
SciPost Phys. 5, 004 (2018)

Dynamics of Majorana-based qubits operated
with an array of tunable gates

Bela Bauer1, Torsten Karzig1?, Ryan V. Mishmash2,3, Andrey E. Antipov1

and Jason Alicea2,3

1 Station Q, Microsoft Research, Santa Barbara, California 93106, USA
2 Department of Physics and Institute for Quantum Information and Matter, California

Institute of Technology, Pasadena, CA 91125, USA
3 Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena,

CA 91125, USA
? tokarzig@microsoft.com

Abstract

We study the dynamics of Majorana zero modes that are shuttled via local tuning of the
electrochemical potential in a superconducting wire. By performing time-dependent sim-
ulations of microscopic lattice models, we show that diabatic corrections associated with
the moving Majorana modes are quantitatively captured by a simple Landau-Zener de-
scription. We further simulate a Rabi-oscillation protocol in a specific qubit design with
four Majorana zero modes in a single wire and quantify constraints on the timescales
for performing qubit operations in this setup. Our simulations utilize a Majorana repre-
sentation of the system, which greatly simplifies simulations of superconductors at the
mean-field level.
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1 Introduction

Quantum computation holds great promise to solve some of the most challenging compu-
tational problems. Its progress, however, has been held back by the enormous difficulty of
building reliable qubits, i.e., two-level quantum systems engineered to store and manipulate
quantum information. While many qubit platforms have seen rapid progress in recent years
and have enabled successful demonstrations of small but non-trivial quantum algorithms (see,
for example, Refs. [1–3]), scaling these to the point where they allow robust error correction
for a large number of qubits remains challenging.

Topological quantum computation [4] promises a giant leap forward by encoding quantum
information into degrees of freedom that are inherently robust against external perturbations.
This provides both a robust quantum memory as well as a discrete set of quantum gates that can
be executed to high accuracy without further fine-tuning. Currently, the most promising hard-
ware platforms to enable topological quantum computation are networks of one-dimensional
topological superconductors that exhibit Majorana zero modes [5–12].

One of the earliest proposals for performing quantum computation with Majorana zero
modes (MZMs) relies on physically moving these MZMs by tuning a series of electric gates
under the superconductor in such a way as to drive different regions of the wire into the
topological or non-topological regime [13]. MZMs will form at the boundaries between topo-
logical and non-topological regions, and as long as the separation between different MZMs is
kept large enough and the changes in the electrochemical potential are performed sufficiently
slowly [14–17], the manipulations of the state should be coherent in the low-energy subspace.
We will refer to this as the ‘piano key’ approach to manipulating MZMs. Note that the require-
ment of sufficient separation and slow operations appear also in other methods of operating
topological qubits [18–22]. At finite temperature, some of these restrictions may become more
stringent [23,24].

While theoretically appealing, this model of computation has been regarded as somewhat
impractical due to the large voltages that might be required to tune the system in and out
of the topological regime. This has led to a wide array of alternative means of manipulat-
ing MZMs [25–27]. However, the desire for a minimal Majorana-based qubit, together with
potential improvements to gating techniques [28, 29], have led to renewed interest in qubit
designs where MZMs are moved in this fashion. A possible design that is in principle able
to demonstrate some of the advantageous properties of MZMs for quantum computation was
proposed in Ref. [30]; if additionally operated at finite overall charging energy, it can also be
seen as a minimal version of designs put forward in Ref. [27]. Similar ideas were pursued in
Ref. [31].

In this paper, we first answer the question of how quickly MZMs can be moved using piano
keys in the so far less-explored but more practical regime of sizable piano keys larger than
the typical size of the MZMs. Tuning sizable regions through the topological phase transition
introduces gap closing and reopening dynamics. We show that they are well-described by a
Landau-Zener model and obtain a scaling relation for the diabatic errors, which we confirm in
numerical simulations of the system. We then turn to simulations of simple protocols for Rabi
oscillations in the qubit design of Ref. [30]. The simulations are performed both using Kitaev
chains and more realistic models of spinful fermions on a lattice where the combined effects
of induced superconductivity, Zeeman magnetic field, and spin-orbit coupling give rise to an
effectively spinless p-wave superconductor. We confirm the scaling relation for diabatic errors
in these more realistic settings, and furthermore discuss the constraints on the qubit operation
timescales and the accuracy limitations due to the finite size of the qubit.
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Figure 1: Piano-key move in a quantum wire (orange) proximitized by a supercon-
ducting shell (blue). The right MZM is moved by changing the electrochemical po-
tential profile (indicated by solid black lines). The electrochemical potential on the
left is held fixed in the topological regime; µleft = µtop, while on the right it is tuned
from an initial value in the trivial regime to its final value in the topological regime,
see Eq. (1). The tuning of µleft and µright is performed by separate gates. The gate
voltages are indicated by a green (dark red) color corresponding to the (non) topo-
logical regime.

