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ABSTRACT: In the pursuit of materials with exceptional
mechanical properties, a machine-learning model is developed
to direct the synthetic efforts toward compounds with high
hardness by predicting the elastic moduli as a proxy. This
approach screens 118 287 compounds compiled in crystal
structure databases for the materials with the highest bulk and
shear moduli determined by support vector machine
regression. Following these models, a ternary rhenium
tungsten carbide and a quaternary molybdenum tungsten
borocarbide are selected and synthesized at ambient pressure.
High-pressure diamond anvil cell measurements corroborate
the machine-learning prediction of the bulk modulus with less
than 10% error, as well as confirm the ultraincompressible
nature of both compounds. Subsequent Vickers microhardness measurements reveal that each compound also has an extremely
high hardness exceeding the superhard threshold of 40 GPa at low loads (0.49 N). These results show the effectiveness of
materials development through state-of-the-art machine-learning techniques by identifying functional inorganic materials.

■ INTRODUCTION

Accelerating the discovery of next-generation, functional
inorganic materials is currently centered on predicting a
material’s properties a priori using quantum chemical
calculations.1−5 By determining a compound’s electronic and
vibrational structure, it is possible to estimate a myriad of
physical properties.6 This has inspired large-scale, high-
throughput first-principles density functional theory (DFT)
calculations through frameworks such as The Materials
Project,7 AFLOW,8 OQMD,9 MPDS, and JARVIS-DFT.10

These research programs have not only facilitated the
generation of vast DFT-level data sets but also made the
results readily accessible. Despite being a great resource, there
are still limitations to using DFT to predict some properties.
For example, band gap cannot be accurately reproduced by
DFT with commonly used exchange−correlation functionals
such as Perdew, Becke, and Ernzerhof (PBE), and
implementation of hybrid functionals and Green’s function
(GW) methods is not yet feasible within a high-throughput
framework.11−13 Moreover, stress−strain or phonon calcu-
lations are computationally expensive, inhibiting large-scale
calculations of elastic constants. Finally, DFT cannot easily
account for atomic disorder such as site sharing, which is
common in inorganic solids.

A potential pathway to shift the paradigm of computer-
directed materials discovery is to employ data-driven
approaches such as machine learning (ML). The implementa-
tion of ML in materials chemistry, however, remains in its
infancy, with only a limited number of successful applications
reported. For example, Support Vector Machine (SVM)
models have been used to classify the crystal structures of
transition metal phosphides14 as well as predict equiatomic
binary compounds leading to the discovery of a novel phase.15

Likewise, a hybrid high-throughput first-principles computa-
tion and ML technique based on a probabilistic model was
developed to identify stable novel compositions and their
crystal structures.16 Physical properties such as band gap,17,18

elastic constants,17,19 and Debye temperature17 have also been
predicted using an array of ML techniques. ML has even been
employed for designing efficient organic light-emitting diodes
by rapidly screening and fabricating efficient emitter
materials.20 Similarly, utilizing a machine-learning approach
through balancing model prediction and uncertainty has led
researchers to discover a lead-free BaTiO3-based piezo-
electric.21 The development of new thermoelectric materials
is another example that illustrates the use of machine learning
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in materials science.22,23 Each of these research achievements
highlights the potential of ML in materials development as an
emergent method.
One area where ML may also be useful is in the search for

materials with exceptional mechanical properties, such as high
incompressibility or extreme hardness. Traditionally, the search
for new superhard materials, which by convention have a
Vickers hardness (HV) > 40 GPa,24 has relied on trial-and-error
methods or simple design rules.25 These researches have
largely concentrated on discovering materials that form strong
covalent bonds using light main group elements as in diamond,
c-BN, B6O, and c-BC2N or identifying compounds that
combine light elements and transition metals with high valence
electron density like in ReB2 and WB4.

26−28 While the first
class benefits from relying on abundant, cheap elements, their
synthesis requires extreme pressures and temperatures, making
their preparation cumbersome. The second type of compounds
employs conventional metallurgical techniques but often
includes expensive and scarce transition metals.25 To aid the
discovery of new superhard materials in either class, attempts
have been made to transcend these simple design rules and
screen materials by computationally predicting hardness.
However, DFT cannot directly calculate hardness because it
is governed by surface plastic deformation upon indentation
and, therefore, spans multiple lengths scales ranging from local
atomic structure to bulk microstructure. Nevertheless,
researchers have developed empirical models of hardness
within DFT-based genetic algorithms that have suggested the
existence of numerous high-hardness materials. For example,
compounds such as ReB4,

29 B4C4,
30 and (t,m,o)-Si3N4

31 are all
predicted as potential superhard materials. Further, t-SiCN32 is
predicted to be a thermodynamically stable compound with a
hardness of 41 GPa, while a novel CN phase with sp3-
hybridization is predicted to have a hardness of 62 GPa,
although its synthesis requires an applied pressure of 10.9 GPa,
limiting large-scale preparation. Unfortunately, these genetic
algorithm-based predictions are computationally time-inten-
sive, the versatility of the hardness models are mainly limited
to strictly covalent compounds, and they are generally centered
on discovering high-pressure phases. Of greater concern is that
very few of these predicted materials have ever been
experimentally verified.
Given the obvious difficulty in using computation to

explicitly predict hardness, an alternative route is to utilize a
proxy, which is a distinct, quantifiable material property that
scales with hardness. Elastic moduli such as the bulk modulus
(B) and shear modulus (G) are both reported to correlate with
hardness33,34 and could therefore be potential proxies. More
importantly, B and G are both intrinsic material properties that
can be reliably estimated through first-principles calculations.
In fact, DFT provides great accuracy in predicting elastic
constants. This has allowed high-throughput programs such as
the Materials Project to implement density functional
perturbation theory (DFPT) to calculate elastic constants.35

