“It Broadens My Mind”: Empowering People with Cognitive
Disabilities through Computing Education

Varsha Koushik and Shaun K. Kane
Department of Computer Science
University of Colorado Boulder
Boulder, CO, USA
{varsha.koushik, shaun.kane} @colorado.edu

ABSTRACT

Computer science education is widely viewed as a path to
empowerment for young people, potentially leading to
higher education, and development of
computational thinking skills. However, few resources
exist for people with cognitive disabilities to learn
computer science. In this paper, we document our
observations of a successful program in which young
adults with cognitive disabilities are trained in computing
concepts. Through field observations and interviews, we
identify instructional strategies used by this group,
accessibility challenges encountered by this group, and
how instructors and students leverage peer learning to
support technical education. Our findings lead to
guidelines for developing tools and curricula to support
young adults with cognitive disabilities in learning
computer science.

careers,

CCS CONCEPTS

« Human-centered computing — Accessibility — Empirical
studies in accessibility

KEYWORDS

Cognitive disability; computer science education; accessibility.

ACM Reference format:

Varsha Koushik and Shaun K. Kane 2019. “It Broadens My Mind™:
Empowering People with Cognitive Disabilities through Computing
Education. In 2019 CHI Conference on Human Factors in Computing
Systems Proceedings (CHI 2019), May 4-9, 2019, Glasgow, Scotland, UK.
ACM, New York, NY, USA. 12
pages. https://doi.org/10.1145/3290605.3300744

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

CHI 2019, May 4-9, 2019, Glasgow, Scotland, UK.

© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5970-2/19/05...$15.00.

Figure 1. Members of Code Club work together on
programming projects. One member works with an
instructor to solve a programming problem.

DOIL: https://doi.org/10.1145/3290605.3300744

1 INTRODUCTION

Computer science education is quickly becoming a core
skill for young people around the world. Developing
computer science skills can lead to opportunities in higher
education and can lead to gainful employment. It is
estimated that there will be over one million job openings
in the field of computing by the year 2020 [6]. Computer
science skills are also essential to work in STEM and in
many non-STEM fields [25]. Aside from learning skills
directly related to computing careers, learning computer
science can also develop computational thinking skills,
which can be useful throughout one’s life [4].

In recent years, many groups have examined barriers to
participation in computer science. Organizations such as
AccessComputing [7] and AccessCSForAll [18] have
focused on identifying and addressing barriers
encountered by students with disabilities while studying
computer science. People with disabilities represent up to
15% of the K-12 student population [20] and many may
experience accessibility issues when learning computer
science.

While much research has addressed accessibility issues in

computer science for people with vision-related

mailto:Permissions@acm.org

disabilities (e.g., [1, 16, 34]), relatively little research has
explored cognitive accessibility issues in computer
science. One barrier to including students with diverse
cognitive abilities is the lack of pedagogical resources
tailored to this population [13]. This is a chicken-and-egg
problem, as there exist relatively few examples of
computer science courses or workshops that address this
population, making it more difficult to identify successful
strategies for including this population in computer
science education activities.

In considering how to include individuals with cognitive
disabilities in computer science education, several
questions arise. First, how do we adapt curricular
materials to work best for this population? Second, what
developer tools, technologies, and project types may best
support this population in learning computer science?
Third, how can we structure computer science educational
activities to best support these learners? Much of the
recent interest in computer science education has focused
on the attainment of jobs [26], while the design for user
empowerment approach [19] has focused on empowering
people with disabilities to build their own assistive
technology. What learning outcomes are ideal for
computer scientists with cognitive disabilities?

To explore these issues, we present a qualitative study of a
technology and programming group that targets young
adults with moderate to severe cognitive disabilities. For
two years, this group, which we will refer to as Code Club,
has trained young adults with cognitive disabilities to
work as information technology professionals, and has
increasingly incorporated aspects of computer science into
its curriculum. We report on a series of field observations
and interviews with instructional staff and members of
Code Club. Our research to date has focused on
understanding how this group has developed its own
computing curriculum, how they have identified and
overcome accessibility barriers, and how members have
gained new skills through their participation. By
highlighting a program that has successfully reached this
underserved population, we identify accessibility
challenges and strategies for overcoming these challenges
to create an inclusive computer science curriculum. Our
research explores the following research questions:

RQ1. What accessibility challenges do members of this
community encounter when learning computer
science?

RQ2. What workarounds have they developed to address
these challenges?

RQ3. How do members of the community work together
to address individual and group accessibility
challenges?

RQ4. How do members of the community believe they
benefit from learning computer science?

2 RELATED WORK

2.1 Education and Cognitive Disabilities

Lewis [22] provides an overview of human-computer
interaction challenges for people with cognitive
disabilities. Lewis highlights challenges related to
communication and working with complex written
materials, and additionally notes that a major challenge is
that individuals with cognitive disabilities are
underestimated and are thus excluded from educational
opportunities.

Much research about educational approaches for students
with cognitive disabilities has built upon the Universal
Design for Learning (UDL) framework [32]. UDL has been
used to support computer science learning [14,15,28]. This
approach emphasizes practices such as representing
information in multiple formats, providing clear step-by-
step instructions, interleaving instruction with inquiry
activities, and facilitating peer-to-peer learning [23,33].
While the teaching staff at our field site did not formally
follow UDL practices, their work provides an example of
how these principles may be adopted in an informal
educational setting.

2.2 Inclusive Computer Science Education

Much research on inclusive CS education has focused on
making CS accessible to blind and visually impaired
students. A blind student who is able to overcome
inaccessible development tools can often perform as well
as any sighted person and may pursue higher education in
CS or a career in computing. Thus, research on the
accessibility of CS education for blind users can benefit
from studies of successful blind programmers (e.g., [1])
and a comparatively large population of students who
wish to learn CS. As a result, researchers have developed
and tested a variety of alternative computer science tools
for blind programmers, including alternative code editors
[17,24], new programming languages [34], and tangible
programming toolkits [37].