2 Piano key dynamics

As a first step, we analyze the protocol illustrated in Fig. 1. We consider a one-dimensional
superconductor whose electrochemical potential on the left and right halves can be indepen-
dently tuned via electric gates. The gates are used to transport a MZM from the center of the
system to its right end over a time scale τ. More quantitatively, the electrochemical poten-
tial on the left half is fixed to a value µtop corresponding to the topological regime, while the
electrochemical potential on the right is tuned according to

µright(t) = [1− f (t/τ)]µtriv + f (t/τ)µtop. (1)

Here f (s) is a monotonically increasing function with f (0) = 0 and f (1) = 1; for example,
one could choose f (s) = sin2(sπ/2), in which case ∂s f (s) = 0 at s = 0, 1 as well. The right
half thus begins in the trivial regime, but at time τ exhibits an electrochemical potential µtop
corresponding to the topological phase—thereby transporting the MZM as desired. In the strict
adiabatic limit, the system is guaranteed to follow the instantaneous ground state throughout
the protocol. In the remainder of this section we will explore both analytically and numerically
diabatic corrections that arise when τ is finite. Our analytic approach closely follows earlier
work by Damski and Zurek et al. [32,33].

2.1 Analytical approach

For reasonably slow protocols, the diabatic corrections will be dominated by the point at which
the gap of the instantaneous Hamiltonian is minimal. In our setup the gap is minimized when
the piano key passes the critical point between the topological and trivial regimes, i.e., when
µright(t) = µc. The finite size of the piano key will prevent a full closing of the gap at criticality
and is therefore crucial for reaching the adiabatic regime. To obtain intuition, here we will
estimate the probability for a diabatic transition out of the ground state by deriving a simplified
two-level model for the system’s low-energy spectrum near criticality and applying Landau-
Zener theory.

The critical point corresponds to an Ising transition for which the low-energy degrees of
freedom consist of right- and left-moving Majorana-fermion fields γR/L . For µright close to µc
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the right half of the superconductor is thus described by a low-energy Hamiltonian

H =
∫ Lright

0

d x[−iv(γR∂xγR − γL∂xγL) +m(t)iγRγL]. (2)

Here Lright is the length of the piano key (right half of the system), v is a velocity determined
by microscopics, and m(t) is a time-dependent ‘mass’ for the Majorana fermions tuned by the
electrochemical potential. Near the transition we expect

m(t) = λδµ(t), (3)

with δµ(t) = µright(t)−µc and λ a model-dependent dimensionless coefficient. Additionally,
the Majorana fields are subject to boundary conditions imposed by the left half of the system
(which is topological) and the vacuum on the other end.

In an infinite system the instantaneous single-particle excitation energies are given by

ε(k) =
Æ

(vk)2 + (λδµ)2, (4)

with k the fermion momentum. Momentum is quantized to values kn in the finite-size pi-
ano key, however, yielding a discrete spectrum εn ≡

p

(vkn)2 + (λδµ)2 that we wish to now
determine. The precise quantization condition follows from the boundary conditions noted
above, and can be inferred using a variant of the arguments from Ref. [34]. Consider for the
moment δµ = 0. Two important properties arise here: First, in this limit we can equivalently
repackage the right- and left-movers into a single chiral Majorana fermion defined on a system
of length 2Lright. (This chiral field simply corresponds to γR on the interval 0 to Lright and γL
on the interval Lright to 2Lright.) And second, the Majorana zero mode on the far left end of
the system (see Fig. 1) must continue to have a partner on the right half, which at δµ = 0
delocalizes across the critical region. The single chiral fermion must therefore exhibit periodic
boundary conditions1 with discrete momenta kn =

2πn
2Lright

. Here the n= 0 level corresponds to
the ‘partner’ Majorana zero mode while n= 1,2, . . . correspond to finite-energy excitations.

We now focus on the ground state |0〉 and first excited state |1〉 within the same total-
fermion-parity sector. The latter arises from the former by adding an excitation with wavevec-
tor kn=1 and applying a Majorana-zero-mode operator to restore the original fermion parity;
their instantaneous energy difference is then ∆E =

p

δε2 + (λδµ)2 with

δε =
πv

Lright
. (5)

This splitting is captured by an effective time-dependent Hamiltonian

Heff(t) =
1
2
[δεσx +λδµ(t)σz]. (6)

In this form we can apply a standard Landau-Zener formula [35–38] to obtain the probability
p for exciting the system above the ground state:

p = exp

�

−
π

2
δε2

λ|δ̇µ|

�

, (7)

where δ̇µ denotes the time-derivative of δµ(t) evaluated at criticality. Next we specialize to

δµ(t) =
h

1− 2 sin2
�πt

2τ

�i

(µc −µtop). (8)

1By contrast, anti-periodic boundary conditions arose in Ref. [34]. In the setup addressed there the critical
region was bordered on both sides by trivial phases, thus precluding the appearance of a Majorana zero mode at
criticality.

4

https://scipost.org
https://scipost.org/SciPostPhys.5.1.004


SciPost Phys. 5, 004 (2018)

This choice corresponds to Eq. (1) with µtriv = 2µc − µtop, where the critical point arises at
t = τ/2, midway through the protocol. Hence |δ̇µ|= π|µc −µtop|/τ, yielding a probability

p = e−τ/τ0 , τ0 = 2λ |µc −µtop|
� Lright

πv

�2

. (9)

Protocol times exceeding τ0 approximate the adiabatic limit.
It remains to determine the velocity v and coefficient λ, which one can readily extract from

a given microscopic model by examining the energy spectrum near criticality and fitting to
Eq. (4). We will consider two specific microscopic realizations. The first is the Kitaev chain [5]
with Hamiltonian

HK =
∑

i

h

−µc†
i ci −

w
2

�

c†
i ci+1 +H.c.
�

i

+
∆

2

∑

i

(cici+1 +H.c.) . (10)

At this point H above is not intended to describe the entire superconductor from Fig. 1. Instead
we consider a simple uniform chain, which suffices for extracting v,λ. The single-particle
excitation spectrum is given by

