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Abstract. Motivated by biological transport phenomena that involve the
motion of interacting molecular motors along linear filaments, we developed a
theoretical framework to analyze the dynamics of interacting oligomers (extended
size particles) on one-dimensional lattices. Our method extends the asymmetric
simple exclusion processes for interacting monomers to particles of arbitrary
size, and it utilizes cluster mean-field calculations supplemented by extensive
Monte Carlo computer simulations. Interactions between particles are accounted
for by a thermodynamically consistent method that views the formation and
breaking bonds between particles as a chemical process. The dynamics of the
system are analyzed for both periodic and open boundary conditions. It is
found that the nature of the current-density relation depends on the strength
of interactions, on the size of oligomers and on the way interactions influence
particles transition rates. Stationary phase diagram is also fully evaluated, and
it is shown how the dynamic properties depend on the interactions and on the
sizes of the particles. To explain the dynamic behavior of the system particles
density correlations are explicitly analyzed for different ranges of parameters.
Theoretical calculations generally agree well with the results from the computer
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simulations, suggesting that our method correctly describes the main features of
the molecular mechanisms of the transport of interacting oligomers.

Keywords: driven diffusive systems, exclusion processes, molecular motors,
correlation functions
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1. Introduction

There are many natural and technological processes that can be viewed as non-equi-
librium systems where multiple participating particles are driven by constant supply
and dissipation of energy [1, 2]. These processes include RNA translation by ribosomes
[3, 4], vesicles locomotion [5], intracellular transport [2], transport in ion channels
[6], vehicular traffic in highways [7, 8], and many others. One of the most known
examples of such systems is motor proteins, also called biological molecular motors
[9]. They utilize the free energy of chemical hydrolysis of ATP molecules (or related
chemical reactions) to move processively along cytoskeleton protein filaments, such as
actin filaments and microtubules, while carrying various cellular cargoes [9]. Although
significant number of experimental and theoretical investigations of multi-particle non-
equilibrium systems have been performed, in many cases the fundamental aspects of
underlying molecular mechanisms remain not well understood.

Various out-of-equilibrium dynamical processes in chemistry, physics and biol-
ogy have been successfully analyzed using one-dimensional stochastic models called
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asymmetric simple exclusion processes [10-13]. The simplest version of these models,
known as a totally asymmetric simple exclusion process (TASEP), consists of one-
dimensional lattice in which particles move unidirectionally following the exclusion
principle, i.e. hopping one lattice site forward each time if the next site is available. In
this model, the particles also occupy no more than one site, implying that the size of
the particles is equal to their forward step size on the lattice. On a ring, TASEP pro-
vides useful insights on the mechanisms that lead to the fundamental current-density
relations [14]. In an open system, particles are injected into the lattice with a rate «
and are ejected out with a rate 3, which leads to three distinct stationary phases, such
as a low density (LD), a high density (HD) and a maximal current (MC) phase [15, 16].
The simplest TASEP model has been analyzed by many theoretical methods including
matrix product ansatz [17], recursion methods [18], Bethe ansatz, and domain wall
theory [19]. Moreover, the detailed simple mean-field arguments [18] justify the exact
results by pointing out to the absence of correlations in the simplest TASEP model.
Experimental investigations suggest that in many biological transport processes,
such as RNA translation and intracellular transport by molecular motors, the partici-
pating molecules are larger than their step sizes, and they typically interact with each
other beyond the simple exclusion [2, 9, 20-24]. There are several theoretical studies
that incorporate the nearest-neighbor particle interactions in extending the original
TASEP model with a goal of application of the results to the transport of molecular
motors [25-35]. The main idea of these TASEP models for interacting particles is to
modify the hopping rates depending on the state of the nearest or next-nearest sites
for the given particle. The interactions lead to the appearance of correlations in these
systems, which can be analyzed using a time-density functional approach [29-31] and
different cluster mean-field theories [34, 35]. In particular, in [34, 35], the interactions
were accounted by utilizing a thermodynamically consistent approach, which argued
that the process of particles coming together or breaking away from each other can be
viewed as effective chemical reactions. It has been suggested that this method might
provide a more realistic description of the transport by motor proteins such as kinesins
[34, 35]. However, these studies were done only for particles of size 1, i.e. when the
step size is the same as their molecular diameter. Similarly, the time-dependent density
functional approach was also implemented only for the monomers [29-31].
Furthermore, the TASEP model with extended particles in the absence of interac-
tions has also been well explored [36, 37]. These extended particles might be called
oligomers because they occupy several lattice sites, in contrast to monomers in the
standard TASEP, which cover only one site. It was found that for open boundary
conditions (OBC), the TASEP model for non-interacting oligomers also has three sta-
tionary phases in the phase diagram, similar to the simple TASEP. However, the
phase boundaries depend on the size of the particles. A simple mean-field description
could not explain the dynamic properties of TASEP with extended particle because of
the appearance of correlations due to large sizes of the oligomers. These systems were
solved analytically using advanced mean-field approaches and an extremal principle
arguments based on the domain wall theory [36, 37]. The obtained theoretical predic-
tions results were validated with Monte Carlo computer simulations [36, 37].
Recently, Narasimhan and Baugaetner theoretically investigated the dynamics of
interacting particles of arbitrary sizes [38]. They presented a mean-field description of

https://doi.org/10.1088/1742-5468 /aac139 3



Theoretical investigations of asymmetric simple exclusion processes for interacting oligomers

the process based on a so-called discrete Takahashi formalism, which was also tested
with computer simulations. Although this elegant theoretical approach was able to
describe dynamic properties of the system in some cases (very strong repulsion and
very weak attractions), it failed to describe the system in large region of the parameter
space, including not very strong repulsions and strong attractions, which also seems
to be the most relevant for real biological processes. Also the method was not able to
capture a non-monotonic dependence of the MC current as a function of the interaction
strength. In addition, particles of size 1-3 were exclusively considered. Furthermore,
only the symmetric splitting of interactions with respect to the particle transition rates
has been analyzed.

