before the causal sweep, U6 < U7, but W6 = −1.
Therefore, after the casual sweep, U1

6 = U1
7 . Figures 4 and 5 show the next two

iterations of the method which converges at k = 3.
The advantage of the coarse and fine grid coupling is clear in this example. Our

method is equivalent to the method in [28] if we let θ = 0 and there is no coarse grid
initialization. When θ = 0, it would take six iterations to converge since there are six
subintervals between the left boundary node and the subinterval where the charac-
teristics intersect in the overall fine solution. This is because there is no propagation
of the information at the coarse level after the fine grid simulations. The number of
iterations it takes to converge increases as the number of subintervals increases when
θ = 0.

Next, we introduce the method in two dimensions in more detail.

3.2. New method in two dimensions. In two dimensions we solve

|∇u(x)| = r(x), x ∈ [0, 1]2\Γ,(3.7)

u(x) = 0, x ∈⊂ [0, 1]2Γ.(3.8)

One of the main challenges of setting up the method in two dimensions and higher is
setting up the boundary conditions of the subdomains. We approach this by setting

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

628 LINDSAY MARTIN AND YEN-HSI R. TSAI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U
0

U
1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 u
1

U
1

(b)

Fig. 3. (a) Plot of U0 and U1. (b) Plot of u1 using U1 as boundary conditions as defined in

Step 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U
1

U
2

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 u
2

U
2

(b)

Fig. 4. (a) Plot of U1 and U2. (b) Plot of u2 using U2 as boundary conditions as defined in

Step 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 U
2

U
3

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6 u
2

U
3

(b)

Fig. 5. (a) Plot of U2 and U3. (b) Plot of u3 using U3 as boundary conditions as defined in

Step 2. We see that the method has converged and U3 = u3.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 629

ΩH + (lh, 0)

+

ΩH + (0,mh)

=

Fig. 6. Shifted coarse grids in two dimensions.

up a coarse grid and shifting it vertically and horizontally M − 1 times each. Let

ΩH = {(iH, jH) : i, j = 0, 1, . . . , N},

and H = 1/N. Then the horizontally shifted coarse grids are defined by

ΩH + (x0, 0) = {(iH + x0, jH) : i = 0, 1, . . . , N − 1, j = 0, 1, . . . , N},

where x0 = lh for l = 1, . . . ,M − 1 where h = 1/(MN). The vertically shifted coarse
grids are defined by

ΩH + (0, y0) = {(iH, jH + y0) : i = 0, 1, . . . , N, j = 0, 1, . . . , N − 1},

where y0 = mh for m = 1, . . . ,M −1. The shifted grids are demonstrated in Figure 6.
Next we define the fine grids on the subdomains for i, j = 0, 1, . . . , N − 1:

Ωh
i,j = {(lh+ iH,mh+ jH) : 0 ≤ l,m ≤ M}.

The notation for the two-dimensional problem is as follows:

Xi,j = (iH, jH) ∈ ΩH ,

Xil,j = (iH + lh, jH) ∈ ΩH + (lh, 0),

Xi,jm = (iH, jH +mh) ∈ ΩH + (0,mh),

xil,jm = (iH + lh, jH +mh) ∈ Ωh
i,j ,

Uk
i,j denotes the coarse solution at Xi,j in the kth iteration,

Uk
il,j

denotes the coarse solution at Xil,j in the kth iteration,

Uk
i,jm denotes the coarse solution at Xi,jm in the kth iteration,

uk
i,j denotes the fine solution at Xi,j in the kth iteration,

uk
il,jm

denotes the fine solution at xil,jm in the kth iteration.

Now that we have the grids set up we begin the description of the method. The coarse
grid solver is given by the solution to (1.3):

(3.9) CH(nbrsH(Ui,j)) =

⎧
⎨

⎩
1
2

(
a+ b+

√
2r2i,jH

2 − (a− b)2
)

if |a− b| < ri,jH,

min(a, b) + ri,jH if |a− b| ≥ ri,jH,

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

630 LINDSAY MARTIN AND YEN-HSI R. TSAI

where nbrsH(Ui,j) = {Ui−1,j, Ui+1,j , Ui,j−1, Ui,j+1}, a = min(Ui−1,j , Ui+1,j), and
b = min(Ui,j−1, Ui,j+1).

The steps are the same as in the one-dimensional case, except we also have a
causal sweep in the initialization step. Step 1 is the initialization of the coarse grids
with a causal sweep, Step 2 is to update the boundary conditions for the subdomains,
and Step 3 is to compute the fine solutions on the subdomains in parallel. Step 4 is
to perform weighted corrections on the coarse grids where we allow θ to vary for each
coarse grid node. The weighted update will be

(3.10) Uk+1
i,j = θk+1

i,j CH(nbrsH(Uk+1
i,j)) + uk

i,j − θk+1
i,j CH(nbrsH(Uk

i,j)).

Note that the weight function θki,j acts as a multiplicative correction to the coarse

operator CH so that θk+1
i,j CH(nbrsH(Uk

i,j) ideally approximates uk
i,j.

Step 1: Initialize coarse grids in parallel. Since the shifted coarse grids
are independent of each other, the values {U0

il,j
}i,j and {U0

i,jm
}i,j are computed in

parallel for each l and m. We solve (3.7) with boundary conditions (3.8) on each of
the coarse grids. Keeping track of the flow of characteristics is more complex than
in the one-dimensional problem. In two dimensions, the set of eight distinct wind
direction vectors is {(±1,±1), (±1, 0), (0,±1)}. The wind direction at a coarse grid
node is determined by the solution to (1.3). We describe how to initialize the grid
ΩH . The initialization on ΩH + (lh, 0) and ΩH + (0,mh) for l = 1, . . . ,M − 1 and
m = 1, . . . ,M − 1 is the same.

• Initialize U as described in section 1.1.
• Sweep the grid as described in section 1.1. Algorithm 3.1 explains the update
formula as well as how to compute the wind directions W0

i,j . At each Xi,j ,

we input nbrsH(Ui,j), Ui,j , and H , using one sided differences if Xi,j is a
boundary grid node.

The solutions on the coarse grids may have the wrong causality because small scale fea-
tures in rε may be sampled on some shifted coarse grids and not others. To correct this,
we implement a causal sweep. We must sweep the coarse grids sequentially in order to
capture the right causality. We sweep all the coarse grids in each of the four directions
just once. The update is given by inputting Ui,jm−1 , Ui,jm+1 , Ui,jm ,Wi,jm into Algo-
rithm 3.2, which describes the update for a vertically shifted grid node. The updates
for the other coarse grid nodes are defined analogously. Note that since we are sweep-
ing the coarse grids sequentially, Ui,jm−1 , Ui,jm+1 , and Ui,jm belong to three different
vertically shifted coarse grids. Denote the solutions after sweeping by U0 and W0.