In comparison to blindness, very little research has
explored challenges faced by people with cognitive
disabilities or approaches to addressing these challenges.
Much of the existing research focuses largely on people

with mild learning or cognitive disabilities. For example,
Powell et al. [27] explored how dyslexia affects the ability
to learn computer science, and Thompson [38] studied the
programming practices of children with dyslexia.

Almost no research has explored new programming tools
for people with cognitive disabilities. Instead, much of this
work has focused on pedagogical practices such as UDL,
and the use of existing programming tools. Much of this
research has focused on block-based programming
languages, which offer a simplified, highly visual
environment for experimenting with code [29]. Block-
based languages are often designed for children, although
they may be useful to the general population as well,
including adults with cognitive disabilities. Taylor et al.
[31] introduced block-based programming to elementary
school students with Down Syndrome and found that the
students responded positively to the system’s multimodal
input and output capabilities. Another recent article [36]
documented how one special education teacher has used
block-based programming in their classroom. While our
present study focuses on educational practices using
existing technology, it provides insight into how these
technologies may be adapted to support learners with
cognitive disabilities.

2.3 Computer Science and Empowerment

There are many potential benefits to learning about
computer science, and some of these benefits are
especially important for people with disabilities. As noted
previously, computer science skills may lead to
employment opportunities. Buehler et al. [5] explored
how people with cognitive disabilities could learn 3D
printing skills and leverage these skills to create and sell
objects, and recently Microsoft has begun a program to
hire neuro-diverse engineers [30]. Developing
computational thinking practices may lead to general
improvements in problem solving skills [40]. Learning
how to work with data and online media can also support
self-expression and social connection [10, 21]. Finally,
developing technical skills can help empower people to
solve their own accessibility problems [12, 19]. This
research is motivated by the belief that learning computer
science can have many potential benefits.

3 FIELD STUDY

We conducted a series of observations, interviews, and
demo sessions with instructors and students at Code Club
(a pseudonym), a computer science educational program
for adults with cognitive disabilities.

3.1 Field Site: Code Club

Code Club is an educational program within a larger day
program that provides employment and independent
living assistance to people with cognitive disabilities.
Code Club has two sites, both in the United States. Code
Club meets twice per week, for four hours per day, at each
of the two sites. Both sites are managed by a single
instructor, who we refer to as Sally. To the best of our
knowledge, Code Club is the only day program for adults
with cognitive disabilities that includes a computer
science course.

Although Code Club and its associated community
program do not provide explicit inclusion criteria, they
describe their client population as “living with
developmental disabilities, autism spectrum disorder,
brain injury, mental illness, and often, accompanying
physical challenges.”

We began this research after meeting Sally at a conference
about technology and cognitive disabilities. We discussed
possible research opportunities for approximately six
months, eventually agreeing on a research plan. The first
author visited both of the Code Club sites, observing
classes and conducting interviews with members and staff.

3.2 Participants

We interviewed two instructional staff and ten Code Club
members. The members of Code Club are (mostly) young
adults with cognitive disabilities, ranging in age from 20
to 50. We did not collect individual diagnoses from our
participants as we did not believe this personal
information was relevant to our research goals. However,
all members had been admitted to Code Club (and its
parent organization) due to one or more of the following
diagnoses: Alzheimer’s, autism, brain injury, memory
disorder, developmental disability, or learning disability.
All members experienced challenges with independent
living. The study participants are described in Table 1.

Membership in Code Club was determined in part by the
participant’s ability to speak, read, and write. Sally
reported that all members except one, Teigen, were able to
read independently. Teigen was able to participate in
Code Club with the assistance of a staff member, who read
curricular materials to Teigen and constructed programs
with her input. Another member, Mark, had limited
speaking ability due to dysarthric speech and was unable
to type due to a mobility impairment.

Code Club has two membership tiers. Members begin as
trainees and are promoted to mentor after completing

some initial programming tasks. Mentors are expected to
make themselves available to help trainees and to teach
when Sally is unavailable.

Table 1. Our study participants include instructional staff,
senior students, referred to as mentors, and junior
students, referred to as trainees. All names are
pseudonyms chosen by the authors (S=staff, M=mentor,
T=trainee).

Name |Age|Gender| Role |Reading/writing | Site 1 | Site 2

Sally 53 | Female | Staff N v N
Samantha | 59 | Female | Staff N N4
Monty | 24 | Male |Mentor v v
Mark 31 | Male |[Mentor| Can read, but v

cannot type

Martin | 23 | Male |Mentor N N

Micah 27 | Male |Mentor N N
Thomas | 22 | Male |Trainee N v

Tim 25 | Male |Trainee N v

Tony 27 | Male |Trainee v v
Tina 22 | Female | Trainee N v
Tiffany | 41 | Female | Trainee N N4
Teigen | 38 | Female | Trainee| Needs assistance v

3.3 Recruitment and Consent Process

We received approval from our university’s institutional
review board before contacting any of the Code Club
members. Our initial contact with the Code Club members
was through Sally. She introduced the program to the
members, provided consent and assent forms, and
returned the consent and assent forms to the research
team. Because Sally’s experience was crucial to
understanding how Code Club works, we considered her a
participant in our study; she had no access to participant
data and had no official role on the research team beyond
distributing recruitment information and consent forms.

Although all participants were over the age of 18, some
participants were not their own legal guardians due to
their disability. We provided consent forms for all
participants who were their own legal guardians. All
student members in Code Club completed an assent form,
and their guardians completed a corresponding consent
form.

Our consent forms requested the ability to observe, audio
record, and take notes during class sessions; to interview
participants; and to collect photographs to document the
class. All students and staff members indicated their
assent or consent to participate in the research.
Participants were compensated for their time.

3.4 Data Collection

Our research team collected data at each site over two
weeks. Data collection activities consisted of observations,
interviews, and project demos from Code Club members.

Observation of Code Club Sessions. Our research team
attended two class sessions at each site, participating in a
total of 16 hours of class time. Class sessions included
lecture presentations from Sally, group discussions, and
project time. The structure of the teaching sessions was
similar at both sites, although each site featured a
different set of participants and took place in a different
classroom. The first author observed the class sessions,
took notes and pictures, and video recorded some group
discussions.