In this paper, we develop a comprehensive theoretical method of analyzing the non-
equilibrium dynamics of interacting oligomers moving along the one-dimensional lat-
tice. Our method is based on the cluster mean field approach which explicitly takes into
account all dynamic processes inside the cluster and neglects the correlations between
different clusters. Specifically, the two-site cluster method is employed in evaluating
stationary state properties of the system, and arbitrary sizes of oligomers are consid-
ered. It is found that theoretical predictions agree well with extensive Monte Carlo
computer simulations for most ranges of the parameters.

2. Theoretical analysis

2.1. Model

To analyze the one-dimensional dynamics of interacting extended particles, such as
the motion of ribosomes of diameter (size) ~20nm on RNA with a step size ~1nm (3
nucleotides), we consider a model presented in figure 1. The RNA molecule is viewed as
the one-dimensional lattice with L (L > 1) sites. The ribosome on the RNA is modeled
as a particle of size | > 1 (;mer or oligomer), which covers [ consecutive lattice sites:
see figure 1. Each lattice site can be empty or covered by a particle, and we assign
occupation variables 7; to each site i (1 < ¢ < L) such that 7, = 0 when the site is empty
and 7; = 15 (k= 1,2,--- ,0) if it is covered by the kth segment of the oligomer, counting
from the left end of the extended particle, as shown in figure 1(a). For convenience, the
location of the oligomers will be specified by the position of the leftmost segment of the
extended particle.

In addition to the exclusion, two neighboring l-mers (located at the sites ¢ and ¢ + [,
respectively) interact with each other with an energy F (in units of kgT') where £ > 0
or F/ < 0 represents attractive or repulsive interactions, correspondingly. The Fmer at
the site ¢ moves one lattice site to the right provided that the site (i + 1) is empty. The
hopping rates are specified by the interactions and they depend on the occupancy state
of (i — 1)th and (¢ + [ + 1)th sites. In the case when the (i — 1)th site is empty, the hop-
ping rate is ¢ = ¥ in the presence of an oligomer at the (i + [ + 1)th site; otherwise
the rate is 1 (see figure 1(b)(i-ii)). If the site (i — 1)th is covered, the hopping rate is
r = e®DE and 1, respectively for the empty and occupied state of the site (i + 1+ 1)
(see figure 1(b)(iii-iv)). Here, the rates ¢ and r, respectively describe the formation
and breaking the particle-particle bond. The process of bond breaking and creating is
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viewed as a reversible chemical reaction, and thus the rates ¢ and r follow the relation
1= ef, which describes an effective chemical equilibrium for the particles association
and disassociation. The parameter 6 (0 < 6 < 1) specifies how the energy F is distrib-
uted between the rates ¢ and r.

To understand the fundamental current-density relation in the dynamics of inter-
acting oligomers, we employ the periodic boundary conditions (PBC) in which the total
number of extended particles (say M) are conserved. This yields the extended particle
density in the steady state as p = M/L. Since each extended particle of size [ covers
consecutive [ sites, the steady-state coverage density is given as p. = MI/L and the
density of empty sites (holes) is thus identified as p, =1 — p. = 1 — lp. In our analysis,
we also consider the thermodynamic consistent OBC to obtain the stationary-state
dynamic behavior. In the OBC, an l-mer can enter the lattice from the left only if all
the first [ sites are empty. Furthermore, the entrance rate is « if (I + 1)th site is empty;
otherwise the rate is qa because the entering oligomer will make a bond with already
present particle at the (I + 1)th site. The oligomer at the end of the lattice sitting on
the site L — [+ 1 exits completely with a rate (3 if there is no particle on the site L — [;
otherwise the rate of leaving is 8 which reflects the breaking of the bond between two
oligomers.

2.2. Cluster mean-field theory

For complex dynamic processes that involve correlations simple mean-field methods,
which assume that the occupation of neighboring sites are independent from each
other, fail to properly describe the systems properties. In this case, more advanced clus-
ter mean-field methods are required [39]. The main idea here is to consider dynamics
inside of a cluster of several sites exactly, while the correlations between the clusters
can be neglected. This is the approach that we utilize for analyzing TASEP of interact-
ing oligomers.

To explain this method in more detail, we employ a two-site cluster model in which
the clusters consisting of n = 2 consecutive lattice sites are considered. If one takes a
sequence of m sites in the configuration (7;, Tj41, -, Titm—1), then the probability of
such configuration is given by P(7;, Tiz1, " , Tizm—1). In the two-cluster method, the
probability of the sequence of m— sites is factorized to the product of two-site cluster
probabilities [40] i.e.