Step 2: Update boundary conditions for subdomains. Now that we have
computed the solutions on all the coarse grids, we can set the boundary conditions
for each Ωh

i,j . Intuitively, if a characteristic at a coarse grid point is arriving into

the boundary of the subdomain, ∂Ωh
i,j , then we set u at that node to be the value

from the coarse grid computations, Uk. Otherwise, we set u to be ∞ at the coarse
grid point. To describe this mathematically for a vertically shifted coarse grid point,
define nw,rm to be the inward normal vector to the subdomain Ωh

i,j at Xw,rm ∈ ∂Ωh
i,j .

Then define

gw,rm(Uw,rm ,Ww,rm) :=

{
Uw,rm if Ww,rm · nw,rm > 0,

∞ otherwise.

When Xwl,r is a horizontally shifted grid point, the definition of gwl,r is the same as
above. For Xw,r, a nonshifted coarse grid point on ∂Ωh

i,j, the inward normal vector of

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 631

Algorithm 3.1 Update and wind formula for initialization.

Input: nbrsH(Ui,j), Ui,j , H
Output: Ui,j,Wi,j

{Compute wind in x direction.}
if Ui−1,j < Ui+1,j then

Wx = 1
else

Wx = −1
end if

{Compute wind in y direction.}
if Ui,j−1 < Ui,j+1 then

Wy = 1
else

Wy = −1
end if

{Compute in solution to (1.3) and define W̃.}
Ũ = CH(nbrsH(Ui,j))
a = min(Ui−1,j , Ui+1,j)
b = min(Ui,j−1, Ui,j+1)

if Ũ < b then

W̃ = (Wx, 0)
else if Ũ < a then

W̃ = (0,Wy)
else

W̃ = (Wx,Wy)
end if

{Take minimum.}
if Ũ < Ui,j then

Ui,j = Ũ

Wi,j = W̃

end if

Algorithm 3.2 Causal sweep update formula for vertically shifted coarse grid node.

Input: Ui,jm−1 , Ui,jm+1 , Ui,jm ,Wi,jm

Output: Ui,jm

if Wi,jm · (0,−1) > 0 and Ui,jm < Ui,jm+1 then

Ui,jm = Ui,jm+1

end if

if Wi,jm · (0, 1) > 0 and Ui,jm < Ui,jm−1 then

Ui,jm = Ui,jm−1

end if

Ωh
i,j is not unique since the coarse grid point is a corner of the subdomain. There are

two possibilities for the inward normal vector. Denote them by n1
w,r and n2

w,r; then

gw,r(U
k
w,r,W

k
w,r) =

{
Uk
w,r if Wk

w,r · n1
w,r > 0 or Wk

w,r · n2
w,r > 0,

∞ otherwise.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

632 LINDSAY MARTIN AND YEN-HSI R. TSAI

Step 3: Solve for u
k in parallel. In parallel for i, j = 0, . . . , N − 1, we solve

|∇u(x)| = r(x), x ∈ (iH, (i + 1)H)× (jH, (j + 1)H),(3.11)

u = g, on ∂([iH, (i+ 1)H]× [jH, (j + 1)H])(3.12)

via FSM on the grid Ωh
i,j and g is defined in Step 2.

• Initialize u as described in section 1.1.
• Sweep the grid. To the update the solution at each xil,jm , input nbrsh(uil,jm),
uil,jm , and h into Algorithm 3.3. Use one sided differences if xil,jm is a bound-

ary grid node. Here, nbrsh(uil,jm) = {uil−1,jm , uil+1,jm , uil,jm−1 , uil,jm+1}.
Denote the solutions after sweeping by uk

il,jm
and wk

il,jm
for l,m = 0, . . . ,M .

After the computations on each subdomain, we will have two or four values for
each coarse grid node, depending on whether the point is in a shifted or nonshifted
coarse grid. Intuitively, we define the value uk

i,j by the following:

• If the coarse wind and the fine wind flow into the same subdomain Ωh
s,t

from Ωh
s′,t′ , then we set the value uk

i,j to be the fine grid solution from the

subdomain Ωh
s′,t′ .

• Otherwise we set uk
i,j to be the minimum of the fine grid solutions at the

coarse grid point.
A vertically shifted coarse grid node, Xi,jm , is on the boundary of the two subdo-
mains, Ωh

i−1,j′ and Ωh
i,j′ . Denote the two possibilities of an inward normal vector

by n1 = (−1, 0) and n2 = (1, 0). Algorithm 3.4 explains how to compute uk
i,jm

at a
vertically shifted coarse grid node, Xi,jm . The computations at a horizontally shifted
and a nonshifted coarse grid point are similar.

Step 4: Coarse grid updates. Now we compute the coarse grid updates,
Uk+1. Again since the shifted coarse grids are independent of each other, the values
{Uk+1

il,j
}i,j and {Uk+1

i,jm
}i,j can be computed in parallel for each l and m.

• Initialize U as described in section 1.1.
• Sweep the grid and the update formula at a vertically shifted coarse grid node
is given by Algorithm 3.5. The computations at a horizontally shifted and
nonshifted coarse grid point are similar. Let n1 and n2 be the inward normal
vectors as defined in Step 3. We input nbrsH(Ui,jm), nbrsH(Uk

i,jm),Wk
i,jm ,

wk
i,jm

, and H into Algorithm 3.5.
Again we must implement a sequential causal sweep to make sure the coarse grids

respect the causality of the solution. Sweep the coarse grids sequentially in each of the
four directions once. The update formula is given by inputting Ui,jm−1 , Ui,jm+1 , Ui,jm ,
Wi,jm into Algorithm 3.2 for a vertically shifted coarse grid point. The updates for
other coarse grid nodes are defined similarly. Denote the solutions after sweeping by
Uk+1 and Wk+1. Repeat Steps 2–4 until convergence.

The method is demonstrated in Figure 7, which shows the contours for the fine
grid solution patched together for r1ε = 1 + .99 sin(2πx) sin(2πy) for k = 0, 2, 4, and
6. We see the solution contours begin to smooth out after a few iterations.

4. Analysis of the new method. We choose the following model problem to
study the choice of weight θ. Let Ω = [0, 1]× [0, H]. Then we numerically solve via
our method

|∇u(x, y)| = 1, (x, y) ∈ Ω\Γ,(4.1)

u(x, y) =
√

x2 + y2, (x, y) ∈ Γ,(4.2)

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 633

Algorithm 3.3 Update and wind formula for fine grid compuations.