ε(k) =
Æ

[∆ sin(ka)]2 + [w cos(ka) +µ]2, (11)

where a is the lattice spacing. Focusing on the critical point at electrochemical potential µc
and expanding for small k yields v = a∆ and λ = 1. In the Kitaev-chain realization, the
characteristic time scale in Eq. (9) thus reduces to

τK
0 = 2|µc −µtop|

� Lright

πa∆

�2

. (12)

For a more realistic setting, we consider the canonical model of a quantum wire that ex-
hibits topological superconductivity [7,8] due to a combination of spin-orbit coupling α, Zee-
man field Vz , and proximity-induced pairing ∆:

HQW =

∫

d xψ†

�

−
∂ 2

x

2m
−µ− iασ y∂x + Vzσ

z

�

ψ+

∫

d x∆(ψ↑ψ↓ +H.c.). (13)

We give the lattice version of the above Hamiltonian, which we use in the numerical simula-
tions, in Appendix A. The topological phase forms in the parameter regime V 2

z > ∆
2 + µ2, so

that critical points occur at both µc = +
Æ

V 2
z −∆2 and µc = −

Æ

V 2
z −∆2. Two critical points

arise because one can destroy the topological phase either by raising the density to enter a con-
ventional superconducting state with two partially occupied bands, or by depleting the bands
altogether, yielding a trivial strong-pairing phase. Our calculation applies to both cases, and
we will include examples of both in our numerical simulations. Expanding the energy spec-
trum near criticality as above now gives v = α∆/Vz and λ =

Æ

1−∆2/V 2
z . The characteristic

time scale in Eq. (9) is then

τ
QW
0 = 2

√

√

√

1−
∆2

V 2
z
|µc −µtop|
� LrightVz

πα∆

�2

. (14)

for the quantum-wire realization. Notice that as Vz approaches ∆ from above, λ vanishes and
thus so does τQW

0 , signaling a breakdown of our formalism. In this singular limit, the two
phase transitions mentioned above coincide, i.e., the topological phase shrinks to a point. Our
protocol thus requires Vz >∆.
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Assuming Vz = 0.3 meV,∆= 0.1 meV, Lright = 0.5µm, α= 0.01 eV·nm, and |µc−µtop|= 0.5
meV, we find τQW

0 ∼ 10 ns. Comparing this estimate to other schemes [18–22] where the rele-
vant adiabatic timescale is typically the inverse topological gap ∼ 0.1ns, we observe that large
piano keys, corresponding to a small level spacing at the critical point, indeed lead to more
stringent requirements for adiabaticity. We note, however, that some caution is warranted with
the specific value of the above estimate for τQW

0 . Physical parameters such as the g-factor and
the strength of spin-orbit coupling are generally renormalized from the values for an isolated
semiconducting wire [39], which in turn can influence the level spacing [40]. Such effects can
be particularly dramatic when the wire strongly couples to the superconductor since the rel-
evant low-energy wavefunctions have significant weight also in the superconductor [41, 42].
Furthermore, the spin-orbit-coupling strength may be strongly affected by geometric effects
due to confinement of the wavefunctions.

2.2 Numerical confirmation

To confirm the analytic estimates, we perform numerical simulations of the dynamical protocol
using a Majorana representation of the Hamiltonian. While such a representation is in principle
possible for any quadratic fermionic system, it is particularly suited to the simulation of the
dynamics of superconducting systems at the mean-field level, where it greatly simplifies the
computation of physical observables such as the joint parity of a collection of Majorana modes.
For details of the numerical approach, we refer to Appendix B. We use the inter-site hopping
as the energy unit, and the distance between the neighboring sites as the unit of length.

We simulate the protocol in Kitaev chains of lengths ranging from L = 60 to L = 100 (here
Lright = L/2), and for various values of ∆ and the initial and final electrochemical potential.
We estimate the diabatic errors in two ways: First, by computing the overlap of the final
wavefunction |ψ f 〉 with the instantaneous ground state of the final Hamiltonian |ψ0〉 in the
same parity sector as the initial state; the error is then 1− |〈ψ f |ψ0〉|2. Note that since there
are at all times only two MZMs, there is no topological degeneracy in a fixed parity sector
in this system. In a second, complementary approach, we compute the occupation of the
low-energy subspace spanned by the two Majorana modes γ1,2 which are defined through
instantaneous single-particle eigenstates of the final Hamiltonian. Here the error is defined

0 2 4 6 8 10 12

τ/τK0

10−5

10−4

10−3

10−2

10−1

100

1
−

|〈ψ
f
|ψ

0
〉|2

L = 60

L = 80

L = 100

Figure 2: Numerical results for diabatic errors in a piano-key move simulated in a
Kitaev-chain model. The data represents an array of parameters for L = 60,80, 100,
∆ = 0.3, 0.5, and µtriv − µtop = 0.5, 1.0. The ramp shape is f (s) = sin2(sπ/2). The

dashed line indicates a fit to p = e−τ/τ
K
0 ; see Eq. (12).
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as 1− (〈iγ1γ2〉+ 1)/2, where we use a convention such that 〈iγ1γ2〉 = +1 in the ideal limit.
This error measure is more relevant for applications to topological quantum computation as
it specifically quantifies the weight of excitations from the Majorana wavefunctions, i.e., the
low-energy single-particle operators that generate the ground-state manifold.