P(7i, Tivts o Tigm—1) < P(Tiy Tip1) P(Tig1, Tig2) - PTigm—2, Tivm—1), (1)
which, after a proper normalization, becomes

P(TiaTi+1)P(Ti+17Ti+2)'"P(Ti+mf277—i+mfl)

PTiaTi y sy Tikm—1) = .

(Tt Teno) P(rs) Plrica) -+ P(riam) @
This expression can be understood in the following way. Since the probabilities of the
bulk sites (i +1,i+2,--- ,i+m — 2) of the sequence of m sites are accounted twice

equation (1), it must be corrected with the division of the probability of the corre-
sponding bulk sites inside the sequence of m sites as given by equation (2).

In the system with oligomers of size [, a cluster of two consecutive sites, (7,1, 7;),
can exist in one of (I + 3) possible states. This is illustrated in figure 2. There are (I — 1)
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Figure 1. (a) A schematic view of a single oligomer particle of size [ on the lattice.
A filled circle indicates the left end of the oligomer. (b) Four possible bulk lattice
configurations contributing to the particle current from the site i to the site (i + 1).
Possible transition rates are shown as above arrows, and they depend upon the
configuration of the sites (¢ — 1), (i + ) and (i + [ + 1). All the sites involved in the
bulk current are highlighted with the shaded boxes.
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states when both sites are parts of the same extended particle because for the oligomer
of size [ there exists (I — 1) boundaries connecting the segments of the same oligomer.
These states can be described as {1, 1x11} for k =1,2,--- |1 — 1: see figure 2. The other
four states are: {0,0} when both sites are empty; {1,0} when the right end of the oligo-
mer is followed by the empty site; {1;, 11} when the right end of one particle touches
the left end of the second particle; and {0,1;} when the empty site is before the left end
of the oligomer (figure 2). Then the normalization requires that

P(O7 11) + P(O’()) + P(ll,O) + P(lh 12) + P(127 ]-3) +oot P(1l7 11) =1L (3)

The average occupancy of any site is given as P(1;) = p, where p is the density of the
oligomers in the system. Since the particle covers [ consecutive sites simultaneously, the
hole density is given as P(0) = 1 — lp. Using the definition of density, symmetry argu-
ments and Kolmogorov consistency conditions the following relations between prob-
abilities of the two-cluster sites can be obtained:

P(0,11) + P(1;,1;) = p, (4)
P(14,15) = P(15,13) = -+~ P(1;1, 1) = p, (5)
P(1;,0) 4+ P(0,0) = 1 — Ip, ©6)
P(1;,0) = P(0,1;). (7)

To simplify calculations, we denote the three unknown probabilities P(1;,1;), P(0,1;)
and P(0,0) by z, y and z, respectively, which reduces the above equations to

r+y=p, (8)

y+z=(1-1p). (9)

Furthermore, the ratio Z can be viewed as an effective equilibrium constant for the

process of creating and breaking the bonds between two neighboring oligomers, yielding
q P(11a127"' )1l7117127“' 711)P(0a0)

v P(ld, -1, 0)0P(1y, 1g, -+, 1,0) a0
which using the correlation relation equation (2) reduces to
o  TXZ
Yy = T (11)
Equations (8), (9) and (11) can be easily solved,
P+ sy [P = (1= 1)p) = V(L= (= 1)p)? + 4(g — 1)rp(1 — 1p)
v if ¢r#1
2 .
s if q,r =1, (12)
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Figure 2. Distinct states of a cluster of two consecutive sites on the lattice with
oligomers of size [. Filled circles represent the left end of the extended particle;
whereas dotted circles indicate other segments of the oligomer. Absence of the
symbol on the lattice site means that the site is empty. Here k € {2,3,--- ;I —1}.

—sy [T(L— (1= 1)p) = /r2(1 = (1 = 1)p)* + 4(q — r)rp(1 — Ip) |;
if g7 #1

1-lp) . ~ _
(ﬁaff)p)v if q,r =1,

(1—lp)+ﬁ[( (1—=1)p) — /r2(1 = (I - 1)p)? +4(q—r)rp(1—lp)};

L= if ¢r#1
(14)

1(_1—l_p)2p; Zf q,” = L.

The above expressions for z, y and z provide a full description of the stationary-state
probabilities for (I + 3) two-site cluster states in terms of the particle density and
transitions rates ¢ and r. For the simple case of monomers, i.e. for [=1, the above
expressions reduce, as expected, to the respective probabilities for the TASEP model
of interacting particles of size 1 [41]. For strong repulsions between Fmers (F — —o0),
these equations simplify into y = p, =0 and z =1— ([ 4+ 1)p, which is identical to
corresponding expressions for the case of non-interacting (I + 1)-mers. In the opposite
case of strong attractions (EF — +00) we have y=0, x =p and z =1 — lp.

It is important to mention that by specifying every hole and every oligomer with
the size [ on a lattice with L sites, respectively, as a hole and a new effective mono-
mer on another lattice with L’ sites, we obtain a mapping L'/L =1 — (I — 1)p;, where
L'=L — (I —1)M and p; denotes the density of the system with M Fmers and L sites. In
the light of the mapping, p; = (L'/L)p1, where p; denotes the density of the system with
M unit-size particles and (L — [M) holes. Using this mapping, the two-cluster probabilities
z, y and z for Fmers given by equations (12)—(14) can be alternatively obtained from rela-
tions x; = (L'/L)xy, yp = (L'/L)y, and 2z, = (L'/ L)z, respectively. Note that the mapping
works only for the PBC with the fixed density of particles.