Input: nbrsh(uil,jm), uil,jm , h
Output: uil,jm ,wil,jm

{Compute wind in x direction.}
if uil−1,j < uil+1,j then

a = uil−1,j

wx = −1
else

a = uil+1,j

wx = 1
end if

{Compute wind in y direction.}
if ui,jm−1 < ui,jm+1 then

b = ui,jm−1

wy = −1
else

b = ui,jm+1

wy = 1
end if

{Solve (1.3).}
if |a− b| < ri,jh then

ũ = 1
2

(
a+ b+

√
2r2i,jh

2 − (a− b)2
)

w̃ = (wx, wy)
else

ũ = min(a, b) + ri,jh

if a < b then

w̃ = (wx, 0)
else

w̃ = (0, wy)
end if

end if

{Take minimum.}
if ũ < uil,jm then

uil,jm = ũ
wil,jm = w̃

end if

where Γ = {(x, 0) : 0 ≤ x ≤ 1}∪{(0, y) : 0 ≤ y ≤ H}. The coarse grids can be defined
in one set by

ΩH := {(iH, jh) : i = 0, 1, . . . , N and j = 0, 1, . . . ,M}

with Xi,j = (iH, jh). The overall fine grid is given by

Ωh = {(lh,mh) : l = 0, 1, . . . , NM and m = 0, 1, . . . ,M}.

The advantage of this problem is that the characteristics can be captured in one sweep
of FSM, i.e., an upward right sweep. This fact means we can use a weighted correction

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

634 LINDSAY MARTIN AND YEN-HSI R. TSAI

Algorithm 3.4 Update formula for uk
i,jm and wk

i,jm for a vertically shifted coarse
grid node.

Input: uk
i−1M ,jm , uk

i0,jm ,wk
i−1M ,jm ,wk

i0,jm ,Wk
i,jm

output: uk
i,jm

,wk
i,jm

if wk
i−1M ,jm

· n1 ≥ 0,wk
i0,jm

· n1 ≥ 0, and Wk
i,jm

· n1 ≥ 0 then

uk
i,jm = uk

i0,jm

wk
i,jm

= wk
i0,jm

else if wk
i−1M ,jm

· n2 ≥ 0,wk
i0,jm

· n2 ≥ 0, and Wk
i,jm

· n2 ≥ 0 then

uk
i,jm = uk

i−1M ,jm

wk
i,jm

= wk
i−1M ,jm

else

if uk
i−1M ,jm

≤ uk
i0,jm

then

uk
i,jm

= uk
i−1M ,jm

wk
i,jm = wk

i−1M ,jm
else

uk
i,jm

= uk
i0,jm

wk
i,jm = wk

i0,jm
end if

end if

Algorithm 3.5 Update formula for weighted corrections for a vertically shifted coarse
grid node.

Input: nbrsH(Ui,jm), nbrsH(Uk
i,jm), W k

i,jm , wk
i,jm , H

Output: Ui,jm ,Wi,jm

Compute Ũ and W̃ as in Algorithm 3.1
if wk

i,jm · n1 ≥ 0,Wk
i,jm · n1 ≥ 0, and W̃ · n1 ≥ 0 then

Ui,jm = θk+1
i,jm

Ũ + uk
i,jm − θk+1

i,jm
CH(nbrsH(Uk

i,jm))

Wi,jm = wk
i,jm

else if wk
i,jm · n2 ≥ 0,Wk

i,jm · n2 ≥ 0, and W̃ · n2 ≥ 0 then

Ui,jm = θk+1
i,jm

Ũ + uk
i,jm − θk+1

i,jm
CH(nbrsH(Uk

i,jm))

Wi,jm = wk
i,jm

else

Ui,jm = uk
i,jm

Wi,jm = wk
i,jm

end if

update for every coarse grid node. Let uf be the overall fine solution on Ωh. Suppose
we allow θ to vary for each coarse grid node and iteration and denote it by θki,j . Then
for i = 1, . . . , N and j = 1, . . . ,M , we have the following coarse grid solver:

CH(Ui−1,j , Ui,j−M) =

{
Ui−1,j+Ui,j−M+

√
2H2−(Ui−1,j−Ui,j−M)2

2 , j = M,

Ui−1,j +H otherwise,

where if j = 1, . . . ,M−1 we ignore the second argument of the coarse grid solver. Let

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 635

(a) k = 0 (b) k = 2

(c) k = 4 (d) k = 6

Fig. 7. Contours for fine grid solutions patched together for the slowness function

r1ε (x, y) = 1 + .99 sin(2πx) sin(2πy) where in (a) k = 0, (b)k = 2, (c) k = 4, and (d) k = 6.

U0
i,j = CH(U0

i−1,j , U
0
i,j−M). The weighted update for this problem for j = 1, . . . ,M is

(4.3) Uk+1
i,j = θk+1

i,j

[
CH(Uk+1

i−1,j , U
k+1
i,j−M)− CH(Uk

i−1,j , U
k
i,j−M)

]
+ uk

i,j

with initial conditions

(4.4) Uk+1
0,j = uf

0,j for j = 1, . . . ,M and k = 0, 1, 2 . . .

and

(4.5) Uk+1
i,0 = uf

i,0 for i = 1, . . . , N and k = 0, 1, 2. . . .

Figure 8 shows the L∞ error plot for θ = 1 which is analogous to the standard
parareal method. Note the error is large from the first iteration and increases for
later iterations. The error peaks around k = 10. This is because as k increases the
solutions in each successive subdomain converge to the exact solution, which then
allows the maximum error to begin to decrease. If we choose a small value for θ, the
solutions converge as seen in Figure 9. However, the convergence may be slow. Next,
we study how to choose θki,j for the coarse grid updates.

4.1. Analysis of θ on model problem. First we prove a theorem that gives
an exactness property for the method on this model problem. Let uf be the overall
fine solution on Ωh.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

636 LINDSAY MARTIN AND YEN-HSI R. TSAI

0 5 10 15

k

10
-2

10
0

10
2

10
4

re
la

ti
v
e
 L

 e
rr

o
r

Fig. 8. ‖Uk − uf‖L∞
for θ = 1, H = 1/20, h = 1/1000.

0 2 4 6 8

k

10
-14

10
-8

10
-2

re
la

ti
v
e
 L

1
 e

rr
o
r

(a) H = 1/10

0 5 10 15

k

10
-14

10
-8

10
-2

re
la

ti
v
e
 L

1
 e

rr
o
r

(b) H = 1/20

0 10 20 30 40

k

10
-14

10
-8

10
-2

re
la

ti
v
e
 L

1
 e

rr
o
r

(c) H = 1/50

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

=.75, =.01,x
0
=.9

(d)

Fig. 9. Error plots of ‖Uk −uf‖L1
for specified values of H. In all three examples h = 1/1000.