Interview with Program Director. Our research team
conducted several interviews with Sally, the director and
founder of Code Club. We conducted a formal, 90-minute
interview with Sally and participated in several brief
follow-up conversations. Discussion topics included the
formation of Code Club, her criteria for recruiting
members into Code Club, and her teaching strategies.

Interviews with Members. Our research team conducted
one-on-one and small group interviews with each
member. Interviews occurred either before or after class
sessions. Sally took part in each interview in accordance
with the parent organization’s policies. During Mark’s
interview, Sally helped interpret his responses due to his
dysarthric speech. Interviews ranged between 15 and 90
minutes long based on the participant’s level of
engagement and on scheduling constraints. Interviews
were audio recorded with the participant’s permission.

Curricular Materials and Project Demos. Sally shared her
curricular materials, including programming tutorials,
project documentation, and course policies, with our
research team. We collected and scanned these materials
and discussed them during our interview with Sally. All
Code Club members demonstrated at least one of their
coding projects for our research team. Demonstration
sessions occurred along with the interview sessions.
Demonstration sessions were audio and video recorded.

3.5 Data Analysis

We analyzed all of the data, including interviews,
observations, and documents, as a single data set. We used
open coding [34] to identify themes in the data. All
themes were initially identified by the first author and
revised collaboratively by the research team.

4 FINDINGS

We collected and analyzed data regarding the structure of
Code Club, curriculum design strategies, accessibility
challenges faced while learning computing, and Code
Club’s peer mentoring model.

4.1 Forming Code Club

We discussed the formation of this program with Sally,
the program director and primary instructor. Before
starting Code Club, Sally worked as a social worker and
SQL database administrator in Code Club’s parent
organization. Sally was then promoted to the role of
Director of Information Technology. As Director of IT,
Sally was responsible for researching and testing new
assistive technologies that might be helpful to the
program’s members. As she worked with members to test
these technologies, Sally began to recognize their
expertise in using and evaluating assistive technologies.
Sally decided to formalize the members’ technical training
in an educational program that became Code Club:

Sally: I thought who better to help with this work than the
people I work with and provide services to? They are the
best testers in the world. They are the ones that are going
to use the technology, who better to test it than somebody
who has insight on how it’s going to work because they are
going to be the users. They are testing it because they are
ultimately going to use it, they have insight about it.

Code Club began with a focus on using and configuring a
variety of technologies, especially smart home and
Internet-of-Things technologies, with the hope that these
skills might lead to employment. The computer science
curriculum began in Code Club’s second year, as Sally felt
that members had mastered the smart home technologies
and were ready to further develop their skills:

Sally: The coding came as an idea because getting more
into SmartThings ... you can also program SmartThings. If
we want to get them to the point to do that, we need to step
back and begin teaching them programming.

4.2 Recruiting Club Members

While Sally noted that she was eager to grow Code Club,
she found that identifying and recruiting new members
was one of her most challenging tasks. Although some
individuals sought out membership in Code Club, Sally
usually found potential members by visiting group homes
and participating in community events.

The official criteria for joining Code Club are: interest in
technology, ability to work in a group, motivation,
professional behavior, and an ability to commit to

between six and twelve months of instruction. When
asked to describe her personal criteria for recruiting
members, Sally noted that members should have
experience using technology in their homes, should have
an interest in helping others, and should be able to
independently read large blocks of text. However, some
members were able to enter Code Club without meeting
all of these criteria. For example, Teigen is unable to read
independently, but was selected for her interest in the
program, and she participates with the assistance of a staff
member. Overall, Sally noted that most people who had
entered Code Club were successful, although some early
members had left the program because they found it
stressful.

4.3 Curriculum Design Strategies

A major part of Sally’s work involves choosing topics,
finding appropriate teaching materials, and adapting those
materials for use in Code Club. Because her background is
primarily in social work, rather than in computer science,
Sally often needs to teach herself how to use the
technology before she can figure out how to teach it to
Code Club.

Choosing Technology. The first step in creating Code
Club’s curriculum is to identify platforms and
programming languages. Sally generally chooses
technologies that she thinks students would be excited to
learn about and that are at an appropriate level of
difficulty. When choosing a new technology, Sally also
considers how learning about that technology could
support members’ future educational or employment
goals:

Sally: All the technologies that we choose are based on the
needs of the people we serve.

Initially, the Code Club curriculum focused on physical
computing and assistive technologies. Sally encourages
Code Club members to work on assistive technology
projects as she feels members may have special expertise
as users of assistive technologies. An early project that
was particularly successful was a smart pillow that can be
used by a person with limited speech to communicate
with caregivers at home. The pillow detected the number
of taps on the top of the pillow and, based on the tap
count, speaks out a recorded phrase. The project consists
of the pillow, some sensors from another smart home
device, and a Makey-Makey board (Figure 2).

Figure 2. Code Club members demonstrate a prototype
smart pillow. Sensors on the pillow detect taps and play an
audio message based on the number of taps.

After members demonstrated success in working with
smart home technologies, Sally felt that the group might
be able to handle more complex technical challenges,
including creating their own computer programs. Sally
examined several programming tools that targeted novice
programmers, including code.org, Python, and Scratch.
Sally eventually decided to teach Scratch, as she felt that
its simple structure and visual nature could be appropriate
for her members, and because she was able to find high-
quality instructional resources online. Sally described
Scratch as a tool that is appropriate for all ages:

Sally: The basis of Scratch is applicable to anybody ... it’s
not just being used in school systems anymore. It’s being
used in ... senior centers and high schools and everywhere
else so the stigma that it is for kids is long gone.

Choosing Course Materials. In addition to choosing a
technology to teach, Sally noted that she spent a
considerable amount of time searching online for
curricular materials for her students. Sally described the
criteria she used to identify lessons that would be
appropriate for Code Club.