3. Bulk current-density relation

Now let us investigate the fundamental current-density relation for the TASEP model
with interacting oligomers. There are four different contributions to the particle flux
through the system as indicated in figure 1(b). The bulk current arising from each of
the configurations (i)—(iv) in figure 1(b) can be expressed as
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Ji=P(0,1y,15,---,1;,0,0), (15)
Ji = qP(0,14,15,---,1;,0,14), (16)
Jii = rP(1;, 14,19, - -+ ,1;,0,0), (17)
J = P(1;, 14,19, ,1;,0,14). (18)

Using the two-cluster mean field theory (equation (2)) and equations (4)—(9), the total
particle current Jy = J; + Jii + Jii + Jiv can be written as

Y2 (x4 2) + y(qy* + raz)
p(1—1lp) '

After substituting the values of z and z from equations (12) and (14), we obtain the
following fundamental current-density relation:

(1—7“)(1—([—1)/))y2 (q+r—2)y3
p(1—1p) p(L—1p) =

where y is a function of p as given by equation (13). For [ = 1, the above current-density
relation reduces to the relation obtained in [41] using the same approach. For the case

of no interactions (¢g=r=1), Jyux =y = %,
density relation for the non-interacting l-mers [36]. For strong repulsive interactions,
E — —o0, any two consecutive [-mers are always separated by at least a single hole
because it is energetically unfavorable to make a bond between two neighboring par-
ticles. As a result, the interacting - mers behave as non-interacting (I + 1)-mers at this
limit. This is justified as for F — —oo we obtainz — 0,y — pand z - 1 — (I 4+ 1)p, and
under these conditions the bulk current for the Fmers approaches to Jyux = W,
which is exactly the same as the bulk current for the non-interacting (I 4+ 1)-mers [42].
For strong attractions, £ — 400, the current goes to zero, Jyux — 0, for any value of L.
This is easy to understand since in this case the oligomers group together to form large
jamming clusters of particles which hinder their movement.

The current-density relation obtained in equation (20) depends on the particle size
[ as well as on the interaction energy E. To investigate the variation of the current-
density relation with respect to both energy of interactions and the size of the oligo-
mers, in figure 3(a) we present a 3D plot of these functions for the symmetric splitting
of the interaction on transition rates (f = 0.5). One can see that, similarly to the case
of interacting monomers [41], the fundamental diagram changes its behavior when the
interaction strength is varied. For attractive interactions and weak repulsions the curve
has only one maximum, while for stronger repulsions there are two maxima and one
minimum in the current-density curves. It is also clear from figure 3(b) where the fun-
damental diagrams are presented for F = —5 kgT" and for various sizes of the oligomers.

The existence of the single MC for some intermediate density is easy to understand.
The particle flux, J ~ pv, is maximal for the density that does not decrease significantly
the velocity of each particle. However, the current-density curve with several extre-
mal points is more unexpected. To explain this observation, let us consider the case of
strong repulsions (F — —oo) when densities and fluxes at the extremal points can be

Jpuk = 19)

Joue = 1Y + (20)

which matches with the current-
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obtained analytically. At the minimum position the flux goes to zero (J,;, — 0) because

for strong repulsions the system of interacting l-mers is identical to the system of non-
interacting (I + 1)-mers. This argument suggest that the density at the minimal point
iS Pmin — ﬁ The whole lattice will be covered by the particles of size [+ 1, which

should lead to zero current. The density corresponding to the first maximum in the cur-
rent-density curve can be obtained by solving the equation 8‘]8#;“‘ = 0. This leads to to

1 1 1
p1_7<1_ (1+Z))_(z+1)+\/z+1“ )

The second maximum can be obtained by noting that for densities larger than 1/(I + 1)
it is more convenient to look at the particle flux in one direction as the flux of inter-
acting ‘holes’ in the opposite direction. Because of the strong repulsion, the dynamics
in the system at these conditions can be viewed as the motion of the non-interacting
‘holes’ of size [+ 1, for which the current is given by

_ e = (I +1)pn)
Ty

This flux has the maximum for p; = 1/(I + 1 + v/l + 1), which gives the location of the
second maximum in the fundamental current-density relation,

g VI
S T R/ e 1 (23)

Of the two humps in the curve, the particle current is larger at the density pmax — p1,
and it is given by

(22)

1
Jmax — m (24)

The density and the current at the first maximal point can be also obtained by consid-
ering the non-interacting oligomers of size [+ 1 as explained above. The reason for the
second maximum and smaller particle flux at this point can be understood as follows.
As we already noticed above, the motion of interacting oligomers of size [ moving in
one direction can be viewed as a motion of interacting holes of size 1 in the opposite
direction. Thus, for densities larger than 1/(! + 1), the number of holes is small and the
corresponding current at the second maximum, which represents the maximum flow of
holes, becomes smaller than the MC at the first maximum.