For (a), (b), and (c), ‖uf − uexact‖L1
= 3.79× 10−4. (d) Parameters γ, δ, and x0 used to estimate

θ. For (a)–(c), γ = .75, δ = .01, x0 = .9.

Theorem 4.1. Let Uk
i,j be given by (4.3). Then for each j = 1, . . . ,M,

Uk
i,j = uf

i,j for k ≥ i.D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 637

Proof. First note U1
0,j = U0

0,j and U1
1,0 = U0

1,0 = uf
1,0. Now,

U1
1,j = θ11,j

[
CH(U1

0,j , U
1
1,j−M)− CH(U0

0,j , U
0
1,j−M)

]
+ u0

1,j

= u0
1,j

= uf
1,j .

The second equality comes from the fact that u0
1,j was computed using only the

boundary values.
Now assume

(4.6) Uk
i,j = uf

i,j for k ≥ i.

Let k ≥ i+ 1. We have

Uk
i+1,j = θki+1,j

[
CH(Uk

i,j , U
k
i+1,j−M)− CH(Uk−1

i,j , Uk−1
i+1,j−M)

]
+ uk−1

i+1,j.

Now k ≥ i+ 1 and (4.6) imply Uk
i,j = Uk−1

i,j = uf
i,j . Also, (4.5) implies

Uk
i+1,0 = Uk−1

i+1,0 = uf
i+1,0.

Therefore,
Uk
i+1,j = uk−1

i+1,j = uf
i+1,j ,

where the second equality comes from the fact that uk−1
i+1,j is computed using the values

Uk−1
i,j and (4.6) implies Uk−1

i,j = uf
i,j for j = 0, . . . ,M − 1. Thus, we have our desired

result.

Now that the exactness property for the method is proven, we have the following
theorem that proves existence of θki,j for each k such that the sequence of solutions
is monotonically decreasing for the model problem. The following fact is used in the
proof of the theorem: If a ≤ b ≤ c, then CH(a, c) ≤ CH(b, c).

Theorem 4.2. For j = 1, . . . ,M and i = 1, . . . , N , there exists θki,j such that

Uk
i,j < Uk−1

i,j and Uk
i,j > uf

i,j for all i > k.

Proof. First we note U0
i,j > uf

i,j and u0
i,j ≥ uf

i,j for i = 1, . . . , N and j = 1, . . . ,M .
We will proceed by induction on k. Let k = 1. We will show the theorem holds for
all i > 1. Either u0

2,j > U0
2,j or u0

2,j ≤ U0
2,j . If u

0
2,j ≤ U0

2,j, choose θ12,j > 0. Then

U1
2,j = θ12,j

[
CH(U1

1,j , U
1
2,j−M)− CH(U0

1,j , U
0
2,j−M)

]
+ u0

2,j

< u0
2,j

≤ U0
2,j ,

where the first inequality comes from the fact that U1
1,j = uf

1,j < U0
1,j . If u

0
2,j > U0

2,j ,
then define

m1
2,j =

U0
2,j − u0

2,j

CH(U1
1,j , U

1
2,j−M)− CH(U0

1,j, U
0
2,j−M)

.

Now m1
2,j > 0. Thus, if θ12,j > m1

2,j , then U1
2,j < U0

2,j. Now let

M
1

2,j =
uf
2,j − u0

2,j

CH(U1
1,j , U

1
2,j−M)− CH(U0

1,j , U
0
2,j−M)

.

Note M
1

2,j > 0. If we choose θ12,j < M
1

2,j , then U1
2,j > uf

2,f .

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

638 LINDSAY MARTIN AND YEN-HSI R. TSAI

Now assume U1
i,j > U0

i,j and U1
i,j > uf

i,j for all i > 1. If u0
i+1,j ≤ U0

i+1j , choose

θ1i+1,j > 0. Then

U1
i+1,j = θ1i+1,j

[
CH(U1

i,j , U
1
i+1,j−M)− CH(U0

i,j , U
0
i+1,j−M)

]
+ u0

i+1,j

< u0
i+1,j

≤ U0
i+1,j ,

where the first inequality comes from the induction assumption. If u0
i+1,j > U0

i+1j ,
then let

m1
i+1,j =

U0
i+1,j − u0

i+1,j

CH(U1
i,j , U

1
i+1,j−M)− CH(U0

i,j , U
0
i+1,j−M)

.

Now m1
i+1,j > 0. Thus, if θ1i+1,j > m1

i+1,j , then U1
2,j < U0

2,j. Next let

M
1

i+1,j =
uf
i+1,j − u0

i+1,j

CH(U1
i,j , U

1
i+1,j−M)− CH(U0

i,j , U
0
i+1,j−M)

.

Note M
1

i+1,j > 0. If we choose θ1i+1,j < M
1

i+1,j , then U1
i+1,j > uf

i+1,j. So if 0 <

θ1i+1,j < M
1

i+1,j , the theorem holds for k = 1.

Assume the theorem holds for k, i.e., Uk
i,j < Uk−1

i,j and Uk
i,j > uf

i,j for i > k. We
want to show it holds i > k + 1. Let i = k + 2. The induction hypothesis implies
Uk
k+1,j > uf

k+1,j and Theorem 4.1 implies Uk+1
k+1,j = uf

k+1,j . Thus,

CH(Uk+1
k+1,j , U

k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M) < 0.

If uk
k+2,j ≤ Uk

k+2,j , choose θk+1
k+2,j > 0. Then

Uk+1
k+2,j = θk+1

k+2,j

[
CH(Uk+1

k+1,j , U
k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M)

]
+ uk

k+1,j

< uk
k+2,j

≤ Uk
k+2,j .

If uk
k+2,j > Uk

k+2,j , let

mk+1
k+2,j =

Uk
k+2,j − uk

k+2,j

CH(Uk+1
k+1,j , U

k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M)

.

Note mk+1
k+2,j > 0. If θk+1

k+2,j > mk+1
k+2,j , then Uk+1

k+2,j < Uk
k+2,j .

Next we need Uk+1
k+2,j > uf

k+2,j . Let

M
k+1

k+2,j =
uf
k+2,j − uk

k+2,j

CH(Uk+1
k+1,j , U

k+1
k+2,j−M)− CH(Uk

k+1,j , U
k
k+2,j−M)

.