Although this approach has, to date, calculated the elastic
constants for more than 6000 ordered, crystalline materials,
this is <10% of all reported inorganic, solid-state compounds.
Here, we develop a method based on machine learning to

vastly expand the number of materials with their elastic moduli
predicted. This approach employs a combination of composi-
tional and structural descriptors to build a ML model using the
Materials Project data as a training set. Our approach is
capable of predicting B and G for ∼120 000 binary, ternary,

and quaternary inorganic solids that are compiled in Pearson’s
Crystal Database36 regardless of their unit cell size, atomic
disorder, or high electron correlation. We then use both the
ML-predicted B and G values as a proxy to identify
compositions with potential high hardness, leading us to
synthesize ReWC2 and Mo0.9W1.1BC. According to our model,
these compounds have the highest expected B and G for a
ternary and quaternary phase, respectively. More importantly,
these compositions can be prepared at ambient pressure using
arc melting, making them ideal prospective ultraincompres-
sible, high-hardness materials. This unprecedented ML-
directed search for new superhard materials strays from the
traditional design rules and shows the potential to significantly
advance the rate of new functional materials development
using machine learning.

■ EXPERIMENTAL METHODS
Data Extraction and Machine-Learning Training Model. To

create the training set, 3248 elastic moduli (B and G) were extracted
from the Materials Project database.37 The Materials Project
implements a high-throughput framework based on DFPT7 using
the Vienna ab Initio Simulation Package (VASP)38 with the PBE
functional39 used for exchange and correlation, while the DFT+U
(Hubbard parameter) scheme is employed for highly correlated
systems.40 The elastic constants are determined using DFPT coupled
with the Voigt−Reuss−Hill approximation to convert the elastic
tensors into the elastic moduli.41

The compositions extracted from the Materials Project were first
cross-referenced against an inorganic crystal structure database,
Pearson’s Crystal Database (PCD), to ensure only phases accessible
at ambient pressure and temperature were used in the machine-
learning model. Additionally, the data extracted from Materials
Project were manually checked for unreasonable values, e.g., negative
moduli. Only binary, ternary, and quaternary compositions were
considered, and compounds containing group 18 (noble gases) were
excluded, as were any phases with the elements hydrogen, Tc, and Z >
83 (except for U and Th). Any crystal structures reported as thin
films, foils, or suspensions were not included. These criteria reduced
the final training data set to 2572 elastic moduli. To distinguish
between polymorphs present in the training set, each compound was
labeled as “composition, space group number”. For example, PtV
adopts both an orthorhombic (space group number 51) crystal
structure and a tetragonal (space group number 123) crystal structure,
which we label accordingly as PtV,51 and PtV,123.

The machine-learning model was next created based on a Support
Vector Machine Regression (SVR)42,43 algorithm using PLS_Toolbox
Version 8.2.1 (Eigenvector Research Inc., Wenatchee, WA, USA)
within the MATLAB 2016a (The Mathworks, Natick, MA, USA)
environment. The SVR employed a radial basis function (RBF) as the
kernel function and was trained with a 10-fold cross-validation
scheme. The cross-validation method helps to avoid overfitting and
artificially high statistics. The descriptors used in this study included
34 distinct compositional variables describing the elemental proper-
ties such as position on the periodic table, electronic structure, and
physical properties as well as their associated math expressions
(difference, average, largest value, and smallest value). Additionally,
14 structure descriptors related to variables including crystal system,
space group, and unit cell volume, among others, were incorporated in
the ML model. The full list of descriptors and mathematical
expressions is available in the Supporting Information (Figure S1).
In total, 150 descriptors were used to build the ML model
constituting a 2572 × 150 matrix, which was normalized, mean-
centered, and rescaled to the unit variance. A genetic algorithm-based
variable selection was then performed with partial least-squares
regression choice in 25 Latent Value space with a population size of
256, while the maximum number of generations was set at 100. A 20-
fold random split cross-validation was used for the variable selection.
The variable importance on projection of the full descriptor set as well
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as the subset of descriptors selected by the genetic algorithm is
discussed below and included in the Supporting Information Figure
S1. All calculations were performed using an Intel Corei5-4690K CPU
on a Windows PC.
After finalizing the machine learning training model, 118 287

compounds available in the PCD that follow our general composition
criteria, discussed above, were assembled in a database. Their elastic
moduli, bulk and shear, were predicted using ML, while Young’s
modulus and Poisson’s ratio were calculated from these values. The
data for 258 compounds with the highest B and G are provided in
Table S1 of the Supporting Information.
Synthesis and Structure Determination. Samples of ReWCx