To evaluate the coordinates of the extremal points in the current-density curve for
general conditions, we again solve the equation 8‘]8#;“‘ = 0. It is found that the number
of extremal points depends on the values of the interaction energy FE, on the splitting
parameters 6 and on the size of the oligomer [. By decreasing the interaction energy
from strong attractions to strong repulsions, it can be shown that there is a critical
energy F.(0,1) for 0 < 6 < 1 below which the current-density relation always has three
extrema, and above E.(6,1), the number of extremal points reduces to one. Table 1
displays the numerical values for critical interaction strength FE.(#) for different sizes
of oligomers and for different splitting parameters #. We observe that as the size of the
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Figure 3. Theoretical predictions from two-site cluster mean-field analysis (solid
lines) and computer simulation results (symbols) of the fundamental diagram
for the stationary particle current (J(p)) versus particle coverage density (lp) for
oligomers of size [ (a) with respect to the interaction energy FE, kgT and for the
fixed # = 0.5 (b) for the fixed interaction strength £ = —5 kgT and 0 = 0.5. In
simulations, the periodic boundary condition is considered with L = 1000 sites.

Table 1. Critical interaction strength E.(6) (in the units of kgT') for different sizes
() of oligomers.

l E,(0.25) E,(0.5) E,0.75) E(1)

1 —4.87 —2.885 —2.17 ~1.76
2 ~5.65 —3.57 —2.81 ~2.42
5 —6.09 ~3.9 ~3.14 —2.76
10 —6.27 —4.03 —3.27 —2.89
20 —6.36 —4.08 ~3.33 ~2.95

oligomers increases, the critical interaction strength becomes more repulsive for any
value of 6 (0 < # < 1). This can be explained by analyzing equation (20). The first term
in this equation is always positive, the second term is negative for F < 0, and the third
term could be negative or positive depending upon the sign of (¢ + r — 2). The param-
eter y, which is the probability to have a configuration with the particle being followed
by the hole, is a small number. Then in most cases the first and the second term in
equation (20) dominate the behavior. It can be argued that the critical interaction
approximately corresponds to the situation when the first term is roughly compensated
by the second term. Since the parameter y decreases with the increase in the size of the
oligomers then to compensate the transition rate » must be large at the critical condi-
tion. This corresponds to more negative interactions. The results presented in table 1
also suggest that for the fixed size of the oligomer lowering the value of the parameter
0 makes the critical interaction more repulsive. For the special case of § =0, when
interactions only affect the bond-breaking rate r, with ¢ =1 at all conditions, we find

that equation (20) always has one extremal point corresponding to the MC for any
size [ (see figure 4(a)).
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Figure 4. Extremal points of the current-density relation for oligomers of size [ as a
function of interaction energy E, kgT for (a) 8 = 0; (b) 8 = 0.5; (¢) # = 1. Lines and
symbols, respectively, represent the theoretical and simulation results. Filled and
unfilled symbols, respectively, represents the minimal and the maximal densities.
In simulations, the periodic boundary condition is considered with L = 1000 sites.

It is interesting to note here that, in contrast to the case of interacting monomers
(I=1), the density (pmax) corresponding to the largest MC for interacting mers (I > 1)
is influenced by the strength of interactions and by varying the splitting parameter
0. Moreover, pmax also depends on the size of the oligomers. When attractions affect
the bond-breaking rate more than the bond-making rate, i.e. for 0 < 0 < 0.5, pmax — 0
as /' — oo (see figures 4(a) and (b)). This is justified as for very strong attractions,
we have r < 1 that causes the oligomers to group together, and in this situation the
particle flux can be maximum only if there are less number of particles in the system.
This obviously should decrease the maximal particle current. In the case when the
bond-making rate is influenced more by the interactions in comparison to the bond-
breaking rate (for 6 > 0.5) in the limit of strong attractions the density of the MC state
approaches to pmax — 1/21 (see figure 4(c)). This can be explained by considering the
case of 6 = 1 using the following arguments. At these conditions we have r= 1, and the
bulk current can be rewritten as

(¢ —1)y?

Jbuk = .
bulk = Y + (1 —1p) (25)
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For strong attractions, ¢ > 1 and from equation (13) the parameter y takes the follow-

ing form
V(1 —1p)

g~ YL 26

NG (26)

Then the particle flux (equation (25) is given by
2y/p(1 —1p)
\/a )

which reaches a maximum at p = 1/2l.

J >~ (27)

4. Analysis of interacting oligomers under open boundary conditions

Now let us consider a system of interacting oligomers under OBC. The particle flux in
the bulk of the system is given by equation (20). The entrance current for the oligomers
of size [ can be expressed as

Jentr =aP (0707 )070> +an (0707 7071)7
(I+1) (I+1)
which in the two-site cluster mean-field analysis gives
Jentr = @z + qay. (29)

For a special case of no interactions (F = 0), we have Jou, = a(1 — lp), which is expected
for the case of non-interacting oligomers of size . When the repulsion is very strong
(E — —00), Jentr = (1 — (I + 1)p), which agrees with the known results of the TASEP
with non-interacting (I + 1)-mers [36, 37]. For strong attractions (£ — 00), it can be
shown that J.,,, — 0, as expected. Similar arguments for the current of exiting particles
lead to the following expression,

_ (By+rpa)
Jexit - m (30)

When there are no interactions between particles (= 0) and for strong repulsions
(E — —o00), we obtain Joi = Bp/(1 — (I — 1)p), in agreement with the previous analysis
for TASEP with the non-interacting oligomers [36] and for the interacting monomers
(1=1) [35].