Note M
k+1

k+2,j . Then if θk+1
k+2,j < M

k+1

k+2,j , Uk+1
k+2,j > uf

k+2,j . So if uk
k+2,j ≤ Uk

k+2,j ,

choose 0 < θk+1
k+2,j < M

k+1

k+2,j . If uk
k+2,j > Uk

k+2,j , choose mk+1
k+2,j < θk+1

k+2,j < M
k+1

k+2,j .
Therefore, the theorem holds.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 639

The proof of Theorem 4.2 provides insight on the stability of the method and the
optimal choice for the weights θki,j . Let

m̃k
i,j =

{
0 if mk

i,j ≤ 0,

mk
i,j otherwise.

If m̃k
i,j < θki,j < M

k

i,j , we have a monotonically convergent sequence of solutions. The

closer we choose θki,j to M
k

i,j the more accurate Uk
i,j is.

If we analyze the values for M
k

i,j we see in early iterations that M
k

i,j can be very

small. For example, if k = 1, h = 1/20, h = 1/1000, minXi,j∈ΩH (M
k

i,j) = 5.6 × 10−3.
This is a reason why we cannot use the standard parareal method where θ = 1. In

practice, we do not know M
k

i,j a priori since it relies on knowing uf
i,j. Therefore, we

estimate M
k

i,j in order to choose θki,j and create a sequence Uk
i,j that converges very

quickly to uf
i,j . Next, we explain how we estimate M

k

i,j in practice.

4.2. Estimating M
k

i,j. Recall

M
k

i,j =
uf
i,j − uk−1

i,j

CH(Uk
i−1,j , U

k
i,j−M)− CH(Uk−1

i−1,j , U
k−1
i,j−M)

and we would like m̃k
i,j ≤ θki,j < M

k

i,j . Since we do not know uf
i,j a priori, we estimate

M
k

i,j by the following:

(4.7) θ
k

i,j =
uk−1
i,j − uk−2

i,j

CH(Uk−1
i−1,j , U

k−1
i,j−M)− CH(Uk−2

i−1,j , U
k−2
i,j−M)

.

However, upon implementation this estimation produces very unstable solutions. The

values θ
k

i,j become extremely large and create sequences of solutions where Uk
i,j � uf

i,j

or Uk
i,j � Uk−1

i,j . This occurs when the denominator of (4.7) is much smaller than the
numerator. We overcome this issue by using a weighted sum in the denominator, i.e.,
(4.8)

θ
k

i,j =
uk−1
i,j − uk−2

i,j[∑2
s=0 ωsCH(Uk−s

i−1,j , U
k−s
i,j−M)− CH(Uk−1−s

i−1,j , Uk−1−s
i,j−M)

]
/(ω0 + ω1 + ω2)

.

To further ensure that the estimated value θ
k

i,j does not become too large we dampen
the values if they are beyond a threshold and apply a smooth approximation function.
Let

(4.9) σ(θ
k

i,j) =
1

1 + e(θ
k

i,j−x0)/γ
.

Then

(4.10) θ
k,used

i,j =
[
σ(θ

k

i,j)θ
k

i,j + (1− σ(θ
k

i,j))δθ
k

i,j

]+
,

where again a+ = max(0, a) and x0, γ, and δ are parameters chosen experimentally.

Figure 9(d) shows the plot of θ
k

i,j versus θ
k,used

i,j , and Figures 9(a) to 9(c) show
the error plots for various values of H . In all three examples h = 1/1000. We see the

advantage of using θ
k,used

i,j over a fixed value of θ.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

640 LINDSAY MARTIN AND YEN-HSI R. TSAI

4.3. Complexity and speed-up. Let N = 1/H and M = 1/(Nh). Define
A[N, d] := C(2d(N + 1)d) to be the number of flops for FSM where C depends on
the characteristics of the given Eikonal equation. Then the number of flops for the
computations on all of the coarse grids, the causal sweep, and all of the subdomains
is

(dM)A[N, d] + 2dM(N + 1)2 + (Nd)A[M,d].

If we solve the Eikonal equation on Ωh, then the number of flops is given by A(NM, d).
Theoretically suppose we have enough processors to compute the solution on each
coarse grid and each subdomain in parallel. Then after k iterations the computational
time is proportional to k(A[N, d]+2dM(N+1)2+A[M,d]). For our method to achieve
speed-up via parallelization, we need

k � A[NM, d]

A[N, d] + 2dM(N + 1)2 +A[M,d]
.

For example, suppose N = 20,M = 100, and d = 2 and we perform 10 sweeping itera-
tions on each coarse grid as well as on each subdomain; then with ideal parallelization
we need k � 266 in order to achieve speed up.

5. Numerical results.1 Next we present some numerical results computed by
the method. Every example is computed on Ω = [0, 1]2 and Γ is a set of source points
chosen in each example. The focus of our examples is demonstrating the reduction in
error in a few iterations and the ability to handle some stereotypes of rε. We report
the L1 relative error in each example, i.e., ‖uk − uf‖L1 , where uf is the overall fine

solution. In every example, θ
k,used

i,j is chosen so the solution is stable and converges
to the overall fine solution.

We choose the examples in section 5.1 to demonstrate the method on smooth
slowness functions, where the coarse grids do not sufficiently resolve the oscillations.
The point is to show that the coupling scheme is able to correct the coarse grid
computation using the fine grid computations. The maze examples in section 5.2 are
chosen because the solutions have large changes in the direction of the characteristics.
This example highlights that when the initial coarse grid solve captures the direction
of the characteristics incorrectly, the scheme is able to correct those directions in later
iterations.

The examples in section 5.3 demonstrate the method in the case of multiscale
slowness functions with and without scale separation. The goal is to show that, at
the expense of parallelization, the method can be used to replace numerical homoge-
nization for a much wider class of multiscale problems.

Finally, we report some simple parallel computations where the method is tested
on the Marmousi velocity model amd a simple three-dimensional example. All parallel
computations were performed on Stampede2 at the Texas Advanced Computing Cen-
ter using a common shared memory hardware architecture. We used the OpenMP
default for loop scheduling to divide the work among the threads. For more de-
tails on the specifications of Stampede2 visit https://www.tacc.utexas.edu/systems/
stampede2.

Nevertheless, we emphasize that the focus of our paper is not on parallel imple-
mentation but rather to present a framework for a domain decomposition method
with the benefit that the method then can be easily parallelized. We believe that

1MATLAB/C++ code used to produce all numerical results can be found at https://github.
com/lindsmart/MartinTsaiEikonal.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 641

(a) r1ε (b) r2ε

Fig. 10. (a) Solution contour for r1ε (x, y) = 1 + .99 sin(2πx) sin(2πy). (b) Solution contour for

r2ε (x, y) = 1 + .5 sin(20πx) sin(20πy).