(0.8 ≤ x ≤ 2) and Mo0.9W1.1BC were prepared by arc melting the
elements using a water-cooled copper hearth under an argon flow
atmosphere. The starting materials, Re (Alfa Aesar, 99.997%), W
(Alfa Aesar, 99.5%), C (Sigma-Aldrich, ≥99.99%), Mo (Alfa Aesar,
99.95%), and crystalline B (Alfa Aesar, 99.5%), were weighed out in
the desired stoichiometry ratios (total mass ≈ 0.4 g), pressed into
pellets, and then arc melted using a current of 80 A until
homogeneous melting occurred. The products were melted at least
twice including flipping the ingot to ensure mixing of the elements.
The weight loss after arc melting was <5%, attributed mostly to
volatilization of graphite during the arc melting process. To confirm
the products were fully dense, density was measured using a Mettler
Toledo density kit (MS-DNY-43) and compared to the X-ray-
determined density.
The ingots were then split in two, with one-half ground into a fine

powder using a Diamonite mortar and pestle and analyzed for phase
purity using powder X-ray diffraction on a PanAnalytcal X’Pert
powder diffractometer equipped with Cu Kα radiation (λ = 1.54059
Å). The crystal structures of the products were confirmed by whole
diffraction pattern fitting using the LeBail method. The backscattered
electron microscopy images were collected for ReWC0.8, ReWC, and
Mo0.9W1.1BC using a JEOL JSM 6400 scanning electron microscope
(SEM). A single crystal was also selected from the ReWC0.8 and
Mo0.9W1.1BC arc-melted samples and analyzed using a Bruker
PLATFORM single-crystal X-ray diffractometer equipped with a
SMART APEX II CCD area detector using graphite-monochromated
Mo Kα radiation (λ = 0.710 73 Å) at room temperature using ω scans
at eight different ϕ angles with a 0.30° frame width and an exposure
time of 12 s per frame. The initial structural model, utilized
previously, reported and standardized atomic positions from ReWC2
and Mo0.9W1.1BC structures, while the structure refinement was
performed using the SHELXL (version 6.12)44 software package.
Single-crystal refinement data are available in Tables S2, S3, and S4 of
the Supporting Information. All crystal structure drawings were
produced using the program VESTA.45

Mechanical Property Measurements. A portion of the
Mo0.9W1.1BC and ReWC0.8 samples analyzed using laboratory X-ray
powder diffraction were examined under compression to measure the
equation of state (EoS) to compare the experimental and machine-
learning-predicted bulk modulus. The powdered sample was mixed
with a small amount of platinum powder as a pressure calibrant.46

High-pressure conditions were generated using a symmetric diamond
anvil cell (DAC) with 200 μm diameter flat cutlet diamond anvils. A
stainless steel gasket (initial thickness of 250 μm) was preindented to
a thickness of 40 μm, and a 100 μm diameter sample chamber was
laser milled into the center of the indentation. The sample/Pt powder
mixtures were gas loaded into the sample chamber with a neon
pressure medium.
Samples were compressed to ∼50 GPa in 1−3 GPa increments at

ambient temperature. Angle-dispersive synchrotron X-ray diffraction
spectra were collected in axial geometry at beamline 12.2.2 of the
Advanced Light Source (ALS) of Lawrence Berkeley National
Laboratory using a mar3450 image plate and monochromatic X-rays
(λ = 0.4983 Å). Sample to detector distance (330.5 mm), detector tilt,
and detector rotation were calibrated with a cerium dioxide standard.
Diffraction data were analyzed for unit cell parameters using the Le
Bail method as implemented in the software package MAUD
(Materials Analysis Using Diffraction).47 Lattice strain was not

refined, as the measurements were near hydrostatic. Relative cell
volume vs pressure curves were fit to a Birch−Murnaghan EoS using
EosFit to determine bulk modulus (B0) and the first pressure
derivative of the bulk modulus (B0′).48

The other half of the arc-melted ingots were used for Vickers
microindentation measurements. The samples were mounted in epoxy
resin and then polished using SiC (600 to 1200 grit) followed by a 1
μm diamond slurry. The Vickers hardness was measured using
microindentation (Leitz instrument) at loads of 0.49, 0.98, 1.96, 2.94,
and 4.90 N, calibrating the instrument for hardness testing with
external standards (Wilson test block). The indentations were then
analyzed using a VHX-600 digital microscope at 1000× magnification
and the VHX digital microscope image analysis software. A minimum
of 10 indentations with a dwell time of 10 s, following ASTM
Designation E384-17,49 were made and analyzed at each load to
ensure reliable statistics.

■ RESULTS AND DISCUSSION

Machine-Learning Bulk and Shear Modulus. Machine
learning of elastic moduli begins with the construction of a
robust training set. In this case, the Materials Project DFT
calculated B and G are ideal to train the SVR machine-learning
model.42,43 Mathematically, the training data are in the form
{(x1, y1), ..., (xn, yn)} ⊂ �d × �, where n = 2572 and d = 150
corresponding to the number of compounds and the number
of descriptors in the feature set, respectively. The objective of
SVR is to find a function, f(x), that contains all the training
data within the bound of ±ϵ, which is 0.1 in this model. The
linear SVR is then implemented following f(x) = ⟨w, x⟩ + b,
where w and b are the variables that can be optimized and w ∈
�d, b ∈ �, and ⟨w, x⟩ is the dot product in the input
(descriptor) space. To acquire flatness, which is necessary for a
generalized solution, ∥w∥ should be minimized and slack
parameters (ξ) are introduced to improve the optimization and
allow error in the data. For the ϵ-insensitive SVR model
employed here, the loss function is defined as zero for |ξ| ≤ ϵ
and |ξ| − ϵ for |ξ| ≥ ϵ. A constant, C, is introduced to control
the compromise between the flatness and the influence of ξ. In
these ML models, our cost (C) and gamma (γ) have optimized
values of 10 and 0.01, respectively, where γ is the kernel
parameter governing the influence of each support vector. The
optimization problem is solved by constructing the Lagrange
function f(x) = ∑i=1