Figure 2 shows our numerical results for the overlap; with the exception of all but the
fastest of protocols (τ ® τ0), the two error measures behave essentially identically. We find
excellent agreement with the theoretical prediction over a wide range of protocols speeds and
parameter choices. This collapse is good evidence that the simple Landau-Zener form consid-
ered above holds also in the more realistic setting where a continuum of states collapses at the
critical point, as first observed in Refs. [32, 33] in the context of the Ising model. For smaller
systems, subleading finite-size corrections are more prevalent, and the results deviate more
from the theoretical prediction. We note that for non-analytic choices of f (s) the exponen-
tial behavior eventually crosses over to a power law (see, e.g., [19, 20]). Due to the choice
of a smooth first derivative of f (s) and the large ratio between the gap at the point of non-
analyticity ∼∆µ and the gap δε that is controlling the Landau-Zener dynamics, the prefactor
of the power law is too small to be observed in Fig. 2. We checked that for a discontinuous first
derivative f (s) = s (for 0< s < 1) and small system sizes, the power law becomes observable
at large times.

We perform similar simulations of the spinful model, Eq. (13). Figure 3, which is analogous
to Fig. 2, shows our results for this case. Here we consider total system sizes between L = 100
and L = 220, and an array of values for the parameters ∆, Vz and α as listed in the caption
of Fig. 3. (Recall that phase transitions occur at µc = ±

Æ

V 2
z −∆2; hence we only examine

combinations of the parameters with Vz >∆, where the topological phase has a finite extent.)
The values for the electrochemical potential in the trivial and topological phases are chosen
symmetrically around the critical value such that the phase transition occurs halfway through
the evolution. We again consider both error quantities and find excellent agreement between
them for all but very fast protocols.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

τ/τQW
0

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−
|〈ψ

f
|ψ

0
〉|2

L = 100

L = 140

L = 180

L = 220

Figure 3: Diabatic errors in the piano-key protocol simulated using a spinful model
for various combinations of ∆ = 0.3,0.5, Vz = 0.4,0.6, 0.8, α = 0.3,0.6, with the
initial and final electrochemical potential appropriately chosen deep in the topolog-
ical and trivial regimes, respectively. Total system sizes are L = 100, 140,180, 220.
Finite-size effects are more pronounced compared to Fig. 2 since the coherence
lengths are much larger in the cases shown here. The dashed line indicates a fit
to p = e−τ/τ

QW
0 ; see Eq. (14).

Compared to results for the Kitaev model, the data shown in Fig. 3 scatters much more
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

τ/τQW
0,num

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−
|〈ψ

f
|ψ

0
〉|2

L = 100

L = 140

L = 180

L = 220

Figure 4: Diabatic errors in the same setup as Fig. 3, but now plotted as a function of
τ/τ

QW
0,num. Equation (15) defines the characteristic time scale τQW

0,num, which accounts
for finite-size corrections to the size of the minimal excitation gap and the electro-

chemical potential at which it arises. The dashed line indicates a fit to p = e−τ/τ
QW
0,num .

The excellent data collapse evident here indicates that the scatter in Fig. 3 originates
from finite-size effects, and that a simple Landau-Zener description continues to ad-
equately capture diabatic errors in the spinful model.

around the predicted value. Close examination, however, shows that the deviation decreases
for larger system sizes, and thus manifests finite-size effects. These corrections are more pro-
nounced here compared to the case of a Kitaev chain since the coherence length is much larger
for the parameters chosen in our simulations of the spinful quantum wire. Specifically, the min-
imal spectral gap of the finite-size lattice model along the Hamiltonian path, δεnum, generally
differs from the value δε estimated in Eq. (5), and moreover can occur at an electrochemical
potential that is shifted slightly away from µc. We can find the value of δεnum and the time at
which it occurs for the family of instantaneous Hamiltonians using standard numerical tech-
niques. Straightforwardly modifying Eq. (14) to incorporate these effects produces a more
reliable estimate for the characteristic time scale in a finite-size system,

τ
QW
0,num =

4
π
δε−2

num

√

√

√

1−
∆2

V 2
z
|µc −µtop|

∂ f
∂ s
(sc), (15)

where sc corresponds to the rescaled time t/τ where the minimal gap occurs, and
∂ f
∂ s (s) = (π/2) sin(πs). Plotting the errors against τ/τQW

0,num indeed generates excellent data
collapse as seen in Fig. 4.

3 Qubit operations

We now turn our attention to qubit operations. We will examine a simple topological-qubit
design [30], sketched in Fig. 5, consisting of a single quantum wire that can be partitioned into
topological and non-topological regions by locally tuning the electrochemical potential using
five gates. As shown in the figure, the electrochemical potential in each segment is denoted
by µ1 through µ5, from left to right.

Throughout we assume that the system’s global fermion parity is preserved exactly. In
practice, parity conservation can be enforced by operating the qubit as a ‘floating’ device, i.e.,
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Figure 5: Qubit design considered here: the wire is separated into five segments
that can be separately gated and driven in and out of the topological regime. In this
illustration, the leftmost and the two rightmost regions are topological, while two
regions in the middle are trivial, leading to four localized Majorana zero modes.

at most weakly coupled to leads connecting it to ground. The qubit would then exhibit a finite
charging energy, which suppresses quasiparticle poisoning from non-equilibrium quasiparticles
in the leads [26, 27]. Since a charging-energy term makes simulations far more challenging,
however, we do not include its effects explicitly here.

When configured as a qubit, the system contains at any time a total of four MZMs—one at
each end, plus two adjacent to a non-topological region within the wire—leading to a four-fold
ground-state degeneracy. Within a given fixed global-fermion-parity sector, only two ground
states are available, which furnish the qubit’s computational states.