0 2 4 6 8 10 12

k

10
-7

10
-4

10
-1

re
la

ti
v
e

 L
1
 e

rr
o

r

Fig. 11. Relative L1 error plots for r1ε and r2ε for H = 1/10 and h = 1/500.

the major addition of our method to this area of research is the stable coupling of
the coarse and fine solvers where the stabilization is achieved through the use of data
computed “on the fly.”

5.1. Smooth slowness functions. We test the method on two smooth oscilla-
tory continuous slowness functions. Figures 10(a) and 10(b) show the contour plots
of the overall fine solution where

r1ε (x, y) = 1 + .99 sin(2πx) sin(2πy)

and

r2ε (x, y) = 1 + .5 sin(20πx) sin(20πy).

Figure 11 shows the error plots for H = 1/10 and h = 1/500. The method is able
to handle small and large changes in direction of the characteristics. We see that the
performance is worse in earlier iterations for r1ε . This is because the solutions in the
upper left and bottom right corners depend on more subdomains than in the r2ε case.

5.2. Mazes and obstacles. We show the method’s performance on examples
that model optimal paths through a maze. Here, we define rε(x, y) = 1000 inside the
barriers so that all optimal paths choose to avoid them. We also test the method

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

642 LINDSAY MARTIN AND YEN-HSI R. TSAI

(a) r3ε (b) r4ε

Fig. 12. (a) Solution contour for r3ε . (b) Solution contour for r4ε .

0 10 20 30

k

10
-10

10
-5

10
0

re
la

ti
v
e

 L
1
 e

rr
o

r

Fig. 13. Relative L1 error plots for the slowness functions r3ε and r4ε for H = 1/10 and

h = 1/500.

on the case where an obstacle may be a “fast obstacle,” i.e., rε(x, y) = 0.01 inside
and optimal paths near the obstacle choose to go through it. We set rε(x, y) = 1
everywhere else and let the source point be given by Γ = {(0, 0)}. These examples
show the performance of the method on problems when the coarse grid captures the
flow of characteristics in the opposite direction. The causal sweeps are critical in
order to capture the right flow of characteristics. This is because it is possible that in
some of the coarse grids the causality may never be computed correctly. The solution
contours for r3ε and r4ε are shown in Figures 12(a) and 12(b), respectively.

For r3ε , there are coarse grid points which coincide with the obstacles as well as
points in the obstacles that do not coincide with a coarse grid point. The circle barrier
in Figure 12(a) contains an entire subdomain and the other circle is a fast obstacle
that is contained entirely in a subdomain. The nonmonotonicity of error is due to
the causal sweeps. The method provides speed-up only once the right characteristics
have been captured around the barriers. This is seen in Figure 13, where the error
starts to decrease monotonically around 20 iterations. For r3ε , it takes around 2/H
iterations for the coarse grid to “see” around the two curved barriers.

For r4ε , the fast obstacle is located at [0.26, 0.27] × [0, 0.6], and it affects the
characteristics throughout the majority of the domain, i.e., almost every optimal
path in Figure 12(b) must go through the obstacle. This example demonstrates that

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 643

(a) (b)

Fig. 14. (a) Solution contour for the squares slowness function where h = 1/1400 and

ε = 1/200. (b) Plot of squares slowness function for ε = 1/5.

the method performs well when there is a large collision of characteristics that occurs
in several subdomains.

5.3. Multiscale slowness functions. We show the advantage of the method on
multiscale slowness functions. These examples arise in front propagation in multiscale
media problems. In our computations, we let the scale epsilon be seven fine grid points,
i.e., ε = 7h, in order for the fine grid to fully capture the microscale behavior. As
mentioned in section 1, one approach for numerically resolving the multiscale behavior
in rε is homogenization. We will first demonstrate our method on an example where
the homogenized slowness function, r, can be computed.

Let the source point be given by Γ = {(0.5, 0.5)}, and define the slowness function
as follows: let

r(x, y) =

{
1 if x = 0 or y = 0,

2 otherwise

and define rε by extending r by periodicity ε. Figure 14(b) shows the slowness func-
tion for ε = 1/5. The homogenized slowness function is anisotropic and is equal to
r(α) = (α1 + α2), where α = (α1, α2) and |α| = 1. This is due to the optimal paths
moving only vertically or horizontally [20].

In our computations, we chose H = 1/14, h = 1/1400, and ε = 1/200. The value
of rε on the coarse grid points is always equal to 1. Thus, the coarse grid solver is
always solving the equation

|∇u| = 1.

This equation is inaccurate as seen by the shape of the solution contour in Figure 14(a),
which is a diamond and not a circle. Suppose in the method we have the coarse solver
solve an equation that better describes the macroscale behavior of the solution. Since
in this example we know the homogenized equation, on the coarse grid we can solve
the homogenized equation

1

r(∇u
|∇u|)

|∇u| = 1.(5.1)

Denote the homogenized equation coarse solver by CH . Figure 15 shows the relative
L1 error plots for both the method that uses the CH as described in section 3 and

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

644 LINDSAY MARTIN AND YEN-HSI R. TSAI

0 2 4 6 8 10 12

k

10
-7

10
-4

10
-1

re
la

ti
v
e

 L
1
 e

rr
o

r

Fig. 15. Relative error L1 error plots for CH and CH .

(a)

0 5 10 15

k

10
-9

10
-5

10
-1

re
la

ti
v
e

 L
1
 e

rr
o

r

(b)

Fig. 16. Generalization of Figure 10(b): (a) Solution contour for rε(x, y) = 1 +

.5 sin(πx
ε
) sin(πy

ε
) where ε = |x|+|y|+0.001

50
. (b) Relative L1 error plot for the given rε where the

estimated θ
k,used

i,j and M
k
i,j − 0.001 are used.

the method that uses CH in place of CH . As expected, we can see the method that
uses CH performs better.

Next, we demonstrate the method on a generalization of r2ε as defined in section
5.1. Notice in Figure 10(b) that we can see the rough shape of the contours of the
solution to the homogenized equation. Let

rε = 1 + .5 sin
(πx

ε

)
sin

(πy
ε

)
.

For r2ε , ε = 1/20. Now suppose we let ε vary throughout the domain, i.e., the problem
cannot be solved via homogenization. Define

ε =
|x|+ |y|+ 0.001

50

and Γ = {(0.35, 0.35), (0.65, 0.65)}. Then ε is very small near (0, 0) and increases as
we move diagonally up and right through the domain. Figure 16(a) shows the solution
contour for this given rε. Since uf can be computed a priori, we compare the error

plots of our method where we use formula (4.10) and M
k

i,j − 0.001 as the choice of

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 645

(a)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 17. (a) Solution contour plot of random periodic checkboard of scale ε. (b) Plot of random

slowness function.