2572(αi − αi*)⟨xi, x⟩ + b, where αi and αi* are
Lagrange multipliers and w is described as a linear combination
of xi. However, this formalism is essentially a nonlinear SVR
that must be transformed into a feature space where linear SVR
can be applied. This is straightforwardly achieved using a
kernel function, Φ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩, which in this model
is an RBF kernel function.
Following this SVR method, the B and G moduli were

trained independently using 2572 moduli. As shown in Figure
1a, remarkable agreement is obtained between the DFT-
calculated bulk modulus (BDFT) and the ML-predicted values
(BSVR) with the cross-validated root-mean-square error
(RMSECV) and coefficient of determination (r2) being 17.2
GPa and 0.94, respectively. Examining the linear fit shows a
slight overestimation of the BSVR compared to the BDFT at low
values (<75 GPa) and a slight underestimation at high values
(>250 GPa) (Figure 1a). Decomposing the error in Figure 1b
reveals the high accuracy of our ML model with more than
86% of the compounds’ BSVR differing by less than ±20% from
the DFT-calculated values (typically, DFT values correlate
with experimental values within ±15% accuracy).50 The best
agreement is obtained for intermetallics such as HfVGe,139
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and Zr2Al,140 with negligible error. In fact, 308 compounds
are predicted with a cross-validated error of less than 1%. A few
compounds are exceedingly inaccurate, such as HgO,62, a
polymorph of SiO2,33, and BiIO,129, which have BSVR values
that differ by 451%, 411%, and 180%, respectively, relative to
BDFT. Overall, better agreement is achieved for compounds
with metallic/covalent bond character, and the error increases
for highly ionic compounds. In fact, the compounds generally
missed by our model tend to have a very low bulk modulus and
largely appear to be generally oxides and halides. Calculation of
the statistical error while exclusively considering oxides
(highlighted in Figure S2a of the Supporting Information)
indicates the BSVR relative error is only ∼15% compared to
BDFT, only slightly higher than that of the full data set. Overall,
the bulk modulus SVR model shows excellent statistics and
predictive power.
Examination of the variables selected by the genetic

algorithm, listed in Figure S1 of the Supporting Information,
provides insight into the crystal−chemical properties that
control BSVR. Overall, only 52% of the variables survived after
feature selection and are essential to predict the bulk modulus.
In general, position on the periodic table accounts for the
largest number of variables included in the final model, even
though the variable importance projection (VIP) score from a
partial least-squares regression model suggests these variables
do not carry significant weight. Among the size variables, the
covalent and crystal radius strongly affected the model, while
the electron count shows two variables for the metallic valence
(largest and smallest values of constituent elements) as well as
all four variables for the number of p and d electrons are
important for prediction of BSVR. The only physical properties
that significantly influence the bulk modulus are density,
cohesive energy, and polarizability. The cohesive energy, in
particular, stands out among the compositional variables with
all four mathematical expressions dominating the VIP score.
Regarding the structural variables, unit cell density, volume per
atom, Gilman electron density (Gilman scale34 postulates an
order for counting valence electrons in transition metals to

yield the best correlation with bulk modulus), and outer shell
electron density dictate BSVR. The compressibility of a material
is clearly governed by values relating to the compound’s
various measures of bond strength and its density. Although
many of the conclusions drawn from this analysis are
unsurprising, they provide a quantitative foundation for
classical perceptions regarding compressibility in materials.
Shear modulus is notoriously more difficult than bulk

modulus to calculate and to measure experimentally. The ML
model developed here exhibits similar difficulty in accurately
determining the shear modulus. Figure 2a illustrates the cross-

validated GSVR, which has an RMSECV of 16.5 GPa and a
cross-validated r2 of 0.84. The plotted data clearly show that
GSVR is underestimated above 200 GPa, which is potentially
due to the lack of data with an extremely high shear modulus
accentuated by the fact that only two data points, stemming
from boron nitride, are present above 300 GPa. This imbalance
in the training data leads to imbalance in the predictions as
well a bias toward lower predicted values. Adding more data
with high shear modulus could potentially curtail this issue.
Nevertheless, similar to BSVR, the GSVR model provides

accurate predictions for many intermetallics. For example,
MgSbPt,216 and Y3Al,221 are predicted exactly. Moreover, 87
compounds are predicted with a relative error of less than 1%.
From Figure 2b it is discernible that around 61% of
compounds are within the 20% relative error range for the G
model. Contrary to B, the errors here are not dominated by
oxides (Supporting Information Figure S2b). Instead, com-
pounds with rather diverse chemistries are predicted
erroneously such as Ti3Ir,223, TI2PdCl4,123, HfS3,11, and
NaVSe,166 with the cross-validated relative errors of 511%,
386%, 230%, and 206%, respectively.
The genetic algorithm suggests that only 44% of all variables

are necessary to accurately predict the shear modulus. Similar
to the bulk modulus, GSVR does not have a particular set of
compositional variables that regulate the shear modulus. The
atomic, covalent, and crystal radii all slightly influence the

Figure 1. (a) Cross-validated values of B using the SVR model against
the training set (BDFT). The dashed line is the ideal 1:1 ratio, whereas
the solid line is the fit to the predicted values. The deviation between
the dashed line and the solid line shows a slight overestimation at low
values in contrast to the slight underestimation at high values. (b)
Fraction of compounds predicted within the relative percent error for
the cross-validated B model.