It is important to note the limitations of this strictly one-dimensional qubit design: While
the computational states originate from a topological degeneracy, topological qubit operations
(i.e., by braiding [4] or measurement-only topological quantum computation [43]) are not
available. Instead qubit rotations proceed by selectively breaking the topological degener-
acy and inducing non-universal couplings between the MZMs. Therefore, while the encoded
quantum information enjoys topological protection when all four MZMs are well-separated,
logical gate operations are unprotected and susceptible to noise, inaccuracies of the applied
pulses etc., in the same way as conventional qubits. In this paper, we will restrict ourselves to
idealized models where the only sources of errors are the finite length of the wire and diabatic
corrections. For a recent discussion of other corrections, see Ref. [44].

The system’s low-energy subspace can be described by the effective Hamiltonian

H = i
∑

i< j

εi jγiγ j . (16)

Here γi is the Majorana operator associated with the ith MZM numbered left to right as in
Fig. 5, and εi j is the coupling resulting from finite overlap of MZMs i and j. Such a simplified
description disregards diabatic excitations to states above the superconducting gap, but is
nevertheless instructive for developing a simple picture of qubit operations. After fleshing
out this minimalist picture we return to numerical simulations of more complete microscopic
descriptions of our qubit protocols.

In the present qubit design, the εi j ’s are tuned by changing the positions of the MZMs
(Ref. [45] discussed a similar qubit where the couplings were tuned via a different mecha-
nism). We assume throughout this discussion that the MZMs remain separated by more than
a superconducting coherence length, so that the coupling energy between them can be mod-
eled as ε ∼ vF

ξ e−d/ξ cos(κd), where ξ is the coherence length of the superconductor, d is the
distance between the two MZMs, and κ is on the scale of the Fermi momentum kF . An ex-
pression of this form holds for both the case of MZMs separated by a topological region and a
trivial region [46]; however, the relevant coherence length and the prefactor (omitted in the
expression above) generally differ in the two cases.

A convenient basis for the low-energy Hilbert space is obtained by combining the left
and right pairs of Majorana modes into complex fermionic operators, fL = (γ1 + iγ2)/2 and
fR = (γ3 + iγ4)/2, and using the occupation number basis for these complex fermions. At
fixed overall parity P = (iγ1γ2)(iγ3γ4) = ±1, the relevant basis states are either {|01〉 , |10〉}
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or {|00〉 , |11〉}. Without loss of generality we assert that the system resides in the latter, even-
parity sector. Upon identifying computational states |0〉 ≡ |00〉 and |1〉 ≡ |11〉, the Hamilto-
nian 16 can be reduced to

H = (ε12 + ε34)σ
z + (ε23 + ε14)σ

x + (ε13 − ε24)σ
y , (17)

where σx ,y,z denote Pauli matrices that act on the qubit. Since the interactions between MZMs
are exponentially suppressed in their separation, it is reasonable to assume that only nearest-
neighbor interaction terms are relevant. In this limit, the Hamiltonian simplifies to

H = (ε12 + ε34)σ
z + ε23σ

x . (18)

3.1 Rabi oscillations

A simple yet powerful qubit protocol involves demonstrating Rabi oscillations, i.e., coherent
oscillations of a two-level quantum system. Initially, the system parameters are chosen such
that the σz term dominates the Hamiltonian, and the system is initialized into the ground
state. The σx term is then increased to be the dominant coupling, causing the qubit to precess
around the x axis. Finally, the qubit is measured in the z basis.

Figure 6: Basic Rabi-oscillation protocol. The qubit is initialized with the leftmost
pair of MZMs close to each other, so that their coupling dominates the low-energy
Hamiltonian; their joint parity can be read out for initialization. Then, over a time τ1,
a piano-key move shuttles γ2 closer to γ3 so that their coupling dominates—causing
the qubit to precess for a waiting time τ2. In the final step, a piano-key move over
time τ1 returns γ2 to its original location, whereupon the qubit state is read out.
Double arrows indicate the dominant coupling for each stage.

In our qubit setup we can change the relative strength of the σx and σz terms by control-
ling which MZMs are closest to each other. Figure 6 illustrates an implementation of the above
Rabi-oscillation protocol. Here, the two rightmost MZMs reside at fixed positions throughout
the protocol; however, one could equally well perform a symmetric protocol where all opera-
tions are performed on both the left and right pairs of MZMs. The system is initialized with
a dominant coupling ε12. A piano-key move performed over a time τ1 transfers γ2 closer to
γ3, yielding ε23 as the dominant coupling. Next, we let the system evolve (oscillate) under
the σx -dominated Hamiltonian for a time τ2, and then apply a second piano-key move over
a time τ1 to revert to the original configuration. A final measurement determines the expec-
tation value 〈iγ1γ2〉, i.e., the occupation of the complex fermion formed when bringing the
two leftmost MZMs close to each other. Such a measurement could be performed by a nearby
quantum dot [27, 47, 48]. The latter can be included by extending the nanowire to the left,
outside of the region that is covered by the superconductor.

