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Abstract We investigate the asymptotic distributions of coordinates of regression
M-estimates in the moderate p/n regime, where the number of covariates p grows
proportionally with the sample size n. Under appropriate regularity conditions, we
establish the coordinate-wise asymptotic normality of regression M-estimates assum-
ing a fixed-design matrix. Our proof is based on the second-order Poincaré inequality
and leave-one-out analysis. Some relevant examples are indicated to show that our
regularity conditions are satisfied by a broad class of design matrices. We also show
a counterexample, namely an ANOVA-type design, to emphasize that the technical
assumptions are not just artifacts of the proof. Finally, numerical experiments confirm
and complement our theoretical results.
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1 Introduction

High-dimensional statistics has a long history [31,58,59] with considerable renewed
interest over the last two decades. In many applications, the researcher collects data
which can be represented as amatrix, called a designmatrix and denoted by X ∈ R

n×p,
as well as a response vector y ∈ R

n and aims to study the connection between X and
y. The linear model is among the most popular models as a starting point of data
analysis in various fields. A linear model assumes that

y = Xβ∗ + ε, (1)

where β∗ ∈ R
p is the coefficient vector which measures the marginal contribution of

each predictor and ε is a random vector which captures the unobserved errors.
The aim of this article is to provide valid inferential results for features of β∗.

For example, a researcher might be interested in testing whether a given predictor
has a negligible effect on the response, or equivalently whether β∗j = 0 for some j .
Similarly, linear contrasts of β∗ such as β∗1 − β∗2 might be of interest in the case of
the group comparison problem in which the first two predictors represent the same
feature but are collected from two different groups.

An M-estimator, defined as

β̂(ρ) = argmin
β∈Rp

1

n

n∑

i=1
ρ
(
yi − xTi β

)
(2)

where ρ denotes a loss function, is among the most popular estimators used in practice
[31,47]. In particular, if ρ(x) = 1

2 x
2, β̂(ρ) is the famous Least Square Estimator

(LSE). We intend to explore the distribution of β̂(ρ), based on which we can achieve
the inferential goals mentioned above.

The most well-studied approach is the asymptotic analysis, which assumes that the
scale of the problem grows to infinity and use the limiting result as an approximation.
In regression problems, the scale parameter of a problem is the sample size n and the
number of predictors p. The classical approach is to fix p and let n grow to infinity. It
has been shown [30,31,47,61] that β̂(ρ) is consistent in terms of L2 norm and asymp-
totically normal in this regime. The asymptotic variance can be then approximated by
the bootstrap [8]. Later on, the studies are extended to the regime in which both n and
p grow to infinity but p/n converges to 0 [39,42–45,62]. The consistency, in terms
of the L2 norm, the asymptotic normality and the validity of the bootstrap still hold
in this regime. Based on these results, we can construct a 95% confidence interval for

β0 j simply as β̂ j (ρ)±1.96
√
V̂ar(β̂ j (ρ))where V̂ar(β̂ j (ρ)) is calculated by bootstrap.

Similarly we can calculate p-values for the hypothesis testing procedure.
We ask whether the inferential results developed under the low-dimensional

assumptions and the software built on top of them can be relied on for moderate
and high-dimensional analysis? Concretely, if in a study n = 50 and p = 40, can the
software built upon the assumption that p/n � 0 be relied on when p/n = .8? Results
in random matrix theory [40] already offer an answer in the negative side for many
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Asymptotics for high dimensional regression M-estimates… 985

PCA-related questions in multivariate statistics. The case of regression is more subtle:
For instance for least-squares, standard degrees of freedom adjustments effectively
take care of many dimensionality-related problems. But this nice property does not
extend to more general regression M-estimates.

Once these questions are raised, it becomes very natural to analyze the behavior
and performance of statistical methods in the regime where p/n is fixed. Indeed, it
will help us to keep track of the inherent statistical difficulty of the problem when
assessing the variability of our estimates. In other words, we assume in the current
paper that p/n → κ > 0 while let n grows to infinity. Due to identifiability issues, it is
impossible tomake inference onβ∗ if p > nwithout further structural or distributional
assumptions. We discuss this point in details in Sect. 2.3. Thus we consider the regime
where p/n → κ ∈ (0, 1). We call it the moderate p/n regime. This regime is also
the natural regime in random matrix theory [2,33,40,59]. It has been shown that the
asymptotic results derived in this regime sometimes provide an extremely accurate
approximation to finite sample distributions of estimators at least in certain cases [33]
where n and p are both small.

1.1 Qualitatively different behavior of moderate p/n regime

First, β̂(ρ) is no longer consistent in terms of L2 norm and the risk E‖β̂(ρ) − β∗‖2
tends to a non-vanishing quantity determined by κ , the loss function ρ and the error
distribution through a complicated system of non-linear equations [5,20–22]. This L2-
inconsistency prohibits the use of standard perturbation-analytic techniques to assess
the behavior of the estimator. It also leads to qualitatively different behaviors for the
residuals in moderate dimensions; in contrast to the low-dimensional case, they cannot
be relied on to give accurate information about the distribution of the errors. However,
this seemingly negative result does not exclude the possibility of inference since β̂(ρ)

is still consistent in terms of L2+ν norms for any ν > 0 and in particular in L∞ norm.
Thus, we can at least hope to perform inference on each coordinate.

Second, classical optimality results do not hold in this regime. In the regime p/n →
0, the maximum likelihood estimator is shown to be optimal [7,29,30]. In other words,
if the error distribution is known then the M-estimator associated with the loss ρ(·) =
− log fε(·) is asymptotically efficient, provided the design is of appropriate type,where
fε(·) is the density of entries of ε. However, in the moderate p/n regime, it has been
shown that the optimal loss is no longer the log-likehood but an other function with
a complicated but explicit form [6], at least for certain designs. The suboptimality of
maximum likelihood estimators suggests that classical techniques fail to provide valid
intuition in the moderate p/n regime.

Third, the joint asymptotic normality of β̂(ρ), as a p-dimensional random vector,
may be violated for a fixed design matrix X . This has been proved for least-squares by
[31] in his pioneering work. For general M-estimators, this negative result is a simple
consequence of the results of [22]: They exhibit an ANOVA design (see below) where
evenmarginal fluctuations are notGaussian. By contrast, for randomdesign, they show
that β̂(ρ) is jointly asymptotically normal when the design matrix is elliptical with
general covariance by using the non-asymptotic stochastic representation for β̂(ρ) as
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well as elementary properties of vectors uniformly distributed on the uniform sphere
in Rp; See section 2.2.3 of [22] or the supplementary material of [6] for details. This
does not contradict [31]’s negative result in that it takes the randomness from both X
and ε into account while [31]’s result only takes the randomness from ε into account.
Later, [21] shows that each coordinate of β̂(ρ) is asymptotically normal for a broader
class of random designs. This is also an elementary consequence of the analysis in
[20]. However, to the best of our knowledge, beyond the ANOVA situation mentioned
above, there are no distributional results for fixed design matrices. This is the topic of
this article.

Last but not least, bootstrap inference fails in this moderate-dimensional regime.
This has been shown by [9] for least-squares and residual bootstrap in their influential
work. Recently, [24] studied the results to general M-estimators and showed that all
commonly used bootstrapping schemes, including pairs-bootstrap, residual bootstrap
and jackknife, fail to provide a consistent variance estimator and hence valid infer-
ential statements. These latter results even apply to the marginal distributions of the
coordinates of β̂(ρ). Moreover, there is no simple, design independent, modification
to achieve consistency [24].

1.2 Our contributions

In summary, the behavior of the estimators we consider in this paper is completely
different in the moderate p/n regime from its counterpart in the low-dimensional
regime. As discussed in the next section, moving one step further in the moderate
p/n regime is interesting from both the practical and theoretical perspectives. The
main contribution of this article is to establish coordinate-wise asymptotic normality
of β̂(ρ) for certain fixed design matrices X in this regime under technical assumptions.
The following theorem informally states our main result.

Theorem 1.1 (Informal Version of Theorem 3.1 in Sect. 3) Under appropriate con-
ditions on the design matrix X, the distribution of ε and the loss function ρ, as
p/n → κ ∈ (0, 1), while n →∞,

max
1≤ j≤p

dTV

⎛

⎝L

⎛

⎝ β̂ j (ρ)− Eβ̂ j (ρ)
√
Var(β̂ j (ρ))

⎞

⎠ , N (0, 1)

⎞

⎠ = o(1)

where dTV(·, ·) is the total variation distance and L (·) denotes the law.
It is worth mentioning that the above result can be extended to finite dimensional

linear contrasts of β̂. For instance, one might be interested in making inference on
β∗1 − β∗2 in the problems involving the group comparison. The above result can be
extended to give the asymptotic normality of β̂1 − β̂2.

Besides the main result, we have several other contributions. First, we use a new
approach to establish asymptotic normality.Ourmain technique is basedon the second-
order Poincaré inequality (SOPI), developed by [10] to derive, among many other
results, the fluctuation behavior of linear spectral statistics of random matrices. In
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contrast to classical approaches such as the Lindeberg–Feller central limit theorem,
the second-order Poincaré inequality is capable of dealing with nonlinear and poten-
tially implicit functions of independent random variables. Moreover, we use different
expansions for β̂(ρ) and residuals based on double leave-one-out ideas introduced
in [22], in contrast to the classical perturbation-analytic expansions. See aforemen-
tioned paper and follow-ups. An informal interpretation of the results of [10] is that
if the Hessian of the nonlinear function of random variables under consideration is
sufficiently small, this function acts almost linearly and hence a standard central limit
theorem holds.

Second, to the best of our knowledge this is the first inferential result for fixed (non
ANOVA-like) design in the moderate p/n regime. Fixed designs arise naturally from
an experimental design or a conditional inference perspective. That is, inference is
ideally carried out without assuming randomness in predictors; see Sect. 2.2 for more
details. We clarify the regularity conditions for coordinate-wise asymptotic normality
of β̂(ρ) explicitly, which are checkable for LSE and also checkable for general M-
estimators if the error distribution is known. We also prove that these conditions are
satisfied with by a broad class of designs.

The ANOVA-like design described in Sect. 3.3.4 exhibits a situation where the
distribution of β̂ j (ρ) is not going to be asymptotically normal. As such the results of
Theorem 3.1 below are somewhat surprising.

For complete inference, we need both the asymptotic normality and the asymptotic
bias and variance. Under suitable symmetry conditions on the loss function and the
error distribution, it can be shown that β̂(ρ) is unbiased (see Sect. 3.2.1 for details) and
thus it is left to derive the asymptotic variance. As discussed at the end of Sect. 1.1,
classical approaches, e.g. bootstrap, fail in this regime. For least-squares, classical
results continue to hold and we discuss it in Sect. 5 for the sake of completeness.
However, for M-estimators, there is no closed-form result. We briefly touch upon the
variance estimation in Sect. 3.4.2. The derivation for general situations is beyond the
scope of this paper and left to the future research.

1.3 Outline of paper

The rest of the paper is organized as follows: In Sect. 2, we clarify details which are
mentioned in the current section. In Sect. 3, we state the main result (Theorem 3.1)
formally and explain the technical assumptions. Then we show several examples of
random designs which satisfy the assumptions with high probability. In Sect. 4, we
introduce our main technical tool, second-order Poincaré inequality [10], and apply it
on M-estimators as the first step to prove Theorem 3.1. Since the rest of the proof of
Theorem 3.1 is complicated and lengthy, we illustrate the main ideas in “Appendix A”.
The rigorous proof is left to “Appendix B”. In Sect. 5, we provide reminders about the
theory of least-squares estimation for the sake of completeness, by taking advantage
of its explicit form. In Sect. 6, we display the numerical results. The proof of other
results are stated in “Appendix C” and more numerical experiments are presented in
“Appendix D”.
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2 More details on background

2.1 Moderate p/n regime: a more informative type of asymptotics?

In Sect. 1, we mentioned that the ratio p/n measures the difficulty of statistical infer-
ence. The moderate p/n regime provides an approximation of finite sample properties
with the difficulties fixed at the same level as the original problem. Intuitively, this
regime should capture more variation in finite sample problems and provide a more
accurate approximation. We will illustrate this via simulation.

Consider a study involving 50 participants and 40 variables; we can either use the
asymptotics in which p is fixed to be 40, n grows to infinity or p/n is fixed to be 0.8,
and n grows to infinity to perform approximate inference. Current software rely on
low-dimensional asymptotics for inferential tasks, but there is no evidence that they
yield more accurate inferential statements than the ones we would have obtained using
moderate dimensional asymptotics. In fact, numerical evidence [6,23,33] show that
the reverse is true.

Weexhibit a further numerical simulation showing that.Consider a case thatn = 50,
ε has i.i.d. entries and X is one realization of a matrix generated with i.i.d. gaussian
(mean 0, variance 1) entries. For κ ∈ {0.1, 0.2, . . . , 0.9} and different error distri-
butions, we use the Kolmogorov–Smirnov (KS) statistics to quantify the distance
between the finite sample distribution and two types of asymptotic approximation of
the distribution of β̂1(ρ).

Specifically, we use the Huber loss function ρHuber,k with default parameter k =
1.345 [32], i.e.

ρHuber,k(x) =
{ 1

2 x
2 |x | ≤ k

k
(|x | − 1

2k
) |x | > k

Specifically, we generate three design matrices X (0), X (1) and X (2): X (0) for small
sample case with a sample size n = 50 and a dimension p = nκ; X (1) for low-
dimensional asymptotics (p fixed) with a sample size n = 1000 and a dimension
p = 50κ; and X (2) for moderate-dimensional asymptotics (p/n fixed) with a sample
size n = 1000 and a dimension p = nκ . Each of them is generated as one realization of
an i.i.d. standard gaussian design and then treated as fixed across K = 100 repetitions.
For each designmatrix, vectors ε of appropriate length are generated with i.i.d. entries.
The entry has either a standard normal distribution, or a t3-distribution, or a standard
Cauchy distribution, i.e. t1. Then we use ε as the response, or equivalently assume
β∗ = 0, and obtain the M-estimators β̂(0), β̂(1), β̂(2). Repeating this procedure for
K = 100 times results in K replications in three cases. Then we extract the first
coordinate of each estimator, denoted by {β̂(0)

k,1}Kk=1, {β̂(1)
k,1}Kk=1, {β̂(2)

k,1}Kk=1. Then the
two-sample Kolmogorov–Smirnov statistics can be obtained by

KS1 =
√
n

2
max
x

∣∣∣F̂ (0)
n (x)− F̂ (1)

n (x)
∣∣∣ , KS2 =

√
n

2
max
x

∣∣∣F̂ (0)
n (x)− F̂ (2)

n (x)
∣∣∣ ,
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Fig. 1 Approximation accuracy of p-fixed asymptotics and p/n-fixed asymptotics: each column represents
an error distribution; the x-axis represents the ratio κ of the dimension and the sample size and the y-axis
represents the Kolmogorov–Smirnov statistic; the red solid line corresponds to p-fixed approximation and
the blue dashed line corresponds to p/n-fixed approximation (color figure online)

where F̂ (r)
n is the empirical distribution of {β̂(r)

k,1}Kk=1.We can then compare the accuracy
of two asymptotic regimes by comparing KS1 and KS2. The smaller the value of KSi ,
the better the approximation.

Figure 1 displays the results for these error distributions. We see that for gaus-
sian errors and even t3 errors, the p/n-fixed/moderate-dimensional approximation is
uniformly more accurate than the widely used p-fixed/low-dimensional approxima-
tion. For Cauchy errors, the low-dimensional approximation performs better than the
moderate-dimensional onewhen p/n is small but worsens when the ratio is large espe-
cially when p/n is close to 1. Moreover, when p/n grows, the two approximations
have qualitatively different behaviors: the p-fixed approximation becomes less and
less accurate while the p/n-fixed approximation does not suffer much deterioration
when p/n grows. The qualitative and quantitative differences of these two approxima-
tions reveal the practical importance of exploring the p/n-fixed asymptotic regime.
(See also [33]).

2.2 Random versus fixed design?

As discussed in Sect. 1.1, assuming a fixed design or a random design could lead to
qualitatively different inferential results.

In the random design setting, X is considered as being generated from a super
population. For example, the rows of X can be regarded as an i.i.d. sample from
a distribution known, or partially known, to the researcher. In situations where one
uses techniques such as cross-validation [54], pairs bootstrap in regression [17] or
sample splitting [60], the researcher effectively assumes exchangeability of the data
(xTi , yi )ni=1. Naturally, this is only compatible with an assumption of random design.
Given the extremely widespread use of these techniques in contemporary machine
learning and statistics, one could argue that the random design setting is the one under
which most of modern statistics is carried out, especially for prediction problems.
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Furthermore, working under a random design assumption forces the researcher to take
into account two sources of randomness as opposed to only one in the fixed design
case. Hence working under a random design assumption should yield conservative
confidence intervals for β∗j .

In other words, in settings where the researcher collects data without control over
the values of the predictors, the randomdesign assumption is arguably themore natural
one of the two.

However, it has now been understood for almost a decade that common random
design assumptions in high-dimension (e.g. xi = Σ1/2zi where zi, j ’s are i.i.d with
mean 0 and variance 1 and a few moments andΣ “well behaved”) suffer from consid-
erable geometric limitations, which have substantial impacts on the performance of
the estimators considered in this paper [22]. As such, confidence statements derived
from that kind of analysis can be relied on only after performing a few graphical tests
on the data (see [19]). These geometric limitations are simple consequences of the
concentration of measure phenomenon [36].

On the other hand, in the fixed design setting, X is considered a fixed matrix. In this
case, the inference only takes the randomness of ε into consideration. This perspective
is popular in several situations. The first one is the experimental design. The goal is
to study the effect of a set of factors, which can be controlled by the experimenter, on
the response. In contrast to the observational study, the experimenter can design the
experimental condition ahead of time based on the inference target. For instance, a
one-way ANOVA design encodes the covariates into binary variables (see Sect. 3.3.4
for details) and it is fixed prior to the experiment. Other examples include two-way
ANOVA designs, factorial designs, Latin-square designs, etc. [52].

Another situation which is concerned with fixed design is the survey sampling
where the inference is carried out conditioning on the data [13]. Generally, in order
to avoid unrealistic assumptions, making inference conditioning on the design matrix
X is necessary. Suppose the linear model (1) is true and identifiable (see Sect. 2.3
for details), then all information of β∗ is contained in the conditional distribution
L (y|X) and hence the information in the marginal distribution L (X) is redundant.
The conditional inference framework is more robust to the data generating procedure
due to the irrelevance of L (X).

Also, results based onfixed design assumptionsmaybe preferable froma theoretical
point of view in the sense that they could potentially be used to establish corresponding
results for certain classes of randomdesigns. Specifically, given amarginal distribution
L (X), one only has to prove that X satisfies the assumptions for fixed design with
high probability.

In conclusion, fixed and random design assumptions play complementary roles in
moderate-dimensional settings. We focus on the least understood of the two, the fixed
design case, in this paper.
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2.3 Modeling and identification of parameters

The problem of identifiability is especially important in the fixed design case. Define
β∗(ρ) in the population as

β∗(ρ) = argmin
β∈Rp

1

n

n∑

i=1
Eρ
(
yi − xTi β

)
. (3)

One may ask whether β∗(ρ) = β∗ regardless of ρ in the fixed design case.We provide
an affirmative answer in the following proposition by assuming that εi has a symmetric
distribution around 0 and ρ is even.

Proposition 2.1 Suppose X has a full column rank and εi
d= −εi for all i . Further

assume ρ is an even convex function such that for any i = 1, 2, . . . and α 	= 0,

1

2
(Eρ(εi − α)+ Eρ(εi + α)) > Eρ(εi ). (4)

Then β∗(ρ) = β∗ regardless of the choice of ρ.

The proof is left to “Appendix C”. It is worth mentioning that Proposition 2.1 only
requires the marginals of ε to be symmetric but does not impose any constraint on the
dependence structure of ε. Further, if ρ is strongly convex, then for all α 	= 0,

1

2
(ρ(x − α)+ ρ(x + α)) > ρ(x).

As a consequence, the condition (4) is satisfied provided that εi is non-zero with
positive probability.

If ε is asymmetric, wemay still be able to identifyβ∗ if εi are i.i.d. randomvariables.
In contrast to the last case, we should incorporate an intercept term as a shift towards
the centroid of ρ. More precisely, we define α∗(ρ) and β∗(ρ) as

(α∗(ρ), β∗(ρ)) = argmin
α∈R,β∈Rp

1

n

n∑

i=1
Eρ
(
yi − α − xTi β

)
.

Proposition 2.2 Suppose (1, X) is of full column rank and εi are i.i.d. such that
Eρ(ε1 − α) as a function of α has a unique minimizer α(ρ). Then β∗(ρ) is uniquely
defined with β∗(ρ) = β∗ and α∗(ρ) = α(ρ).

The proof is left to “Appendix C”. For example, let ρ(z) = |z|. Then the minimizer
of Eρ(ε1 − a) is a median of ε1, and is unique if ε1 has a positive density. It is
worth pointing out that incorporating an intercept term is essential for identifying
β∗. For instance, in the least-square case, β∗(ρ) no longer equals to β∗ if Eεi 	= 0.
Proposition 2.2 entails that the intercept term guarantees β∗(ρ) = β∗, although the
intercept term itself depends on the choice of ρ unless more conditions are imposed.

123



992 L. Lei et al.

If εi ’s are neither symmetric nor i.i.d., then β∗ cannot be identified by the previous
criteria because β∗(ρ) depends on ρ. Nonetheless, from a modeling perspective, it is
popular and reasonable to assume that εi ’s are symmetric or i.i.d. in many situations.
Therefore, Propositions 2.1 and 2.2 justify the use of M-estimators in those cases and
M-estimators derived from different loss functions can be compared because they are
estimating the same parameter.

3 Main results

3.1 Notation and assumptions

Let xTi ∈ R
1×p denote the i-th row of X and X j ∈ R

n×1 denote the j-th column
of X. Throughout the paper we will denote by Xi j ∈ R the (i, j)-th entry of X ,
by X[ j] ∈ R

n×(p−1) the design matrix X after removing the j-th column, and by
xTi,[ j] ∈ R

1×(p−1) the vector xTi after removing j-th entry. The M-estimator β̂(ρ)

associated with the loss function ρ is defined as

β̂(ρ) = argmin
β∈Rp

1

n

n∑

k=1
ρ
(
yk − xTk β

)
= argmin

β∈Rp

1

n

n∑

k=1
ρ
(
εk − xTk (β − β∗)

)
(5)

We define ψ = ρ′ to be the first derivative of ρ. We will write β̂(ρ) simply β̂ when
no confusion can arise.

When the original design matrix X does not contain an intercept term, we can
simply replace X by (1, X) and augment β into a (p+1)-dimensional vector (α, βT )T .
Although being a special case, we will discuss the question of intercept in Sect. 3.2.2
due to its important role in practice.

Equivariance and reduction to the null case

Notice that our target quantity
β̂ j−Eβ̂ j√
Var(β̂ j )

is invariant to the choice of β∗, provided that

β∗ is identifiable as discussed in Sect. 2.3, we can assume β∗ = 0 without loss of
generality. In this case, we assume in particular that the design matrix X has full
column rank. Then yk = εk and

β̂ = argmin
β∈Rp

1

n

n∑

k=1
ρ
(
εk − xTk β

)
.

Similarly we define the leave- j-th-predictor-out version as

β̂[ j] = argmin
β∈Rp−1

1

n

n∑

k=1
ρ
(
εk − xTk,[ j]β

)
.
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Based on these notations we define the full residuals Rk as

Rk = εk − xTk β̂, k = 1, 2, . . . , n

and the leave- j-th-predictor-out residual as

rk,[ j] = εk − xTk,[ j]β̂[ j], k = 1, 2, . . . , n, j = 1, . . . , p.

Three n × n diagonal matrices are defined as

D = diag(ψ ′(Rk))
n
k=1, D̃ = diag(ψ ′′(Rk))

n
k=1, D[ j] = diag(ψ ′(rk,[ j]))nk=1.

(6)
We say a random variable Z is σ 2-sub-gaussian if for any λ ∈ R,

EeλZ ≤ e
λ2σ2
2 .