First, instructions must be simple and well-structured.
Each step should be presented simply, with not too much
text on screen, and with simple navigation between pages.
Instructions with too much text or a complex page layout
would be discarded. Sally often chose tutorials that were
intended for K-12 students, as they often feature simple
writing and clear lesson plans.

Second, Sally noted that instructions should use visual
aids when possible. Many Code Club members enjoyed
learning from video tutorials. Instruction pages should
have straightforward visual layouts with clearly marked
headings. These pages should also have example
illustrations and checklists. Sally described one

educational web site that she thought was too visually
complicated for her students:

Sally: Like where do they start? They’re going to be
thrown off by the information on the left side, they’re
going to be thrown off by the information on the right side,
they’re lost. Anything that has ... information that can
throw you off, you’re gone!

Finally, the design of the programming language itself
helps to guide the choice of lessons. For example, Scratch
uses colors to distinguish different code elements, which
is helpful for members who are less skilled with reading
text.

At the time of our data collection, Code Club was
following using a series of online Scratch ' tutorials.
Students began with a simple project that included heavily
scaffolding. Scratch’s remix feature proved useful here, as
a student could easily build on an existing project. As a
student developed their programming skills, they moved
to more complex lessons with fewer explicit instructions.
Finally, students moved to their own independent
projects.

Members’ projects typically started simply, but could
grow to be quite sophisticated, including multiple types of
audiovisual media along with computational concepts
such as sequential program flow, conditional statements,
loops, and input events.

4.4 Teaching Computer Science Thinking

In addition to learning how to write code, Code Club
members practiced planning programs, debugging code,
and seeking out help.

Learning How to Create a Program. Mentors and trainees
often worked together to plan out programs before
writing them. Members sometimes began by exploring the
Scratch online repository for ideas, looking at other
projects’ code to see how the apps worked. This activity is
easy in Scratch, as anyone can see the source code for any
other project. Some members also wrote out plans for
their program before writing their code. Sally encourages
members to break down a project into smaller steps. For
example, when member Monty decided to make a racing
game, he first worked with Sally to write down the
program structure on the whiteboard (Figure 3).

! scratched.gse.harvard.edu/guide

D(\Jw)fﬁ_f Gama

- Cec /‘Iruck
- 'Eﬁ{{’ofw\r- Bace ok,
- \A*’* e ru."H-\u)— Cres\ |

|
- ex(LEINTY
« Spndt eflecd

~Seore

Figure 3. Plans for a driving game are sketched out on the
whiteboard to help a student create the program.

Debugging and Getting Help. Code Club members used
various strategies to identify and fix problems in their
code. Most commonly, members would first ask another
member for help. If the members were unable to solve the
problem themselves, they might then ask Sally for help.
Sally emphasized the importance of teaching the members
to think through a problem, asking probing questions
about the problem and encouraging them to break down
the problem into smaller steps.

In some cases, Sally would ask a member to present their
problem to the entire group. The member would then
show their code on a large shared display and describe
their problem to the group. This group conversation
helped all members to learn to identify and solve common
problems, while the member who was stuck often figured
out what the problem was as they were explaining it to
the group. This form of “rubber duck debugging” [11] was
found to be helpful for many Code Club members.

4.5 Accessibility-Related Challenges

Members of Code Club often experienced typical
programming problems during their work. For example,
Monty demonstrated a Scratch animation in which two
fish swam through an aquarium. Initially, one fish moved
in the wrong direction. After talking through the problem
with Sally and Mark, Monty realized that the fish sprite
was accidentally rotated 90 degrees. In addition to these
problems, Code Club members experienced some
challenges that were less typical.

Reading and Understanding Code. Some Code Club
members experienced difficulty in reading and
understanding the structure of code blocks. Although
Scratch’s use of color to identify blocks was usually
considered helpful, complex code structures with multiple
blocks could still be difficult to understand.

While the color-coding of blocks was generally helpful,
members sometimes became reliant on them, which could
limit their ability to understand the code itself. Sally

noticed this problem and began testing members by
printing out lessons in black-and-white so that they would
have to read the code rather than relying on the color of
the blocks.

Gaps in Programming Knowledge. Code Club members
typically followed a sequence of tutorial documents
selected by Sally. In completing these tutorials, members
practiced using language features such as sequential
program flow, conditional statements, and loops.
However, sometimes the lessons would skip or gloss over
important concepts such as variables, and Code Club
members tended to have little or no knowledge of how to
use these features, causing them to get stuck when they
attempted to create more complex programs. Because they
were used to learning from Sally’s hand-picked lessons,
members were often unable to seek out help online, and
instead required in-person help from Sally or a mentor.

Following Tutorials. Code Club members used both written
and video tutorials when learning Scratch. Videos, GIFs
and images could be especially useful for those members
who were less confident readers. However, several
members experienced a particular challenge when
following along with image-heavy tutorials: they confused
the tutorial window and the code editor window. For
example, Figure 4 shows a Scratch code editor window
with a tutorial open beside it. Members would
occasionally confuse these two windows, accidentally
clicking on images of code in the tutorial window rather
than the “real” code blocks in their editor. Sally considered
this a common problem:

Sally: Sometimes they don't realize you go all the way
over to the left to click, and the on-screen tutorials are
sometimes ... too hard for somebody to do because they are
trying to click on what they are being demonstrated on, so
when it says create a new sprite and they show the picture
of the new sprite, they are clicking on what it’s showing
them versus going to the left side to click it.

To address this problem, Sally often provided a member’s
early lessons as a paper print-out, rather than pointing
them toward an online tutorial.

S
=2]
=

Figure 4. Scratch code editor next to a tutorial. Tutorial
images were sometimes mistaken for the code editor itself.

Time and Project Management. Although Sally attempted
to find projects that could be completed within the Code
Club meeting schedule, members sometimes struggled to
complete their projects. When members become tired or
frustrated, they sometimes sit quietly instead of working,
as they are not always able to leave the group meeting on
their own. These problems could sometimes be addressed
by helping a member through a difficult task, or by giving
them a new project to work on.