To achieve high-fidelity Rabi oscillations, the manipulations of the electric gates that trans-
port the MZMs should occur sufficiently slowly so that diabatic corrections are minimal, i.e.,
τ1 should be long compared to the characteristic piano-key timescale τ0 discussed in Sec. 2.
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Figure 7: Representative behavior of the occupation of the left pair of Majorana
zero modes, iγ1γ2, the right pair, iγ3γ4, and the parity in the low-energy subspace
−γ1γ2γ3γ4, during the Rabi oscillation protocol sketched in Fig. 6. From left to right
we show three choices of the timescale τ1 for moving the MZMs with increasing
adiabaticity. Simulations are performed in a Kitaev-chain model with µtop = 1.7,
µtriv = 2.3, ∆= 0.3 and total system size L = 60.

Conversely, consider the limit where all operations are purely adiabatic. Throughout the evo-
lution the system then follows the instantaneous ground state of the Hamiltonian—which due
to splittings is generically unique—and no operations are performed on the qubit modulo an
irrelevant overall dynamical phase. Therefore, gate manipulations must also be sufficiently
fast compared to an energy scale which we denote as Es. Roughly speaking, Es corresponds
to the minimal gap of the Hamiltonian in a regime where it is dominated by a σx interaction.
The specific value depends on microscopic details, in particular oscillations of the splitting
terms, and is hard to determine. A worst-case estimate can be given as Es = max{ε23}, i.e.,
the maximal coupling between the middle two MZMs; in practice, the relevant energy scale
will usually be smaller and the constraint thus less stringent. To summarize, the constraints
on τ1 are 2

τ0 < τ1 < E−1
s . (19)

The coupling between γ2,γ3 during the σx -dominated part of the protocol sets the scale for a
conservative estimate for the upper limit on τ1: Es ∼

vF
ξ e−Lkey/ξ, where vF and ξ are parameters

appropriate for MZMs hybridized across a trivial region of length Lkey. Note that for this choice,
the Rabi frequency ω and Es coincide.

As shown in Sec. 2, the characteristic time τ0 associated with diabatic corrections scales
quadratically with the size of a piano key Lkey [see Eq. (9)]. The operating regime for the qubit
thus increases rapidly with system size, since E−1

s increases exponentially with Lkey. We will
now confirm this behavior numerically by studying microscopic models that include diabatic
corrections explicitly.

Figure 7 shows a simulation of the above Rabi oscillation protocol in a Kitaev-chain model.
Panels represent data for different piano-key times τ1, ranging from τ1/τ0 ∼ 1 (left) to
τ1/τ0 � 1 (middle and right); see caption for other parameters. In each case we plot the
occupation of the left and right MZM pairs, 〈iγ1γ2〉 and 〈iγ3γ4〉, as well as the ground-state
fermion parity, 〈(iγ1γ2)(iγ3γ4)〉, versus τ2. As in Sec. 2.2, the γi operators are defined through
eigenvectors of the final Hamiltonian. It follows that eigenstates of the final Hamiltonian are

2Note that during initialization and readout, ε12 can exceed 1/τ1 without causing any issues. The inequalities
in Eq. (19) apply only during the manipulation stage of the Rabi-oscillation protocol.
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also eigenstates of (iγ1γ2)(iγ3γ4), and that deviations from 〈(iγ1γ2)(iγ3γ4)〉 = 1 in the final
state indicate excitations away from the low-energy manifold.

We observe that for protocols with fast piano-key moves, i.e., τ1 ∼ τ0, diabatic corrections
indicated by 1−〈(iγ1γ2)(iγ3γ4)〉 become sizable as seen in the left panel. Correspondingly, the
occupation of the left MZM pair—on which the operations are performed—exhibits only quite
noisy oscillations as a function of τ2. Interestingly, the occupation of the right MZM pair—
which in this particular protocol remains static—shows cleaner oscillations. For τ1� τ0 (not
shown), oscillations in both pairs are washed out. As τ1 increases, the oscillations become
cleaner, and the two pairs of MZMs exhibit very similar behavior; see middle and right panels.
Finally, for very large τ1, effects of adiabaticity with respect to the residual splitting Es are felt,
thereby suppressing the oscillation amplitude. As expected this regime is approached once
τ1 ∼ω−1.

10−5

10−3

10−1

1
−
α

L = 40

L = 60

L = 80

100 101 102

τ1/τ0

10−5

10−3

10−1

1
−
α

L = 40

L = 60

L = 80

Figure 8: Optimal fidelity of a π qubit rotation as a function of piano-key timescale
τ1 obtained by fitting numerical simulations of the protocol (see Fig. 7) to Eq. (20).
Top panel: ∆= 0.1. Bottom panel: ∆= 0.3.

We further explore the optimal operating regime for this qubit. To this end, we fit the
oscillations to

〈iγ3γ4〉= C0 +α cos (ωτ2 +φ0) , (20)

where C0, α, ω and φ0 are all fit parameters. A similar fit can be performed for the left
pair, 〈iγ1γ2〉, which yields comparable results away from the limit of very short τ1. The most
relevant quantity is the oscillation amplitude α, which is akin to the fidelity for a logical X gate
(π qubit rotation). Since the operations discussed here are not topologically protected, α will
approach the maximum value α= 1 only when the qubit operation is optimized as we discuss
below. It should be emphasized that this estimate includes only diabatic corrections and finite-
size corrections due to undesired Majorana splittings, and does not include any external noise,
effects of finite temperature, quasi-particle poisoning etc., and as such can be understood as a
theoretical upper bound on the achievable gate fidelity for a given wire length. In Fig. 8, we
plot log(1− α) for different system sizes and over a range of protocol times for two different
gap sizes in the Kitaev chain. We show only the range of data where a reliable fit to Eq. (20)
can be achieved; for shorter piano-key times, the oscillations are too noisy to reliably fit the
data. The results clearly demonstrate that, within this model, increasing the system size shifts
the optimal operating regime to longer piano-key times, and also reduces the optimal error
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that can be achieved. This trend reflects the exponential growth of the operating window
specified in Eq. (19), which allows one to efficiently avoid diabatic errors and simultaneously
manipulate the qubit faster than residual couplings of MZMs.