In addition, we use Jn ⊂ {1, . . . , p} to represent the indices of parameters which
are of interest. Intuitively, more entries in Jn would require more stringent conditions
for the asymptotic normality.

Finally, we adopt Landau’s notation (O(·), o(·), Op(·), op(·)). In addition, we say
an = Ω(bn) if bn = O(an) and similarly, we say an = Ωp(bn) if bn = Op(an). To
simplify the logarithm factors, we use the symbol polyLog(n) to denote any factor
that can be upper bounded by (log n)γ for some γ > 0. Similarly, we use 1

polyLog(n)

to denote any factor that can be lower bounded by 1
(log n)γ

′ for some γ ′ > 0.

3.2 Technical assumptions and main result

Before stating the assumptions, we need to define several quantities of interest. Let

λ+ = λmax

(
XT X

n

)
, λ− = λmin

(
XT X

n

)

be the largest (resp. smallest) eigenvalue of the matrix XT X
n . Let ei ∈ R

n be the i-th
canonical basis vector and

h j,0 � (ψ(r1,[ j]), . . . , ψ(rn,[ j]))T ,

h j,1,i �
(
I − D[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]

)
ei .

Finally, let

ΔC = max

⎧
⎨

⎩max
j∈Jn

∣∣∣hTj,0X j

∣∣∣
||h j,0||2 , max

i≤n, j∈Jn

∣∣∣hTj,1,i X j

∣∣∣
||h j,1,i ||2

⎫
⎬

⎭ ,

Q j = Cov(h j,0)
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Based on the quantities defined above, we state our technical assumptions on the
designmatrix X followed by themain result. A detailed explanation of the assumptions
follows.

A1 ρ(0) = ψ(0) = 0 and there exists positive numbers K0 = Ω
(

1
polyLog(n)

)
,

K1, K2 = O (polyLog(n)), such that for any x ∈ R,

K0 ≤ ψ ′(x) ≤ K1,

∣∣∣∣
d

dx
(
√

ψ ′(x))
∣∣∣∣ =

|ψ ′′(x)|√
ψ ′(x)

≤ K2;

A2 εi = ui (Wi ) where (W1, . . . ,Wn) ∼ N (0, In×n) and ui are smooth functions
with ‖u′i‖∞ ≤ c1 and ‖u′′i ‖∞ ≤ c2 for some c1, c2 = O(polyLog(n)).Moreover,

assume mini Var(εi ) = Ω
(

1
polyLog(n)

)
.

A3 λ+ = O(polyLog(n)) and λ− = Ω
(

1
polyLog(n)

)
;

A4 min j∈Jn
XT

j Q j X j

tr(Q j )
= Ω

(
1

polyLog(n)

)
;

A5 EΔ8
C = O (polyLog(n)).

Theorem 3.1 Under assumptions A1–A5, as p/n → κ for some κ ∈ (0, 1), while
n →∞,

max
j∈Jn

dTV

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = o(1),

where dTV(P, Q) = supA |P(A)− Q(A)| is the total variation distance.

Weprovide several examples where our assumptions hold in Sect. 3.3.We also provide
an example where the asymptotic normality does not hold in Sect. 3.3.4. This shows
that our assumptions are not just artifacts of the proof technique we developed, but
that there are (probably many) situations where asymptotic normality will not hold,
even coordinate-wise.

3.2.1 Discussion of assumptions

Now we discuss assumptions A1–A5. Assumption A1 implies the boundedness of
the first-order and the second-order derivatives of ψ . The upper bounds are satisfied
by most loss functions including the L2 loss, the smoothed L1 loss, the smoothed
Huber loss, etc. The non-zero lower bound K0 implies the strong convexity of ρ and is
required for technical reasons. It can be removed by considering first a ridge-penalized
M-estimator and taking appropriate limits as in [20,21]. In addition, in this paper we
consider the smooth loss functions and the results can be extended to non-smooth case
via approximation.

For unregularized M-estimators, the strong convexity is also assumed by other
works [15,20]. However, we believe that this assumption is unnecessary and can
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be removed at least for well-behaved design matrices. In fact, we can extend our
results to strictly convex loss functions, where ψ ′ is always positive by imposing
slightly stronger assumptions on the designs. This includes the class of optimal loss
functions in the moderate p/n regime derived in [6]. However, the proofs are very
delicate and beyond the scope of this paper so we plan to leave it in our future
works.

Assumption A2 was proposed in [10] when deriving the second-order Poincaré
inequality discussed in Sect. 4.1. It means that the results apply to non-Gaussian dis-
tributions, such as the uniform distribution on [0, 1] by taking ui = Φ, the cumulative
distribution function of standard normal distribution. Through the gaussian concentra-
tion [36], we see that A2 implies that εi are c21-sub-gaussian. ThusA2 controls the tail
behavior of εi . The bounds on the infinity norm of u′i and u′′i are required only for the
direct application of Chatterjee’s results. In fact, a look at his proof suggests that one
can obtain a similar result to his Second-Order Poincaré inequality involving moment
bounds on u′i (Wi ) and u′′i (Wi ). This would be a way to weaken our assumptions to per-
mit to have the heavy-tailed distributions expected in robustness studies. This requires
substantial work and an extension of the main results of [10]. Because the technical
part of the paper is already long, we leave this interesting statistical question to future
works.

On the other hand, since we are considering strongly convex loss-functions, it is
not completely unnatural to restrict our attention to light-tailed errors. Furthermore,
efficiency—andnot only robustness—questions are oneof themain reasons to consider
these estimators in themoderate-dimensional context. The potential gains in efficiency
obtained by considering regression M-estimates [6] apply in the light-tailed context,
which further justify our interest in this theoretical setup.

Assumption A3 is completely checkable since it only depends on X . It controls the
singularity of the design matrix. Under A1 and A3, it can be shown that the objective
function is strongly convex with curvature (the smallest eigenvalue of the Hessian

matrix) lower bounded by Ω
(

1
polyLog(n)

)
everywhere.

Assumption A4 is controlling the left tail of quadratic forms. It is fundamentally
connected to aspects of the concentration ofmeasure phenomenon [36]. This condition
is proposed and emphasized under the random design setting by [23]. Essentially, it
means that for amatrix Q j ,which does not depend on X j , the quadratic form XT

j Q j X j

should have the same order as tr(Q j ).
AssumptionA5 is proposed by [20] under the randomdesign settings. It ismotivated

by leave-one-predictor-out analysis. Note that ΔC is the maximum of linear contrasts
of X j , whose coefficients do not depend on X j . It is easily checked for design matrix
X which is a realization of a randommatrix with i.i.d sub-gaussian entries for instance.

Remark 3.1 In certain applications, it is reasonable to make the following additional
assumption:

A6 ρ is an even function and εi ’s have symmetric distributions.

Although assumption A6 is not necessary to Theorem 3.1, it can simplify the result.

Under assumption A6, when X is full rank, we have, if
d= denotes equality in distri-
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bution,

β̂ − β∗ = argmin
η∈Rp

1

n

n∑

i=1
ρ
(
εi − xTi η

)
= argmin

η∈Rp

1

n

n∑

i=1
ρ
(
−εi + xTi η

)

d= argmin
η∈Rp

1

n

n∑

i=1
ρ
(
εi + xTi η

)
= β∗ − β̂.

This implies that β̂ is an unbiased estimator, provided it has a mean, which is the case
here. Unbiasedness is useful in practice, since then Theorem 3.1 reads

max
j∈Jn

dTV

⎛

⎝L

⎛

⎝ β̂ j − β∗j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = o(1) .

For inference, we only need to estimate the asymptotic variance.

3.2.2 An important remark concerning Theorem 3.1

When Jn is a subset of {1, . . . , p}, the coefficients in J cn become nuisance parameters.
Heuristically, in order for identifying β∗Jn , one only needs the subspaces span(X Jn )

and span(X Jcn ) to be distinguished and X Jn has a full column rank. Here X Jn denotes
the sub-matrix of X with columns in Jn . Formally, let

Σ̂Jn =
1

n
XT
Jn

(
I − X Jcn

(
XT
Jcn
X Jcn

)−
XT
Jcn

)
X Jn

where A− denotes the generalized inverse of A, and

λ̃+ = λmax

(
Σ̂Jn

)
, λ̃− = λmin

(
Σ̂Jn

)
.

Then Σ̂Jn characterizes the behavior of X Jn after removing the effect of X Jcn . In
particular, we can modify the assumption A3 by

A3* λ̃+ = O(polyLog(n)) and λ̃− = Ω
(

1
polyLog(n)

)
.

Then we are able to derive a stronger result in the case where |Jn| < p than Theorem
3.1 as follows.

Corollary 3.1 Under assumptions A1–2, A4–5 and A3*, as p/n → κ for some
κ ∈ (0, 1),

max
j∈Jn

dTV

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = o(1).
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It can be shown that λ̃+ ≤ λ+ and λ̃− ≥ λ− and hence the assumption A3* is
weaker than A3. It is worth pointing out that the assumption A3* even holds when
Xc
Jn

does not have full column rank, in which case β∗Jn is still identifiable and β̂Jn is

still well-defined, although β∗J cn and β̂J cn are not; see “Appendix C-2” for details.

3.3 Examples

Throughout this subsection (except Sect. 3.3.4), we consider the case where X is a
realization of a random matrix, denoted by Z (to be distinguished from X ). We will
verify that the assumptions A3–A5 are satisfied with high probability under different
regularity conditions on the distribution of Z . This is a standard way to justify the
conditions for fixed design [42,43] in the literature on regression M-estimates.

3.3.1 Random design with independent entries

First we consider a random matrix Z with i.i.d. sub-gaussian entries.

Proposition 3.1 Suppose Z has i.i.d. mean-zero σ 2-sub-gaussian entries with

Var(Zi j ) = τ 2 > 0 for some σ = O(polyLog(n)) and τ = Ω
(

1
polyLog(n)

)
, then,

when X is a realization of Z, assumptions A3–A5 for X are satisfied with high prob-
ability over Z for Jn = {1, . . . , p}.
In practice, the assumptionof identical distributionmight be invalid. In fact the assump-
tions A4, A5 and the first part of A3 (λ+ = O (polyLog(n))) are still satisfied with
high probability if we only assume the independence between entries and boundedness
of certain moments. To control λ−, we rely on [37] which assumes symmetry of each
entry. We obtain the following result based on it.

Proposition 3.2 Suppose Z has independent σ 2-sub-gaussian entries with

Zi j
d= −Zi j , Var(Zi j ) > τ 2

for some σ = O (polyLog(n)) and τ = Ω
(

1
polyLog(n)

)
, then, when X is a realization

of Z, assumptions A3–A5 for X are satisfied with high probability over Z for Jn =
{1, . . . , p}.
Under the conditions of Proposition 3.2, we can add an intercept term into the design
matrix. Adding an intercept allows us to remove the mean-zero assumption for Zi j ’s.
In fact, suppose Zi j is symmetric with respect toμ j , which is potentially non-zero, for
all i , then according to Sect. 3.2.2, we can replace Zi j by Zi j −μ j and Proposition 3.3
can be then applied.

Proposition 3.3 Suppose Z = (1, Z̃) and Z̃ ∈ R
n×(p−1) has independent σ 2-sub-

gaussian entries with

Z̃i j − μ j
d= μ j − Z̃i j , Var(Z̃i j ) > τ 2
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for some σ = O (polyLog(n)), τ = Ω
(

1
polyLog(n)

)
and arbitrary μ j . Then, when

X is a realization of Z, assumptions A3*, A4 and A5 for X are satisfied with high
probability over Z for Jn = {2, . . . , p}.

3.3.2 Dependent gaussian design

To show that our assumptions handle a variety of situations, we now assume that the
observations, namely the rows of Z , are i.i.d. random vectors with a covariance matrix

Σ . In particular we show that the Gaussian design, i.e. zi
i.i.d.∼ N (0,Σ), satisfies the

assumptions with high probability.

Proposition 3.4 Suppose zi
i.i.d.∼ N (0,Σ) with λmax(Σ) = O (polyLog(n)) and

λmin(Σ) = Ω
(

1
polyLog(n)

)
, then, when X is a realization of Z, assumptions A3–A5

for X are satisfied with high probability over Z for Jn = {1, . . . , p}.
This result extends to the matrix-normal design [41, Chapter 3], i.e. (Zi j )i≤n, j≤p is
one realization of a np-dimensional random variable Z with multivariate gaussian
distribution

vec(Z) �
(
zT1 , zT2 , . . . , zTn

)
∼ N (0,Λ⊗Σ),

and ⊗ is the Kronecker product. It turns out that assumptions A3–A5 are satisfied if
both Λ and Σ are well-behaved.

Proposition 3.5 Suppose Z is matrix-normal with vec(Z) ∼ N (0,Λ⊗Σ) and

λmax(Λ), λmax(Σ) = O (polyLog(n)) , λmin(Λ), λmin(Σ) = Ω

(
1

polyLog(n)

)
.

Then, when X is a realization of Z,assumptions A3–A5 for X are satisfied with high
probability over Z for Jn = {1, . . . , p}.
In order to incorporate an intercept term, we need slightly more stringent condition on
Λ. Instead of assumption A3, we prove that assumption A3*—see Sect. 3.2.2—holds
with high probability.

Proposition 3.6 Suppose Z contains an intercept term, i.e. Z = (1, Z̃) and Z̃ satisfies
the conditions of Proposition 3.5. Further assume that

maxi |(Λ− 1
2 1)i |

mini |(Λ− 1
2 1)i |

= O (polyLog(n)) . (7)

Then, when X is a realization of Z, assumptions A3*, A4 and A5 for X are satisfied
with high probability over Z for Jn = {2, . . . , p}.
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When Λ = I , the condition (7) is satisfied. Another non-trivial example is the
exchangeable case where Λi j are all equal for i 	= j . In this case, 1 is an eigen-

vector of Λ and hence it is also an eigenvector of Λ− 1
2 . Thus Λ− 1

2 1 is a multiple of 1
and the condition (7) is satisfied.

3.3.3 Elliptical design

Furthermore, we can move from Gaussian-like structure to generalized elliptical
models where zi = ζiΣ

1/2Zi where {ζi ,Zi j : i = 1, . . . , n; j = 1, . . . , p} are
independent random variables, Zi j having for instance mean 0 and variance 1. The
elliptical family is quite flexible in modeling data. It represents a type of data formed
by a common driven factor and independent individual effects. It is widely used in
multivariate statistics [1,55] and various fields, including finance [12] and biology
[46]. In the context of high-dimensional statistics, this class of model was used to
refute universality claims in random matrix theory [18]. In robust regression, [22]
used elliptical models to show that the limit of ‖β̂‖22 depends on the distribution of ζi
and hence the geometry of the predictors. As such, studies limited to Gaussian-like
design were shown to be of very limited statistical interest. See also the deep classical
inadmissibility results [4,34]. However, as we will show in the next proposition, the
common factors ζi do not distort the shape of the asymptotic distribution. A similar
phenomenon happens in the random design case—see [6,23].

Proposition 3.7 Suppose Z is generated from an elliptical model, i.e.

Zi j = ζiZi j ,

where ζi are independent random variables taking values in [a, b] for some 0 <

a < b < ∞ and Zi j are independent random variables satisfying the conditions
of Propositions 3.1 or 3.2. Further assume that {ζi : i = 1, . . . , n} and {Zi j :
i = 1, . . . , n; j = 1, . . . , p} are independent. Then, when X is a realization of
Z, assumptions A3–A5 for X are satisfied with high probability over Z for Jn =
{1, . . . , p}.
Thanks to the fact that ζi is bounded away from 0 and∞, the proof of Proposition 3.7
is straightforward, as shown in “Appendix C”. However, by a more refined argument
and assuming identical distributions ζi , we can relax this condition.

Proposition 3.8 Under the conditions of Proposition 3.7 (except the boundedness of
ζi ) and assume ζi are i.i.d. samples generated from some distribution F, independent
of n, with

P (ζ1 ≥ t) ≤ c1e
−c2tα ,

for some fixed c1, c2, α > 0 and F−1(q) > 0 for any q ∈ (0, 1)where F−1 is the quan-
tile function of F and is continuous. Then, when X is a realization of Z, assumptions
A3–A5 for X are satisfied with high probability over Z for Jn = {1, . . . , p}.
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3.3.4 A counterexample

Consider a one-way ANOVA situation. In other words, let the design matrix have
exactly 1 non-zero entry per row,whose value is 1. Let {ki }ni=1 be integers in {1, . . . , p}.
And let Xi, j = 1( j = ki ). Furthermore, let us constrain n j = |{i : ki = j}| to be
such that 1 ≤ n j ≤ 2�p/n�. Taking for instance ki = (i mod p) is an easy way to
produce such a matrix. The associated statistical model is just yi = εi + β∗ki .

It is easy to see that

β̂ j = argmin
β∈R

∑

i :ki= j

ρ(yi − β j ) = argmin
β∈R

∑

i :ki= j

ρ(εi − (β j − β∗j )) .

This is of course a standard location problem. In the moderate-dimensional setting we
consider, n j remains finite as n →∞. So β̂ j is a non-linear function of finitely many
random variables and will in general not be normally distributed.

For concreteness, one can take ρ(x) = |x |, in which case β̂ j is a median of
{yi }{i :ki= j}. The cdf of β̂ j is known exactly by elementary order statistics computations
(see [14]) and is not that of a Gaussian random variable in general. In fact, the ANOVA
design considered here violates the assumptionA3 sinceλ− = min j n j/n = O (1/n).
Further, we can show that the assumptionA5 is also violated, at least in the least-square
case; see Sect. 5.1 for details.

3.4 Comments and discussions

3.4.1 Asymptotic normality in high dimensions

In the p-fixed regime, the asymptotic distribution is easily defined as the limit ofL (β̂)

in terms ofweak topology [56]. However, in regimeswhere the dimension p grows, the
notion of asymptotic distribution is more delicate. a conceptual question arises from
the fact that the dimension of the estimator β̂ changes with n and thus there is no well-
defined distribution which can serve as the limit ofL (β̂), whereL (·) denotes the law.
One remedy is proposed by [38]. Under this framework, a triangular array {Wn, j , j =
1, 2, . . . , pn}, with EWn, j = 0,EW 2

n, j = 1, is called jointly asymptotically normal if
for any deterministic sequence an ∈ R

pn with ‖an‖2 = 1,

L

⎛

⎝
pn∑

j=1
an, jWn, j

⎞

⎠→ N (0, 1).

When the zero mean and unit variance are not satisfied, it is easy to modify the
definition by normalizing random variables.
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Definition 3.1 (joint asymptotic normality)
{Wn : Wn ∈ R

pn } is jointly asymptotically normal if and only if for any sequence
{an : an ∈ R

pn },

L

(
aTn (Wn − EWn)√
aTn Cov(Wn)an

)
→ N (0, 1).

The above definition of asymptotic normality is strong and appealing but was shown
not to hold for least-squares in the moderate p/n regime [31]. In fact, [31] shows that
β̂LS is jointly asymtotically normal only if

max
i

(X (XT X)−1XT )i,i → 0.

When p/n → κ ∈ (0, 1), provided X is full rank,

max
i

(X (XT X)−1XT )i,i ≥ 1

n
tr(X (XT X)−1XT ) = p

n
→ κ > 0.

In other words, in moderate p/n regime, the asymptotic normality cannot hold for all
linear contrasts, even in the case of least-squares.

In applications, however, it is usually not necessary to consider all linear contrasts
but instead a small subset of them, e.g. all coordinates or low dimensional linear
contrasts such as β∗1 − β∗2 . We can naturally modify Definition 3.1 and adapt to our
needs by imposing constraints on an . A popular concept, which we use in Sect. 1
informally, is called coordinate-wise asymptotic normality and defined by restricting
an to be the canonical basis vectors, which have only one non-zero element. An
equivalent definition is stated as follows.

Definition 3.2 (coordinate-wise asymptotic normal) {Wn : Wn ∈ R
pn } is coordinate-

wise asymptotically normal if and only if for any sequence { jn : jn ∈ {1, . . . , pn}},

L

(
Wn, jn − EWn, jn√

Var(Wn, jn )

)
→ N (0, 1).

Amore convenient way to define the coordinate-wise asymptotic normality is to intro-
duce a metric d(·, ·), e.g. Kolmogorov distance and total variation distance, which
induces the weak convergence topology. Then Wn is coordinate-wise asymptotically
normal if and only if

max
j

d

(
L

(
Wn, j − EWn, j√

Var(Wn, j )

)
, N (0, 1)

)
= o(1).

3.4.2 Variance and bias estimation

To complete the inference, we need to compute the bias and variance. As discussed in
Remark 3.1, the M-estimator is unbiased if the loss function and the error distribution
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are symmetric. For the variance, it is easy to get a conservative estimate via resampling
methods such as Jackknife as a consequence of Efron–Stein’s inequality; see [20,24]
for details. Moreover, by the variance decomposition formula,

Var(β̂ j ) = E

[
Var(β̂ j |X)

]
+ Var

[
E(β̂ j |X)

]
≥ E

[
Var(β̂ j |X)

]
,

the unconditional variance, when X is a random design matrix, is a conservative
estimate. The unconditional variance can be calculated by solving a non-linear system;
see [15,20].

However, estimating the exact variance is known to be hard. [24] show that the
existing resampling schemes, including jacknife, pairs-bootstrap, residual bootstrap,
etc., are either too conservative or too anti-conservative when p/n is large. The chal-
lenge, as mentioned in [20,24], is due to the fact that the residuals {Ri } do not mimic
the behavior of {εi } and that the resampling methods effectively modifies the geom-
etry of the dataset from the point of view of the statistics of interest. We believe that
variance estimation in moderate p/n regime should rely on different methodologies
from the ones used in low-dimensional estimation.

4 Proof sketch

Since the proof of Theorem 3.1 is somewhat technical, we illustrate the main idea in
this section.

First notice that the M-estimator β̂ is an implicit function of independent random
variables ε1, . . . , εn , which is determined by

1

n

n∑

i=1
xiψ(εi − xi β̂) = 0. (8)

The Hessian matrix of the loss function in (5) is 1
n X

T DX � D0λ− Ip under the
notation introduced in Sect. 3.1. The assumptionA3 then implies that the loss function
is strongly convex, in which case β̂ is unique. Then β̂ can be seen as a non-linear
function of εi ’s. A powerful central limit theorem for this type of statistics is the
second-order Poincaré inequality (SOPI), developed in [10] and used there to re-
prove central limit theorems for linear spectral statistics of large randommatrices. We
recall one of the main results for the convenience of the reader.

Proposition 4.1 (SOPI; [10]) Let W = (W1, . . . ,Wn) = (u1(W1), . . . , un(Wn))

where Wi
i.i.d.∼ N (0, 1) and ‖u′i‖∞ ≤ c1, ‖u′′i ‖∞ ≤ c2. Take any g ∈ C2(Rn) and let

∇i g, ∇g and ∇2g denote the i-th partial derivative, gradient and Hessian of g. Let

κ0 =
(
E

n∑

i=1

∣∣∇i g(W )
∣∣4
) 1

2

, κ1 = (E‖∇g(W )‖42)
1
4 , κ2 = (E‖∇2g(W )‖4op)

1
4 ,
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and U = g(W ). If U has finite fourth moment, then

dTV

(
L

(
U − EU√
Var(U )

)
, N (0, 1)

)
≤ 2

√
5(c1c2κ0 + c31κ1κ2)

Var(U )
.

From (8), it is not hard to compute the gradient and Hessian of β̂ j with respect to ε.
Recalling the definitions in Eq. (6) on p. 9, we have

Lemma 4.1 Suppose ψ ∈ C2(Rn), then

∂β̂ j

∂εT
= eTj (X

T DX)−1XT D (9)

∂β̂ j

∂ε∂εT
= GT diag

(
eTj (X

T DX)−1XT D̃
)
G (10)

where e j is the j-th cononical basis vectors in Rp and

G = I − X (XT DX)−1XT D.

Recalling the definitions of Ki ’s in Assumption A1 on p. 10, we can bound κ0, κ1 and
κ2 as follows.