Figure 2. (a) Cross-validated values of G using the SVR model against
the training set (GDFT). The dashed line is the ideal 1:1 ratio, whereas
the solid line is fit to the predicted values. The deviation between the
dashed line and the solid line shows a slight overestimation at low
values in contrast to the significant underestimation at high values.
(b) Fraction of compounds predicted within the relative percent error
for the cross-validated G model.
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model according to their VIP scores, whereas pseudopotential
radius is not considered whatsoever. Neither the electro-
negativity scales nor their derivatives are particularly high-
lighted by the genetic algorithm. The metallic valence and the
number of valence electrons all show significant importance to
the model, while there is less emphasis on the number of p or d
electrons. Analogous to BSVR, the physical properties are not
prominent in the GSVR model with the exception of the largest
heat of fusion as well as the sum and difference of the cohesive
energy. The importance of structural variables for GSVR is
similar to those for the bulk modulus; only the valence electron
density variable was additionally selected for shear modulus
prediction. The volume per atom, unit cell density, and Gilman
electron density remain the most important structural variables
owing to their close relationship to a material’s response under
stress.
The statistics of our models are comparable with the recent

research using 5-fold cross-validated prediction of bulk and
shear using a gradient boosting decision tree technique. In this
model, a unique set of 2494 universal property-labeled
fragment descriptors was employed, leading to a cross-
validated, root mean squared error (RMSECV) value of 14.3
GPa and an r2 value of 0.97 for the bulk modulus and an
RMSECV of 18.4 GPa and an r2 of 0.88 for the shear
modulus.17 Another study uses gradient boosting machine
local polynomial regression for modeling B and G that only
implements 17 descriptors; however, some of the descriptors
in this approach include a material’s properties, such as band
gap and formation energy per atom, that require a prior DFT
calculation.19 Nevertheless, most of the ML approaches
developed thus far, irrespective of ML method or choice of
descriptors, are able to predict elastic moduli with impressive
accuracy in a fraction of the time that it currently takes ab initio
calculations.
Screening Crystal Structure Databases for Ultra-

incompressible, High-Hardness Materials. The ultimate
goal of ML is to employ a training set that is capable of
predicting the elastic moduli for entire crystallographic
databases, which can then act as a proxy to direct the search
for materials with desired mechanical properties. Here, our
model is employed to predict the B and G of 118 287 inorganic
compounds contained within the PCD, including 15 770
binaries, 56 266 ternaries, and 46 251 quaternaries. Impor-
tantly, of these compounds, 27 698 (23%) contain rare-earth
elements that cannot be readily calculated using conventional
DFT and 19 384 (16%) have either disordered positions or site
mixing, which is also generally inaccessible with DFT. Since
our machine-learning approach is based on composition and
crystal structure, the effect of disorder and mixing is indirectly
accounted for by descriptors such as “electron density” and
“volume per atom” of the crystal structure, although specific
local coordination environments are not captured.
The predicted bulk and shear moduli values are illustrated in

Figure 3, plotted as GSVR vs BSVR. The darker regions occur
where there are overlapping data and indicate that most of the
BSVR values are concentrated between 1 and 180 GPa and GSVR
values are concentrated between 1 and 90 GPa. It is discernible
that the plotted distribution mostly follows a rough linear
trend, meaning that it is unlikely for a material with a high bulk
modulus to possess a low shear modulus and vice versa. The
cluster of compounds at BSVR ≈ 350 GPa and GSVR ≈ 350 GPa,
which are conspicuously isolated from the rest of the materials
calculated, are BN, underscoring their industrial dominance as

high-hardness materials. It can also be noted that a small
portion (∼0.5%) of compounds are predicted with negative
values, mostly pertaining to regression errors in the SVR
model. Many of these materials predicted to have negative
GSVR and/or BSVR contain group 17 elements such as Cl3Ga,2,
I3Nb,59, Cl4,121, BrHgI,36, and BrCCl3,225, where the
chemistry as discussed above is not entirely captured by our
model.
Screening for materials with superior mechanical properties,

hardness in particular, is now practical using this two-
dimensional plot. First, only compounds with BSVR ≥ 300
GPa, shown by the horizontal dashed line in Figure 3, are
considered as potential ultraincompressible materials. This
high cutoff instantly reduces the number of candidate materials
from 118 287 to only 359 phases. However, this criterion is not
sufficient while screening for hard materials considering that
the bulk modulus has only a minor correlation with hardness.
Although it is well known that all superhard materials are
ultraincompressible (high bulk modulus), the reverse is clearly
not valid; for example, elemental Os has an extremely high
bulk modulus (∼400 GPa)51 but a low hardness (∼4 GPa)52

due to its metallic character, leading to negligible resistance to
the generation and movement of dislocations. Shear modulus,
G, demonstrates a more substantial relationship with hardness.
A high shear modulus is essential to hardness because it is
correlated with the generation of dislocation loops (e.g.,
Frank−Read sources) and a Peierls−Nabarro stress barrier,
which regulate the movement of dislocations in a unit cell.
Since dislocation glide is the main contributor to plastic
deformation in ductile materials, shear modulus is associated
with hardness. Thus, we only considered compositions with a
GSVR ≥ 150 GPa, as highlighted by the vertical dashed line in
Figure 3. This leaves only 258 potential ultraincompressible,
hard compounds in our screening database (Table S1 in the
Supporting Information). Examining the chemistry of these
materials indicates that a majority of these compounds are
carbides, borides, and nitrides, as expected for hard materials.