We have performed similar simulations of the Rabi protocol in the quantum-wire model of
Eq. (13), and found qualitatively similar results. This allows us to estimate the minimal size of
the piano key to reach the operational window in Eq. (19) in an experiment using proximitized
nanowires. At the end of Sec. 2.1, we estimated that τ0(Lkey) ∼ 10 ns · (Lkey/0.5 µm)2.
Estimating Es is more challenging, in particular since the splitting between MZMs coupled
through a trivial superconductor depends on conditions that are yet not clear in practice. One
can however obtain certain bounds by constraining the strength of theσx term that the couples
the middle two MZMs, and then using the (worst-case) estimate Es =max{ε23}. The σx term
during the second step of the protocol must at the very least exceed the residual σz term,
which is set by the splitting through a topological region of length 2Lkey in our setup. Using
experimental estimates for the splitting, ε(L)∼ 0.1 meVexp[−L/(260 nm)] [49], we find that
to satisfy τ0(Lkey) < ε−1(2Lkey) requires Lkey > 850 nm. However, for a choice of parameters
where during the second step the σx and σz terms are comparable, the visibility of oscillations
will be very limited. A more conservative choice is to consider parameters where σx becomes
larger, thus possibly placing tighter conditions on the length of a piano key.

It should be noted that in the regime where at all times the MZMs are well-separated, Es
as well as the Rabi-oscillation frequency are exponentially sensitive to changes in ξ and thus
small changes of the microscopic parameters, which severely limits the reliability of numerical
estimates. While the experiment could also be performed in a regime where the two middle
MZMs are brought very close to each other and thus have coupling comparable to the gap, this
would likely lead to Rabi-oscillation frequencies that are too high to resolve in time-domain
experiments. Tuning the Rabi frequency ω into the most interesting regime where it is fast
compared to decoherence times, but slow compared to the scales on which the protocols and
readout can be performed, will require careful tuning of the microscopic parameters of the
middle region separating the central two MZMs.

Throughout this paper we neglected decoherence processes that can arise with a finite
hybridization of the Majorana modes [44]. The latter will dampen the Rabi oscillations. Note,
however, that coupling of the noise to the system is limited by the strength of the Majorana
hybridization, which sets the Rabi frequency. We therefore expect to be able to observe several
Rabi cycles before decoherence processes take over.

4 Conclusions and outlook

In this paper we studied the dynamical manipulation of Majorana-based qubits by tuning a
small number of electric gates (piano keys). The latter allow one to move the topological re-
gions and their boundary MZMs. We consider the practical regime of piano keys larger than
the coherence length. By explicitly simulating the time evolution of both a Kitaev chain and
quantum-wire model, we show that the diabatic excitations are well-described by a Landau-
Zener picture. The corresponding minimal gap is given by the finite-size level spacing of the
piano-key region at criticality. For piano keys of size Lkey in a quantum wire with the pa-
rameters listed in Sec. 2.1, we estimate that adiabaticity is reached for times longer than
τ0 ∼ 10 ns · (Lkey/0.5µm)2. However, there is significant uncertainty in these parameters,
especially the strength of spin-orbit coupling in the presence of the superconductor. The ‘true’
value for τ0 could easily change by one or two orders of magnitude compared to our estimate.

We then apply a single back-and-forth piano key move to perform a Rabi oscillation pro-
tocol in a topological qubit defined by four MZMs in a linear quantum wire. The simula-
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tions clearly show an exponentially growing window of operation where the piano-key moves
do not create unwanted excitations while still being fast compared to the residual MZM hy-
bridization, i.e., where the constraints of Eq. 19 are satisfied. A concrete determination of the
exponentially-dependent parameters is difficult but estimates for the protocol considered here
indicate that a relatively large Lkey ¦ 1 µm is required to achieve sufficient separation between
the residual overlap between MZMs and the time required to move the MZMs. This condition
can be relaxed by using multiple piano keys during the protocol or using smart pulses [16].

A central challenge for near-term experiments is to certify that a device that is expected to
host Majorana zero modes is actually topological, i.e., that the observed low-energy states are
not of other origin, such as trivial Andreev bound states [50–55]. A standard approach to verify
the presence of a topological phase is to check for robustness of the observed behavior against
small variations of key parameters such as the magnetic field, the electrochemical potential
(tunable via gating), etc.

A second, important check is that the Rabi frequency is expected to depend exponentially
on the ratio of the separation between the two middle MZMs during the step where they are
hybridized to the superconducting coherence length. This scaling can be tested by fabricating
devices of different lengths; indeed, experimental evidence for such exponential scaling of the
relevant energy scales for hybridization has been reported [49]. Alternatively, the coherence
length can be changed by tuning microscopic parameters such as the electrochemical poten-
tial or magnetic field. Finally, in a device with more than the minimal number of five piano
keys discussed here, one can either use only parts of the system or perform more complicated
protocols to effectively probe different lengths in the same device.