Lemma 4.2 Let κ0 j , κ1 j , κ2 j defined as in Proposition 4.1 by setting W = ε and
g(W ) = β̂ j . Let

M j = E

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥∞ , (11)

then

κ2
0 j ≤

K 2
1

(nK0λ−)
3
2

· Mj , κ4
1 j ≤

K 2
1

(nK0λ−)2
, κ4

2 j ≤
K 4
2

(nK0λ−)
3
2

·
(
K1

K0

)4

· Mj .

As a consequence of the second-order Poincaré inequality, we can bound the total
variation distance between β̂ j and a normal distribution by Mj and Var(β̂ j ). More
precisely, we prove the following Lemma.

Lemma 4.3 Under Assumptions A1–A3,

max
j

dTV

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = Op

⎛

⎝ max j (nM2
j )

1
8

n ·min j Var(β̂ j )
· polyLog(n)

⎞

⎠ .

Lemma 4.3 is the key to prove Theorem 3.1. To obtain the coordinate-wise asymptotic
normality, it is left to establish an upper bound for Mj and a lower bound for Var(β̂ j ).
In fact, we can prove that
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Lemma 4.4 Under assumptions A1–A5,

max
j

M j = O

(
polyLog(n)

n

)
, min

j
Var(β̂ j ) = Ω

(
1

n · polyLog(n)
)

.

Then Lemmas 4.3 and 4.4 together imply that

max
j

dTV

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = O

(
polyLog(n)

n
1
8

)
= o(1).

“Appendix A”, provides a roadmap of the proof of Lemma 4.4 under a special case
where the designmatrix X is one realization of a randommatrixwith i.i.d. sub-gaussian
entries. It also serves as an outline of the rigorous proof in “Appendix B”.

4.1 Comment on the second-order Poincaré inequality

Notice that when g is a linear function such that g(z) = ∑n
i=1 ai zi , then the Berry–

Esseen inequality [25] implies that

dK

(
L

(
W − EW√
Var(W )

)
, N (0, 1)

)
�
∑n

i=1 |ai |3
(∑n

i=1 a2i
) 3
2

,

where

dK (F,G) = sup
x
|F(x)− G(x)|.

On the other hand, the second-order Poincaré inequality implies that

dK

(
L

(
W − EW√
Var(W )

)
, N (0, 1)

)
≤ dTV

(
L

(
W − EW√
Var(W )

)
, N (0, 1)

)

�
(∑n

i=1 a4i
) 1
2

∑n
i=1 a2i

.

This is slightly worse than the Berry–Esseen bound and requires stronger conditions
on the distributions of variates but provides bounds for TV metric instead of Kol-
mogorov metric. This comparison shows that second-order Poincaré inequality can be
regarded as a generalization of the Berry–Esseen bound for non-linear transformations
of independent random variables.

5 Least-squares estimator

The Least-Squares Estimator is a special case of an M-estimator with ρ(x) = 1
2 x

2.
Because the estimator can then be written explicitly, the analysis of its properties
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is extremely simple and it has been understood for several decades (see arguments
in e.g. [31, Lemma 2.1] and [32, Proposition 2.2]). In this case, the hat matrix
H = X (XT X)−1XT captures all the problems associated with dimensionality in
the problem. In particular, proving the asymptotic normality simply requires an appli-
cation of the Lindeberg–Feller theorem.

It is however somewhat helpful to compare the conditions required for asymptotic
normality in this simple case and the ones we required in the more general setup of
Theorem 3.1. We do so briefly in this section.

5.1 Coordinate-wise asymptotic normality of LSE

Under the linear model (1), when X is full rank,

β̂LS = β∗ + (XT X)−1XT ε,

thus each coordinate of β̂LS is a linear contrast of ε with zero mean. Instead of
assumption A2, which requires εi to be sub-gaussian, we only need to assume
maxi E|εi |3 < ∞, under which the Berry–Essen bound for non-i.i.d. data [25] implies
that

dK

⎛

⎝L

⎛

⎝ β̂ j − β∗j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ � ‖e j (XT X)−1XT ‖33
‖eTj (XT X)−1XT ‖32

≤ ‖e j (XT X)−1XT ‖∞
‖e j (XT X)−1XT ‖2 .

This motivates us to define a matrix specific quantity S j (X) such that

S j (X) =
∥∥∥eTj (XT X)−1XT

∥∥∥∞∥∥∥eTj (XT X)−1XT
∥∥∥
2

(12)

then the Berry–Esseen bound implies that max j∈Jn S j (X) determines the coordinate-
wise asymptotic normality of β̂LS .

Theorem 5.1 If maxi E|εi |3 < ∞, then

max
j∈Jn

dK

⎛

⎝ β̂LS, j − β0, j√
Var(β̂LS, j )

, N (0, 1)

⎞

⎠ ≤ A ·max
i

E|εi |3
(
Eε2i

) 3
2

·max
j∈Jn

S j (X),

where A is an absolute constant and dK (·, ·) is the Kolmogorov distance, defined as

dK (F,G) = sup
x
|F(x)− G(x)|.

It turns out that max j∈Jn S j (X) plays in the least-squares setting the role of ΔC in
assumption A5. Since it has been known that a condition like S j (X) → 0 is necessary
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for asymptotic normality of least-square estimators [31, Proposition 2.2], this shows
in particular that our Assumption A5, or a variant, is also needed in the general case.
See “Appendix C-4.1” for details.

5.2 Discussion

Naturally, checking the conditions for asymptotic normality is much easier in the least-
squares case than in the general case under consideration in this paper. In particular:

1. Asymptotic normality conditions can be checked for a broader class of random
design matrices. See “Appendix C-4.2” for details.

2. For orthogonal design matrices, i.e XT X = cId for some c > 0, S j (X) = ‖X j‖∞
‖X j‖2 .

Hence, the condition S j (X) = o(1) is true if and only if no entry dominates the
j-th row of X .

3. The ANOVA-type counterexample we gave in Sect. 3.3.4 still provides a counter-
example. The reason now is different: namely the sumof finitelymany independent
random variables is evidently in general non-Gaussian. In fact, in this case,
S j (X) = 1√

n j
is bounded away from 0.

Inferential questions are also extremely simple in this context and essentially again
dimension-independent for the reasons highlighted above. Theorem 5.1 naturally
reads,

β̂ j − β∗j
σ
√
eTj (X

T X)−1e j

d→ N (0, 1). (13)

Estimating σ is still simple under minimal conditions provided n − p →∞: see [9,
Theorem 1.3] or standard computations concerning the normalized residual sum-of-
squares (using variance computations for the latter may require up to 4 moments for
εi ’s). Then we can replace σ in (13) by σ̂ with

σ̂ 2 = 1

n − p

n∑

k=1
R2
k

where Rk = yk − xTk β̂ and construct confidence intervals for β∗j based on σ̂ . If
n − p does not tend to ∞, the normalized residual sum of squares is evidently
not consistent even in the case of Gaussian errors, so this requirement may not be
dispensed of.

6 Numerical results

As seen in the previous sections and related papers, there are five important factors
that affect the distribution of β̂: the design matrix X , the error distribution L (ε),
the sample size n, the ratio κ , and the loss function ρ. The aim of this section is
to assess the quality of the agreement between the asymptotic theoretical results of
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Theorem 3.1 and the empirical, finite-dimensional properties of β̂(ρ). We also per-
form a few simulations where some of the assumptions of Theorem 3.1 are violated
to get an intuitive sense of whether those assumptions appear necessary or whether
they are simply technical artifacts associated with the method of proof we developed.
As such, the numerical experiments we report on in this section can be seen as a
complement to Theorem 3.1 rather than only a simple check of its practical rele-
vance.

The design matrices we consider are one realization of random design matrices of
the following three types:

(i.i.d. design) Xi j
i.i.d.∼ F ;

(elliptical design) Xi j = ζi X̃i j , where X̃i j
i.i.d.∼ N (0, 1) and ζi

i.i.d.∼ F . In addition,
{ζi } is independent of {X̃i j };
(partial Hadamard design) a matrix formed by a random set of p columns of a
n × n Hadamard matrix, i.e. a n × n matrix whose columns are orthogonal with
entries restricted to ±1.

Here we consider two candidates for F in i.i.d. design and elliptical design: standard
normal distribution N (0, 1) and t-distribution with two degrees of freedom (denoted
t2). For the error distribution, we assume that ε has i.i.d. entries with one of the above
two distributions, namely N (0, 1) and t2. The t-distribution violates our assumption
A2.

To evaluate the finite sample performance, we consider the sample sizes n ∈
{100, 200, 400, 800} and κ ∈ {0.5, 0.8}. In this section we will consider a Huber
loss with k = 1.345 [32], i.e.

ρ(x) =
{

1
2 x

2 |x | ≤ k

kx − k2
2 |x | > k

k = 1.345 is the default in R and yields 95% relative efficiency for Gaussian errors in
low-dimensional problems. We also carried out the numerical work for L1-regression,
i.e. ρ(x) = |x |. See “Appendix D” for details.

6.1 Asymptotic normality of a single coordinate

First we simulate the finite sample distribution of β̂1, the first coordinate of β̂. For
each combination of sample size n (100, 200, 400 and 800), type of design (i.i.d,
elliptical and Hadamard), entry distribution F (normal and t2) and error distribution
L (ε) (normal and t2), we run 50 simulations with each consisting of the following
steps:

(Step 1) Generate one design matrix X ;
(Step 2) Generate 300 error vectors ε;
(Step 3) Regress each Y = ε on the design matrix X and end up with 300 random

samples of β̂1, denoted by β̂
(1)
1 , . . . , β̂

(300)
1 ;

(Step 4) Estimate the standard deviation of β̂1 by the sample standard error ŝd;
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(Step 5) Construct a confidence intervalI (k)=
[
β̂

(k)
1 −1.96 · ŝd, β̂(k)

1 +1.96 · ŝd
]
for

each k = 1, . . . , 300;
(Step 6) Calculate the empirical 95% coverage by the proportion of confidence inter-

vals which cover the true β1 = 0.

Finally, we display the boxplots of the empirical 95% coverages of β̂1 for each case
in Fig. 2. It is worth mentioning that our theories cover two cases: (1) i.i.d design with
normal entries and normal errors (orange bars in the first row and the first column), see
Proposition 3.1; (2) elliptical design with normal factors ζi and normal errors (orange
bars in the second row and the first column), see Proposition 3.7.

We first discuss the case κ = 0.5. In this case, there are only two samples per
parameter. Nonetheless, we observe that the coverage is quite close to 0.95, even with
a sample size as small as 100, in both cases that are covered by our theories. For other
cases, it is interesting to see that the coverage is valid and most stable in the partial
hadamard design case and is not sensitive to the distribution of multiplicative factor in
elliptical design case even when the error has a t2 distribution. For i.i.d. designs, the
coverage is still valid and stable when the entry is normal. By contrast, when the entry
has a t2 distribution, the coverage has a large variation in small samples. The average
coverage is still close to 0.95 in the i.i.d. normal design case but is slightly lower than
0.95 in the i.i.d. t2 design case. In summary, the finite sample distribution of β̂1 is
more sensitive to the entry distribution than the error distribution. This indicates that

normal t(2)
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C
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Coverage of β̂1 (κ = 0.5)
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Coverage of β̂1 (κ = 0.8)

Fig. 2 Empirical 95% coverage of β̂1 with κ = 0.5 (left) and κ = 0.8 (right) using Huber1.345 loss. The
x-axis corresponds to the sample size, ranging from 100 to 800; the y-axis corresponds to the empirical
95% coverage. Each column represents an error distribution and each row represents a type of design. The
orange solid bar corresponds to the case F = Normal; the blue dotted bar corresponds to the case F = t2;
the red dashed bar represents the Hadamard design (color figure online)
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the assumptions on the design matrix are not just artifacts of the proof but are quite
essential.

The same conclusion can be drawn from the case where κ = 0.8 except that the
variation becomes larger in most cases when the sample size is small. However, it is
worth pointing out that even in this case where there is 1.25 samples per parameter,
the sample distribution of β̂1 is well approximated by a normal distribution with a
moderate sample size (n ≥ 400). This is in contrast to the classical rule of thumb
which suggests that 5–10 samples are needed per parameter.

6.2 Asymptotic normality for multiple marginals

Since our theory holds for general Jn , it is worth checking the approximation for
multiple coordinates in finite samples. For illustration, we consider 10 coordinates,
namely β̂1 ∼ β̂10, simultaneously and calculate theminimumempirical 95%coverage.
To avoid the finite sample dependence between coordinates involved in the simulation,
we estimate the empirical coverage independently for each coordinate. Specifically,
we run 50 simulations with each consisting of the following steps:

(Step 1) Generate one design matrix X ;
(Step 2) Generate 3000 error vectors ε;
(Step 3) Regress each Y = ε on the design matrix X and end up with 300 random

samples of β̂ j for each j = 1, . . . , 10 by using the (300( j − 1) + 1)-th to
300 j-th response vector Y ;

(Step 4) Estimate the standard deviation of β̂ j by the sample standard error ŝd j for
j = 1, . . . , 10;

(Step 5) Construct a confidence interval I (k)
j =

[
β̂

(k)
j −1.96 · ŝd j , β̂

(k)
j +1.96 · ŝd j

]

for each j = 1, . . . , 10 and k = 1, . . . , 300;
(Step 6) Calculate the empirical 95% coverage by the proportion of confidence inter-

vals which cover the true β j = 0, denoted by C j , for each j = 1, . . . , 10,
(Step 7) Report the minimum coverage min1≤ j≤10 C j .

If the assumptions A1–A5 are satisfied, min1≤ j≤10 C j should also be close to 0.95
as a result of Theorem 3.1. Thus, min1≤ j≤10 C j is a measure for the approximation
accuracy for multiple marginals. Figure 3 displays the boxplots of this quantity under
the same scenarios as the last subsection. In two cases that our theories cover, the
minimum coverage is increasingly closer to the true level 0.95. Similar to the last
subsection, the approximation is accurate in the partial hadamard design case and is
insensitive to the distribution of multiplicative factors in the elliptical design case.
However, the approximation is very inaccurate in the i.i.d. t2 design case. Again, this
shows the evidence that our technical assumptions are not artifacts of the proof.

On the other hand, the Fig. 3 suggests using a conservative variance estimator,
e.g. the Jackknife estimator, or corrections on the confidence level in order to make
simultaneous inference on multiple coordinates. Here we investigate the validity of
Bonferroni correction bymodifying the step 5 and step 6. The confidence interval after
Bonferroni correction is obtained by
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Fig. 3 Mininum empirical 95% coverage of β̂1 ∼ β̂10 with κ = 0.5 (left) and κ = 0.8 (right) using
Huber1.345 loss. The x-axis corresponds to the sample size, ranging from 100 to 800; the y-axis corresponds
to the minimum empirical 95% coverage. Each column represents an error distribution and each row
represents a type of design. The orange solid bar corresponds to the case F = Normal; the blue dotted bar
corresponds to the case F = t2; the red dashed bar represents the Hadamard design (color figure online)

I (k)
j =

[
β̂

(k)
j − z1−α/20 · ŝd j , β̂

(k)
j + z1−α/20 · ŝd j

]
(14)

where α = 0.05 and zγ is the γ -th quantile of a standard normal distribution. The

proportion of k such that 0 ∈ I (k)
j for all j ≤ 10 should be at least 0.95 if the

marginals are all close to a normal distribution. We modify the confidence intervals
in step 5 by (14) and calculate the proportion of k such that 0 ∈ I (k)

j for all j in
step 6. Figure 4 displays the boxplots of this coverage. It is clear that the Bonferroni
correction gives the valid coverage except when n = 100, κ = 0.8 and the error has
a t2 distribution.

7 Conclusion

We have proved coordinate-wise asymptotic normality for regression M-estimates in
the moderate-dimensional asymptotic regime p/n → κ ∈ (0, 1), for fixed design
matrices under appropriate technical assumptions. Our design assumptions are sat-
isfied with high probability for a broad class of random designs. The main novel
ingredient of the proof is the use of the second-order Poincaré inequality. Numerical
experiments confirm and complement our theoretical results.
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Fig. 4 Empirical 95% coverage of β̂1 ∼ β̂10 after Bonferroni correction with κ = 0.5 (left) and κ = 0.8
(right) using Huber1.345 loss. The x-axis corresponds to the sample size, ranging from 100 to 800; the y-axis
corresponds to the empirical uniform 95% coverage after Bonferroni correction. Each column represents
an error distribution and each row represents a type of design. The orange solid bar corresponds to the
case F = Normal; the blue dotted bar corresponds to the case F = t2; the red dashed bar represents the
Hadamard design (color figure online)

Appendix

A Proof sketch of Lemma 4.4

In this Appendix, we provide a roadmap for proving Lemma 4.4 by considering a
special case where X is one realization of a random matrix Z with i.i.d. mean-zero
σ 2-sub-gaussian entries. Random matrix theory [3,26,53] implies that λ+ = (1 +√

κ)2+op(1) = Op(1) and λ− = (1−√κ)2+op(1) = Ωp(1). Thus, the assumption
A3 is satisfied with high probability. Thus, the Lemma 4.3 in p. 17 holds with high
probability. It remains to prove the following lemma to obtain Theorem 3.1.

Lemma A-1 Let Z be a randommatrix with i.i.d. mean-zero σ 2-sub-gaussian entries
and X be one realization of Z. Then under assumptions A1 and A2,

max
1≤ j≤p

M j = Op

(
polyLog(n)

n

)
, min

1≤ j≤p
Var(β̂ j ) = Ωp

(
1

n · polyLog(n)
)

,

where M j is defined in (11) in p. 17 and the randomness in op(·) and Op(·) comes
from Z.

Note that we prove in Proposition 3.1 that assumptions A4 and A5 are satisfied with
high probability in this case. However, we will not use them directly but prove Lemma
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A-1 from the scratch instead, in order to clarify why assump3tions in forms of A4 and
A5 are needed in the proof.

A-1 Upper bound of M j

First by Proposition E.3,

λ+ = Op(1), λ− = Ωp(1).

In the rest of the proof, the symbol E and Var denotes the expectation and the variance

conditional on Z . Let Z̃ = D
1
2 Z , then Mj = E‖eTj (Z̃ T Z̃)−1 Z̃ T ‖∞. Let H̃ j =

I− Z̃[ j](Z̃ T[ j] Z̃[ j])−1 Z̃ T[ j], then byblockmatrix inversion formula (seePropositionE.1),
which we state as Proposition E.1 in “Appendix E”.

(Z̃ T Z̃)−1 Z̃ T =
(

Z̃ T
1 Z̃1 Z̃ T

1 Z̃[1]
Z̃ T[1] Z̃1 Z̃ T[1] Z̃[1]

)−1 (
Z̃1

Z̃[1]

)

= 1

Z̃ T
1 (I − H̃1)Z̃1

(
1 −Z̃ T

1 Z̃[1](Z̃ T[1] Z̃[1])−1
∗ ∗

)(
Z̃1

Z̃[1]

)

= 1

Z̃ T
1 (I − H̃1)Z̃1

(
Z̃ T
1 (I − H̃1)

∗
)

.

This implies that

M1 = E

∥∥∥Z̃ T
1 (I − H̃1)

∥∥∥∞
Z̃ T
1 (I − H̃1)Z̃1

. (A-1)

Since ZT DZ/n � K0λ− I , we have

1

Z̃ T
1 (I − H̃1)Z̃1

= eT1 (Z̃ T Z̃)−1e1 = eT1 (ZT DZ)−1e1

= 1

n
eT1

(
ZT DZ

n

)−1
e1 ≤ 1

nK0λ−

and we obtain a bound for M1 as

M1 ≤
E

∥∥∥Z̃ T
1 (I − H̃1)

∥∥∥∞
nK0λ−

=
E

∥∥∥ZT
1 D

1
2 (I − H̃1)

∥∥∥∞
nK0λ−

.

Similarly,

Mj ≤
E

∥∥∥ZT
j D

1
2 (I − H̃ j )

∥∥∥∞
nK0λ−
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=
E

∥∥∥∥Z
T
j D

1
2

(
I − D

1
2 ZT[ j]

(
ZT[ j]DZ[ j]

)−1
Z[ j]D

1
2

)∥∥∥∥∞
nK0λ−

. (A-2)

The vector in the numerator is a linear contrast of Z j and Z j has mean-zero i.i.d. sub-
gaussian entries. For any fixed matrix A ∈ R

n×n , denote Ak by its k-th column, then
AT
k Z j is σ 2‖Ak‖22-sub-gaussian (see Section 5.2.3 of [57] for a detailed discussion)

and hence by definition of sub-Gaussianity,

P
(∣∣∣AT

k Z j

∣∣∣ ≥ σ‖Ak‖2t
)
≤ 2e−

t2
2 .

Therefore, by a simple union bound, we conclude that

P(‖AT Z j‖∞ ≥ σ max
k
‖Ak‖2t) ≤ 2ne−

t2
2 .

Let t = 2
√
log n,

P(‖AT Z j‖∞ ≥ 2σ max
k
‖Ak‖2

√
log n) ≤ 2

n
= o(1).

This entails that

‖AT Z j‖∞ = Op

(
max
k
‖Ak‖2 · polyLog(n)

)
= Op

(‖A‖op · polyLog(n)
)
. (A-3)

with high probability. InMj , the coefficientmatrix (I−Hj )D
1
2 depends on Z j through

D and hence we cannot use (A-3) directly. However, the dependence can be removed
by replacing D by D[ j] since ri,[ j] does not depend on Z j .

Since Z has i.i.d. sub-gaussian entries, no column is highly influential. In other
words, the estimator will not change drastically after removing j-th column. This
would suggest Ri ≈ ri,[ j]. It is proved by [20] that

sup
i, j
|Ri − ri,[ j]| = Op

(
polyLog(n)√

n

)
.

It can be rigorously proved that

∣∣‖ZT
j D(I − H̃ j )‖∞ − ‖ZT

j D[ j](I − Hj )‖∞
∣∣ = Op

(
polyLog(n)

n

)
,

where Hj = I − D
1
2[ j]Z[ j](ZT[ j]D[ j]Z[ j])−1ZT[ j]D

1
2[ j]; see “Appendix A-1” for details.

Since D[ j](I − Hj ) is independent of Z j and

‖D[ j](I − Hj )‖op ≤ ‖D[ j]‖op ≤ K1 = O (polyLog(n)) ,
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it follows from (A-2) and (A-3) that

∥∥∥ZT
j D[ j](I − Hj )

∥∥∥∞ = Op

(
polyLog(n)

n

)
.

In summary,

Mj = Op

(
polyLog(n)

n

)
. (A-4)

A-2 Lower bound of Var(β̂ j )

A-2.1 Approximating Var(β̂ j ) by Var(b j )

It is shown by [20]1 that

β̂ j ≈ b j � 1√
n

N j

ξ j
(A-5)

where

N j = 1√
n

n∑

i=1
Zi jψ(ri,[ j]),

ξ j = 1

n
ZT
j

(
D[ j] − D[ j]Z[ j]

(
XT[ j]D[ j]X[ j]

)−1
ZT[ j]D[ j]

)
Z j .

It has been shown by [20] that

max
j
|β̂ j − b j | = Op

(
polyLog(n)

n

)
.

Thus, Var(β̂ j ) ≈ Var(b j ) and a more refined calculation in “Appendix A-2.1” shows
that

|Var(β̂ j )− Var(b j )| = Op

(
polyLog(n)

n
3
2

)
.

It is left to show that

Var(b j ) = Ωp

(
1

n · polyLog(n)
)

. (A-6)

1 [20] considers a ridge regularizedMestimator, which is different fromour setting. However, this argument
still holds in our case and proved in “Appendix B”.
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A-2.2 Bounding Var(b j ) via Var(N j )

By definition of b j ,

Var(b j ) = Ωp

(
polyLog(n)

n

)
⇐⇒ Var

(
N j

ξ j

)
= Ωp (polyLog(n)) .

As will be shown in “Appendix B-6.4”,

Var(ξ j ) = Op

(
polyLog(n)

n

)
.

As a result, ξ j ≈ Eξ j and

Var

(
N j

ξ j

)
≈ Var

(
N j

Eξ j

)
= Var(N j )

(Eξ j )2
.

As in the previous paper [20], we rewrite ξ j as

ξ j = 1

n
ZT
j D

1
2[ j]
(
I − D

1
2[ j]Z[ j]

(
XT[ j]D[ j]X[ j]

)−1
ZT[ j]D

1
2[ j]
)
D

1
2[ j]Z j .