Problems with Assistive Technology. Some Code Club
members had other disabilities and required the use of
assistive technologies. These technologies sometimes
caused problems when programming. For example, Mark
had recently begun using a head mouse to control his on-
screen pointer. Initially, Mark struggled to use the head
mouse and asked the staff several times to reconfigure its
settings. After finally finding the appropriate
configuration, the head mouse’s battery died, leaving
Mark unable to use the computer himself. Fortunately,
staff member Samantha was available, so Mark was able to
dictate his code to her, although he was unable to
complete the project independently as he had originally
hoped.

Because Code Club computers were shared between
members, one member’s settings sometimes interfered
with another member’s work. In one session, Tiffany
attempted to open Scratch but found that her mouse was
configured such that the cursor moved in the opposite
direction from the mouse. She expressed frustration about
the situation but could not explain the problem and thus
could not request help. After some time, Sally came over
to see her screen and helped her correct the mouse
settings.

4.6 Collaborative Work and Peer Mentoring

Although Code Club’s peer mentoring model was initially
developed in part due to the lack of instructional staff, it
has become central to how members see the program.
Code Club members work collaboratively in a number of
ways.

Mentoring and Teaching. After completing some
introductory programming tasks, members are promoted
from trainee to mentor. Mentors are expected to help
trainees with their technical problems; because mentors
have completed the trainee phase, they often recognize
the trainee’s problems and know how to solve them.

Mentors also run class sessions once per week while Sally
is leading class at the other site.

Several members expressed pride in their role as mentor
and teacher. During his interview, Monty shared a
prepared statement about his role as a teacher:

Monty: It’s that the more I get the people that I teach
involved, the more they’re willing to learn. The more I ask
them questions and get them to understand, the more
things they do on the computer gets them more involved.

Sally considers this peer mentoring to be a core part of
how Code Club members learn:

Sally: The more they [teach], the more they learn it.
That's the way I learn. The way I've seen most people learn
best, is if you can teach it, you know it. The more they're
teaching it, the more they know it.

Different mentors adopted different specialties. For
example, Martin was especially interested in learning
about different types of assistive technologies and took an
active role in researching new technologies.

Helping People Like Themselves. Some mentors expressed
that they found it rewarding to help other individuals
with cognitive disabilities. When discussing his teaching
work, Monty expressed pride in his ability to help others:

Monty: For me, it’s a great experience to work with people
who have the same disabilities as me, well, not the same
but almost the same, and be able to teach them something
that they have never done before.

When working with trainees who had similar disabilities,
some mentors noted that they felt that they had particular
insights into the challenges the trainees experienced.

Sometimes members were able to work with each other
when they had difficulty requesting help from an
instructor. Martin and Micah, who are both infrequent
communicators, typically worked alone and rarely asked
for help. However, during one project, Martin became
stuck and asked Micah for help. Micah offered his help,
and the two worked together for the remainder of the
project.

Dividing Labor. In some cases, a member was unable to
complete a task, either due to a lack of understanding or
due to an accessibility barrier. In these cases, group
members would sometimes break down a task in order to
solve a problem together. For example, when Mark’s head
mouse stopped working, Samantha was able to input his
commands into the computer. In another case, Mark,
Monty, and Sally were working together to build a
physical computing project involving multiple sensors.

Because of Mark’s limited mobility, he focused on writing
the program code using a tablet, while Monty placed the
physical components and Sally connected the wiring.
Although this project would have been a challenge for any
one member, the group was able to complete the project
by working together, each member choosing the
appropriate task for their abilities in a form of
collaborative accessibility [3].

Supporting the Community. To help Code Club members
gain practical knowledge, Sally incorporated a public
service model into the Code Club curriculum. In this
program, members go to group homes or other
community facilities and set up smart home technology.
Members participate in several community technology
sessions, gaining independence with each subsequent
visit, first following instructions from Sally, then
providing instructions to Sally, and finally working alone.
Currently, most members are still in the first stage; only
Monty and Mark have completed an independent project,
which was setting up a Wi-Fi-powered, color-changing
light bulb in a classroom of one of the day programs.

4.7 Outcomes Beyond the Classroom

Most of our conversations with Code Club members
focused on their programming activities within the class.
However, members also discussed how participating in
Code Club has impacted their lives outside of class, and
how their computer science work helped to support their
long-term goals.

Career Goals. One of Sally’s primary goals in creating
Code Club was to prepare members for jobs in which they
could use their technical skills. She hopes that members
will “learn ... to be able to truly code and get jobs in the
fields they choose.” Members often expressed interest in
technical careers. When asked about his career goals,
Monty said:

Monty: I hope that one day I can have a job with
something like this, that’s kind of my intention, look
forward to a job with technology and that kind of stuff ...
Honestly [my dream job] would be to work at Google.

Since Code Club began, one member graduated from the
program and accepted a job at the local library, where he
works on the library’s social media outreach activities.

Helping Others. Several members talked about how they
had used their technical skills to solve problems in their
everyday lives. Tina described how she helped her mother
fix a problem with her mobile phone: the phone was
turned off and her mother did not know how to turn it

back on. Because of her experiences with technology, Tina
knew to hold down the power button to turn it back on:

Tina: It wouldn’t come on, just had to hold the power
button and turn [it] on.

Both Mark and Monty described how they were able to
answer technical questions from friends and colleagues in
their group home. Mark described helping friends with
mobile applications and smart home devices. Monty
mentioned that practicing his teaching skills in Code Club
helped him teach staff members in his group home:

Monty: It’s really interesting that I can teach [Code Club]
and be able to teach my staff. If they don't know how to set
up something, I can help.

Developing Social Skills. Sally noted that an often unstated
but important goal of Code Club is to promote social skills
such as leadership, teamwork, timeliness, and self-
confidence. Several members discussed how participating
in Code Club helped them develop new skills. For
example, Monty described how Code Club helped him to
discover his fondness for teaching:

Monty: I love to teach and show my knowledge about
technology and give it to other people.