It is in principle possible to form a similar qubit to the one presented here not with topo-
logical degrees of freedom, but rather just trivial low-energy states such as Andreev bound
states that are accidentally tuned close to zero energy. In this scenario, instead of tuning
the separation between MZMs, the gates are used to tune the energy of these trivial states.
Since all operations discussed here are based on breaking topological degeneracy and are thus
not topologically protected—unlike for example braiding, which would be possible in more
sophisticated topological qubits—it can be difficult to distinguish these two scenarios.

There are a number of consistency checks that can be performed whose failure would
indicate that the qubit is not based on MZMs; however, their success does not necessarily
rule out non-topological behavior. One example is to tune the rightmost segments of the wire
(far away from the readout) out of the putative topological phase. In this case, there should
be no ground-state degeneracy in a fixed parity sector and thus no Rabi oscillations. Such a
test determines that oscillations are not due to purely local effects near the readout. Another
useful tool is to study the finite-size dependence of Rabi oscillations. While an exponential
scaling of the Rabi frequency with system size is also possible in a qubit based on localized
Andreev states near the ends of the system, fine-tuning these states close to zero energy should
become more and more challenging as well, and the visibility of oscillations should decrease
with system size. As discussed in Ref. [30], a further important consistency check is to confirm
the correlation between measurement outcomes at the left and the right end. Depending on
whether the overall parity is even or odd, the measurements should either be correlated or
anti-correlated, i.e. 〈iγ1γ2〉= ±〈iγ3γ4〉.

A powerful way to assert that a qubit is indeed based on topological degrees of freedom
is to study the behavior of the system in the presence of low-frequency local noise. Some
signatures in this context were discussed in Ref. [45]; extensions of these ideas to qubit designs
as considered here will be discussed in future work [56].
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A Lattice Hamiltonian for the quantum wire

For the sake of completeness, we list below the lattice Hamiltonian we use in our simulations
of the quantum wire, which is described by Eq. (13):

HQW =−
t
2

∑

iσ

�

c†
i,σci+1,σ + c†

i+1,σci,σ

�

(21)

+ (t −µ)
∑

iσ

c†
i,σci,σ + Vz

∑

iσσ′
c†

i,σ(σ
z)σσ′ ci,σ′ (22)

+
α

2

∑

iσσ′

�

c†
i,σ(iσ

y)σσ′ ci+1,σ′ + c†
i+1,σ′(iσ

y)σσ′ ci,σ

�

(23)

+∆
∑

i

�

ci,↑ci,↓ + c†
i,↓c

†
i,↑

�

. (24)

Here, we set the unit of energy as t = 1, and all other parameters are as described following
Eq. (13).

B Time evolution formalism

We consider a Hamiltonian of the form

H =
i
4

N
∑

i, j=1

Ai jaia j , (25)

where ai are Majorana fermions with {ai , a j} = 2δi j , a†
i = ai , (ai)2 = 1, and Ai j is skew-

symmetric, Ai j = −A ji . Any quadratic fermionic Hamiltonian can be brought into this form.
The matrix A can be brought into a block-diagonal “canonical form” of 2 × 2 blocks,
B =
⊕N/2

k=1 εk iσy where εk are the non-negative eigenvalues of iAi j [5] and σy denotes the
Pauli matrix. To achieve this numerically as well as to compute the Pfaffians mentioned below,
we use the software package described in Ref. [57]. The Hamiltonian then takes the form

H =
i
2

N/2
∑

k=1

εkγ2k−1γ2k. (26)

The system can be completely described by the covariance matrix (for a more detailed descrip-
tion of this formalism see, e.g., Ref. [58]):

Mi j =
−i
2
〈[ai , a j]〉. (27)
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M is real and skew-symmetric, and M2 = −1. To compute the covariance matrix for an
eigenstate of H, let O be the orthogonal matrix that brings A into the canonical form B, i.e.,
B = OT AO. Then, M = OM0OT , where M0 =

⊕N/2
k=1 iσy , is the covariance matrix of the

ground state of H. More generally, the covariance matrix of an occupation number vector
|y〉 = |y1 . . . yN/2〉, yk ∈ {0,1} in the eigenbasis is given by My =

⊕N/2
k=1(−1)yk iσy , and thus

OMyOT is the covariance matrix of a (possibly excited) eigenstate with the corresponding
occupation of eigenmodes of the Hamiltonian.

In terms of the covariance matrix, the time-dependent Schrödinger equation takes the form

dM
dt
= [A, M]. (28)

To perform the time evolution, we can either integrate 28 directly using a standard ODE solver,
or we can (assuming that A is independent of time) formally integrate it to find
M(t) = eAt M(0)e−At . If A(t) depends on time, the time evolution can be approximated by
taking it to be piecewise constant over a time step d t, and integrate separately over each d t.
In that case, care must be taken that d t is small enough.

Wick’s theorem can be used to evaluate the expectation value of any monomial of fermionic
operators as

〈ai1 ai2 . . . ...ain〉= Pf
�

iMi1...in

�

, (29)

where Pf(·) denotes the Pfaffian of the matrix, and Mi1...in the restriction of M onto the (Ma-
jorana) “sites” i1, . . . , in. In particular, the total fermionic parity of the state corresponding to
M is given by Pf(iM). Furthermore, the modulus of the overlap of two wavefunctions is given
by

|〈φ|ψ〉|2 =
�

�2−N/2 Pf(Mφ +Mψ)
�

� , (30)

where Mφ and Mψ are the covariance matrices corresponding to the respective wavefunctions,
and N is the total number of (Majorana) fermionic modes. For a discussion on how to compute
the overlap including the phase, see Ref. [58].
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