The middle matrix is idempotent and hence positive semi-definite. Thus,

ξ j ≤ 1

n
ZT
j D[ j]Z j ≤ K1λ+ = Op (polyLog(n)) .

Then we obtain that

Var(N j )

(Eξ j )2
= Ωp

(
Var(N j )

polyLog(n)

)
,

and it is left to show that

Var(N j ) = Ωp

(
1

polyLog(n)

)
. (A-7)

A-2.3 Bounding Var(N j ) via tr(Q j )

Recall the definition of N j (A-5), and that of Q j (see Sect. 3.1 in p. 8), we have

Var(N j ) = 1

n
ZT
j Q j Z j

Notice that Z j is independent of ri,[ j] and hence the conditional distribution of Z j

given Q j remains the same as the marginal distribution of Z j . Since Z j has i.i.d. sub-
gaussian entries, the Hanson-Wright inequality ([27,51]; see Proposition E.2), shown
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in Proposition E.2, implies that any quadratic form of Z j , denoted by ZT
j Q j Z j is

concentrated on its mean, i.e.

ZT
j Q j Z j ≈ EZ j ,εZ

T
j Q j Z j =

(
EZ2

1 j

)
· tr(Q j ).

As a consequence, it is left to show that

tr(Q j ) = Ωp

(
n

polyLog(n)

)
. (A-8)

A-2.4 Lower bound of tr(Q j )

By definition of Q j ,

tr(Q j ) =
n∑

i=1
Var(ψ(ri,[ j])).

To lower bounded the variance of ψ(ri,[ j]), recall that for any random variable W ,

Var(W ) = 1

2
E(W −W ′)2. (A-9)

where W ′ is an independent copy of W . Suppose g : R → R is a function such that
|g′(x)| ≥ c for all x , then (A-9) implies that

Var(g(W )) = 1

2
E(g(W )− g(W ′))2 ≥ c2

2
E(W −W ′)2 = c2 Var(W ). (A-10)

In otherwords, (A-10) entails that Var(W ) is a lower bound forVar(g(W )) provided
that the derivative of g is bounded away from 0. As an application, we see that

Var(ψ(ri,[ j])) ≥ K 2
0 Var(ri,[ j])

and hence

tr(Q j ) ≥ K 2
0

n∑

i=1
Var(ri,[ j]).

By the variance decomposition formula,

Var(ri,[ j]) = E
(
Var

(
ri,[ j]

∣∣ε(i)
))+ Var

(
E
(
ri,[ j]

∣∣ε(i)
)) ≥ E

(
Var

(
ri,[ j]

∣∣ε[i]
))

,
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where ε(i) includes all but i-th entry of ε. Given ε(i), ri,[ j] is a function of εi . Using
(A-10), we have

Var(ri,[ j]|ε(i)) ≥ inf
εi

∣∣∣∣
∂ri,[ j]
∂εi

∣∣∣∣
2

· Var(εi |ε(i)) ≥ inf
εi

∣∣∣∣
∂ri,[ j]
∂εi

∣∣∣∣
2

· Var(εi ).

This implies that

Var(ri,[ j]) ≥ E
(
Var

(
ri,[ j]

∣∣ε[i]
)) ≥ E inf

ε

∣∣∣∣
∂ri,[ j]
∂εi

∣∣∣∣
2

·min
i

Var(εi ).

Summing Var(ri,[ j]) over i = 1, . . . , n, we obtain that

tr(Q j ) =
n∑

i=1
Var(ri,[ j]) ≥ E

(
∑

i

inf
ε

∣∣∣∣
∂ri,[ j]
∂εi

∣∣∣∣
2
)
·min

i
Var(εi ).

It will be shown in “Appendix B-6.3” that under assumptions A1–A3,

E

∑

i

inf
ε

∣∣∣∣
∂ri,[ j]
∂εi

∣∣∣∣
2

= Ωp

(
n

polyLog(n)

)
. (A-11)

This proves (A-8) and as a result,

min
j

Var(β̂ j ) = Ωp

(
1

n · polyLog(n)
)

.

B Proof of Theorem 3.1

B-1 Notation

To be self-contained, we summarize our notations in this subsection. The model we
considered here is

y = Xβ∗ + ε

where X ∈ R
n×p be the design matrix and ε is a random vector with independent

entries. Notice that the target quantity
β̂ j−Eβ̂ j√
Var(β̂ j )

is shift invariant, we can assumeβ∗ = 0

without loss of generality provided that X has full column rank; see Sect. 3.1 for details.
Let xTi ∈ R

1×p denote the i-th row of X and X j ∈ R
n×1 denote the j-th column

of X. Throughout the paper we will denote by Xi j ∈ R the (i, j)-th entry of X , by
X(i) ∈ R

(n−1)×p the design matrix X after removing the i-th row, by X[ j] ∈ R
n×(p−1)

the design matrix X after removing the j-th column, by X(i),[ j] ∈ R
(n−1)×(p−1) the

design matrix after removing both i-th row and j-th column, and by xi,[ j] ∈ R
1×(p−1)
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1018 L. Lei et al.

the vector xi after removing j-th entry. The M-estimator β̂ associated with the loss
function ρ is defined as

β̂ = argmin
β∈Rp

1

n

n∑

k=1
ρ
(
εk − xTk β

)
. (B-12)

Similarly we define the leave- j-th-predictor-out version as

β̂[ j] = argmin
β∈Rp

1

n

n∑

k=1
ρ
(
εk − xTk,[ j]β

)
. (B-13)

Based on these notation we define the full residual Rk as

Rk = εk − xTk β̂, k = 1, 2, . . . , n (B-14)

the leave- j-th-predictor-out residual as

rk,[ j] = εk − xTk,[ j]β̂[ j], k = 1, 2, . . . , n, j ∈ Jn . (B-15)

Four diagonal matrices are defined as

D = diag(ψ ′(Rk)), D̃ = diag(ψ ′′(Rk)), (B-16)

D[ j] = diag(ψ ′(rk,[ j])), D̃[ j] = diag(ψ ′′(rk,[ j])). (B-17)

Further we define G and G[ j] as

G = I−X (XT DX)−1XT D, G[ j] = I−X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]. (B-18)

Let Jn denote the indices of coefficients of interest. We say a ∈]a1, a2[ if and only
if a ∈ [min{a1, a2},max{a1, a2}]. Regarding the technical assumptions, we need the
following quantities

λ+ = λmax

(
XT X

n

)
, λ− = λmin

(
XT X

n

)
(B-19)

be the largest (resp. smallest) eigenvalue of the matrix XT X
n . Let ei ∈ R

n be the i-th
canonical basis vector and

h j,0 = (ψ(r1,[ j]), . . . , ψ(rn,[ j]))T , h j,1,i = GT[ j]ei . (B-20)

Finally, let

ΔC = max

⎧
⎨

⎩max
j∈Jn

∣∣∣hTj,0X j

∣∣∣
||h j,0|| , max

i≤n, j∈Jn

∣∣∣hTj,1,i X j

∣∣∣
||h j,1,i ||

⎫
⎬

⎭ , (B-21)
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Q j = Cov(h j,0). (B-22)

Weadopt Landau’s notation (O(·), o(·), Op(·), op(·)). In addition,we sayan = Ω(bn)
if bn = O(an) and similarly, we say an = Ωp(bn) if bn = Op(an). To simplify the
logarithm factors, we use the symbol polyLog(n) to denote any factor that can be
upper bounded by (log n)γ for some γ > 0. Similarly, we use 1

polyLog(n) to denote any

factor that can be lower bounded by 1
(log n)γ

′ for some γ ′ > 0.

Finally we restate all the technical assumptions:

A1 ρ(0) = ψ(0) = 0 and there exists K0 = Ω
(

1
polyLog(n)

)
, K1, K2 =

O (polyLog(n)), such that for any x ∈ R,

K0 ≤ ψ ′(x) ≤ K1,

∣∣∣∣
d

dx
(
√

ψ ′(x))
∣∣∣∣ =

|ψ ′′(x)|√
ψ ′(x)

≤ K2;

A2 εi = ui (Wi ) where (W1, . . . ,Wn) ∼ N (0, In×n) and ui are smooth functions
with ‖u′i‖∞ ≤ c1 and ‖u′′i ‖∞ ≤ c2 for some c1, c2 = O(polyLog(n)).Moreover,

assume mini Var(εi ) = Ω
(

1
polyLog(n)

)
.

A3 λ+ = O(polyLog(n)) and λ− = Ω
(

1
polyLog(n)

)
;

A4 min j∈Jn
XT

j Q j X j

tr(Q j )
= Ω

(
1

polyLog(n)

)
;

A5 EΔ8
C = O (polyLog(n)).

B-2 Deterministic approximation results

In “Appendix A”, we use several approximations under random designs, e.g. Ri ≈
ri,[ j]. To prove them, we follow the strategy of [20] which establishes the deterministic
results and then apply the concentration inequalities to obtain high probability bounds.
Note that β̂ is the solution of

0 = f (β) � 1

n

n∑

i=1
xiψ

(
εi − xTi β

)
,

we need the following key lemma to bound ‖β1 − β2‖2 by ‖ f (β1)− f (β2)‖2, which
can be calculated explicily.

Lemma B-1 [20, Proposition 2.1] For any β1 and β2,

‖β1 − β2‖2 ≤
1

K0λ−
‖ f (β1)− f (β2)‖2 .

Proof By the mean value theorem, there exists νi ∈]εi − xTi β1, εi − xTi β2[ such that

ψ
(
εi − xTi β1

)
− ψ

(
εi − xTi β2

)
= ψ ′(νi ) · xTi (β2 − β1).
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Then

‖ f (β1)− f (β2)‖2 =
∥∥∥∥∥
1

n

n∑

i=1
ψ ′(νi )xi xTi (β1 − β2)

∥∥∥∥∥
2

≥ λmin

(
1

n

n∑

i=1
ψ ′(νi )xi xTi

)
· ‖β1 − β2‖2

≥ K0λ− ‖β1 − β2‖2 .

��
Based on Lemma B-1, we can derive the deterministic results informally stated in
“Appendix A”. Such results are shown by [20] for ridge-penalized M-estimates and
here we derive a refined version for unpenalized M-estimates. Throughout this sub-
section, we only assume assumption A1. This implies the following lemma,

Lemma B-2 Under assumption A1, for any x and y,

|ψ(x)| ≤ K1|x |, |√ψ ′(x)−√ψ ′(y)| ≤ K2|x − y|,
|ψ ′(x)− ψ ′(y)| ≤ 2

√
K1K2|x − y| � K3|x − y|.

To state the result, we define the following quantities.

T = 1√
n
max

{
max
i
‖xi‖2,max

j∈Jn
‖X j‖2

}
, E = 1

n

n∑

i=1
ρ(εi ), (B-23)

U =
∥∥∥∥∥
1

n

n∑

i=1
xi (ψ(εi )− Eψ(εi ))

∥∥∥∥∥
2

, U0 =
∥∥∥∥∥
1

n

n∑

i=1
xiEψ(εi )

∥∥∥∥∥
2

. (B-24)

The following proposition summarizes all deterministic results which we need in the
proof.

Proposition B.1 Under Assumption A1,

(i) The norm of M estimator is bounded by

‖β̂‖2 ≤ 1

K0λ−
(U +U0);

(ii) Define b j as

b j = 1√
n

N j

ξ j

where

N j = 1√
n

n∑

i=1
Xi jψ(ri,[ j]),
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ξ j = 1

n
XT

j

(
D[ j] − D[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]

)
X j ,

Then

max
j∈Jn

|b j | ≤ 1√
n
·
√
2K1

K0λ−
·ΔC ·

√
E ,

(iii) The difference between β̂ j and b j is bounded by

max
j∈Jn

|β̂ j − b j | ≤ 1

n
· 2K

2
1K3λ+T

K 4
0λ

7
2−

·Δ3
C · E .

(iv) The difference between the full and the leave-one-predictor-out residual is
bounded by

max
j∈Jn

max
i
|Ri − ri,[ j]| ≤ 1√

n

⎛

⎝2K 2
1K3λ+T 2

K 4
0λ

7
2−

·Δ3
C · E +

√
2K1

K
3
2
0 λ−

·Δ2
C ·

√
E

⎞

⎠ .

Proof (i) By Lemma B-1,

‖β̂‖2 ≤ 1

K0λ−
‖ f (β̂)− f (0)‖2 = ‖ f (0)‖2

K0λ−
,

since β̂ is a zero of f (β). By definition,

f (0) = 1

n

n∑

i=1
xiψ(εi ) = 1

n

n∑

i=1
xi (ψ(εi )− Eψ(εi ))+ 1

n

n∑

i=1
xiEψ(εi ).

This implies that

‖ f (0)‖2 ≤ U +U0.

(ii) First we prove that
ξ j ≥ K0λ−. (B-25)

Since all diagonal entries of D[ j] is lower bounded by K0, we conclude that

λmin

(
XT D[ j]X

n

)
≥ K0λ−.
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1022 L. Lei et al.

Note that ξ j is the Schur’s complement ([28], chapter 0.8) of
XT D[ j]X

n , we have

ξ−1j = eTj

(
XT D[ j]X

n

)−1
e j ≤ 1

K0λ−
,

which implies (B-25). As for N j , we have

N j =
XT

j h j,0√
n

=
∥∥h j,0

∥∥
2√

n
· X

T
j h j,0∥∥h j,0
∥∥
2

. (B-26)

The the second term is bounded by ΔC by definition, see (B-21). For the first
term, the assumption A1 that ψ ′(x) ≤ K1 implies that

ρ(x) = ρ(x)− ρ(0) =
∫ x

0
ψ(y)dy ≥

∫ x

0

ψ ′(y)
K1

· ψ(y)dy = 1

2K1
ψ2(x).

Here we use the fact that sign(ψ(y)) = sign(y). Recall the definition of h j,0, we
obtain that

∥∥h j,0
∥∥
2√

n
=
√∑n

i=1 ψ(ri,[ j])2
n

≤ √2K1 ·
√∑n

i=1 ρ(ri,[ j])
n

.

Since β̂[ j] is the minimizer of the loss function
∑n

i=1 ρ(εi − xTi,[ j]β[ j]), it holds
that

1

n

n∑

i=1
ρ(ri,[ j]) ≤ 1

n

n∑

i=1
ρ(εi ) = E .

Putting together the pieces, we conclude that

|N j | ≤
√
2K1 ·ΔC

√
E . (B-27)

By definition of b j ,

|b j | ≤ 1√
n
·
√
2K1

K0λ−
ΔC

√
E .

(iii) The proof of this result is almost the same as [20]. We state it here for the sake
of completeness. Let b̃j ∈ R

p with

(b̃j) j = b j , (b̃j)[ j] = β̂[ j] − b j

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j (B-28)
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where the subscript j denotes the j-th entry and the subscript [ j] denotes the
sub-vector formed by all but j-th entry. Furthermore, define γ j with

(γ j ) j = −1, (γ j )[ j] =
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j . (B-29)

Then we can rewrite b̃j as

(b̃j) j = −b j (γ j ) j , (b̃j)[ j] = β̂[ j] − b j (γ j )[ j].

By definition of β̂[ j], we have [ f (β̂[ j])][ j] = 0 and hence

[ f (b̃j)][ j] = [ f (b̃j)][ j] − [ f (β̂[ j])][ j]

= 1

n

n∑

i=1
xi,[ j]

[
ψ(εi − xTi b̃j)− ψ(εi − xTi,[ j]β̂[ j])

]
. (B-30)

By mean value theorem, there exists νi, j ∈]εi − xTi b̃j, εi − xTi,[ j]β̂[ j][ such that

ψ
(
εi − xTi b̃j

)
− ψ

(
εi − xTi,[ j]β̂[ j]

)
= ψ ′(νi, j )

(
xTi,[ j]β̂[ j] − xTi b̃j

)

= ψ ′(νi, j )
(
xTi,[ j]β̂[ j] − xTi,[ j](b̃j)[ j] − Xi j b j

)

= ψ ′(νi, j ) · b j ·
[
xTi,[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j − Xi j

]

Let
di, j = ψ ′(νi, j )− ψ ′(ri,[ j]) (B-31)

and plug the above result into (B-30), we obtain that

[
f (b̃j)

]

[ j] =
1

n

n∑

i=1
xi,[ j] ·

(
ψ ′(ri,[ j])+ di, j

) · b j ·
[
xTi,[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j − Xi j

]

= b j · 1n
n∑

i=1
ψ ′(ri,[ j])xi,[ j]

[
xTi,[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j − Xi j

]

+ b j · 1n
n∑

i=1
di, j xi,[ j]

(
xTi,[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j − Xi j

)

= b j · 1n
[
XT[ j]D[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j − XT[ j]D[ j]X j

]

+ b j · 1n
n∑

i=1
di, j xi,[ j] · xTi γ j

= b j · 1n

⎛

⎝
n∑

i=1
di, j xi,[ j]xTi

⎞

⎠ γ j .
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Now we calculate [ f (b̃j)] j , the j-th entry of f (b̃j). Note that

[
f (b̃j)

]

j
= 1

n

n∑

i=1
Xi jψ

(
εi − xTi b̃j

)
= 1

n

n∑

i=1
Xi jψ(ri,[ j])

+ b j · 1
n

n∑

i=1
Xi j (ψ

′(ri,[ j])+ di, j )

·
[
xTi,[ j](XT[ j]D[ j]X[ j])−1XT[ j]D[ j]X j − Xi j

]

= 1

n

n∑

i=1
Xi jψ(ri,[ j])+ b j

· 1
n

n∑

i=1
ψ ′(ri,[ j])Xi j

[
xTi,[ j](XT[ j]D[ j]X[ j])−1XT[ j]D[ j]X j − Xi j

]

+ b j ·
(
1

n

n∑

i=1
di, j Xi j x

T
i

)
γ j = 1√

n
N j + b j

·
(
1

n
XT

j D[ j]X[ j](XT[ j]D[ j]X[ j])−1XT[ j]D[ j]X j − 1

n

n∑

i=1
ψ ′(ri,[ j])X2

i j

)

+ b j ·
(
1

n

n∑

i=1
di, j Xi j x

T
i

)
γ j = 1√

n
N j − b j · ξ j

+ b j ·
(
1

n

n∑

i=1
di, j Xi j x

T
i

)
γ j = b j ·

(
1

n

n∑

i=1
di, j Xi j x

T
i

)
γ j

where the second last line uses the definition of b j . Putting the results together,
we obtain that

f (b̃j) = b j ·
(
1

n

n∑

i=1
di, j xi x

T
i

)
· γ j .

This entails that

‖ f (b̃j)‖2 ≤ |b j | ·max
i
|di, j | · λ+ · ‖γ j‖2. (B-32)

Nowwederive a bound formaxi |di, j |, where di, j is defined in (B-36). ByLemma
B-2,

|di, j | = |ψ ′(νi, j )− ψ ′(ri,[ j])| ≤ K3

∣∣∣νi, j − ri,[ j]| = K3|xTi,[ j]β̂[ j] − xTi b̃j
∣∣∣ .

By definition of b̃j and h j,1,i ,

|xTi,[ j]β̂[ j] − xTi b̃j| = |b j | ·
∣∣xTi,[ j](XT[ j]D[ j]X[ j])−1XT[ j]D[ j]X j − Xi j

∣∣
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= |b j | ·
∣∣∣eTi (I − X[ j](XT[ j]D[ j]X[ j])−1XT[ j]D[ j])X j

∣∣∣

= |b j | ·
∣∣∣hTj,1,i X j | ≤ |b j

∣∣∣ ·ΔC
∥∥h j,1,i

∥∥
2 , (B-33)

where the last inequality is derived by definition of ΔC , see (B-21). Since h j,1,i
is the i-th column of matrix I − D[ j]X[ j](XT[ j]D[ j]X[ j])−1XT[ j], its L2 norm is
upper bounded by the operator norm of this matrix. Notice that

I − D[ j]X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]

= D
1
2[ j]
(
I − D

1
2[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D

1
2[ j]
)
D
− 1

2[ j] .

The middle matrix in RHS of the displayed atom is an orthogonal projection
matrix and hence

∥∥∥∥I − D[ j]X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]‖op ≤ ‖D

1
2[ j]

∥∥∥∥
op
·
∥∥∥∥D

− 1
2[ j]

∥∥∥∥
op
≤
(
K1

K0

) 1
2

.

(B-34)
Therefore,

max
i, j

‖h j,1,i‖2 ≤ max
j∈Jn

∥∥∥∥I − D[ j]X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]

∥∥∥∥
op
≤
(
K1

K0

) 1
2

,

(B-35)
and thus

max
i
|di, j | ≤ K3

√
K1

K0
· |b j | ·ΔC . (B-36)

As for γ j , we have

K0λ−‖γ j‖22 ≤ γ T
j

(
XT D[ j]X

n

)
γ j

= (γ j )
2
j ·

XT
j D j X j

n
+ (γ j )

T[ j]

(
XT[ j]D[ j]X[ j]

n

)
(γ j )[ j]

+ 2γ j
XT

j D[ j]X[ j]
n

(γ j )[ j]

Recall the definition of γ j in (B-37), we have

(γ j )
T[ j]

(
XT[ j]D[ j]X[ j]

n

)
(γ j )[ j] = 1

n
XT

j D[ j]X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j
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1026 L. Lei et al.

and

γ j
XT

j D[ j]X[ j]
n

(γ j )[ j] = −1

n
XT

j D[ j]X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]X j .

As a result,

K0λ−‖γ j‖22 ≤
1

n
XT

j D
1
2[ j]
(
I − D

1
2[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D

1
2[ j]
)
D

1
2[ j]X j

≤

∥∥∥∥D
1
2[ j]X j

∥∥∥∥
2

2

n
·
∥∥∥∥I − D

1
2[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D

1
2[ j]

∥∥∥∥
op

≤

∥∥∥∥D
1
2[ j]X j

∥∥∥∥
2

2

n
≤ K1‖X j‖22

n
≤ T 2K1,

where T is defined in (B-23). Therefore we have

∥∥γ j
∥∥
2 ≤

√
K1

K0λ−
T . (B-37)

Putting (B-32), (B-36), (B-37) and part (ii) together, we obtain that

‖ f (b̃j)‖2 ≤ λ+ · |b j | · K3

√
K1

K0
ΔC |b j | ·

√
K1

K0λ−
T

≤ λ+ · 1
n

2K1

(K0λ−)2
Δ2

CE · K3

√
K1

K0
ΔC ·

√
K1

K0λ−
T

= 1

n
· 2K

2
1K3λ+T

K 3
0λ

5
2−

·Δ3
C · E .

By Lemma B-1,

‖β̂ − b̃j‖2 ≤ ‖ f (β̂)− f (b̃j)‖2
K0λ−

= ‖ f (b̃j)‖2
K0λ−

≤ 1

n
· 2K

2
1K3λ+T

K 4
0λ

7
2−

·Δ3
C · E .

Since β̂ j − b j is the j-th entry of β̂ − b̃j, we have

|β̂ j − b j | ≤ ‖β̂ − b̃j‖2 ≤ 1

n
· 2K

2
1K3λ+T

K 4
0λ

7
2−

·Δ3
C · E .
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Asymptotics for high dimensional regression M-estimates… 1027

(iv) Similar to part (iii), this result has been shown by [20]. Here we state a refined
version for the sake of completeness. Let b̃j be defined as in (B-28), then

|Ri − ri,[ j]| =
∣∣∣xTi β̂ − xTi,[ j]β̂[ j]

∣∣∣ =
∣∣∣xTi (β̂ − b̃j)+ xTi b̃j − xTi,[ j]β̂[ j]

∣∣∣

≤ ‖xi‖2 · ‖β̂ − b̃j‖2 +
∣∣∣xTi b̃j − xTi,[ j]β̂[ j]

∣∣∣ .