4.1. Phase diagrams

Now we investigate the effect of interactions on the stationary phase diagrams for oligo-
mers of arbitrary size. It is to be noted that the thermodynamically consistent boundary
conditions in our model for interacting oligomers do not allow us to apply the maximum
and minimum current principles to predict all possible stationary phases [41]. To evalu-
ate what dynamic phases are realized, we apply the following method. At the phase
boundaries the particle fluxes corresponding to different phases (entrance, bulk or exit),
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which can be obtained from our two-site cluster calculations as explained above, must
be equal. Thus we identify three possible stationary phases in the system of interacting
oligomers, namely, LD, HD and MC. This is very similar to all other TASEP models,
and interactions are influencing the positions of the phase boundaries. Let us discuss the
phase diagram in detail.

4.1.1. MC phase. In the MC phase, the particle current is maximal and it is indepen-
dent of dynamics at the system’s boundaries. We differentiate Jyy in equation (20)
with respect to the particle density p and equate it to zero in order to obtain the
stationary density profile pyc in the MC phase. Then the specific expressions for the
particle current is given by Jyux(p = pmc). For E= 0 (no interactions) it can be easily
shown that

1 1
pymc = ——, Juc=—F—2
1+ V1 (VI+1)? 1)
while for strong repulsions we have
1 1

pMC:(Z+1>+\/H_—17 JMC:—(\/H_—1+1)2- (32)

Again, one can clearly see that the dynamics of interacting Fmers at strong repulsions
is identical to the dynamics of non-interacting (I 4+ 1)-mers. For strong attractive inter-
actions, the particle density depends on the value of the splitting parameter 0. As we
argued above, pyc — 0 for 0 < 0 < 0.5, while pyec — 1/21 for 0.5 < 6 < 1. But in both
cases the particle fluxes are disappearing at this limit (Jyc — 0).

The results of our calculations for the particle fluxes as a function of the interaction
strength for different sizes of oligomers are presented in figure 5 where they are also
compared with Monte Carlo computer simulations. Excellent agreement is observed for
all values of the splitting parameter 6 except for the limiting cases of 6 =0 and 6 = 1.
It is found that the particle current decreases with the size of oligomers. There is a
maximal particle flux observed at weak repulsions, while at strong repulsions the cur-
rent approaches a constant value, and the current disappears for strong attractions. It
is also found that the position of the most optimal current does not depend on the size
of oligomers. This picture is generally valid for oligomers of any size and for 0 < 6 < 1.

For # = 0, computer simulations predict a monotonic decrease in the particle cur-
rent as a function of the interaction strength. While our theoretical calculations quali-
tatively agree with this behavior, the particles fluxes for repulsive interactions are
overestimated. These deviations between the theory and computer simulations can
be explained using the following arguments. In this regime, the formation of bonds
between oligomers are not affected by the interactions (¢ = 1), but the bond breaking is
affected much stronger (r= e *), and the effect is especially strong for repulsive inter-
actions. For 6 = 1, computer simulations suggest that the particle flux is an increasing
function of the interaction strength. Our theory correctly describes the behavior for
the repulsive interactions, but incorrectly predicts the maximum in the particle current
and it fails for the attractions. In this regime, the formation of bonds between oligomers
strongly depends on interaction energy (¢ = e”), and is strongest for large attractions,
while the breaking of bonds between the oligomers is not affected by F at all (r=1).
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Figure 5. Maximal particle current of oligomers of various sizes as a function of
interaction energy F for splitting parameter (a) 8 = 0; (b) 8 = 0.5; (¢c) 8 = 1. Lines
are theoretical predictions and symbols are the results of computer simulations for
the open boundary condition with L = 1000 sites.

These arguments suggest that our theoretical method cannot capture correctly all the
aspects of the dynamics at these limiting regimes, while it describes perfectly the large
fraction of the parameters space outside of the limiting cases.

4.1.2. LD phase. In the LD phase, the dynamics are governed by processes of particles
entering into the system. The relation between the oligomers density and the entrance
rate can be obtained by equating the expressions for Jyyx and Jeys, yielding

_ A+ B
o [(2<q = 2p(p = 1) (F(U+ Dp=1) = B+g(2(1~lp) + A+ B))
x (4q27‘p(lp D421 = p(l+ 1)+ AB — 2¢r2((1 — Ip)® + p*) + q(1 + (1 — 1)p)B
ar(l+ (1= 6L+ 12)p2 +2B — 2p(1 — 3+ (I — 1)3))), (33)
where
A=r((l=1)p-1), (34)
B = \/4qrp(1 —lp) +r2(1 — p(l + 1)2). (35)

The equation (33) can be solved to obtain the density in the LD phase, pip(«), for any
set of values for [, # and E. For the special case of strong repulsions (E — —o0), the
above equation yields
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o«
pLD = Atia)’ (36)

which is the expected outcome because it corresponds to the case of non-interacting
oligomers of size (I 4+ 1) [36]. For strong attractions, we obtain a — 0, which implies
that the LD phase does not exist at these conditions for any size of the oligomers. For
the case of no interaction (£ = 0), the condition of Jyux = Jentr yields a = % and
then pp = ﬁ, as expected for the case of non-interacting oligomers of size [ [36].
The particle current in the LD phase can be evaluated from equation (29) with p = prp.
For example, for strong repulsions it gives