0 5 10 15

k

10
-10

10
-5

10
0

A
v
e

ra
g

e
 r

e
la

ti
v
e

 L
1
 e

rr
o

r

Fig. 18. Relative L1 error plot for random rε.

weights in the method. In this example, H = 1/14 and h = 1/1400. The error plots
in Figure 16(b) suggest that the proposed formula (4.10) has room for improvement

in estimating M
k

i,j . For example, if Xi,j = (0, 0), we have

min
k

(|Mk

i,j − 0.001− θ
k,used

i,j |) = 0.1053,

but

max
k

(|Mk

i,j − 0.001− θ
k,used

i,j |) = 2.508× 105.

Finally, we show the results of our method in a case where the values of the
slowness function are random. We follow the setup of the random slowness function
in [20]. Consider a periodic checkerboard where the slowness function is either 1 or 2
with probability 1/2. Let the scale of the periodicity be ε. A solution contour and the
plot of a random slowness function are shown in Figures 17(a) and 17(b), respectively.
In [20], the authors showed experimentally the homogenized slowness function, r, is
isotropic and its value is a little less than 1. Figure 18 shows the plot of the average
error over 20 trials where H = 1/14 and h = 1/1400.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

646 LINDSAY MARTIN AND YEN-HSI R. TSAI

(a)

10
0

10
1

Number of threads

10
2

10
3

10
4

T
im

e
 i
n

 s
e

c
o

n
d

s

Total time

Ideal

(b)

Fig. 19. (a) Reciprocal of the Marmousi velocity displayed as an image. (b) Execution time as

a function of the number of threads on an 11201 × 11201 grid with 142 fine subdomains.

Table 1

Time for each method on an 11201 × 11201 grid with 142 subdomains using 64 threads where

the tolerance prescribed in the new method is the relative L1 error.

FSM New method (1× 10−5) New method (1× 10−16)
Time (sec) 1016.08 132.42 169.20

Table 2

Comparison of the number of sweeping iterations in the FSM and the new method. Each

sweeping iteration contains four sweeps in each sweeping direction.

FSM Average number of coarse sweeps per
coarse grid

Average number of fine sweeps per fine
subdomain

14 2.56 3.13

5.4. Parallel and three-dimensional simulations. We study the performance
of a parallelization of the method on the Marmousi velocity model.2 This model is a
data set used in seismic imaging and has different scales and many discontinuities. It
is widely used to test wave propagation algorithms in the seismic imaging community.
We define rε as the reciprocal of the Marmousi velocity. Figure 19(a) displays rε as
an image. We test the scaling of the method on an 11201× 11201 grid with 142 fine
subdomains. Figure 19(b) shows the execution time of the method as a function of
the number of threads.

Table 1 reports the time comparisons with the FSM and our new method. We
report the times of the new method with respect to L1 difference with the overall fine
solution computed with FSM. With relative L1 error of 1× 10−5, we get a speed up
factor close to 7.7. Finally, we report the number of sweeps needed for convergence
of FSM on the coarse grids and fine subdomains during each iteration of the method
in Table 2. For the fine subdomains, the characteristic structure is less complex than
that of the overall fine grid. Thus, we do not need the same amount of sweeps that
the original FSM needs on the entire fine grid.

Finally, we verify the implementation of the method in three dimensions. Note
that in order to obtain the boundary conditions for each subdomain, we need (K+1)2

2Marmousi velocity data set source: http://www.agl.uh.edu/downloads/downloads.htm.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 647

0 5 10 15 20 25

k

10
-7

10
-4

10
-1

re
la

ti
v
e
 L

1
 e

rr
o
r

(a)

10
0

10
1

Number of threads

10
1

10
2

10
3

10
4

T
im

e
 i
n
 s

e
c
o
n
d
s

Total time

Ideal

(b)

Fig. 20. (a) Relative L1 error plot for three-dimensional problem with slowness function r3Dε .

(b) Execution time as a function of the number of threads on a 3013 grid with 103 fine subdomains.

coarse grid nodes on each face of a subdomain. This gives us a total of 3K(K− 1)+1
shifted coarse grids. In this example, we place the source point at the origin, and
we use the slowness function, r3Dε (x, y, z) = 1, except for four spherical obstacles.
Centered at the points (.5, .4, .4) and (.3, .3, .3) are “fast” spheres of radius 0.025 where
r3Dε (x, y, z) = 0.001 and centered at the points (.7, .7, .5) and (.6, .3, .6) are “slow”
spheres of radius 0.025 where r3Dε (x, y, z) = 10. Figure 20(a) shows the error plot for
this slowness function when H = 1/10 and h = 1/300. We also test the scaling of the
method in three dimensions on a 3013 grid with 103 fine subdomains. Figure 20(b)
shows the execution time of the method as a function of the number of threads.

6. Summary and conclusion. In this paper, we presented a new domain de-
composition algorithm for solving boundary value Eikonal equations. We develop
a framework that couples a coarse and a fine grid solver to propagate information
from the subdomains into the coarse level. The use of the coarse solver distinguishes
our method from other existing domain decomposition algorithms. The coarse grid
is initialized using FSM, and the values and wind directions are used to define the
boundary conditions for the subdomains. Next, we perform fine grid computations in
each subdomain in parallel. In our coarse grid updates we apply an adapted weighted
parareal scheme to speed up convergence. A causality sweep is performed after each
coarse grid update in order to ensure the wind directions are captured correctly.

By clever choice of the weight, it is possible to stabilize parareal-like iterative
methods. The weight function θki,j acts as a multiplicative correction to the coarse
operator CH so that θCH ideally approximates the fine scale solution operator over a
subdomain. At each coarse grid node, θki,j is computed using previous coarse and fine

grid solutions. It is an estimate of M
k

i,j which is defined to be the upper bound for

θki,j to create a monotonically decreasing sequence of solutions for the model problem.

We show via numerical examples on a model problem that the choice of θki,j stabilizes
the method and using a variable θ has advantages over a fixed value. By improving

the estimate of M
k

i,j , it is possible to further increase the speed-up of the method.
We demonstrated the method on several classes of slowness functions showing that

it performs well on general types of rε including multiscale slowness functions where
homogenization cannot be applied. The errors decrease to an acceptable tolerance
well within the limit of theoretical speed-up. Thus, we can solve efficiently through

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

648 LINDSAY MARTIN AND YEN-HSI R. TSAI

parallelization multiscale problems beyond the conventional multiscale methods. The
example in Figure 14 gives us a direction for future work. We would like to use the
coarse and fine grid computations to estimate the effective slowness function “on the
fly,” which could further speed up the method based on the evidence in Figure 15.