Note that ‖xi‖2 ≤
√
nT , by part (iii), we have

‖xi‖2 · ‖β̂ − b̃j‖2 ≤ 1√
n

2K 2
1K3λ+T 2

K 4
0λ

7
2−

·Δ3
C · E . (B-38)

On the other hand, similar to (B-36), by (B-33),

∣∣∣xTi b̃j − xTi,[ j]β̂[ j]
∣∣∣ ≤

√
K1

K0
· |b j | ·ΔC ≤ 1√

n
·
√
2K1

K
3
2
0 λ−

·Δ2
C ·

√
E . (B-39)

Therefore,

|Ri − ri,[ j]| ≤ 1√
n

⎛

⎝2K 2
1K3λ+T 2

K 4
0λ

7
2−

·Δ3
C · E +

√
2K1

K
3
2
0 λ−

·Δ2
C ·

√
E

⎞

⎠ .

��

B-3 Summary of approximation results

Under our technical assumptions, we can derive the rate for approximations via Propo-
sition B.1. This justifies all approximations in “Appendix A”.

Theorem B.1 Under the assumptions A1–A5,

(i)

T ≤ λ+ = O (polyLog(n)) ;

(ii)

max
j∈Jn

|β̂ j | ≤ ‖β̂‖2 = OL4 (polyLog(n)) ;

(iii)

max
j∈Jn

|b j | = OL2

(
polyLog(n)√

n

)
;
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1028 L. Lei et al.

(iv)

max
j∈Jn

|β̂ j − b j | = OL2

(
polyLog(n)

n

)
;

(v)

max
j∈Jn

max
i
|Ri − ri,[ j]| = OL2

(
polyLog(n)√

n

)
.

Proof (i) Notice that X j = Xe j , where e j is the j-th canonical basis vector in Rp,
we have

‖X j‖2
n

= eTj
XT X

n
e j ≤ λ+.

Similarly, consider the XT instead of X , we conclude that

‖xi‖2
n

≤ λmax

(
XXT

n

)
= λ+.

Recall the definition of T in (B-23), we conclude that

T ≤ √λ+ = O (polyLog(n)) .

(ii) Since εi = ui (Wi ) with ‖u′i‖∞ ≤ c1, the gaussian concentration property ([36],
chapter 1.3) implies that εi is c21-sub-gaussian and hence E|εi |k = O(ck1) for any
finite k > 0. By Lemma B-2, |ψ(εi )| ≤ K1|εi | and hence for any finite k,

E|ψ(εi )|k ≤ Kk
1E|εi |k = O

(
ck1

)
.

By part (i) of Proposition B.1, using the convexity of x4 and hence
( a+b

2

)4 ≤
a4+b4

2 ,

E‖β̂‖42 ≤
1

(K0λ−)4
E(U +U0)

4 ≤ 8

(K0λ−)4

(
EU 4 +U 4

0

)
.

Recall (B-24) that U = ∥∥ 1
n

∑n
i=1 xi (ψ(εi )− Eψ(εi ))

∥∥
2,

U 4 = (U 2)2 = 1

n4

⎛

⎝
n∑

i,i ′=1
xTi xi ′(ψ(εi )− Eψ(εi ))(ψ(εi ′)− Eψ(εi ′))

⎞

⎠
2

= 1

n4

(
n∑

i=1
‖xi‖22(ψ(εi )− Eψ(εi ))

2
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Asymptotics for high dimensional regression M-estimates… 1029

+
∑

i 	=i ′
|xTi xi ′ |(ψ(εi )− Eψ(εi ))(ψ(εi ′)− Eψ(εi ′))

⎞

⎠
2

= 1

n4

{ n∑

i=1
‖xi‖42(ψ(εi )− Eψ(εi ))

4

+
∑

i 	=i ′
(2|xTi xi ′ |2 + ‖xi‖22‖xi ′ ‖22)(ψ(εi )− Eψ(εi ))

2(ψ(εi ′)− Eψ(εi ′))
2

+
∑

others

|xTi xi ′ | · |xTk xk′ | · (ψ(εi )− Eψ(εi ))(ψ(εi ′)

− Eψ(εi ′))(ψ(εk)− Eψ(εk))(ψ(εk′)− Eψ(εk′))

}

Since ψ(εi )− Eψ(εi ) has a zero mean, we have

E(ψ(εi )− Eψ(εi ))(ψ(εi ′)− Eψ(εi ′))(ψ(εk)

−Eψ(εk))(ψ(εk′)− Eψ(εk′)) = 0

for any (i, i ′) 	= (k, k′) or (k′, k) and i 	= i ′. As a consequence,

EU 4 = 1

n4

( n∑

i=1
‖xi‖42E(ψ(εi )− Eψ(εi ))

4

+
∑

i 	=i ′
(2|xTi xi ′ |22 + ‖xi‖22‖xi ′ ‖22)E(ψ(εi )

− Eψ(εi ))
2
E(ψ(εi ′)− Eψ(εi ′))

2
)

≤ 1

n4

(
n∑

i=1
‖xi‖42E(ψ(εi )− Eψ(εi ))

4

+ 3
∑

i 	=i ′
‖xi‖22‖xi ′ ‖22E(ψ(εi )− Eψ(εi ))

2
E(ψ(εi ′)− Eψ(εi ′))

2

⎞

⎠ .

For any i , using the convexity of x4, hence ( a+b2 )4 ≤ a4+b4
2 , we have

E(ψ(εi )− Eψ(εi ))
4 ≤ 8E

(
ψ(εi )

4 + (Eψ(εi ))
4
)
≤ 16Eψ(εi )

4

≤ 16max
i

Eψ(εi )
4.

By Cauchy–Schwartz inequality,

E(ψ(εi )− Eψ(εi ))
2 ≤ Eψ(εi )

2 ≤
√
Eψ(εi )4 ≤

√
max
i

Eψ(εi )4.
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1030 L. Lei et al.

Recall (B-23) that ‖xi‖22 ≤ nT 2 and thus,

EU 4 ≤ 1

n4

(
16n · n2T 4 + 3n2 · n2T 4

)
·max

i
Eψ(εi )

4

≤ 1

n4
· (16n3 + 3n4)T 4 max

i
Eψ(εi )

4 = O (polyLog(n)) .

On the other hand, let μT = (Eψ(ε1), . . . ,Eψ(εn)), then ‖μ‖22 = O(n ·
polyLog(n)) and hence by definition of U0 in (B-24),

U0 = ‖μT X‖2
n

= 1

n

√
μT X XTμ ≤

√
‖μ‖22
n

· λ+ = O (polyLog(n)) .

In summary,

E‖β̂‖42 = O (polyLog(n)) .

(iii) By mean-value theorem, there exists ax ∈ (0, x) such that

ρ(x) = ρ(0)+ xψ(0)+ x2

2
ψ ′(ax ).

By assumption A1 and Lemma B-2, we have

ρ(x) = x2

2
ψ ′(ax ) ≤ x2

2
‖ψ ′‖∞ ≤ K3x2

2
,

where K3 is defined in Lemma B-2. As a result,

Eρ(εi )
8 ≤

(
K3

2

)8

Eε16i = O
(
c161

)
.

Recall the definition of E in (B-23) and the convexity of x8, we have

EE 8 ≤ 1

n

n∑

i=1
Eρ(εi )

8 = O(c161 ) = O (polyLog(n)) . (B-40)

Under assumption A5, by Cauchy–Schwartz inequality,

E(ΔC

√
E )2 = EΔ2

CE ≤
√
EΔ4

C ·
√
EE 2 = O (polyLog(n)) .

Under assumptions A1 and A3,

√
2K1

K0λ−
= O (polyLog(n)) .
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Asymptotics for high dimensional regression M-estimates… 1031

Putting all the pieces together, we obtain that

max
j∈Jn

|b j | = OL2

(
polyLog(n)√

n

)
.

(iv) Similarly, by Holder’s inequality,

E

(
Δ3

CE
)2 = EΔ6

CE
2 ≤

(
EΔ8

C

) 3
4 ·
(
EE 8

) 1
4 = O (polyLog(n)) ,

and under assumptions A1 and A3,

2K 2
1K3λ+T

K 4
0λ

7
2−

= O (polyLog(n)) .

Therefore,

max
j∈Jn

|β̂ j − b j | = OL2

(
polyLog(n)

n

)
.

(v) It follows from the previous part that

E(Δ2
C ·

√
E )2 = O (polyLog(n)) .

Under assumptionsA1andA3, themultiplicative factors are alsoO (polyLog(n)),
i.e.

2K 2
1K3λ+T 2

K 4
0λ

7
2−

= O (polyLog(n)) ,

√
2K1

K
3
2
0 λ−

= O (polyLog(n)) .

Therefore,

max
j∈Jn

max
i
|Ri − ri,[ j]| = OL2

(
polyLog(n)√

n

)
.

��

B-4 Controlling gradient and Hessian

Proof (Proof of Lemma 4.1) Recall that β̂ is the solution of the following equation

1

n

n∑

i=1
xiψ

(
εi − xTi β̂

)
= 0. (B-41)
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1032 L. Lei et al.

Taking derivative of (B-41), we have

XT D

(
I − X

∂β̂

∂εT

)
= 0 �⇒ ∂β̂

∂εT
= (XT DX)−1XT D.

This establishes (9). To establishes (10), note that (9) can be rewritten as

(XT DX)
∂β̂

∂εT
= XT D. (B-42)

Fix k ∈ {1, . . . , n}. Note that

∂Ri

∂εk
= ∂εi

∂εk
− xTi

∂β̂

∂εk
= I (i = k)− xTi (XT DX)−1XT D.

Recall that G = I − X (XT DX)−1XT D, we have

∂Ri

∂εk
= eTi Gek, (B-43)

where ei is the i-th canonical basis of Rn . As a result,

∂D

∂εk
= D̃ diag(Gek). (B-44)

Taking derivative of (B-42), we have

XT ∂D

∂εk
X

∂β̂

∂εT
+ (XT DX)

∂β̂

∂εk∂εT
= XT ∂D

∂εk

�⇒ ∂β̂

∂εk∂εT
= (XT DX)−1XT ∂D

∂εk

(
I − X (XT DX)−1XT D

)

�⇒ ∂β̂

∂εk∂εT
= (XT DX)−1XT D̃ diag(Gek)G,

where G = I − X (XT DX)−1XT D is defined in (B-18) in p. 31. Then for each
j ∈ {1, . . . , p} and k ∈ {1, . . . , n},

∂β̂ j

∂εk∂εT
= eTj (X

T DX)−1XT D̃ diag(Gek)G = eTk G
T diag

(
eTj (X

T DX)−1XT D̃
)
G

where we use the fact that aT diag(b) = bT diag(a) for any vectors a, b. This implies
that

∂β̂ j

∂ε∂εT
= GT diag

(
eTj (X

T DX)−1XT D̃
)
G

��
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Asymptotics for high dimensional regression M-estimates… 1033

Proof (Proof of Lemma 4.2) Throughout the proof we are using the simple fact that
‖a‖∞ ≤ ‖a‖2. Based on it, we found that

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥∞ ≤
∥∥∥eTj (XT DX)−1XT D

1
2

∥∥∥
2

=
√
eTj (X

T DX)−1XT DX (XT DX)−1e j

=
√
eTj (X

T DX)−1e j ≤ 1

(nK0λ−)
1
2

. (B-45)

Thus for any m > 1, recall that Mj = E

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥∞,

E

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥
m

∞
≤ E

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥∞ ·
∥∥∥eTj (XT DX)−1XT D

1
2

∥∥∥
m−1
2

≤ Mj

(nK0λ−)
m−1
2

. (B-46)

We should emphasize that we cannot use the naive bound that

E

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥
m

∞ ≤ E

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥
m

2
≤ 1

(nK0λ−)
m
2

,

�⇒
∥∥∥eTj (XT DX)−1XT D

1
2

∥∥∥∞ = OLm

(
polyLog(n)√

n

)
(B-47)

since it fails to guarantee the convergence of TV distance. We will address this issue
after deriving Lemma 4.3.

By contrast, as proved below,

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥∞ = Op(Mj ) = Op

(
polyLog(n)

n

)
<<

1√
nK0λ−

.

(B-48)
Thus (B-46) produces a slightly tighter bound

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥∞ = OLm

(
polyLog(n)

n
m+1
2m

)
.

It turns out that the above bound suffices to prove the convergence. Although (B-48)

implies the possibility to sharpen the bound from n−m+1
2m to n−1 using refined analysis,

we do not explore this to avoid extra conditions and notation.

• Bound for κ0 j
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1034 L. Lei et al.

First we derive a bound for κ0 j . By definition,

κ2
0 j = E

∥∥∥∥∥
∂β̂ j

∂εT

∥∥∥∥∥

4

4

≤ E

⎛

⎝
∥∥∥∥∥

∂β̂ j

∂εT

∥∥∥∥∥

2

∞
·
∥∥∥∥∥

∂β̂ j

∂εT

∥∥∥∥∥

2

2

⎞

⎠ .

By Lemma 4.1 and (B-46) with m = 2,

E

∥∥∥∥∥
∂β̂ j

∂εT

∥∥∥∥∥

2

∞
≤ E

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥
2

∞ · K1 = K1Mj

(nK0λ−)
1
2

.

On the other hand, it follows from (B-45) that

∥∥∥∥∥
∂β̂ j

∂εT

∥∥∥∥∥

2

2

=
∥∥∥eTj (XT DX)−1XT D

∥∥∥
2

2
≤ K1 ·

∥∥∥eTj (XT DX)−1XT D
1
2

∥∥∥
2

2
≤ K1

nK0λ−
.

(B-49)

Putting the above two bounds together we have

κ2
0 j ≤

K 2
1

(nK0λ−)
3
2

· Mj . (B-50)

• Bound for κ1 j
As a by-product of (B-49), we obtain that

κ4
1 j = E

∥∥∥∥∥
∂β̂ j

∂εT

∥∥∥∥∥

4

2

≤ K 2
1

(nK0λ−)2
. (B-51)

• Bound for κ2 j
Finally, we derive a bound for κ2 j . By Lemma 4.1, κ2 j involves the operator norm
of a symmetric matrix with form GT MG where M is a diagonal matrix. Then by
the triangle inequality,

∥∥∥GT MG
∥∥∥
op
≤ ‖M‖op ·

∥∥∥GTG
∥∥∥
op
= ‖M‖op · ‖G‖2op .

Note that

D
1
2GD− 1

2 = I − D
1
2 X (XT DX)−1XT D

1
2

is a projection matrix, which is idempotent. This implies that

∥∥∥D
1
2GD− 1

2

∥∥∥
op
= λmax

(
D

1
2GD− 1

2

)
≤ 1.
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Write G as D− 1
2 (D

1
2GD− 1

2 )D
1
2 , then we have

‖G‖op ≤
∥∥∥D− 1

2

∥∥∥
op
·
∥∥∥D

1
2GD− 1

2

∥∥∥
op
·
∥∥∥D

1
2

∥∥∥
op
≤
√

K1

K0
.

Returning to κ2 j , we obtain that

κ4
2 j = E

∥∥∥GT diag(eTj (X
T DX)−1XT D̃)G

∥∥∥
4

op

≤ E

(∥∥∥eTj (XT DX)−1XT D̃
∥∥∥
4

∞ · ‖G‖8op
)

≤ E

(∥∥∥eTj (XT DX)−1XT D̃
∥∥∥
4

∞

)(
K1

K0

)4

= E

(∥∥∥eTj (XT DX)−1XT D
1
2 D− 1

2 D̃
∥∥∥
4

∞

)
·
(
K1

K0

)4

Assumption A1 implies that

∀i, |ψ ′′(Ri )|√
ψ ′(Ri )

≤ K2 & hence‖D− 1
2 D̃‖op ≤ K2.

Therefore,

∥∥∥eTj (XT DX)−1XT D
1
2 D− 1

2 D̃
∥∥∥
4

∞ ≤ K 4
2 ·
∥∥∥eTj (XT DX)−1XT D

1
2

∥∥∥
4

∞ .

By (B-46) with m = 4,

κ4
2 j ≤

K 4
2

(nλ−)
3
2

·
(
K1

K0

)4

· Mj . (B-52)

��

Proof (Proof of Lemma 4.3) By Theorem B.1, for any j ,

Eβ̂4
j ≤ E‖β̂‖42 < ∞.

Then using the second-order Poincaré inequality (Proposition 4.1),

max
j∈Jn

dT V

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = O

(
c1c2κ0 j + c31κ1 jκ2 j

Var(β̂ j )

)
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1036 L. Lei et al.

= O

⎛

⎜⎜⎜⎝

M
1
2
j

n
3
4
+ M

1
4
j

n
7
8

Var(β̂ j )
· polyLog(n)

⎞

⎟⎟⎟⎠ = O

⎛

⎝ (nM2
j )

1
4 + (nM2

j )
1
8

nVar(β̂ j )
· polyLog(n)

⎞

⎠ .

It follows from (B-45) that nM2
j = O (polyLog(n)) and the above bound can be

simplified as

max
j∈Jn

dT V

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = O

⎛

⎝ (nM2
j )

1
8

nVar(β̂ j )
· polyLog(n)

⎞

⎠ .

��

Remark B.1 If we use the naive bound (B-47), by repeating the above derivation, we
obtain a worse bound for κ0, j = O(

polyLog(n)
n ) and κ2 = O(

polyLog(n)√
n

), in which case,

max
j∈Jn

dT V

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = O

(
polyLog(n)

nVar(β̂ j )

)
.

However, we can only prove that Var(β̂ j ) = Ω( 1n ). Without the numerator (nM2
j )

1
8 ,

which will be shown to be O(n− 1
8 polyLog(n)) in the next subsection, the convergence

cannot be proved.

B-5 Upper bound of M j

As mentioned in “Appendix A”, we should approximate D by D[ j] to remove the

functional dependence on X j . To achieve this, we introduce two terms, M (1)
j and

M (2)
j , defined as

M (1)
j = E

(∥∥∥∥e
T
j (X

T DX)−1XT D
1
2[ j]

∥∥∥∥∞

)
, M (2)

j

= E

(∥∥∥∥e
T
j (X

T D[ j]X)−1XT D
1
2[ j]

∥∥∥∥∞

)
.

We will first prove that both |Mj − M (1)
j | and |M (1)

j − M (2)
j | are negligible and then

derive an upper bound for M (2)
j .
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Asymptotics for high dimensional regression M-estimates… 1037

B-5.1 Controlling |Mj − M (1)
j |

By Lemma B-2,

∥∥∥∥D
1
2 − D

1
2[ j]

∥∥∥∥∞
≤ K2 max

i
|Ri − ri,[ j]| � K2R j ,

and by Theorem B.1,

√
ER2

j = O

(
polyLog(n)√

n

)
.

Thenwe can bound |Mj−M (1)
j | via the fact that ‖a‖∞ ≤ ‖a‖2 and algebra as follows.

|Mj − M (1)
j | ≤ E

(∥∥∥∥e
T
j (X

T DX)−1XT
(
D

1
2 − D

1
2[ j]
)∥∥∥∥∞

)

≤ E

(∥∥∥∥e
T
j (X

T DX)−1XT
(
D

1
2 − D

1
2[ j]
)∥∥∥∥

2

)

≤
√√√√
E

(∥∥∥∥e
T
j (X

T DX)−1XT

(
D

1
2 − D

1
2[ j]
)∥∥∥∥

2

2

)

=
√√√√
E

(
eTj (X

T DX)−1XT

(
D

1
2 − D

1
2[ j]
)2

X (XT DX)−1e j

)
.

By Lemma B-2,

∣∣∣
√

ψ ′(Ri )−
√

ψ ′(ri,[ j])
∣∣∣ ≤ K2|Ri − ri,[ j]| ≤ K2R j ,

thus

(
D

1
2 − D

1
2[ j]
)2

� K 2
2R

2
j I �

K 2
2

K0
R2

j D.

This entails that

∣∣∣Mj − M (1)
j

∣∣∣ ≤ K2K
− 1

2
0

√
E

(
R2

j · eTj (XT DX)−1XT DX (XT DX)−1e j
)

= K2K
− 1

2
0

√
E

(
R2

j · eTj (XT DX)−1e j
)

≤ K2√
nK0

√
λ−

√
E

(
R2

j

)
= O

(
polyLog(n)

n

)
.
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1038 L. Lei et al.

B-5.2 Bound of |M (1)
j − M (2)

j |

First we prove a useful lemma.

Lemma B-3 For any symmetric matrix N with ‖N‖op < 1,

(I − (I + N )−1)2 � N 2

(1− ‖N‖op)2 .

Proof First, notice that

I − (I + N )−1 = (I + N − I )(I + N )−1 = N (I + N )−1,

and therefore

(I − (I + N )−1)2 = N (I + N )−2N .

Since ‖N‖op < 1, I + N is positive semi-definite and

(I + N )−2 � 1

(1− ‖N‖op)2 I.

Therefore,

N (I + N )−2N � N 2

(1− ‖N‖op)2 .

��
We now back to bounding |M (1)

j − M (2)
j |. Let A j = XT D[ j]X , Bj = XT (D −

D[ j])X . By Lemma B-2,

‖D − D[ j]‖∞ ≤ K3 max
i
|Ri − ri,[ j]| = K3R j

and hence

‖Bj‖op ≤ K3R j · nλ+ I � nη j .

where η j = K3λ+ ·R j . Then by Theorem B.1.(v),

E(η2j ) = O

(
polyLog(n)

n

)
.

Using the fact that ‖a‖∞ ≤ ‖a‖2, we obtain that

∣∣∣M (1)
j − M (2)

j

∣∣∣ ≤ E

(∥∥∥∥e
T
j A

−1
j XT D

1
2[ j] − eTj (A j + Bj )

−1XT D
1
2[ j]

∥∥∥∥∞

)
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≤
√

E

(
‖eTj A−1j XT D

1
2[ j] − eTj (A j + Bj )−1XT D

1
2[ j]‖22

)

=
√
E

[
eTj (A

−1
j − (A j + Bj )−1)XT D[ j]X (A−1j − (A j + Bj )−1)e j

]

=
√
E

[
eTj (A

−1
j − (A j + Bj )−1)A j (A

−1
j − (A j + Bj )−1)e j

]

The inner matrix can be rewritten as

(
A−1j − (A j + Bj )

−1) A j

(
A−1j − (A j + Bj )

−1)

= A
− 1

2
j

(
I −

(
I + A

− 1
2

j B j A
− 1

2
j

)−1)
A
− 1

2
j A j A

− 1
2

j (I

−(I + A
− 1

2
j B j A

− 1
2

j )−1
)
A
− 1

2
j

= A
− 1

2
j

(
I −

(
I + A

− 1
2

j B j A
− 1

2
j

)−1)2

A
− 1

2
j . (B-53)

Let N j = A
− 1

2
j B j A

− 1
2

j , then

‖N j‖op ≤
∥∥∥∥A

− 1
2

j

∥∥∥∥
op
· ‖Bj‖op ·

∥∥∥∥A
− 1

2
j

∥∥∥∥
op
≤ (nK0λ−)−

1
2 · nη j · (nK0λ−)−

1
2

= η j

K0λ−
.

On the event {η j ≤ 1
2K0λ−}, ‖N j‖op ≤ 1

2 . By Lemma B-3,

(I − (I + N j )
−1)2 � 4N 2

j .

This together with (B-53) entails that

eTj

(
A−1j − (A j + Bj )

−1) A j

(
A−1j − (A j + Bj )

−1) e j

= eTj A
− 1

2
j (I − (I + N j )

−1)2A−
1
2

j e j

≤ 4eTj A
− 1

2
j N 2

j A
− 1

2
j e j = eTj A

−1
j B j A

−1
j B j A

−1
j e j ≤

∥∥∥A−1j B j A
−1
j B j A

−1
j

∥∥∥
op

.

Since A j � nK0λ− I , and ‖Bj‖op ≤ nη j , we have

∥∥∥A−1j B j A
−1
j B j A

−1
j

∥∥∥
op
≤
∥∥∥A−1j

∥∥∥
3

op
· ‖Bj‖2op ≤

1

n
· 1

(K0λ−)3
· η2j .
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1040 L. Lei et al.

Thus,

E

[
eTj

(
A−1j − (A j + Bj )

−1) A j

(
A−1j − (A j + Bj )

−1) e j · I
(

η j ≤ K0λ−
2

)]

≤ E

[
eTj A

−1
j B j A

−1
j B j A

−1
j e j

]
≤ 1

n
· 1

(K0λ−)3
· Eη2j = O

(
polyLog(n)

n2

)
.