Figure 3. Plotting the SVR-predicted G and B moduli of 118 288
inorganic compounds derived from PCD. The vertical dashed line
separates the compounds with potential high B, while the horizontal
dashed line separates the compounds with a potential high G
modulus. The compounds encompassed in the right top corner are
potentially hard or superhard. The red and blue circles correspond to
Mo0.9W1.1BC and Re0.5W0.5C, respectively, which are selected for
subsequent synthesis and characterization.
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In fact, most of the noteworthy binary, high-hardness materials
occur in this region, including WB4,194 (BSVR = 315, GSVR =
227), WC,187 (BSVR = 384, GSVR = 212), TaC,225 (BSVR =
323, GSVR = 210), and ReB2,194 (BSVR = 330, GSVR = 191).
These binaries are already known hard/superhard materials
and are predicted as potential materials with exceptional
mechanical properties, e.g., superhardness, confirming the
effectiveness of our approach. It is worth noting that our model
and screening method is based on DFT-predicted elastic
moduli and does not account for extrinsic hardening factors
such as grain boundaries or secondary-phase hardening.
With the success of locating a majority of known high-

hardness materials in the top right corner of Figure 2, our
screening method was then used to identify unexplored phases
with potential high hardness. Compound selection was
achieved by sorting the compounds (BSVR ≥ 300 GPa; GSVR
≥ 150). Since most of the binary compounds predicted by ML
as potential superhard materials were either already known
materials or required high-pressure synthesis, we focused
instead on identifying the best ternary and quaternary
candidates. Among these compounds, with respect to the
bulk modulus, Re0.5W0.5C,225 ranks first in ternaries (5th
overall) and Mo0.9W1.1BC,63 ranks first in quaternaries (19th
overall). Interestingly, ReWC2 and Mo0.9W1.1BC have been
previously investigated as superconductors with transition
temperatures of 3.8 K53 and 4.2 K,54 respectively. Moreover,
both compounds can be synthesized at ambient pressure.
Thus, we directed our search for ultraincompressible, high-
hardness materials toward these two compositions.
Synthesis and Characterization of Two High-Hard-

ness Materials. Starting with stoichiometric ReWC2
(Re0.5W0.5C, as reported in PCD), the arc-melted samples
showed unreacted graphite peaks in the powder X-ray
diffraction. Therefore, subsequent synthesis was carried out
with reduced carbon content following ReWCx (0.8 ≤ x ≤
2.0). The unreacted graphite peak disappeared and a pure
phase sample was achieved when 0.8 ≤ x ≤ 1.0, as shown in
Supporting Information Figure S3. Carbon deficiency in this
range is not surprising considering carbon nonstoichiometry is
rife in the literature of refractory transition metal carbides; for
example, MCx (M = Ti, Zr, Hf, V, Nb, and Ta) have been
reported as carbon deficient, with the carbon content falling in
the range 0.5 < x < 0.97.55 Since ReWC0.8 had the least porous
surface based on the SEM micrographs (Figure S4a and b in
the Supporting Information), this composition was selected for
further analysis. The refined powder X-ray diffraction pattern
of ReWC0.8 is shown in Figure 4a and indicates the product is
phase pure, although the diffraction peaks appear surprisingly
broad. Careful analysis of the diffraction pattern, especially at
high angles, showed the presence of two peaks with slightly
different d spacing. Refining the crystal structure using the Le
Bail method required the incorporation of two phases with
slightly different unit cell volumes (V = 68.427(2) Å and V =
68.985(2) Å). Interestingly, the SEM micrographs (Figure S4
in the Supporting Information) collected with backscattered
electrons indicate a homogeneous composition across the
sample. However, the difference in unit cell volumes likely
arises from a phase width with the product having regions of
slightly different compositions not captured by backscattered
electron microscopy. Subsequent hardness measurements
performed on both ReWC0.8 and ReWC1.0 samples show
only a slight difference in hardness (Figure S5 in the
Supporting Information) and show that slight variations in

composition do not greatly influence the bulk mechanical
properties. To further confirm the synthesized ingot is dense,
the density was measured to be 17.4(4) g/cm3, which in
comparison to the density calculated based on X-ray diffraction
refinement shows the sample is 93(2)% dense.
The ReWC0.8 crystal structure as depicted in Figure 5a

shows the compound adopts a NaCl-type (Fm3̅m) crystal

structure, with transition metals sites (Wyckoff 4a) equally
occupied by Re and W, while the carbon site (Wyckoff 4b) is
deficient. The carbon−transition metal bond distance is
2.0498(1) Å, which is shorter than the carbon−rhenium
bond length (2.157(4) Å) in the high-pressure Re2C phase.56

The carbon−transition metal bond distance in ReWC0.8 is also
significantly shorter than the carbon−tungsten bond length
(2.1989(11) Å) in WC.57 These differences in bonding are

Figure 4. Le Bail refinement plot of (a) ReWCx and (b) Mo0.9W1.1BC
powder X-ray diffraction data. The experimental data are blue
(ReWCx) and red (Mo0.9W1.1BC); the Le Bail fit is in light gray, and
the difference curve is in dark gray.