Jip = ——7. 37

4.1.3. HD phase. The HD phase is defined by the particles exiting processes. Equating
Jouie and Jegit, we obtain the following relation:

5 A(A+ B)
2 =r)2plp— 1)1+ 1)p—1) = B+r(1+p(1 —1—2q) + B))

X <4q27“p(lp 1)+ 72 (1= p(l+ 1)) + AB — 2¢r2((1 — p)® + p?) + q(1 + (1 — 1)p)B

taqr(l+ (1= 61+ 12)p* + 2B — 2p(1 — 3+ (I — 1)3))). (38)

This equation can be solved to evaluate the density in the HD phase as a function of
the exit rate 3 for any values of the parameters [, # and E. When oligomers strongly
repel each other (F — —o0), it can be shown that

12— ) — /B2 +4(1 —
o 12=8) 2({26_1) ) )

For monomers (/= 1), this reduces to puyp = (1 — 8)/(2 — 3), which has been found
before for TASEP of interacting monomers [35]. For the case of strong attractions
(E — 00), as expected, the particle current approaches to zero and the HD region spans
the complete phase diagram. In the absence of interactions between the neighboring
oligomers, the condition for the HD phase yields pgp = (1 — 8)/l, which is fully con-
sistent with known results for the non-interacting particles of size [ [37]. Finally, the
particle current in the HD phase is found by using equation (30) with p = pgp. For
example, in the case of strong repulsions, we have

JHD:< 3 )<Z(2—6)—\/6212+4(1—6))_ w0

L=1)\ 2+18+ /B2 +4(1 - pB)

We, now, estimate the positions of boundaries between different stationary phases.
It can be shown that for entrance rates a < ., the system is in the LD phase with
the particle density ppp(«), while for a > a, the system crosses into the MC phase
with the particle density pnmc, which is independent of the entrance rate. Thus, the line
a = o, provides a second-order continuous phase transition line between the LD and
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Figure 6. Phase diagram for interacting oligomers of size [ for § = 0.5 and (a)
E = —5kgT; (b) E =5kgT. Lines are theoretical predictions and symbols are the
results of computer simulations for the open boundary condition with L = 1000
sites.

the MC phases. The value of a. can be obtained by substituting pyc in equation (33).
For the case of strong repulsions (F — —o00), equation (33) yields

Vi+1-1 1
Qe = = ) 41
[ VIi+1+4+1

which for [=1, gives a, =2 —1, in agreement with the results for non-interact-
ing dimers [36]. In the case of no interactions (£ =0), our calculations produce
o, = 1/(1 + V1), which again reproduces the earlier results on TASEP for non-interact-
ing particles [36].

Similar calculations can be done to show that the line 8 = (. gives the second-order
continuous phase transition line between the LD and the MC phases. For strong repul-
sions, this leads to

5, = (P—1l-4)+@d-DVI+1  VI+142
° PGIT1-1) S EE (42)

For E=0, we have 8, = 1/(1 + /1), as found earlier for the non-interacting Fmers—
see [36]. Furthermore, analyzing equations (41) and (42), one might conclude that
increasing the size of oligomers should decrease the fraction of the phase diagram
occupied by LD and HD phases in favor of the MC phase because for [ > 1, we have
e = P~ 1/\/7 — 0 (see figure 6).

The LD-HD phase boundary line describes a first-order phase transition at which the
density changes abruptly from prp to pup. The phase transition line can be obtained by
equating Jyp and Jpp. All three phase transition lines meet together at a special point
with the coordinates (a., 5.), which is known as a triple point. Stationary phase dia-
grams for interacting oligomers of different sizes are presented in figure 6. One can see
that increasing the size of the interacting particles shrinks the LD and the HD phases
and increases the MC phase, as we already predicted above. This figure also shows that
our theory agrees quite well with computer simulations, and the agreement is better for
LD-MC phase boundary than for the HD-MC phase boundary. It is possible that the
last observation is the result of weaker correlations in LD phase in comparison with HD
phase because of the smaller particle density.
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5. Correlations

The extended size of the particles and the presence of interactions between them induce
correlations in the system, which strongly influence the dynamics and the stationary
behavior of the system. Our theoretical method allows us to explicitly evaluate the
strength and the sign of such correlations. For this purpose, we introduce a correlation
function C,

C=P(ri=l, " Tiu="1L) - Pln=1)P(n.=1L)=c—p. (43)

The physical meaning of the correlation function C'is the following. If the left end of
the oligomer of size [ is found at the site 4, it affects the probability of finding the left
end of another oligomer at the site i+ [, and the correlation function C measures this
effect. If there are no correlations, we have C'=0, i.e. the probability of finding the
oligomer at the neighboring site is independent of the occupancy of the given site. The
case of C'< (0 means that the presence of the particle at the given site decreases the
probability of finding another oligomer next to the original oligomer, i.e. the negative
correlations. The case of C'> 0 describes the positive correlations when the presence
of the particle at the site 7 increases the probability of finding the oligomer at the site
i+ L

Figure 7 shows the results of explicit calculations for the correlation functions of
oligomers of different sizes [ for the different splitting parameters 6 as a function of the
interaction energy E. The calculations are done at the conditions that correspond to
the MC phase, and we also present Monte Carlo computer simulations to compare with
our theoretical predictions.