On the event {η j > 1
2K0λ−}, since nK0λ− I � A j � nK1λ+ I and A j + Bj �

nK0λ− I ,

∣∣∣eTj
(
A−1j − (A j + Bj )

−1) A j

(
A−1j − (A j + Bj )

−1) e j
∣∣∣

≤ nK1λ+ ·
∣∣∣∣e

T
j

(
A−1j − (A j + Bj )

−1)2 e j
∣∣∣∣

≤ nK1λ+ ·
(
2
∣∣∣eTj A

−2
j e j

∣∣∣+ 2
∣∣∣eTj (A j + Bj )

−2e j
∣∣∣
)

≤ 4nK1λ+
(nK0λ−)2

= 1

n
· 4K1λ+
(K0λ−)2

.

This together with Markov inequality implies htat

E

[
eTj

(
A−1j − (A j + Bj )

−1) A j

(
A−1j − (A j + Bj )

−1) e j · I
(

η j >
K0λ−
2

)]

≤ 1

n
· 4K1λ+
(K0λ−)2

· P
(

η j >
K0λ−
2

)

≤ 1

n
· 4K1λ+
(K0λ−)2

· 4

(K0λ−)2
· Eη2j

= O

(
polyLog(n)

n2

)
.

Putting pieces together, we conclude that

|M(1)
j − M(2)

j | ≤
√
E

[
eTj

(
A−1j − (A j + B j )

−1
)
A j

(
A−1j − (A j + B j )

−1
)
e j
]

≤
√

E

[
eTj

(
A−1j − (A j + B j )

−1
)
A j

(
A−1j − (A j + B j )

−1
)
e j · I

(
η j >

K0λ−
2

)]

+
√

E

[
eTj

(
A−1j − (A j + B j )

−1
)
A j

(
A−1j − (A j + B j )

−1
)
e j · I

(
η j ≤ K0λ−

2

)]

= O

(
polyLog(n)

n

)
.
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B-5.3 Bound of M (2)
j

Similar to (A-1), by block matrix inversion formula (See Proposition E.1),

eTj (X
T D[ j]X)−1XT D

1
2[ j] =

XT
j D

1
2[ j](I − Hj )

XT
j D

1
2[ j](I − Hj )D

1
2[ j]X j

,

where Hj = D
1
2[ j]X[ j](XT[ j]D[ j]X[ j])−1XT[ j]D

1
2[ j]. Recall that ξ j ≥ K0λ− by (B-25),

so we have

XT
j D

1
2[ j](I − Hj )D

1
2[ j]X j = nξ j ≥ nλ−.

As for the numerator, recalling the definition of h j,1,i , we obtain that

‖XT
j D

1
2[ j](I − Hj )‖∞ =

∥∥∥∥
1

n
XT

j (I − D[ j]X[ j](XT[ j]D[ j]X[ j])−1X[ j]) · D
1
2[ j]

∥∥∥∥∞

≤ √K1 ·
∥∥∥∥
1

n
XT

j (I − D[ j]X[ j](XT[ j]D[ j]X[ j])−1X[ j])
∥∥∥∥∞

= √K1 max
i

∣∣hTj,1,i X j
∣∣ ≤ √K1ΔC max

i
‖h j,1,i‖2.

As proved in (B-35),

max
i
‖h j,1,i‖2 ≤

(
K1

K0

) 1
2

.

This entails that
∥∥∥∥X

T
j D

1
2[ j](I − Hj )

∥∥∥∥∞
≤ K1√

K0
·ΔC = OL1 (polyLog(n)) .

Putting the pieces together we conclude that

M (2)
j ≤

E

∥∥∥∥X
T
j D

1
2[ j](I − Hj )

∥∥∥∥∞
nλ−

= O

(
polyLog(n)

n

)
.

B-5.4 Summary

Based on results from Sections B.5.1–B.5.3, we have

Mj = O

(
polyLog(n)

n

)
.
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1042 L. Lei et al.

Note that the bounds we obtained do not depend on j , so we conclude that

max
j∈Jn

M j = O

(
polyLog(n)

n

)
.

B-6 Lower Bound of Var(β̂ j )

B-6.1 Approximating Var(β̂ j ) by Var(b j )

By Theorem B.1,

max
j

E(β̂ j − b j )
2 = O

(
polyLog(n)

n2

)
, max

j
Eb2j = O

(
polyLog(n)

n

)
.

Using the fact that

β̂2
j − b2j = (β̂ j − b j + b j )

2 − b2j = (β̂ j − b j )
2 + 2(β̂ j − b j )b j ,

we can bound the difference between Eβ̂2
j and Eb2j by

∣∣Eβ̂2
j − Eb2j

∣∣ = E(β̂ j − b j )
2 + 2|E(β̂ j − b j )b j | ≤ E(β̂ j − b j )

2

+ 2
√
E(β̂ j − b j )2

√
Eb2j = O

(
polyLog(n)

n
3
2

)
.

Similarly, since |a2 − b2| = |a − b| · |a + b| ≤ |a − b|(|a − b| + 2|b|),

|(Eβ̂ j )
2 − (Eb j )

2| ≤ E|β̂ j − b j | ·
(
E|β̂ j − b j | + 2E|b j |

)
= O

(
polyLog(n)

n
3
2

)
.

Putting the above two results together, we conclude that

∣∣Var(β̂ j )− Var(b j )
∣∣ = O

(
polyLog(n)

n
3
2

)
. (B-54)

Then it is left to show that

Var(b j ) = Ω

(
1

n · polyLog(n)
)

.

B-6.2 Controlling Var(b j ) by Var(N j )

Recall that

b j = 1√
n

N j

ξ j
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where

N j = 1√
n

n∑

i=1
Xi jψ(ri,[ j]), ξ j

= 1

n
XT

j

(
D[ j] − D[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]

)
X j .

Then

nVar(b j ) = E

(
N j

ξ j
− E

N j

ξ j

)2

= E

(
N j − EN j

ξ j
+ EN j

ξ j
− E

N j

ξ j

)2

.

Using the fact that (a + b)2 − ( 12a
2 − b2) = 1

2 (a + 2b)2 ≥ 0, we have

nVar(b j ) ≥ 1

2
E

(
N j − EN j

ξ j

)2

− E

(
EN j

ξ j
− E

N j

ξ j

)2

� 1

2
I1 − I2. (B-55)

B-6.3 Controlling I1

The Assumption A4 implies that

Var(N j ) = 1

n
XT

j Q j X j = Ω

(
tr(Cov(h j,0))

n · polyLog(n)
)

.

It is left to show that tr(Cov(h j,0))/n = Ω
(

1
polyLog(n)

)
. Since this result will also be

used later in “Appendix C”, we state it in the following the lemma.

Lemma B-4 Under assumptions A1 - A3,

tr(Cov(ψ(h j,0)))

n
≥ K 4

0

K 2
1

·
(
n − p + 1

n

)2

·min
i

Var(εi ) = Ω

(
1

polyLog(n)

)
.

Proof The (A-10) implies that

Var(ψ(ri,[ j])) ≥ K 2
0 Var(ri,[ j]). (B-56)

Note that ri,[ j] is a function of ε, we can apply (A-10) again to obtain a lower bound
for Var(ri,[ j]). In fact, by variance decomposition formula, using the independence of
ε′i s,

Var(ri,[ j]) = E
(
Var

(
ri,[ j]

∣∣ε(i)
))+ Var

(
E
(
ri,[ j]

∣∣ε(i)
)) ≥ E

(
Var

(
ri,[ j]

∣∣ε(i)
))

,

where ε(i) includes all but the i-th entry of ε. Apply A-10 again,

Var
(
ri,[ j]

∣∣ε(i)
) ≥ inf

εi

∣∣∣∣
∂ri,[ j]
∂εi

∣∣∣∣
2

· Var(εi ),
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1044 L. Lei et al.

and hence

Var(ri,[ j]) ≥ EVar
(
ri,[ j]

∣∣ε(i)
) ≥ E inf

ε

∣∣∣∣
∂ri,[ j]
∂εi

∣∣∣∣
2

· Var(εi ). (B-57)

Now we compute
∂ri,[ j]
∂εi

. Similar to (B-43) in p. 40, we have

∂rk,[ j]
∂εi

= eTi G[ j]ek, (B-58)

where G[ j] is defined in (B-18) in p. 31. When k = i ,

∂ri,[ j]
∂εi

= eTi G[ j]ei = eTi D
− 1

2[ j] D
1
2[ j]G[ j]D

− 1
2[ j] D

1
2[ j]ei = eTi D

1
2[ j]G[ j]D

− 1
2[ j] ei . (B-59)

By definition of G[ j],

D
1
2[ j]G[ j]D

− 1
2[ j] = I − D

1
2[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D

1
2[ j].

Let X̃[ j] = D
1
2[ j]X[ j] and Hj = X̃[ j](X̃ T[ j] X̃[ j])−1 X̃ T[ j]. Denote by X̃(i),[ j] the matrix

X̃[ j] after removing i-th row, then by block matrix inversion formula (See Proposi-
tion E.1),

eTi Hj ei = x̃ Ti,[ j]
(
X̃ T

(i),[ j] X̃(i),[ j] + x̃i,[ j] x̃ Ti,[ j]
)−1

x̃i,[ j]

= x̃ Ti,[ j]

⎛

⎜⎝
(
X̃ T

(i),[ j] X̃(i),[ j]
)−1

−
(
X̃ T

(i),[ j] X̃(i),[ j]
)−1

x̃i,[ j] x̃ Ti,[ j]
(
X̃ T

(i),[ j] X̃(i),[ j]
)−1

1+ x̃ Ti,[ j]
(
X̃ T

(i),[ j] X̃(i),[ j]
)−1

x̃i,[ j]

⎞

⎟⎠ x̃i,[ j]

=
x̃ Ti,[ j]

(
X̃ T

(i),[ j] X̃(i),[ j]
)−1

x̃i,[ j]

1+ x̃ Ti,[ j]
(
X̃ T

(i),[ j] X̃(i),[ j]
)−1

x̃i,[ j]
.

This implies that

eTi D
1
2[ j]G[ j]D

− 1
2[ j] ei = eTi (I − Hj )ei = 1

1+ x̃ Ti,[ j]
(
X̃ T

(i),[ j] X̃(i),[ j]
)−1

x̃i,[ j]

= 1

1+ eTi D
1
2[ j]X[ j]

(
XT

(i),[ j]D(i),[ j]X(i),[ j]
)−1

XT[ j]D
1
2[ j]ei
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≥ 1

1+ K−1
0 eTi D

1
2[ j]X[ j]

(
XT

(i),[ j]X(i),[ j]
)−1

XT[ j]D
1
2[ j]ei

= 1

1+ K−1
0 (D[ j])i,i · eTi X[ j]

(
XT

(i),[ j]X(i),[ j]
)−1

XT[ j]ei

≥ 1

1+ K−1
0 K1eTi X[ j]

(
XT

(i),[ j]X(i),[ j]
)−1

XT[ j]ei

≥ K0

K1
· 1

1+ eTi X[ j]
(
XT

(i),[ j]X(i),[ j]
)−1

XT[ j]ei
. (B-60)

Apply the above argument that replaces Hj by X[ j](XT[ j]X[ j])−1XT[ j], we have

1

1+ eTi X
T[ j]
(
XT

(i),[ j]X(i),[ j]
)−1

X[ j]ei
= eTi

(
I − X[ j]

(
XT[ j]X[ j]

)−1
XT[ j]

)
ei .

Thus, by (B-56) and (B-57),

Var(ψ(ri,[ j])) ≥ K 4
0

K 2
1

·
[
eTi

(
I − X[ j]

(
XT[ j]X[ j]

)−1
XT[ j]

)
ei

]2
.

Summing i over 1, . . . , n, we obtain that

tr(Cov(h j,0))

n
≥ K 4

0

K 2
1

· 1
n

n∑

i=1

[
eTi

(
I − X[ j]

(
XT[ j]X[ j]

)−1
XT[ j]

)
ei

]2
·min

i
Var(εi )

≥ K 4
0

K 2
1

·
(
1

n
tr

(
I − X[ j]

(
XT[ j]X[ j]

)−1
XT[ j]

))2

·min
i

Var(εi )

= K 4
0

K 2
1

·
(
n − p + 1

n

)2

·min
i

Var(εi )

Since mini Var(εi ) = Ω
(

1
polyLog(n)

)
by assumption A2, we conclude that

tr(Cov(h j,0))

n
= Ω

(
1

polyLog(n)

)
.

��
In summary,

Var(N j ) = Ω

(
1

polyLog(n)

)
.
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1046 L. Lei et al.

Recall that

ξ j = 1

n
XT

j

(
D[ j] − D[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]

)
X j

≤ 1

n
XT

j D[ j]X j ≤ K1T
2,

we conclude that

I1 ≥ Var(N j )

(K1T 2)2
= Ω

(
1

polyLog(n)

)
. (B-61)

B-6.4 Controlling I2

By definition,

I2 = E

(
EN j

(
1

ξ j
− E

1

ξ j

)
+ EN jE

1

ξ j
− E

N j

ξ j

)2

= Var

(
EN j

ξ j

)
+
(
EN jE

1

ξ j
− E

N j

ξ j

)2

= (EN j )
2 · Var

(
1

ξ j

)
+ Cov

(
N j ,

1

ξ j

)2

≤ (EN j )
2 · Var

(
1

ξ j

)
+ Var(N j )Var

(
1

ξ j

)

= EN 2
j · Var

(
1

ξ j

)
. (B-62)

By (B-27) in the proof of Theorem B.1,

EN 2
j ≤ 2K1E

(
E ·Δ2

C

)
≤ 2K1

√
EE 2 · EΔ4

C = O (polyLog(n)) ,

where the last equality uses the fact that E = OL2 (polyLog(n)) as proved in (B-40).
On the other hand, let ξ̃ j be an independent copy of ξ j , then

Var

(
1

ξ j

)
= 1

2
E

(
1

ξ j
− 1

ξ̃ j

)2

= 1

2
E

(ξ j − ξ̃ j )
2

ξ2j ξ̃
2
j

.

Since ξ j ≥ K0λ− as shown in (B-25), we have

Var

(
1

ξ j

)
≤ 1

2(K0λ−)4
E(ξ j − ξ̃ j )

2 = 1

(K0λ−)4
· Var(ξ j ). (B-63)

To bound Var(ξ j ), we propose to using the standard Poincaré inequality [11], which
is stated as follows.
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Proposition B.2 Let W = (W1, . . . ,Wn) ∼ N (0, In×n) and f be a twice differen-
tiable function, then

Var( f (W )) ≤ E

∥∥∥∥
∂ f (W )

∂W

∥∥∥∥
2

2
.

In our case, εi = ui (Wi ), and hence for any twice differentiable function g,

Var(g(ε)) ≤ E

∥∥∥∥
∂g(ε)

∂W

∥∥∥∥
2

2
= E

∥∥∥∥
∂g(ε)

∂ε
· ∂ε

∂WT

∥∥∥∥
2

2
≤ max

i

∥∥u′i
∥∥2∞ · E

∥∥∥∥
∂g(ε)

∂ε

∥∥∥∥
2

2
.

Applying it to ξ j , we have

Var(ξ j ) ≤ c21 · E
∥∥∥∥
∂ξ j

∂ε

∥∥∥∥
2

2
. (B-64)

For given k ∈ {1, . . . , n}, using the chain rule and the fact that dB−1 = −B−1dBB−1
for any square matrix B, we obtain that

∂

∂εk

(
D[ j] − D[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]

)

= ∂D[ j]
∂εk

− ∂D[ j]
∂εk

X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]

− D[ j]X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]

∂D[ j]
∂εk

+ D[ j]X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]

∂D[ j]
∂εk

X[ j]
(
XT[ j]D[ j]X[ j]

)−1
XT[ j]D[ j]

= GT[ j]
∂D[ j]
∂εk

G[ j]

where G[ j] = I − X[ j](XT[ j]D[ j]X[ j])−1XT[ j]D[ j] as defined in last subsection. This
implies that

∂ξ j

∂εk
= 1

n
XT

j G
T[ j]

∂D[ j]
∂εk

G[ j]X j .

Then (B-64) entails that

Var(ξ j ) ≤ 1

n2

n∑

k=1
E

(
XT

j G
T[ j]

∂D[ j]
∂εk

G[ j]X j

)2

(B-65)
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First we compute
∂D[ j]
∂εk

. Similar to (B-44) in p. 40 and recalling the definition of D[ j]
in (B-17) and that of G[ j] in (B-18) in p. 31, we have

∂D[ j]
∂εk

= D̃[ j] diag(G[ j]ek) diag(D̃[ j]G[ j]ek),

Let X j = G[ j]X j and X̃ j =X j ◦X j where ◦ denotes Hadamard product. Then

XT
j G

T[ j]
∂D[ j]
∂εk

G[ j]X j =X T
j

∂D[ j]
∂εk

X j =X T
j diag(D̃[ j]G[ j]ek)X j

= X̃ T
j D̃[ j]G[ j]ek .

Here we use the fact that for any vectors x, a ∈ R
n ,

xT diag(a)x =
n∑

i=1
ai x

2
i = (x ◦ x)T a.

This together with (B-65) imply that

Var(ξ j ) ≤ 1

n2

n∑

k=1
E

(
X̃ T

j D̃[ j]G[ j]ek
)2 = 1

n2
E

∥∥∥X̃ T
j D̃[ j]G[ j]

∥∥∥
2

2

= 1

n2
E

(
X̃ T

j D̃[ j]G[ j]GT[ j] D̃[ j]X̃ j

)

Note that G[ j]GT[ j] � ‖G[ j]‖2op I , and D̃[ j] � K3 I by Lemma B-2 in p. 32. Therefore
we obtain that

Var(ξ j ) ≤ 1

n2
E

(∥∥G[ j]
∥∥2
op · X̃ T

j D̃2[ j]X̃ j

)
≤ K 2

3

n2
· E
(∥∥G[ j]

∥∥2
op · ‖X̃ j‖22

)

= K 2
3

n2
E

(∥∥G[ j]
∥∥2
op ·

∥∥X j
∥∥4
4

)
≤ K 2

3

n
E

(∥∥G[ j]
∥∥2
op ·

∥∥X j
∥∥4∞
)

As shown in (B-34),

‖G[ j]‖op ≤
(
K1

K0

) 1
2

.

On the other hand, notice that the i-th row of G[ j] is h j,1,i (see (B-20) for definition),
by definition of ΔC we have

‖X j‖∞ = ‖G[ j]X j‖∞ = max
i

∣∣∣hTj,1,i X j

∣∣∣ ≤ ΔC ·max ‖h j,1,i‖2.
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By (B-35) and assumption A5,

‖X j‖∞ ≤ ΔC ·
(
K1

K0

) 1
2 = OL4 (polyLog(n)) .

This entails that

Var(ξ j ) = O

(
polyLog(n)

n

)
.

Combining with (B-62) and (B-63), we obtain that

I2 = O

(
polyLog(n)

n

)
.

B-6.5 Summary

Putting (B-55), (B-61) and (B-62) together, we conclude that

nVar(b j ) = Ω

(
1

polyLog(n)

)
− O

(
1

n · polyLog(n)
)

= Ω

(
1

polyLog(n)

)
�⇒ Var(b j ) = Ω

(
1

n · polyLog(n)
)

.

Combining with (B-54),

Var(β̂ j ) = Ω

(
1

n · polyLog(n)
)

.

C Proof of other results

C-1 Proofs of propositions in Section 2.3

Proof (Proof of Proposition 2.1) Let Hi (α) = Eρ(εi − α). First we prove that the
conditions imply that 0 is the unique minimizer of Hi (α) for all i . In fact, since

εi
d= −εi ,

Hi (α) = Eρ(εi − α) = 1

2
(Eρ(εi − α)+ ρ(−εi − α)) .

Using the fact that ρ is even, we have

Hi (α) = Eρ(εi − α) = 1

2
(Eρ(εi − α)+ ρ(εi + α)) .
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1050 L. Lei et al.

By (4), for any α 	= 0, Hi (α) > Hi (0). As a result, 0 is the unique minimizer of Hi .
Then for any β ∈ R

p

1

n

n∑

i=1
Eρ
(
yi − xTi β

)
= 1

n

n∑

i=1
Eρ
(
εi − xTi (β − β∗)

)

= 1

n

n∑

i=1
Hi

(
xTi (β − β∗)

)
≥ 1

n

n∑

i=1
Hi (0).

The equality holds iff xTi (β − β∗) = 0 for all i since 0 is the unique minimizer of Hi .
This implies that

X (β∗(ρ)− β∗) = 0.

Since X has full column rank, we conclude that

β∗(ρ) = β∗.

��
Proof (Proof of Proposition 2.2) For any α ∈ R and β ∈ R

p, let

G(α;β) = 1

n

n∑

i=1
Eρ
(
yi − α − xTi β

)
.

Since αρ minimizes Eρ(εi − α), it holds that

G(α;β) = 1

n

n∑

i=1
Eρ
(
εi − α − xTi (β − β∗)

)
≥ 1

n

n∑

i=1
Eρ(εi − αρ) = G(αρ, β∗).

Note that αρ is the unique minimizer of Eρ(εi − α), the above equality holds if and
only if

α + xTi (β − β∗) ≡ αρ �⇒ (1 X)

(
α − αρ

β − β∗
)
= 0.

Since (1 X) has full column rank, it must hold that α = αρ and β = β∗. ��

C-2 Proofs of Corollary 3.1

Proposition C.1 Suppose that εi are i.i.d. such that Eρ(ε1 − α) as a function of α

has a unique minimizer αρ . Further assume that X Jcn contains an intercept term, X Jn
has full column rank and

span({X j : j ∈ Jn}) ∩ span
({
X j : j ∈ J cn

}) = {0} (C-66)
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Let

βJn (ρ) = argmin
βJn

{
min
βJcn

1

n

n∑

i=1
Eρ
(
yi − xTi β

)}
.

Then βJn (ρ) = β∗Jn .

Proof let

G(β) = 1

n

n∑

i=1
Eρ
(
yi − xTi β

)
.

For anyminimizer β(ρ) ofG, whichmight not be unique, we prove that βJn (ρ) = β∗Jn .
It follows by the same argument as in Proposition 2.2 that

xTi (β(ρ)− β∗) ≡ α0 �⇒ X (β(ρ)− β∗) = α01 �⇒ X Jn (βJn (ρ))

= −X Jcn

(
β(ρ)J cn − β∗J cn

)
+ α01.

Since X Jcn contains the intercept term, we have

X Jn (βJn (ρ)− β∗Jn ) ∈ span
({
X j : j ∈ J cn

})
.

It then follows from (C-68) that

X Jn

(
βJn (ρ)− β∗Jn

) = 0.

Since X Jn has full column rank, we conclude that

βJn (ρ) = β∗Jn .

��
The Proposition C.1 implies that β∗Jn is identifiable even when X is not of full

column rank. A similar conclusion holds for the estimator β̂Jn and the residuals Ri .
The following two propositions show that under certain assumptions, β̂Jn and Ri are
invariant to the choice of β̂ in the presense of multiple minimizers.

Proposition C.2 Suppose that ρ is convex and twice differentiable with ρ′′(x) > c >

0 for all x ∈ R. Let β̂ be any minimizer, which might not be unique, of

F(β) � 1

n

n∑

i=1
ρ
(
yi − xTi β

)

Then Ri = yi − xi β̂ is independent of the choice of β̂ for any i .
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1052 L. Lei et al.

Proof The conclusion is obvious if F(β) has a unique minimizer. Otherwise, let
β̂(1) and β̂(2) be two different minimizers of F denote by η their difference, i.e.
η = β̂(2) − β̂(1). Since F is convex, β̂(1) + vη is a minimizer of F for all v ∈ [0, 1].
By Taylor expansion,

F(β̂(1) + vη) = F(β̂(1))+ v∇F(β̂(1))η + v2

2
ηT∇2F(β̂(1))η + o(v2).

Since both β̂(1)+ vη and β̂(1) are minimizers of F , we have F(β̂(1)+ vη) = F(β̂(1))

and ∇F(β̂(1)) = 0. By letting v tend to 0, we conclude that

ηT∇2F(β̂(1))η = 0.

The hessian of F can be written as

∇2F(β̂(1)) = 1

n
XT diag

(
ρ′′(yi − xTi β̂(1))

)
X � cXT X

n
.