While describing what he has learned in Code Club,
Monty also noted that learning to program led him to a
new way of thinking:

Monty: Programming for me is kind of like ... it broadens
my mind a little bit. It kind of makes me smart, I don’t
know, a little smarter than I originally was. The more I
learn, the more I can teach other people.

Code Club has motivated members to feel more confident
about their own abilities. When Martin first joined Code
Club, he planned on finishing the course and going back
to live with his parents. After participating in Code Club
for a year, Martin is now committed to finding a job and
becoming more independent.

Finally, participating in Code Club has also helped some
members practice their social skills. When Tina first
joined the group, she would cry if the instructors spoke to
her. After four months in Code Club, Tina is now able to
speak to her peers and agreed to participate in this
research study. Micah, who was shy and
noncommunicative when he began the program, now
frequently helps his peers with their projects.

5 DISCUSSION

Our initial inquiry into Code Club was motivated by an
interest in understanding whether it was successful and, if
so, how it was able to be successful. To the best of our
knowledge, Code Club is the only program of its type in
North America. In attempting to understand Code Club’s
success, several factors stood out: the program director’s
combined expertise in social work and technology, the
focus on developing technical and professional skills for a
future career, and the comprehensive use of peer
mentoring. While Code Club is a unique organization,
these qualities could certainly be passed on to other
programs, and we hope that our exploration of what
makes Code Club work can lead to the development of
similar programs in the future.

In studying Code Club and its members, we also sought to
identify any unique accessibility challenges experienced
by members of this community. We found that Code Club
members experienced many of the challenges that anyone
would experience while learning technology. When
members did encounter an unusual challenge, such as the
confusion between the code editor and tutorial document,
the mentors and staff were often able to find a solution.
Documenting these challenges and workarounds may lead
to new tools and curricula to better support people with
cognitive disabilities in learning computer science.

Finally, we sought to understand what types of incentives
might best motivate adults with cognitive disabilities to
learn computer science. As with many computer science
students, Code Club members were often motivated to
develop their technical skills in order to seek a career in a
computing-related field. However, we also found that
members were motivated to develop new assistive
technologies and to teach and support other people with
disabilities. Members were also motivated by the belief
that participating in their program could lead to improved
social and professional skills, and several members
reported experiencing real improvements in these areas.
Understanding these motivations may support the
development of educational tools that can help this
population achieve their goals.

6 IMPLICATIONS FOR INCLUSIVE EDUCATION

Code Club serves as a successful example of engaging
people with cognitive disabilities in computer science.
Many Code Club practices reflect Universal Design for
Learning (UDL) principles such as presenting information
in multiple modalities, breaking down problems into

discrete steps, and facilitating peer learning. However,
Code Club’s practices evolved through trial and error, and
therefore may provide insights beyond the maxims of
UDL. Here we provide an overview of successful
strategies articulated by Code Club’s educational team, as
well as insights from our experience as researchers within
this community.

6.1 Code Club’s Stated Principles

While Code Club’s educational practices are complex and
are continually evolving, a few lessons repeatedly
surfaced throughout our study:

Provide simple, well-structured, and modular activities.
Activities should be presented as a series of clearly-
defined steps so that the next action is always clear.
Modular activities should support work that occurs over
multiple sessions with minimal effort needed to jump back
in. Adding checklists and question prompts between steps
can help to keep learners on track and can make it easier
for a teacher or peer to help when a student gets stuck.

Use carefully designed visual aids. Educational materials
should use color and visual layout to convey information.
Clear visual design should be applied across all learning
materials, including written instructions, the code editor,
and even the programming language itself. Provide clear
differences between the appearances of software tools and
tutorials or other documents that may depict those tools.

Support peer teaching and learning. Peer mentoring can
reduce the burden on teaching staff, but also serves as a
powerful motivator for students to advance through the
program. Providing explicit stages of advancement from
trainee to mentor may help reinforce the responsibilities
of mentorship.

6.2 Insights from Our Research

Beyond the explicitly stated principles behind Code Club’s
educational program, we note these additional practices
that have helped to support Code Club’s success, and that
may help to support similar programs in the future:

Anticipate multiple disabilities and assistive technologies.
Code Club members used a diverse set of assistive
technologies that sometimes interfered with the system
software or with other members’ assistive technologies.
Test all educational materials with a representative set of
assistive technologies. On shared devices, provide
methods for easily changing the user profile.

Support teams with complementary abilities. Code Club
members often enjoyed working together, and sometimes

used groupwork to overcome an individual’s accessibility
challenges. Provide opportunities for learners of different
abilities to work together. Design activities that can be
broken down into different types of work, such as
planning, writing code, and assembling hardware.

Encourage diverse goals and outcomes. Code Club members
were motivated by a variety of goals: getting a job,
helping their friends, giving back to their community, and
participating in social activities. Within a diverse group of
learners, not all goals may be achievable or desirable to
everyone. Encourage students to articulate their goals and
provide structures for tracking progress towards them.

7 FUTURE WORK

We are excited to continue our collaboration with Code
Club, both to explore how to support the existing program
and its members as well as to increase our understanding
of how to create and support similar programs in the
future.

One area of future research is to explore how members of
this community can transfer from Scratch and Makey-
Makey to mainstream programming languages.
Supporting knowledge transfer between education-
focused tools and mainstream programming languages
presents a number of challenges, and these challenges will
likely play out differently for Code Club members than for
the general population. A related challenge is in
identifying the technical skills developed by Code Club
members and mapping them to possible career paths.

A second area of research is in developing software tools
to overcome some of the accessibility challenges
encountered by members of this community when
programming. For example, we could design a software
development environment that provide clear visual
structure, supporting learners who have difficulty with
extensive text or complex code structure. We could also
explore how tutorials could provide clear, multimodal
explanations and instructions.

A third area of research is to consider how these
accessibility challenges vary between individuals, and to
explore adaptive systems that can build a profile of a
user’s abilities and provide personalized support.

Finally, as peer mentoring is a central part of Code Club,
we may explore technologies to support the mentoring
process, such as by providing tools for peers to share code,
debug each other’s programs, or collaborate over a
distance.