Figure 5. (a) Crystal structure of ReWCx with x = 2 and (b) crystal
structure of Mo0.9W1.1BC. Re is blue, Mo is red, W is light gray, B is
dark gray, and carbon is black.
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likely the origin of the superior predicted intrinsic mechanical
properties in ReWC0.8 compared to Re2C or WC.
The quaternary target compound, Mo0.9W1.1BC, was

obtained as a single-phase product directly from arc melting,
as illustrated by the powder X-ray diffraction pattern (Figure
4b). Density measurements indicate that the synthesized ingot
is 95(3)% dense. The compound is isostructural to the parent
phase Mo2BC crystallizing in orthorhombic space group Cmcm
(space group no. 63) with refined lattice parameters of a =
3.07593(3) Å, b = 17.3142(1) Å, and c = 3.04184(3) Å. The
highly anisotropic unit cell is pseudotetragonal, with a long b-
axis arising from an alternating stacking of boron-rich and
carbon-rich planes. The crystal structure, illustrated in Figure
5b, contains infinite zigzag chains of boron atoms along the
[001] direction with a B−B bond length of ∼1.83(1) Å, which
is similar to the B−B bond length in ReB2. The crystal
structure also contains two crystallographically independent
transition metal positions. One position (Wyckoff 4c) centers
the basal plane of a square-based pyramidal geometry and is
coordinated to five carbon atoms. The second transition metal
(Wyckoff 4c) position centers a trigonal prismatic, square-face
monocapped prism formed by six boron atoms and one carbon
atom. These transition metal sites are a statistical mixing of
both transition metals.
To confirm the SVR bulk modulus predictions of ReWC0.8

and Mo0.9W1.1BC, high-pressure DAC diffraction experiments
were performed to determine B0. MAUD was used to refine
the diffraction patterns, and the (111), (200), and (220)
platinum diffraction peaks were used as an internal standard for
pressure calibration. The pressure-dependent diffraction
patterns for ReWC0.8 (Figure 6a) and Mo0.9W1.1BC (Figure

6b) both show compression with increasing pressure based on
the shift of the peaks to large Q-space values, which is also
supported by plotting the refined relative volume (V/V0) as a
function of pressure. The lattice parameters and associated
error for the carbide, borocarbide, and platinum are provided
for each pressure in the Supporting Information Tables S5 and
S6. Interestingly, above 30 GPa, ReWC0.8 exhibits a kink in the
compression curve; the origin of this deviation is not entirely

clear from these data. However, because of the unexpected
high-pressure (>30 GPa) behavior of ReWC0.8, the pressure
data were fit up to P = 28.6(3) GPa. A second-order B-M fit
was implemented due to the limited pressure range for
determining B0′. According to the fit, the bulk modulus of
ReWC0.8 is B0 = 380(8) GPa, deviating by less than 5% from
the ML-predicted value of 398 GPa. Additionally, the refined
standard state unit cell volume (V0) is 68.43(1) Å3, in
agreement with the originally refined unit cell volume of
68.427(2) Å3.
Mo0.9W1.1BC could be reliably measured up to 47.3 GPa

(Figure 6b) without any anomalous changes in the unit cell
volume as a function of temperature. Fitting the refined
volume with a third-order B-M EoS across the entire pressure
range yielded a bulk modulus of B0 = 373(4) GPa. The
agreement between this experimentally measured value and the
ML prediction of BSVR = 370 GPa is excellent, deviating by less
than 0.25%. The refined standard state unit cell volume, V0 =
162.000(3) Å3, also aligns with the initially refined volume of
162.000(3) Å3. The first derivative of the bulk modulus for
Mo0.9W1.1BC was determined to be B0′ = 2.3(2); however,
because this value is lower than reported for most other
compounds, a second-order fit was also employed returning V0
= 162.001(6) Å3 and B0 = 342(2) GPa, which is still a <10%
deviation from the ML-predicted BSVR value. The results
obtained from these DAC experiments indicate not only that
both ReWC0.8 and Mo0.9W1.1BC are ultraincompressible
materials with a bulk modulus greater than WB4 but that our
machine-learning prediction is excellent at predicting the bulk
modulus of these two inorganic materials.
The Vickers hardness of the samples was determined by

performing microindentation at five loads. As shown in Figure
7a and b, the load-dependent hardness of ReWC0.8 (similar
hardness values were obtained for ReWC with the results
provided in Figure S5 of the Supporting Information) and
Mo0.9W1.1BC suggests that at low load (0.49 N) both
compounds exceed the superhard limit of 40 GPa. The
hardness ranges from HV = 40(3) GPa at 0.49 N load to HV =
22.5(7) GPa at 4.9 N load for ReWC0.8. The Vickers hardness
is slightly higher for Mo0.9W1.1BC, with hardness values
spanning from HV = 42(2) GPa at 0.49 N load to HV =
24.9(7) GPa at 4.9 N load. This HV surpasses the reported
hardness of the parent phase, Mo2BC, of only 1823 kg/mm2

(17.8 GPa) by Vickers microindentation.54 More recently,
nanoindentation measurements of Mo2BC, used as a thin film
for hard coatings, report hardness values of 28−29 GPa.58,59

These measurements show that the incorporation of tungsten
most likely enhances hardness, likely due to an increase in
valence electron density. However, it should be noted that
comparing nanoindentation with microindentation measure-
ments is not straightforward. Further, these results at high load
are in relative agreement with previous microhardness
measurements on Mo0.9W1.1BC of 2190 kg/mm2 (21.5
GPa);54 although the indentation load is not reported, it is
likely under high load (>4.9 N). It is of interest for future
studies to explore the anisotropic hardness response of
Mo0.9W1.1BC in correlation to its crystal structure; here the
reported hardness is regardless of this structure anisotropy. In
fact, the higher standard deviation in the hardness values
(Figure 7) compared to ReWC0.8 could stem from this
anisotropy. More importantly, these hardness values are
comparable (slightly lower) to the recent reports of superhard
materials such as WB4, which range from HV = 43.3 GPa at