Thus, η satisfies that

ηT
cXT X

n
η = 0 �⇒ Xη = 0. (C-67)

This implies that

y − X β̂(1) = y − X β̂(2)

and hence Ri is the same for all i in both cases. ��
Proposition C.3 Suppose that ρ is convex and twice differentiable with ρ′′(x) > c >

0 for all x ∈ R. Further assume that X Jn has full column rank and

span({X j : j ∈ Jn}) ∩ span
({
X j : j ∈ J cn

}) = {0} (C-68)

Let β̂ be any minimizer, which might not be unique, of

F(β) � 1

n

n∑

i=1
ρ
(
yi − xTi β

)

Then β̂Jn is independent of the choice of β̂.

Proof As in the proof of Proposition C.2, we conclude that for any minimizers β̂(1)

and β̂(2), Xη = 0 where η = β̂(2) − β̂(1). Decompose the term into two parts, we
have

X JnηJn = −Xc
JnηJ cn ∈ span

({
X j : j ∈ J cn

})
.

It then follows from (C-68) that X JnηJn = 0. Since X Jn has full column rank, we
conclude that ηJn = 0 and hence β̂

(1)
Jn
= β̂

(2)
Jn
. ��
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Proof (Proof of Corollary 3.1) Under assumption A3*, X Jn must have full column
rank. Otherwise there exists α ∈ R

|Jn | such that X Jnα, in which case αT XT
Jn

(I −
HJcn )X Jnα = 0. This violates the assumption that λ̃− > 0. On the other hand, it also
guarantees that

span({X j : j ∈ Jn}) ∩ span
({
X j : j ∈ J cn

}) = {0}.

This together with assumptionA1 and Proposition C.3 implies that β̂Jn is independent
of the choice of β̂.

Let B1 ∈ R
|J cn |×|Jn |, B2 ∈ R

|J cn |×|J cn | and assume that B2 is invertible. Let X̃ ∈ R
n×p

such that

X̃ Jn = X Jn − X Jcn B1, X̃ J cn = X Jcn B2.

Then rank(X) = rank(X̃) and model (1) can be rewritten as

y = X̃ β̃∗ + ε

where

β̃∗Jn = β∗Jn , β̃∗J cn = B−12 β∗J cn + B1β
∗
Jn .

Let ˜̂β be anM-estimator, whichmight not be unique, based on X̃ . Then PropositionC.3

shows that ˜̂βJn is independent of the choice of ˜̂β, and an invariance argument shows
that

˜̂
βJn = β̂Jn .

In the rest of proof, we use ·̃ to denote the quantity obtained based on X̃ . First we show
that the assumption A4 is not affected by this transformation. In fact, for any j ∈ Jn ,
by definition we have

span(X̃[ j]) = span(X[ j])

and hence the leave- j-th-predictor-out residuals are not changed by Proposition C.2.
This implies that ˜h j,0 = h j,0 and Q̃ j = Q j . Recall the definition of h j,0, the first-
order condition of β̂ entails that XT h j,0 = 0. In particular, XT

Jcn
h j,0 = 0 and this

implies that for any α ∈ R
n ,

0 = Cov
(
XT
Jcn
h j,0, α

T h j,0

)
= X Jcn Q jα.
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Thus,

X̃ T
j Q̃ j X̃ j

tr(Q̃ j )
=
(
X j − Xc

Jn
(B1) j

)T
Q j
(
X j − X Jcn (B1) j

)

tr(Q j )
= XT

j Q j X j

tr(Q j )
.

Then we prove that the assumption A5 is also not affected by the transformation. The
above argument has shown that

h̃Tj,0 X̃ j

‖h̃ j,0‖2
= hTj,0X j

‖h j,0‖2 .

On the other hand, let B =
(

I|Jn | 0
−B1 B2

)
, then B is non-singular and X̃ = XB. Let

B( j),[ j] denote the matrix B after removing j-th row and j-th column. Then B( j),[ j]
is also non-singular and X̃[ j] = X[ j]B( j),[ j]. Recall the definition of h j,1,i , we have

h̃ j,1,i =
(
I − D̃[ j] X̃[ j]

(
X̃ T[ j] D̃[ j] X̃ j

)−1
X̃ T[ j]

)
ei

=
(
I − D[ j]X[ j]B( j),[ j]

(
BT

( j),[ j]X
T[ j]D[ j]X j B( j),[ j]

)−1
BT

( j),[ j]X[ j]
)
ei

=
(
I − D[ j]X[ j]

(
XT[ j]D[ j]X j

)−1
X[ j]

)
ei

= h j,1,i .

On the other hand, by definition,

XT[ j]h j,1,i = XT[ j]
(
I − D[ j]X[ j]

(
XT[ j]D[ j]X[ j]

)−1
XT[ j]

)
ei = 0.

Thus,

hTj,1,i X̃ j = hTj,1,i
(
X j − Xc

Jn (B1) j
) = hTj,1,i X j .

In summary, for any j ∈ Jn and i ≤ n,

h̃Tj,1,i X̃ j

‖h̃ j,1,i‖2
= hTj,1,i X j

‖h j,1,i‖2 .

Putting the pieces together we have

Δ̃C = ΔC .
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By Theorem 3.1,

max
j∈Jn

dTV

⎛

⎝L

⎛

⎝ β̂ j − Eβ̂ j√
Var(β̂ j )

⎞

⎠ , N (0, 1)

⎞

⎠ = o(1).

provided that X̃ satisfies the assumption A3.

Now let UΛV be the singular value decomposition of X Jcn , where U ∈ R
n×p,Λ ∈

R
p×p, V ∈ R

p×p with UTU = V T V = Ip and Λ = diag(ν1, . . . , νp) being the
diagonal matrix formed by singular values of X Jcn . First we consider the case where
X Jcn has full column rank, then ν j > 0 for all j ≤ p. Let B1 = (XT

Jn
X Jn )

−XT
Jn
X Jn

and B2 =
√
n/|J cn |V TΛ−1. Then

X̃ T X̃

n
= 1

n

⎛

⎝ XT
Jn

(
I − X Jcn

(
XT
Jcn
X Jcn

)−1
X Jcn

)
X Jn 0

0 nI

⎞

⎠ .

This implies that

λmax

(
X̃ T X̃

n

)
= max

{
λ̃max, 1

}
, λmin

(
X̃ T X̃

n

)
= min

{
λ̃min, 1

}
.

The assumption A3* implies that

λmax

(
X̃ T X̃

n

)
= O(polyLog(n)), λmin

(
X̃ T X̃

n

)
= Ω

(
1

polyLog(n)

)
.

By Theorem 3.1, we conclude that

Next we consider the case where Xc
Jn
does not have full column rank. We first remove

the redundant columns from Xc
Jn
, i.e. replace X Jcn by thematrix formedby itsmaximum

linear independent subset. Denote by X this matrix. Then span(X) = span(X) and
span({X j : j /∈ Jn}) = span({X j : j /∈ Jn}). As a consequence of Propositions C.1
and C.3, neither β∗Jn nor β̂Jn is affected. Thus, the same reasoning as above applies to
this case. ��

C-3 Proofs of results in Section 3.3

First we prove two lemmas regarding the behavior of Q j . These lemmas are needed
for justifying Assumption A4 in the examples.
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Lemma C-1 Under assumptions A1 and A2,

‖Q j‖op ≤ c21
K 2
3K1

K0
, ‖Q j‖F ≤ √

nc21
K 2
3K1

K0

where Q j = Cov(h j,0) as defined in section B-1.

Proof (Proof of Lemma C-1) By definition,

||Q j ||op = sup
α∈Sn−1

αT Q jα

where Sn−1 is the n-dimensional unit sphere. For given α ∈ S
n−1,

αT Q jα = αT Cov(h j,0)α = Var(αT h j,0)

It has been shown in (B-59) in “Appendix B-6.3” that

∂ri,[ j]
∂εk

= eTi G[ j]ek,

where G[ j] = I − X[ j](XT[ j]D[ j]X[ j])−1XT[ j]D[ j]. This yields that

∂

∂εT

(
n∑

i=1
αiψ(ri,[ j])

)
=

n∑

i=1
αiψ

′(ri,[ j]) · ∂ri,[ j]
∂ε

=
n∑

i=1
αiψ

′(ri,[ j]) · eTi G[ j] = αT D̃[ j]G[ j].

By standard Poincaré inequality (see Proposition B.2), since εi = ui (Wi ),

Var

(
n∑

i=1
αiψ(ri,[ j])

)
≤ max

k
||u′k ||2∞ · E

∥∥∥∥
∂

∂εT

(
n∑

i=1
αiψ(ri,[ j])

)∥∥∥∥
2

≤ c21 · E
(
αT D̃[ j]G[ j]GT[ j] D̃[ j]α

)
≤ c21E‖D̃[ j]G[ j]GT[ j] D̃[ j]‖22

≤ c21E‖D̃ j‖2op‖G[ j]‖2op.

We conclude from Lemma B-2 and (B-34) in “Appendix B-2” that

‖D̃[ j]‖op ≤ K3, ‖G[ j]‖2op ≤
K1

K0
.

Therefore,

||Q j ||op = sup
α∈Sn−1

Var

(
n∑

i=1
αiψ(Ri )

)
≤ c21

K 2
3K1

K0
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and hence

||Q j ||F ≤ √
n||Q j ||op ≤ √

n · c21
K 2
3K1

K0
.

��
Lemma C-2 Under assumptions A1 - A3,

tr(Q j ) ≥ K ∗n = Ω(n · polyLog(n)),

where K ∗ = K 4
0

K 2
1
·
(
n−p+1

n

)2 ·mini Var(εi ).

Proof This is a direct consequence of Lemma B-4 in p. 49. ��
Throughout the following proofs, we will use several results from the random

matrix theory to bound the largest and smallest singular values of Z . The results
are shown in “Appendix E”. Furthermore, in contrast to other sections, the notation
P(·),E(·),Var(·)denotes the probability, the expectation and the variancewith respect
to both ε and Z in this section.

Proof (Proof of Proposition 3.1) By Proposition E.3,

λ+ = (1+√κ)2 + op(1) = Op(1), λ− = (1−√κ)2 − op(1) = Ωp(1)

and thus the assumptionA3 holds with high probability. By Hanson-Wright inequality
([27,51]; see Proposition E.2), for any given deterministic matrix A,

P
(∣∣∣ZT

j AZ j − EZT
j AZ j

∣∣∣ ≥ t
)
≤ 2 exp

[
−cmin

{
t2

σ 4‖A‖2F
,

t

σ 2‖A‖op

}]

for some universal constant c. Let A = Q j and conditioning on Z[ j], then by Lemma
C-1, we know that

‖Q j‖op ≤ c21
K 2
3K1

K0
, ‖Q j‖F ≤ √

nc21
K 2
3K1

K0

and hence

P

(
ZT
j Q j Z j − E(ZT

j Q j Z j
∣∣Z[ j]) ≤ −t

∣∣∣∣Z[ j]
)

≤ 2 exp

[
−cmin

{
t2

σ 4 · nc41K 4
3K

2
1/K 2

0

,
t

σ 2c21K
2
3K1/K0

}]
. (C-69)

Note that

E

(
ZT
j Q j Z j

∣∣Z[ j]
)
= tr

(
E

[
Z j Z

T
j |Z[ j]

]
Q j

)
= EZ2

1 j tr(Q j ) = τ 2 tr(Q j ).

123



1058 L. Lei et al.

By Lemma C-2, we conclude that

P

(
ZT
j Q j Z j

tr(Q j )
≤ τ 2 − t

nK ∗

∣∣∣∣Z[ j]

)
≤ P

(
ZT
j Q j Z j

tr(Q j )
≤ τ 2 − t

tr(Q j )

∣∣∣∣Z[ j]

)

≤ 2 exp

[
−cmin

{
t2

σ 4 · nc41K 4
3K

2
1/K 2

0

,
t

2σ 2c21K
2
3K1/K0

}]
. (C-70)

Let t = 1
2τ

2nK ∗ and take expectation of both sides over Z[ j], we obtain that

P

(
ZT
j Q j Z j

tr(Q j )
≤ τ 2

2

)
≤ 2 exp

[
−cnmin

{
K ∗2τ 4

4σ 4c41K
4
3K

2
1/K 2

0

,
K ∗τ 2

2σ 2c21K
2
3K1/K0

}]

and hence

P

(
min
j∈Jn

ZT
j Q j Z j

tr(Q j )
≤ τ 2

2

)

≤ 2n exp

[
−cnmin

{
K ∗2τ 4

4σ 4c41K
4
3K

2
1/K 2

0

,
K ∗τ 2

2σ 2c21K
2
3K1/K0

}]
= o(1).

(C-71)

This entails that

min
j∈Jn

ZT
j Q j Z j

tr(Q j )
= Ωp

(
1

polyLog(n)

)
.

Thus, assumptionA4 is also satisfiedwith high probability. On the other hand, since Z j

has i.i.d. mean-zero σ 2-sub-gaussian entries, for any deterministic unit vector α ∈ R
n ,

αT Z j is σ 2-sub-gaussian and mean-zero, and hence

P(|αT Z j | ≥ t) ≤ 2e−
t2

2σ2 .

Let α j,i = h j,1,i/‖h j,1,i‖2 and α j,0 = h j,0/‖h j,0‖2. Since h j,1,i and h j,0 are inde-
pendent of Z j , a union bound then gives

P
(
ΔC ≥ t + 2σ

√
log n

)
≤ 2n2e−

t2+4σ2 log n
2σ2 = 2e−

t2

2σ2 .

By Fubini’s formula ([16], Lemma 2.2.8.),

EΔ8
C =

∫ ∞

0
8t7P(ΔC ≥ t)dt ≤

∫ 2σ
√
log n

0
8t7dt +

∫ ∞

2σ
√
log n

8t7P(ΔC ≥ t)dt
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= (2σ
√
log n)8 +

∫ ∞

0
8(t + 2σ

√
log n)7P(ΔC ≥ t + 2σ

√
log n)dt

≤ (2σ
√
log n)8 +

∫ ∞

0
64(8t7 + 128σ 7(log n)

7
2 ) · 2e− t2

2σ2 dt

= O(σ 8 · polyLog(n)) = O (polyLog(n)) . (C-72)

This, together with Markov inequality, guarantees that assumption A5 is also satisfied
with high probability. ��
Proof (Proof of Proposition 3.2) It is left to prove that assumption A3 holds with high
probability. The proof of assumption A4 and A5 is exactly the same as the proof of
Proposition 3.2. By Proposition E.4,

λ+ = Op(1).

On the other hand, by Proposition E.7 [37],

P

(
λmin

(
ZT Z

n

)
< c1

)
≤ e−c2n .

and thus ��

λ− = Ωp(1).

Proof (Proof of Proposition 3.3) Since Jn excludes the intercept term, the proof of
assumptionA4 andA5 is still the same as Proposition 3.2. It is left to prove assumption
A3. Let R1, . . . , Rn be i.i.d. Rademacher random variables, i.e. P(Ri = 1) = P(Ri =
−1) = 1

2 , and

Z∗ = diag(B1, . . . , Bn)Z .

Then (Z∗)T Z∗ = ZT Z . It is left to show that the assumption A3 holds for Z∗ with
high probability. Note that

(Z∗i )T =
(
Bi , Bi x̃

T
i

)
.

For any r ∈ {1,−1} and borel sets B1, . . . , Bp ⊂ R,

P(Bi = r, Bi Z̃i1 ∈ B1, . . . , Bi Z̃i(p−1) ∈ Bp−1)
= P(Bi = r, Z̃i1 ∈ r B1, . . . , Z̃i(p−1) ∈ r Bp−1)
= P(Bi = r)P(Z̃i1 ∈ r B1) . . . P(Z̃i(p−1) ∈ r Bp−1)
= P(Bi = r)P(Z̃i1 ∈ B1) . . . P(Z̃i(p−1) ∈ Bp−1)
= P(Bi = r)P(Bi Z̃i1 ∈ B1) . . . P(Bi Z̃i(p−1) ∈ Bp−1)
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where the last two lines uses the symmetry of Z̃i j . Then we conclude that Z∗i has
independent entries. Since the rows of Z∗ are independent, Z∗ has independent entries.
Since Bi are symmetric and sub-gaussian with unit variance and Bi Z̃i j

d= Z̃i j , which
is also symmetric and sub-gaussian with variance bounded from below, Z∗ satisfies
the conditions of Propsition 3.2 and hence the assumption A3 is satisfied with high
probability. ��
Proof (Proof of Proposition 3.5 (with Proposition 3.4 being a special case)) Let

Z∗ = Λ− 1
2 ZΣ− 1

2 , then Z∗ has i.i.d. standard gaussian entries. By Proposition 3.3,
Z∗ satisfies assumption A3 with high probability. Thus,

λ+ = λmax

(
Σ

1
2 ZT∗ ΛZ∗Σ

1
2

n

)
≤ λmax(Σ) · λmax(Λ) · λmax

(
ZT∗ Z∗
n

)

= Op(polyLog(n)),

and

λ− = λmin

(
Σ

1
2 ZT∗ ΛZ∗Σ

1
2

n

)
≥ λmin(Σ) · λmin(Λ) · λmin

(
ZT∗ Z∗
n

)

= Ωp

(
1

polyLog(n)

)
.

As for assumptionA4, the first step is to calculateE(ZT
j Q j Z j |Z[ j]). Let Z̃ = Λ− 1

2 Z ,

then vec(Z̃) ∼ N (0, I ⊗Σ). As a consequence,

Z̃ j |Z̃[ j] ∼ N
(
μ̃ j , σ

2
j I
)

where

μ̃ j = Z̃[ j]Σ−1
[ j],[ j]Σ[ j], j = Λ− 1

2 Z[ j]Σ−1
[ j],[ j]Σ[ j], j .

Thus,

Z j |Z[ j] ∼ N
(
μ j , σ

2
j Λ
)

where μ j = Z[ j]Σ−1
[ j],[ j]Σ[ j], j . It is easy to see that

λ− ≤ min
j

σ 2
j ≤ max

j
σ 2
j ≤ λ+. (C-73)

It has been shown that Q jμ j = 0 and hence

ZT
j Q j Z j = (Z j − μ j )

T Q j (Z j − μ j ).
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Let Z j = Λ− 1
2 (Z j − μ j ) and Q̃ j = Λ

1
2 Q jΛ

1
2 , then Z j ∼ N (0, σ 2

j I ) and

ZT
j Q j Z j = Z T

j Q̃ jZ j .

By Lemma C-1,

‖Q̃ j‖op ≤ ‖Λ‖op · ‖Q j‖op ≤ λmax(Λ) · c21
K 2
3K1

K0
,

and hence

‖Q̃ j‖F ≤ √
nλmax(Λ) · c21

K 2
3K1

K0
.

By Hanson-Wright inequality ([27,51]; see Proposition E.2), we obtain a similar
inequality to (C-69) as follows:

P

(
|ZT

j Q j Z j − E(ZT
j Q j Z j

∣∣Z[ j])| ≥ t

∣∣∣∣Z[ j]
)

≤ 2 exp

[
−cmin

{
t2

σ 4
j · nλmax(Λ)2c41K

4
3K

2
1/K 2

0

,
t

σ 2
j λmax(Λ)c21K

2
3K1/K0

}]
.

On the other hand,

E

(
ZT
j Q j Z j |Z[ j]

)
= E

(
Z T

j Q̃ jZ j |Z[ j]
)
= σ 2

j tr(Q̃ j ).

By definition,

tr(Q̃ j ) = tr(Λ
1
2 Q jΛ

1
2 ) = tr(ΣQ j ) = tr

(
Q

1
2
j ΛQ

1
2
j

)
≥ λmin(Λ) tr(Q j ).

By Lemma C-2,

tr(Q̃ j ) ≥ λmin(Λ) · nK ∗.

Similar to (C-70), we obtain that

P

(
ZT
j Q j Z j

tr(Q j )
≥ σ 2

j −
t

nK ∗

∣∣∣∣Z[ j]

)

≤ 2 exp

[
−cmin

{
t2

σ 4
j · nλmax(Λ)2c41K

4
3K

2
1/K 2

0

,
t

σ 2
j λmax(Λ)c21K

2
3K1/K0

}]
.
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Let t = 1
2σ

2
j nK

∗, we have

P

(
ZT
j Q j Z j

tr(Q j )
≥ σ 2

j

2

)

≤ 2 exp

[
−cnmin

{
K ∗2

4λmax(Λ)2c41K
4
3K

2
1/K 2

0

,
K ∗

2λmax(Λ)c21K
2
3K1/K0

}]

= o

(
1

n

)

and a union bound together with (C-73) yields that

min
j∈Jn

ZT
j Q j Z j

tr(Q j )
= Ωp

(
min
j

σ 2
j ·

1

polyLog(n)

)
= Ωp

(
1

polyLog(n)

)
.

As for assumption A5, let

α j,0 = Λ
1
2 h j,0

‖h j,0‖2 , α j,i = Λ
1
2 h j,1,i

‖h j,1,i‖2

then for i = 0, 1, . . . , p,

‖α j,i‖2 ≤
√

λmax(Λ).

Note that

hTj,0Z j

‖h j,0‖2 = αT
j,0Z j ,

hTj,1,i Z j

‖h j,1,i‖2 = αT
j,i Z j

using the same argument as in (C-72), we obtain that

EΔ8
C = O

(
λmax(Λ)4 ·max

j
σ 8
j · polyLog(n)

)
= O (polyLog(n)) ,

and by Markov inequality and (C-73),

E

(
Δ8

C |Z
)
= Op

(
EΔ8

C

)
= Op(polyLog(n)).

��

Proof (Proof of Proposition 3.6) The proof that assumptions A4 and A5 hold with
high probability is exactly the same as the proof of Proposition 3.5. It is left to prove
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assumption A3*; see Corollary 3.1. Let c = (mini |(Λ− 1
2 1)i |)−1 and Z = (c1 Z̃).

Recall the the definition of λ̃+ and λ̃−, we have

λ̃+ = λmax(Σ{1}), λ̃− = λmin(Σ{1}),

where

Σ{1} = 1

n
Z̃T

(
I − 11T

n

)
Z̃ .

Rewrite Σ{1} as

Σ{1} = 1

n

((
I − 11T

n

)
Z̃

)T ((
I − 11T

n

)
Z̃

)
.

It is obvious that

span

((
I − 11T

n

)
Z̃

)
⊂ span(Z).

As a consequence

λ̃+ ≤ λmax

(
ZTZ
n

)
, λ̃− ≥ λmin

(
ZTZ
n

)
.

It remains to prove that

λmax

(
ZTZ
n

)
= Op (polyLog(n)) , λmin

(
ZTZ
n

)
= Ωp

(
1

polyLog(n)

)
.

To prove this, we let

Z∗ = Λ− 1
2Z
(
1 0

0 Σ− 1
2

)
� (ν Z̃∗),

where ν = cΛ− 1
2 1 and Z̃∗ = Λ− 1

2 Z̃Σ− 1
2 . Then

λmax

(
ZTZ
n

)
= λmax

(
Σ

1
2 ZT∗ ΛZ∗Σ

1
2

n

)
≤ λmax(Σ) · λmax(Λ) · λmax

(
ZT∗ Z∗
n

)
,

and

λmin

(
ZTZ
n

)
= λmin

(
Σ

1
2 ZT∗ ΛZ∗Σ

1
2

n

)
≥ λmin(Σ) · λmin(Λ) · λmin

(
ZT∗ Z∗
n

)
.
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It is left to show that

λmax

(
ZT∗ Z∗
n

)
= Op(polyLog(n)), λmin

(
ZT∗ Z∗
n

)
= Ωp

(
1

polyLog(n)

)
.

By definition, mini |νi | = 1 and maxi |νi | = O (polyLog(n)), then

λmax

(
ZT∗ Z∗
n

)
= λmax

(
Z̃ T∗ Z̃∗
n

+ ννT

n

)
≤ λmax

(
Z̃ T∗ Z̃∗
n

)
+ ‖ν‖22

n
.

Since Z̃∗ has i.i.d. standard gaussian entries, by Proposition E.3,

λmax

(
Z̃ T∗ Z̃∗
n

)
= Op(1).