Acknowledgments. The authors acknowledge the Texas Advanced Comput-
ing Center at The University of Texas at Austin for providing HPC resources that
have contributed to the research results reported within this paper (http://www.tacc.
utexas.edu).

REFERENCES

[1] G. Ariel, S. J. Kim, and R. Tsai, Parareal multiscale methods for highly oscillatory dynamical

systems, SIAM J. Sci. Comput., 38 (2016), pp. A3540–A3564, https://doi.org/10.1137/
15M1011044.

[2] G. Ariel, H. Nguyen, and R. Tsai, θ-Parareal Schemes, arXiv:1704.06882, 2017.
[3] G. Bal, On the convergence and the stability of the parareal algorithm to solve partial dif-

ferential equations, in Domain Decomposition Methods in Science and Engineering, Lect.
Notes Comput. Sci. Eng. 40, Springer, Berlin, 2005, pp. 425–432, https://doi.org/10.1007/
3-540-26825-1 43.

[4] G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE’s with application

to the pricing of an American put, in Recent Developments in Domain Decomposition
Methods (Zürich, 2001), Lect. Notes Comput. Sci. Eng. 23, Springer, Berlin, 2002, pp. 189–
202, https://doi.org/10.1007/978-3-642-56118-4 12.

[5] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear

second order equations, Asymptot. Anal., 4 (1991), pp. 271–283.
[6] M. Breuß, E. Cristiani, P. Gwosdek, and O. Vogel, An adaptive domain-decomposition

technique for parallelization of the fast marching method, Appl. Math. Comput., 218
(2011), pp. 32–44, https://doi.org/10.1016/j.amc.2011.05.041.

[7] S. Cacace, E. Cristiani, M. Falcone, and A. Picarelli, A patchy dynamic programming

scheme for a class of Hamilton-Jacobi-Bellman equation, SIAM J. Sci. Comput., 34 (2012),
pp. A2625–A2649, https://doi.org/10.1137/110841576.

[8] A. Chacon and A. Vladimirsky, Fast two-scale methods for Eikonal equations, SIAM J. Sci.
Comput., 34 (2012), pp. A547–A578, https://doi.org/10.1137/10080909X.

[9] A. Chacon and A. Vladimirsky, A parallel two-scale method for Eikonal equations, SIAM J.
Sci. Comput., 37 (2015), pp. A156–A180, https://doi.org/10.1137/12088197X.

[10] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc., 277 (1983), pp. 1–42.

[11] M. Detrixhe and F. Gibou, Hybrid massively parallel fast sweeping method for static

Hamilton-Jacobi equations, J. Comput. Phys., 322 (2016), pp. 199–223, https://doi.org/
10.1016/j.jcp.2016.06.023.

[12] M. Detrixhe, F. Gibou, and C. Min, A parallel fast sweeping method for the Eikonal equation,
J. Comput. Phys., 237 (2013), pp. 46–55, https://doi.org/10.1016/j.jcp.2012.11.042.

[13] W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003),
pp. 87–132.

[14] M. J. Gander and E. Hairer, Analysis for parareal algorithms applied to Hamiltonian differ-

ential equations, J. Comput. Appl. Math., 259 (2014), pp. 2–13, https://doi.org/10.1016/
j.cam.2013.01.011.

[15] T. Haut and B. Wingate, An asymptotic parallel-in-time method for highly oscillatory PDEs,
SIAM J. Sci. Comput., 36 (2014), pp. A693–A713, https://doi.org/10.1137/130914577.

[16] F. Legoll, T. Lelièvre, and G. Samaey, A micro-macro parareal algorithm: Application

to singularly perturbed ordinary differential equations, SIAM J. Sci. Comput., 35 (2013),
pp. A1951–A1986, https://doi.org/10.1137/120872681.

[17] J.-L. Lions, Y. Maday, and G. Turinici, A ”parareal” in time discretization of PDE’s,
C. R. Math. Acad. Sci. Ser. I, 332 (2001), pp. 661–668, https://doi.org/10.1016/
S0764-4442(00)01793-6.

[18] S. Luo, Y. Yu, and H. Zhao, A new approximation for effective Hamiltonians for homog-

enization of a class of Hamilton-Jacobi equations, Multiscale Model. Simul., 9 (2011),
pp. 711–734, https://doi.org/10.1137/100799885.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DOMAIN DECOMPOSITION ALGORITHM EIKONAL EQUATIONS 649

[19] Y. Maday, The parareal in time algorithm, in Substructuring Techniques and Domain Decom-
position Methods, Saxe-Coburg Publications, Stirlingshire, UK, 2010, pp. 19–44.

[20] A. M. Oberman, R. Takei, and A. Vladimirsky, Homogenization of metric Hamilton-

Jacobi equations, Multiscale Model. Simul., 8 (2009), pp. 269–295, https://doi.org/10.
1137/080743019.

[21] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J.
Numer. Anal., 29 (1992), pp. 867–884, https://doi.org/10.1137/0729053.

[22] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc.
Natl. Acad. Sci. USA, 93 (1996), pp. 1591–1595, https://doi.org/10.1073/pnas.93.4.1591.

[23] G. A. Staff and E. M. Rø nquist, Stability of the parareal algorithm, in Domain Decompo-
sition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 40, Springer,
Berlin, 2005, pp. 449–456, https://doi.org/10.1007/3-540-26825-1 46.

[24] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for a class

of Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673–694, https://doi.
org/10.1137/S0036142901396533.

[25] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat.
Control, 40 (1995), pp. 1528–1538, https://doi.org/10.1109/9.412624.

[26] J. Yang and F. Stern, A highly scalable massively parallel fast marching method for the

Eikonal equation, J. Comput. Phys., 332 (2017), pp. 333–362, https://doi.org/10.1016/j.
jcp.2016.12.012.

[27] H. Zhao, A fast sweeping method for Eikonal equations, Math. Comp., 74 (2005), pp. 603–627,
https://doi.org/10.1090/S0025-5718-04-01678-3.

[28] H. Zhao, Parallel implementations of the fast sweeping method, J. Comput. Math., 25 (2007),
pp. 421–429.

D
o

w
n
lo

ad
ed

 0
5
/1

3
/1

9
 t

o
 1

3
1
.1

7
9
.4

9
.1

6
5
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

	Introduction
	Upwind discretization and FSM
	Review of current parallel methods

	Overview of parareal methods
	The new method
	One-dimensional example
	New method in two dimensions

	Analysis of the new method
	Analysis of on model problem
	Estimating Mi,jk
	Complexity and speed-up

	Numerical results
	Smooth slowness functions
	Mazes and obstacles
	Multiscale slowness functions
	Parallel and three-dimensional simulations

	Summary and conclusion
	References