Our theory suggests that for repulsive interactions the correlations are negative
(C'< 0), they are almost independent of the value of the splitting parameter 6 and the
amplitude of correlations decreases with the size of the particle. One can see it more
clearly when EF — —o0, the equations (12) and (43) yield

1
(+1+V1+1)2 (44)

For attractive interactions, we predict that the correlations are positive (C' > 0), they
depend on 6 and generally they are stronger (although also decreasing with [). For
E — o0, it can be shown that

C =p(l—p). (45)
The calculations indicate that the correlations disappear for strong attractive interac-
tions when 0 < 0 < 0.5, and C'= (2] — 1)/(422) for 0.5 < 0 < 1. Thus, our theory predicts
a non-monotonic behavior for C as a function of the interaction strength. Surprising

results are found for very weak interactions between the oligomers. For £F= 0, it is
found that

C=—p*=—

(=1p*  Vi-1
1-=(=1)p) UVI+1)? (46)

This suggests that, in contrast to interacting monomers (= 1), correlations are not
zero for [-mers when there are no interactions: see figure 7(b) inset. The correlations for

O —
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Figure 7. Correlation functions C for different size oligomers in the MC phase as
a function of the interaction energy F for the splitting parameter (a) 6 = 0; (b)
f = 0.5; (c) 8 = 1. Curves are theoretical predictions, while symbols are from Monte
Carlo computer simulations for the open boundary condition with L = 1000 sites.

interacting oligomers disappear for weak repulsive interactions. These observations can
be explained using the following arguments. In the MC phase the fraction of the empty
sites decreases with the size of the particle as ~1/v/] even when there is no interaction.
This means that the probability of finding two oligomers next to each increases with .
This corresponds to the appearance of effective interactions, which is canceled by weak
repulsions. Intriguingly, the maximal possible current (see figure 5(b)) is found close to
these conditions.

Comparing our theoretical predictions with the results from Monte Carlo simula-
tions, we notice that a very good agreement is found for the repulsive interactions in all
regimes, while for attractive interactions the agreement is only semi-quantitative but it
strongly improves for larger [. As we explained before, the least successful performance
of our theory is found at the limiting cases for § = 0 (for repulsions) and for 6 = 1 (for
attractions). These observations can be explained by noting that for repulsions the
density correlations are weaker than for the attractive interactions. In addition, the
correlations decrease with the size of oligomers I. Because our theory is based on taking
into account short correlations (inside the cluster of two neighboring lattice sites) it
works well for the situations with relatively weak correlations, as found for the repul-
sions and generally for large [ particles.
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6. Summary and conclusions

To summarize, stimulated by biological transport phenomena we developed a new
theoretical description to analyze the dynamics of interacting oligomers moving on
one-dimensional lattices. Our approach is based on extending the TASEP models for
extended particles to include the interactions between them, which are taken into
account using thermodynamically consistent arguments. Because interactions and the
extended sizes of the particle induce significant correlations in the system, our method
employs cluster mean-field calculations that partially account for them. Analytical
calculations are also supported by extensive Monte Carlo computer simulations.

Our theoretical calculations indicate that the dynamics of interacting oligomers
differ significantly from the dynamics of interacting monomers. First, the TASEP
model for interacting oligomers is considered for PBC. It is found that the fundamental
current-density relation depends on the strength of interactions. A single-maximum
curve for attractions and for weak repulsions is modified into a two-maximum curve for
stronger repulsions at the critical interaction energy. This critical interaction is more
negative for larger oligomers, and it also depends on the value of the splitting param-
eter 6, which specifies how interactions affect the transition rates in the system. Next,
our analysis shifts to the dynamics of interacting oligomers under the OBC. Similar to
many TASEP models, three possible stationary phases (MC, LD and HD) are identified
and fully described for thermodynamically consistent OBC. It is found that phase
boundaries, particle fluxes and bulk densities depend on the size of the particle, on
the strength of interactions and how these interactions affect transition rates in the
system. The analysis suggests that the largest particle flux can be achieved in the MC
phase for weak repulsions, and it is independent of the size of oligomers. To explain the
dynamic properties of interacting oligomers, correlations in the system are analyzed
in detail. We determined that correlations are negative for repulsive interactions, and
positive for attractive interactions. But the amplitude of correlations decreases with
the size of extended particles, and it is generally stronger for attractive interactions. It
is also shown that in the case of no interactions, the correlations are positive for Fmers
(although decreasing with the size), in contrast to the monomers where the correla-
tions are zero for £ = 0. Our calculations indicate that for oligomers the correlations
disappear in the case of weak repulsions, which might be related with the observation
of the MC at these conditions. The presented theoretical method based on the cluster
two-site mean field analysis shows a very good agreement with computer simulations
for most ranges of the parameters, with the exception of some limiting cases where the
qualitatively correct behavior is still predicted. We also argue that our theory works
better for larger sizes of the oligomers.

Although the presented theoretical approach seems to capture the main physical
features of the system of interacting extended-size particles, there are several issues
that still needs to be addressed. Our theory does not work well in the limiting cases
when the interaction affects only the formation of the bonds or only the breaking the
bonds between the oligomers. But possibly these problems can be resolved by extend-
ing our method into three-site or more sites cluster mean-field calculations. In addi-
tion, real biological transport phenomena include dissociations and associations at any
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locations on the lattice, and the transition rates might be also position-dependent. It
will be interesting to extend the presented theoretical method to take these realistic
features into account.
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