8 CONCLUSION

Studying computer science skills is seen by many as a way
to empower individuals, providing them with a potential
career path and supporting development in computational
thinking and other areas. Despite the great interest in
introducing young people to computer science, people
with disabilities are still excluded from many of the
benefits of computer science education. This exclusion is
especially severe for people with cognitive disabilities, as
few resources exist for including these individuals in
computer science education. In this work, we have
examined one organization that has successfully tackled
many of these problems and shown that it is possible to
adapt computer science curricula to support the goals and
abilities of young people with cognitive disabilities.
Understanding the challenges encountered by this group,
and how they have been overcome, may lead to more
inclusive approaches to teaching computer science.

ACKNOWLEDGMENTS

We thank our participants for taking part in our study.
We also thank Erin Buehler, Jed Brubaker, Clayton Lewis,
and Amy Voida for giving us valuable feedback. This work
was supported by the National Science Foundation under
grants 1IS-1619384 and 1IS-1652907. Any opinions,
findings, conclusions or recommendations expressed in
this work are those of the authors and do not necessarily
reflect those of the National Science Foundation.

REFERENCES

[1] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Programming
Challenges Faced by Developers with Visual Impairments:
Exploratory Study. In Proceedings of the 9th International
Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE ’16), 82-85. DOI:
https://doi.org/10.1145/2897586.2897616

[2] Jeftrey P. Bigham, Maxwell B. Aller, Jeremy T. Brudvik, Jessica O.
Leung, Lindsay A. Yazzolino, and Richard E. Ladner. 2008. Inspiring
blind high school students to pursue computer science with instant
messaging chatbots. In Proceedings of the 39th SIGCSE technical
symposium on Computer science education (SIGCSE '08). ACM,
New York, NY, USA, 449-453, DOI:
https://doi.org/10.1145/1352135.1352287

[3] Stacy M. Branham and Shaun K. Kane. 2015. Collaborative
Accessibility: How Blind and Sighted Companions Co-Create
Accessible Home Spaces. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI '15).
ACM, New York, NY, USA, 2373-2382. DOIL:
https://doi.org/10.1145/2702123.2702511

[4] Karen Brennan, & Mitchel Resnick. 2012. New frameworks for
studying and assessing the development of computational thinking.
In Proceedings of the 2012 annual meeting of the American
Educational Research Association, Vancouver, Canada (pp. 1-25).

[5] Erin Buehler, William Easley, Samantha McDonald, Niara Comrie,
and Amy Hurst. 2015. Inclusion and Education: 3D Printing for
Integrated Classrooms. In Proceedings of the 17th International
ACM SIGACCESS Conference on Computers &

https://doi.org/10.1145/1352135.1352287
https://doi.org/10.1145/2702123.2702511

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Accessibility (ASSETS '15). ACM, New York, NY, USA, 281-290.
DOIL: https://doi.org/10.1145/2700648.2809844

Bureau of Labor Statistics, U.S. Department of Labor, Occupational
outlook handbook, Computer and Information Research Scientists.
Retrieved April 16 2018 from https://www.bls.gov/ooh/computer-
and-information-technology/computer-and-information-research-
scientists.htm

Sheryl Burgstahler and Richard Ladner. 2006. An alliance to
increase the participation of individuals with disabilities in
computing careers. SSIGACCESS Access. Comput. 85 (June 2006), 3-
9. DOI=http://dx.doi.org/10.1145/1166118.1166119

Franklin, D., Hill, C,, Dwyer, H., Hansen, A., Iveland, A., and
Harlow, D. Initialization in Scratch: Seeking Knowledge Transfer,
SIGCSE, 2016.

Gerhard Fischer. 2011. Understanding, fostering, and supporting
cultures of participation. interactions 18, 3 (May 2011), 42-53. DOI:
https://doi.org/10.1145/1962438.1962450

Andrea Forte and Mark Guzdial 2004. Computers for
Communication, Not Calculation: Media as a Motivation and
Context for Learning. In Proceedings of the Proceedings of the 37th
Annual Hawaii International Conference on System Sciences
(HICSS'04) - Track 4 - Volume 4 (HICSS '04), Vol. 4. IEEE Computer
Society, Washington, DC, USA, 40096.1-.

Andrew Hunt, & David Thomas. 2000. The pragmatic programmer:
from journeyman to master. Addison-Wesley Professional.

Amy Hurst and Jasmine Tobias. 2011. Empowering individuals with
do-it-yourself assistive technology. In The proceedings of the 13th
international ACM SIGACCESS conference on Computers and
accessibility (ASSETS '11). ACM, New York, NY, USA, 11-18. DOI:
https://doi.org/10.1145/2049536.2049541

Maya Israel, Quentin M. Wherfel, Jamie Pearson, Saadeddine
Shehab, & Tanya Tapia. 2015. Empowering K-12 students with
disabilities to learn computational thinking and computer
programming. TEACHING Exceptional Children, 48(1), 45-53.

Maya Israel, Jaime N. Pearson, Tanya Tapia, Quentin M. Wherfel, &
George Reese. 2015. Supporting all learners in school-wide
computational thinking: A cross-case qualitative
analysis. Computers & Education, 82, 263-279.

Yasmin B. Kafai, Quinn Burke, & Mitchel Resnick. 2014. Connected
code: Why children need to learn programming. Mit Press.

Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking
@stemxcomet: teaching programming to blind students via 3D
printing, crisis management, and twitter. In Proceedings of the 45th
ACM technical symposium on Computer science
education (SIGCSE '14). ACM, New York, NY, USA, 247-252. DOL:
http://dx.doi.org/10.1145/2538862.2538975

Varsha Koushik and Clayton Lewis. 2016. An Accessible Blocks
Language: Work in Progress. In Proceedings of the 18th International
ACM SIGACCESS Conference on Computers and Accessibility
(ASSETS ’16), 317-318. DOI:
https://doi.org/10.1145/2982142.2982150

Richard E. Ladner and Andreas Stefik. 2017. AccessCSforall: making
computer science accessible to K-12 students in the United
States. SIGACCESS Access. Comput. 118 (July 2017), 3-8. DOIL
https://doi.org/10.1145/3124144.3124145

Richard Ladner. 2014. Design for user empowerment. In CHI '14
Extended Abstracts on Human Factors in Computing Systems (CHI
EA '14). ACM, New York, NY, USA, 5-6. DOL
https://doi.org/10.1145/2559206.2580090

Richard E. Ladner and Maya Israel. 2016. "For all" in "computer
science for all". Commun. ACM 59, 9 (August 2016), 26-28. DOI:
https://doi.org/10.1145/2971329

Amanda Lazar, Raymundo Cornejo, Caroline Edasis, and Anne
Marie Piper. 2016. Designing for the Third Hand: Empowering
Older Adults with Cognitive Impairment through Creating and
Sharing. In Proceedings of the 2016 ACM Conference on Designing
Interactive Systems (DIS '16). ACM, New York, NY, USA, 1047-1058.
DOIL: https://doi.org/10.1145/2901790.2901854

[22]

(23]

[24]

[25]

[26]

[29]

[30]

(32]

(33]

[34]

(35]

[36]

(37]

Clayton Lewis. 2005. HCI for people with cognitive
disabilities. SIGACCESS Access. Comput. 83 (September 2005), 12-
17. DOI=http://dx.doi.org/10.1145/1102187.1102190

Matthew T. Marino, Chad M. Gotch, Maya Israel, Eleazar Vasquez
III, James D. Basham, & Kathleen Becht. 2014. UDL in the middle
school science classroom: Can video games and alternative text
heighten engagement and learning for students with learning
disabilities?. Learning Disability Quarterly, 37(2), 87-99.

Lauren R. Milne. 2017. Blocks4All: making block programming
languages accessible for blind children. ACM SIGACCESS
Accessibility and Computing, 117: 26-29.

National Science Foundation. 2009. A week to focus on computer
science education (Press Release 09-234).

Hadi Partovi. 2014. Transforming US education with computer
science. In Proceedings of the 45th ACM technical symposium on
Computer science education (SIGCSE '14). ACM, New York, NY,
USA, 5-6. DOL: http://dx.doi.org/10.1145/2538862.2554793

Norman Powell, David Moore, John Gray, Janet Finlay, & John
Reaney. 2004. Dyslexia and learning computer programming.

Meg J. Ray, Maya Israel, Chung eun Lee, and Virginie Do. 2018. A
Cross-Case Analysis of Instructional Strategies to Support
Participation of K-8 Students with Disabilities in CS for All
In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE '18). ACM, New York, NY,
USA, 900-905. DOI: https://doi.org/10.1145/3159450.3159482

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez,
Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner,
Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai.
2009. Scratch: programming for all. Commun. ACM52, 11
(November 2009), 60-67. DOL:
https://doi.org/10.1145/1592761.1592779

Meredith Ringel Morris, Andrew Begel, and Ben Wiedermann.
2015. Understanding the Challenges Faced by Neurodiverse
Software Engineering Employees: Towards a More Inclusive and
Productive Technical Workforce. In Proceedings of the 17th
International ACM SIGACCESS Conference on Computers &
Accessibility (ASSETS '15). ACM, New York, NY, USA, 173-184.
DOI: https://doi.org/10.1145/2700648.2809841

Daniel Rezac. 2018. Coding for Special Ed? It’s Real and It’s
Helping. Retrieved April 16 2018 from
https://www.tynker.com/blog/articles/ideas-and-tips/coding-
special-populations/

David H. Rose, & Anne Meyer. 2002. Teaching every student in the
digital age: Universal design for learning. Association for
Supervision and Curriculum Development, 1703 N. Beauregard St.,
Alexandria, VA 22311-1714 (Product no. 101042: $22.95 ASCD
members; $26.95 nonmembers).

Snodgrass, Melinda. R., Israel, Maya., & Reese, George. C. (2016).
Instructional supports for students with disabilities in K-5
computing: Findings from a cross-case analysis. Computers &
Education, 100, 1-17.

Andreas Stefik and Susanna Siebert. 2013. An Empirical
Investigation into Programming Language Syntax. Trans. Comput.
Educ. 13, 4, Article 19 (November 2013), 40 pages.
DOI=http://dx.doi.org/10.1145/2534973

Anselm Strauss, & Juliet M. Corbin. 1990. Basics of qualitative
research: Grounded theory procedures and techniques. Sage
Publications, Inc.

Matthew S. Taylor, Eleazar Vasquez, & Claire Donehower. 2017.
Computer programming with early elementary students with
Down syndrome. Journal of Special Education Technology, 32(3),
149-159.

Anja Thieme, Cecily Morrison, Nicolas Villar, Martin Grayson, and
Sian Lindley. 2017. Enabling Collaboration in Learning Computer
Programing Inclusive of Children with Vision Impairments.
In Proceedings of the 2017 Conference on Designing Interactive
Systems (DIS '17). ACM, New York, NY, USA, 739-752. DOLIL
https://doi.org/10.1145/3064663.3064689

https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://doi.org/10.1145/1962438.1962450
http://dx.doi.org/10.1145/2538862.2538975
https://doi.org/10.1145/3124144.3124145
https://doi.org/10.1145/2971329

[38]

[39]

Rob Thompson. 2016. Teaching coding to learning-disabled
children with Kokopelli's World. In Visual Languages and Human-
Centric Computing (VL/HCC), 2016 IEEE Symposium on (pp. 258-
259). [EEE.

David Weintrop and Uri Wilensky. 2015. Using Commutative
Assessments to Compare Conceptual Understanding in Blocks-

based and Text-based Programs. In Proceedings of the eleventh
annual International Conference on International Computing
Education Research (ICER '15). ACM, New York, NY, USA, 101-110.

[40] Jeannette M. Wing. 2006. Computational thinking. Commun.

ACM 49, 3 (March 2006), 33-35, DOI:
https://doi.org/10.1145/1118178.1118215