Figure 6. Diffraction patterns are plotted as a function of applied
pressure for (a) ReWC0.8 and (b) Mo0.9W1.1BC (top panel). The
prominent carbide and borocarbide peaks are marked by (<),while
platinum peaks are indicated by (•), and peaks related to the gasket
material or pressure medium are shown by (∗). B-M equations of
state are fit to the relative volume vs pressure curves (bottom panel).
ReWC0.8 was compressed from 4.4(1) GPa to 49(1) GPa, but due to
unexpected high-pressure behavior was only fit to 28.6(3) GPa.
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0.49 N to HV = 28.1 GPa at 4.9 N.28 Mo0.9W1.1BC is also of
significant interest considering this phase has a more earth
abundant and a cheaper composition compared to WB4 due to
the partial substitution of Mo for W and C for B.25 Noting that
WB4 is already an economic choice, Mo0.9W1.1BC has great
promise to be a cost-effective ultraincompressible, high-
hardness material used in a wide range of applications.
Although these materials both fall in the superhard regime at

low load, there is a ∼40% decrease in the hardness at high load.
In fact, this load-dependent mechanical response is observed in
most metallic hard/superhard materials reported.27,28,60 This
observation is often attributed to the indentation size effect.
There are also multiple alternative explanations for this
response such as the presence of friction at the interface,
which is proportional to the surface, whereas the plastic
deformation resistance is proportional to the volume of the
indentation. Conversely, it is possible that the small
indentation volume probed at low load does not contain any
dislocations; therefore, the hardness approaches the theoretical
limit of the perfect crystal.61,62 Nevertheless, the macroscopic
(experimental measurement) and microscopic behavior
relationship is still ambiguous,63 and categorizing compounds
such as ReB2, WB4, and now ReWC0.8 and Mo0.9W1.1BC as
superhard materials has been controversial.27 For example, the
ability of ReB2 to scratch diamond supports the superhard
classification, which is supported by its high hardness at low
indentation loads. However, at high loads the hardness of ReB2
decreases significantly to 30 GPa.27

Generally, the hardness of a material is considered at the
asymptotic hardness region before major cracks are observed.
It is highlighted that low indentation loads are not suitable for
the assessment of ultrahard materials since plastic deformation
does not prevail and the hardness values are not viable.27 Yet,
even reporting hardness values at the asymptotic region could
be intricate and problematic. For example, recent Vickers
hardness measurements of δ-MoN single crystals are only
reported at 0.245 and 0.49 N indentation loads (33 and 29
GPa), while the asymptotic hardness is assessed to be ∼30
GPa. Even at such a low load, the indentations demonstrate
formation and propagation of significant cracks, which is most
likely due to the brittle nature of δ-MoN.60 Considering most

hard materials are predominantly brittle, aggravating this issue,
we believe that the asymptotic hardness value should always be
reported as a standard. However, the full load-dependence
hardness behavior alongside the details of indentation such as
the formation of cracks is more informative, leading to a better
understanding of each material’s specific indentation response.
Here, no major cracks were observed for most indentations

for either the carbide or the borocarbide phase under high load
(Figure 7), which is an indication of relative ductile behavior of
these materials. Pugh’s ratio (GSVR/BSVR) is an indication of
ductile/brittle behavior of a material. For ReWC0.8 and
Mo0.9W1.1BC, Pugh’s ratio is determined to be 0.46 and
0.52, respectively, which fall in the ductile regime (<0.57).
However, since the ML-predicted shear modulus is likely
underestimated, these values are probably closer to 0.57.
Comparing the Pugh’s ratio of the carbide and borocarbides
discussed here to Pugh’s ratio of ReB2 (0.58), WB4 (0.72), and
c-BN (1.01) determined from our ML model establishes that
our compounds are significantly more ductile. In fact, the
ductility of our phases is likely the origin of the slightly lower
hardness of ReWC0.8 and Mo0.9W1.1BC at the asymptotic
region corresponding to the delocalization of electrons and the
moderately high mobility of dislocations. Modifying the
composition to make the carbide and borocarbide slightly
less ductile is one potential avenue to improve the hardness of
these phases.

■ CONCLUSION

Combining quantum mechanical calculations and advanced
machine-learning techniques provides a unique framework to
predict mechanical properties of inorganic materials. This
method is employed to screen more than 180 000 compounds
collected in the PCD regardless of unit cell size, chemical
composition, or atomic disorder. Synthesis and character-
ization of top candidates of ternary and quaternary phases
revealed discovery of an ultraincompressible, high-hardness
metal (ReWC0.8) as well as strengthen the case for
Mo0.9W1.1BC as an inexpensive, earth-abundant ultraincom-
pressible hard metal. Even though the hardness of these phases
does not yet surpass light main group high-pressure phases
such as diamond and c-BN, transition-metal-based hard

Figure 7. (a) ReWC0.8 and (b) Mo0.9W1.1BC Vickers microindentation (HV) measurements as a function of applied load with error bars
corresponding to errors from 10 independent measurements. Representative indentation marks at each load are represented at shown below each
plot.
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materials offer a wide range of intriguing chemistries with
impressive mechanical properties. Therefore, the search for
superhard materials should not be limited to B/C/N
compounds. Finally, based on the success of this research
and the advances in record keeping of data as well as big data
analysis tools, we foresee a paradigm shift of traditional
synthesis of functional inorganic materials to be driven by
informatics methods.
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