Moreover, ‖ν‖22 ≤ nmaxi |νi |2 = O(n · polyLog(n)) and thus,

λmax

(
ZT∗ Z∗
n

)
= Op(polyLog(n)).

On the other hand, similar to Proposition 3.3,

Z∗ = diag(B1, . . . , Bn)Z∗

where B1, . . . , Bn are i.i.d. Rademacher random variables. The same argument in the
proof of Proposition 3.3 implies that Z∗ has independent entries with sub-gaussian
norm bounded by ‖ν‖2∞ ∨ 1 and variance lower bounded by 1. By Proposition E.7,
Z∗ satisfies assumption A3 with high probability. Therefore, A3* holds with high
probability. ��
Proof (Proof of Proposition 3.7) Let Λ = (λ1, . . . , λn) and Z be the matrix with
entries Zi j , then by Proposition 3.1 or Proposition 3.2, Zi j satisfies assumption A3
with high probability. Notice that

λ+ = λmax

(
Z TΛ2Z

n

)
≤ λmax(Λ)2 · λmax

(
Z TZ

n

)
= Op(polyLog(n)),

and

λ− = λmin

(
Z TΛ2Z

n

)
≥ λmin(Λ)2 · λmin

(
Z TZ

n

)
= Ωp

(
1

polyLog(n)

)
.

Thus Z satisfies assumption A3 with high probability.

Conditioning on any realization of Λ, the law of Zi j does not change due to the
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independence betweenΛ andZ . Repeating the arguments in the proof of Proposition
3.1 and Proposition 3.2, ow that

Z T
j Q̃ jZ j

tr(Q̃ j )
= Ωp

(
1

polyLog(n)

)
, and

E max
i=0,...,n; j=1,...,p

∣∣∣α̃T
j,iZ j

∣∣∣
8 = Op(polyLog(n)), (C-74)

where

Q̃ j = ΛQ jΛ, α̃ j,0 = Λh j,0

‖Λh j,0‖2 , α̃ j,1,i = Λh j,1,i

‖Λh j,1,i‖2 .

Then

ZT
j Q j Z j

tr(Q j )
= Z T

j Q̃ jZ j

tr(Q̃ j )
· tr(ΛQ jΛ)

tr(Q j )
≥ a2 · Z

T
j Q̃ jZ j

tr(Q̃ j )
= Ωp

(
1

polyLog(n)

)
,

(C-75)
and

EΔ8
C = E

[
max

i=0,...,n; j=1,...,p |α̃
T
j,iZ j |8 ·max

{
max

j

‖Λh j,0‖2
‖h j,0‖2 ,max

i, j

‖Λh j,1,i‖2
‖h j,1,i‖2

}8]

≤ b8E

[
max

i=0,...,n; j=1,...,p
|α̃T

j,iZ j |8
]

= Op(polyLog(n)). (C-76)

By Markov inequality, the assumption A5 is satisfied with high probability. ��
Proof (Proof of Proposition 3.8) The concentration inequality of ζi plus a union bound
imply that

P

(
max
i

ζi > (log n)
2
α

)
≤ nc1e

−c2(log n)2 = o(1).

Thus, with high probability,

λmax = λmax

(
Z TΛ2Z

n

)
≤ (log n)

4
α · λmax

(
Z TZ

n

)
= Op(polyLog(n)).

Let n′ = �(1− δ)n� for some δ ∈ (0, 1− κ). Then for any subset I of {1, . . . , n} with
size n′, by Proposition E.6 (Proposition E.7), under the conditions of Proposition 3.1
(Proposition 3.2), there exists constants c3 and c4, which only depend on κ , such that

P

(
λmin

(
Z T

I ZI

n

)
< c3

)
≤ e−c4n
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where ZI represents the sub-matrix of Z formed by {Zi : i ∈ I }, where Zi is the
i-th row of Z . Then by a union bound,

P

(
min
|I |=n′

λmin

(
Z T

I ZI

n

)
< c3

)
≤
(
n
n′
)
e−c4n .

By Stirling’s formula, there exists a constant c5 > 0 such that

(
n
n′
)
= n!

n′!(n − n′)! ≤ c5 exp
{
(−δ̃ log δ̃ − (1− δ̃) log(1− δ̃))n

}

where δ̃ = n′/n. For sufficiently small δ and sufficiently large n,

−δ̃ log δ̃ − (1− δ̃) log(1− δ̃) < c4

and hence

P

(
min
|I |=n′

λmin

(
Z T

I ZI

n

)
< c3

)
< c5e

−c6n (C-77)

for some c6 > 0. By Borel–Cantelli Lemma,

lim inf
n→∞ min|I |=�(1−δ)n�λmin

(
Z T

I ZI

n

)
≥ c3 a.s..

On the other hand, since F−1 is continuous at δ, then

ζ(�(1−δ)n�)
a.s.→ F−1(δ) > 0.

where ζ(k) is the k-th largest of {ζi : i = 1, . . . , n}. Let I ∗ be the set of indices
corresponding to the largest �(1− δ)n� ζ ′i s. Then with probability 1,

lim inf
n→∞ λmin

(
ZT Z

n

)
= lim inf

n→∞ λmin

(
Z TΛ2Z

n

)

≥ lim inf
n→∞ ζ(�(1−δ)n�) · lim inf

n→∞ λmin

(
Z T

I ∗Λ
2
I ∗ZI ∗

n

)

≥ lim inf
n→∞ ζ(�(1−δ)n�) · lim inf

n→∞ min|I |=�(1−δ)n�λmin

(
Z T

I ZI

n

)

≥ c3F
−1(δ)2 > 0.

To prove assumption A4, similar to (C-75) in the proof of Proposition 3.7, it is left to
show that

min
j

tr(ΛQ jΛ)

tr(Q j )
= Ωp

(
1

polyLog(n)

)
.
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Furthermore, by Lemma C-2, it remains to prove that

min
j

tr(ΛQ jΛ) = Ωp

(
n

polyLog(n)

)
.

Recalling the Eq. (B-60) in the proof of Lemma B-4, we have

eTi Q j ei ≥ K0

K1
· 1

1+ eTi Z
T[ j]
(
ZT

(i),[ j]Z(i),[ j]
)−1

Z[ j]ei
. (C-78)

By Proposition E.5,

P

⎛

⎝

√√√√λmax

(
Z T

j Z j

n

)
> 3C1

⎞

⎠ ≤ 2e−C2n .

On the other hand, apply (C-77) to Z(i),[ j], we have

P

(
min|I |=�(1−δ)n�λmin

(
(Z(i),[ j])TI (Z(i),[ j])I

n

)
< c3

)
< c5e

−c6n .

A union bound indicates that with probability (c5np + 2p)e−min{C2,c6}n = o(1),

max
j

λmax

(
Z T[ j]Z[ j]

n

)

≤ 9C2
1 , min

i, j
min|I |=�(1−δ)n� λmin

(
(Z(i),[ j])TI (Z(i),[ j])I

n

)
≥ c3.

This implies that for any j ,

λmax

(
ZT[ j]Z[ j]

n

)
= λmax

(
Z T[ j]Λ2Z[ j]

n

)
≤ ζ 2

(1) · 9C2
1

and for any i and j ,

λmin

(
ZT

(i),[ j]Z(i),[ j]
n

)
= λmin

(
Z T

(i),[ j]ζ
2
(i)Z(i),[ j]
n

)

≥ min{ζ(�(1−δ)n�), ζ(�(1−δ)n�) + 1}2 · min|I |=�(1−δ)n�λmin

(
(Z(i),[ j])TI ζ 2

(i)(Z(i),[ j])I
n

)

≥ c3 min{ζ(�(1−δ)n�), ζ(�(1−δ)n�) + 1}2 > 0.
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Moreover, as discussed above,

ζ(1) ≤ (log n)
2
α ,min{ζ(�(1−δ)n�), ζ(�(1−δ)n�) + 1} → F−1(δ)

almost surely. Thus, it follows from (C-78) that with high probability,

eTi Q j ei ≥ K0

K1
· 1

1+ eTi Z
T[ j]
(
ZT

(i),[ j]Z(i),[ j]
)−1

Z[ j]ei

≥ K0

K1
· 1

1+ eTi
ZT[ j]Z[ j]

n ei · c3(F−1(δ))2

≥ K0

K1
· 1

1+ (log n)
4
α · 9C2

1 · c3(F−1(δ))2
.

Theaboveboundholds for all diagonal elements ofQ j uniformlywith highprobability.
Therefore,

tr(ΛQ jΛ) ≥ ζ 2
(�(1−δ)n�) · �(1− δ)n� · K0

K1
· 1

1+ (log n)
4
α · 9C2

1 · c3(F−1(δ))2

= Ωp

(
n

polyLog(n)

)
.

As a result, the assumption A4 is satisfied with high probability. Finally, by (C-76),
we obtain that

EΔ8
C ≤ E

[
max

i=0,...,n; j=1,...,p

∣∣∣α̃T
j,iZ j

∣∣∣
8 · ‖Λ‖8op

]
.

By Cauchy’s inequality,

EΔ8
C ≤

√
E max

i=0,...,n; j=1,...,p
|α̃T

j,iZ j |16 ·
√
Emax

i
ζ 16
i .

Similar to (C-72), we conclude that

EΔ8
C = O (polyLog(n))

and by Markov inequality, the assumption A5 is satisfied with high probability. ��

C-4 More results of least-squares (Section 5)

C-4.1 The relation between S j (X) and ΔC

In Sect. 5, we give a sufficient and almost necessary condition for the coordinate-
wise asymptotic normality of the least-square estimator β̂LS ; see Theorem 5.1. In this
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subsubsection, we show that ΔC is a generalization of max j∈Jn S j (X) for general
M-estimators.

Consider the matrix (XT DX)−1XT , where D is obtain by using general loss func-
tions, then by block matrix inversion formula (see Proposition E.1),

eT1 (XT DX)−1XT = eT1

(
XT
1 DX1 XT

1 DX[1]
XT[1]DX1 XT[1]DX[1]

)−1 (
XT
1

XT[1]

)

=
XT
1

(
I − DX[1]

(
XT[1]DX[1]

)−1
XT[1]

)

XT
1

(
D − DX[1]

(
XT[1]DX[1]

)−1
XT[1]D

)
X1

≈
XT
1

(
I − D[1]X[1]

(
XT[1]D[1]X[1]

)−1
XT[1]

)

XT
1

(
D − DX[1]

(
XT[1]DX[1]

)−1
XT[1]D

)
X1

where we use the approximation D ≈ D[1]. The same result holds for all j ∈ Jn , then

‖eTj (XT DX)−1XT ‖∞
‖eTj (XT DX)−1XT ‖2

≈

∥∥∥∥X
T
1

(
I − D[1]X[1]

(
XT[1]D[1]X[1]

)−1
XT[1]

)∥∥∥∥∞∥∥∥∥X
T
1

(
I − D[1]X[1]

(
XT[1]D[1]X[1]

)−1
XT[1]

)∥∥∥∥
2

.

Recall that hTj,1,i is i-th row of I − D[1]X[1](XT[1]D[1]X[1])−1XT[1], we have

max
i

∣∣∣hTj,1,i X1

∣∣∣
‖h j,1,i‖2 ≈

∥∥∥eTj (XT DX)−1XT
∥∥∥∞∥∥∥eTj (XT DX)−1XT
∥∥∥
2

.

The right-handed side equals to S j (X) in the least-square case. Therefore, although
of complicated form, assumption A5 is not an artifact of the proof but is essential for
the asymptotic normality.

C-4.2 Additional examples

Benefit from the analytical form of the least-square estimator, we can depart from sub-
gaussinity of the entries. The following proposition shows that a random designmatrix
Z with i.i.d. entries under appropriate moment conditions satisfies max j∈Jn S j (Z) =
o(1) with high probability. This implies that, when X is one realization of Z , the
conditions Theorem 5.1 are satisfied for X with high probability over Z .

Proposition C.4 If {Zi j : i ≤ n, j ∈ Jn} are independent random variables with

1. maxi≤n, j∈Jn (E|Zi j |8+δ)
1

8+δ ≤ M for some δ, M > 0;
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2. mini≤n, j∈Jn Var(Zi j ) > τ 2 for some τ > 0
3. P(Z has full column rank) = 1− o(1);
4. EZ j ∈ span{Z j : j ∈ J cn } almost surely for all j ∈ Jn;

where Z j is the j-th column of Z. Then

max
j∈Jn

S j (Z) = Op

(
1

n
1
4

)
= op(1).

A typical practically interesting example is that Z contains an intercept term, which
is not in Jn , and Z j has i.i.d. entries for j ∈ Jn with continuous distribution and
sufficiently many moments, in which case the first three conditions are easily checked
and EZ j is a multiple of (1, . . . , 1), which belongs to span{Z j : j ∈ J cn }.

In fact, the condition 4 allows Proposition C.4 to cover more general cases than the
above one. For example, in a census study, a state-specific fix effect might be added
into the model, i.e.

yi = αsi + zTi β∗ + εi

where si represents the state of subject i . In this case, Z contains a sub-block formed
by zi and a sub-block with ANOVA forms as mentioned in Example 1. The latter
is usually incorporated only for adjusting group bias and not the target of inference.
Then condition 4 is satisfied if only Zi j has same mean in each group for each j , i.e.
EZi j = μsi , j .

Proof (Proof of Proposition C.4) By Sherman–Morison–Woodbury formula,

eTj (Z
T Z)−1ZT = ZT

j (I − Hj )

ZT
j (I − Hj )Z j

where Hj = Z[ j](ZT[ j]Z[ j])−1ZT[ j] is the projection matrix generated by Z[ j]. Then

S j (Z) =
∥∥∥eTj (ZT Z)−1ZT

∥∥∥∞∥∥∥eTj (ZT Z)−1ZT
∥∥∥
2

=
∥∥∥ZT

j (I − Hj )

∥∥∥∞√
ZT
j (I − Hj )Z j

. (C-79)

Similar to the proofs of other examples, the strategy is to show that the numerator,
as a linear contrast of Z j , and the denominator, as a quadratic form of Z j , are both
concentrated around their means. Specifically, we will show that there exists some
constants C1 and C2 such that

max
j∈Jn

sup
A∈Rn×n ,A2=A,
tr(A)=n−p+1

{
P
(
‖AZ j‖∞ > C1n

1
4

)
+ P

(
ZT
j AZ j < C2n

)}
= o

(
1

n

)
.

(C-80)
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If (C-80) holds, since Hj is independent of Z j by assumptions, we have

P

(
S j (Z) ≥ C1√

C2
· n− 1

4

)
= P

⎛

⎝ ‖Z
T
j (I − Hj )‖∞

√
ZT
j (I − Hj )Z j

≥ C1√
C2

· n− 1
4

⎞

⎠

≤ P
(
‖(I − Hj )Z j‖∞ > C1n

1
4

)
+ P

(
ZT
j (I − Hj )Z j < C2n

)

= E

[
P
(
‖(I − Hj )Z j‖∞ > C1n

1
4

) ∣∣∣∣Z[ j]
]

+ E

[
P
(
ZT
j (I − Hj )Z j < C2n

) ∣∣∣∣Z[ j]
]

(C-81)

≤ sup
A∈Rn×n ,A2=A,tr(A)=n−p+1

P
(
‖AZ j‖∞ > C1n

1
4

)
+ P

(
ZT
j AZ j < C2n

)

≤ max
j∈Jn

{
sup

A∈Rn×n ,A2=A,tr(A)=n−p+1
P
(
‖AZ j‖∞ > C1n

1
4

)

+P
(
ZT
j AZ j < C2n

)}
= o

(
1

n

)
. (C-82)

Thus with probability 1− o(|Jn|/n) = 1− o(1),

max
j∈Jn

S j (Z) ≤ C1√
C2

· n− 1
4

and hence

max
j∈Jn

S j (Z) = Op

(
1

n
1
4

)
.

Now we prove (C-80). The proof, although looks messy, is essentially the same as the
proof for other examples. Instead of relying on the exponential concentration given
by the sub-gaussianity, we show the concentration in terms of higher-order moments.
In fact, for any idempotent A, the sum square of each row is bounded by 1 since

∑

i

A2
i j = (A2) j, j ≤ λmax(A

2) = 1.

By Jensen’s inequality,

EZ2
i j ≤ (E|Zi j |8+δ)

2
8+δ .
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For any j , by Rosenthal’s inequality [48], there exists some universal constant C such
that

E

∣∣∣∣∣

n∑

i=1
Ai j Zi j

∣∣∣∣∣

8+δ

≤ C

⎧
⎨

⎩

n∑

i=1
|Ai j |8+δ

E|Zi j |8+δ +
(

n∑

i=1
A2
i jEZ

2
i j

)4+δ/2
⎫
⎬

⎭

≤ C

⎧
⎨

⎩

n∑

i=1
|Ai j |2E|Zi j |8+δ +

(
n∑

i=1
A2
i jEZ

2
i j

)4+δ/2
⎫
⎬

⎭

≤ CM8+δ

⎧
⎨

⎩

n∑

i=1
A2
i j +

(
n∑

i=1
A2
i j

)4+δ/2
⎫
⎬

⎭ ≤ 2CM8+δ.

Let C1 = (2CM8+δ)
1

8+δ , then for given i , by Markov inequality,

P

(∣∣∣∣
n∑

i=1
Ai j Zi j

∣∣∣∣ > C1n
1
4

)
≤ 1

n2+δ/4

and a union bound implies that

P
(
‖AZ j‖∞ > C1n

1
4

)
≤ 1

n1+δ/4 = o

(
1

n

)
. (C-83)

Now we derive a bound for ZT
j AZ j . Since p/n → κ ∈ (0, 1), there exists κ̃ ∈

(0, 1− κ) such that n − p > κ̃n. Then

EZT
j AZ j =

n∑

i=1
AiiEZ

2
i j > τ 2 tr(A) = τ 2(n − p + 1) > κ̃τ 2n. (C-84)

To bound the tail probability, we need the following result: ��
Lemma C-3 [2, Lemma 6.2] Let B be an n × n nonrandom matrix and W =
(W1, . . . ,Wn)

T be a random vector of independent entries. Assume that EWi = 0,
EW 2

i = 1 and E|Wi |k ≤ νk . Then, for any q ≥ 1,

E |WT BW − tr(B)|q ≤ Cq

(
(ν4 tr(BB

T ))
q
2 + ν2q tr(BB

T )
q
2

)
,

where Cq is a constant depending on q only.

It is easy to extend Lemma C-3 to non-isotropic case by rescaling. In fact, denote σ 2
i

by the variance of Wi , and let Σ = diag(σ1, . . . , σn), Y = (W1/σ1, . . . ,Wn/σn).
Then

WT BW = Y TΣ
1
2 BΣ

1
2 Y,
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with Cov(Y ) = I . Let B̃ = Σ
1
2 BΣ

1
2 , then

B̃ B̃T = Σ
1
2 BΣBTΣ

1
2 � ν2Σ

1
2 BBTΣ

1
2 .

This entails that

tr(B̃ B̃T ) ≤ nu2 tr
(
Σ

1
2 BBTΣ

1
2

)
= ν2 tr(ΣBBT ) ≤ ν22 tr(BB

T ).

On the other hand,

tr(B̃ B̃T )
q
2 ≤ nλmax(B̃ B̃

T )
q
2 = nν

q
2
2 λmax

(
Σ

1
2 BBTΣ

1
2

) q
2 ≤ nν

q
2λmax(BB

T )
q
2 .

Thus we obtain the following result

Lemma C-4 Let B be an n × n nonrandom matrix and W = (W1, . . . ,Wn)
T be a

random vector of independent mean-zero entries. Suppose E|Wi |k ≤ νk , then for any
q ≥ 1,

E |WT BW − EWT BW |q ≤ Cqν
q
2

(
(ν4 tr(BB

T ))
q
2 + ν2q tr(BB

T )
q
2

)
,

where Cq is a constant depending on q only.

Apply Lemma C-4 with W = Z j , B = A and q = 4+ δ/2, we obtain that

E
∣∣∣ZT

j AZ j − EZT
j AZ j

∣∣∣
4+δ/2 ≤ CM16+2δ ((tr(AAT ))2+δ/4 + tr(AAT )2+δ/4

)

for some constant C . Since A is idempotent, all eigenvalues of A is either 1 or 0 and
thus AAT � I . This implies that

tr(AAT ) ≤ n, tr(AAT )2+δ/4 ≤ n

and hence

E
∣∣∣ZT

j AZ j − EZT
j AZ j

∣∣∣
4+δ/2 ≤ 2CM16+2δn2+δ/4

for some constant C1, which only depends on M . By Markov inequality,

P

(
|ZT

j AZ j − EZT
j AZ j | ≥ κ̃τ 2n

2

)
≤ 2CM16+2δ

(
2

κ̃τ 2

)4+δ/2

· 1

n2+δ/4 .

Combining with (C-84), we conclude that

P
(
ZT
j AZ j < C2n

)
= O

(
1

n2+δ/4

)
= o

(
1

n

)
(C-85)
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Fig. 5 Empirical 95% coverage of β̂1 with κ = 0.5 (left) and κ = 0.8 (right) using L1 loss. The x-
axis corresponds to the sample size, ranging from 100 to 800; the y-axis corresponds to the empirical 95%
coverage. Each column represents an error distribution and each row represents a type of design. The orange
solid bar corresponds to the case F = Normal; the blue dotted bar corresponds to the case F = t2; the red
dashed bar represents the Hadamard design (color figure online)

where C2 = κ̃τ 2

2 . Notice that both (C-83) and (C-85) do not depend on j and A.
Therefore, (C-80) is proved and hence the Proposition.

D Additional numerical experiments

In this section, we repeat the experiments in Sect. 6 by using L1 loss, i.e. ρ(x) = |x |.
L1-loss is not smooth and does not satisfy our technical conditions. The results are
displayed below. It is seen that the performance is quite similar to that with the huber
loss (Figs. 5, 6, 7).

E Miscellaneous

In this appendix we state several technical results for the sake of completeness.

Proposition E.1 ([28], formula (0.8.5.6)) Let A ∈ R
p×p be an invertible matrix and

write A as a block matrix

A =
(
A11 A12
A21 A22

)
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Fig. 6 Mininum empirical 95% coverage of β̂1 ∼ β̂10 with κ = 0.5 (left) and κ = 0.8 (right) using L1
loss. The x-axis corresponds to the sample size, ranging from 100 to 800; the y-axis corresponds to the
minimum empirical 95% coverage. Each column represents an error distribution and each row represents a
type of design. The orange solid bar corresponds to the case F = Normal; the blue dotted bar corresponds
to the case F = t2; the red dashed bar represents the Hadamard design (color figure online)

with A11 ∈ R
p1×p1 , A22 ∈ R

(p−p1)×(p−p1) being invertible matrices. Then

A−1 =
(
A11 + A−111 A12S−1A21A

−1
11 −A−111 A12S−1

−S−1A21A
−1
11 S−1

)

where S = A22 − A21A
−1
11 A12 is the Schur’s complement.

Proposition E.2 ([51]; improved version of the original form by [27]) Let X =
(X1, . . . , Xn) ∈ R

n be a random vector with independent mean-zero σ 2-sub-gaussian
components Xi . Then, for every t ,

P
(
|XT AX − EXT AX | > t

)
≤ 2 exp

{
−cmin

(
t2

σ 4‖A‖2F
,

t

σ 2‖A‖op

)}

Proposition E.3 [3] If {Zi j : i = 1, . . . , n, j = 1, . . . , p} are i.i.d. random variables
with zero mean, unit variance and finite fourth moment and p/n → κ , then

λmax

(
ZT Z

n

)
a.s.→ (1+√

κ)2, λmin

(
ZT Z

n

)
a.s.→ (1−√

κ)2.
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Fig. 7 Empirical 95% coverage of β̂1 ∼ β̂10 after Bonferroni correction with κ = 0.5 (left) and κ = 0.8
(right) using L1 loss. The x-axis corresponds to the sample size, ranging from 100 to 800; the y-axis
corresponds to the empirical uniform 95% coverage after Bonferroni correction. Each column represents
an error distribution and each row represents a type of design. The orange solid bar corresponds to the
case F = Normal; the blue dotted bar corresponds to the case F = t2; the red dashed bar represents the
Hadamard design (color figure online)

Proposition E.4 [35] Suppose {Zi j : i = 1, . . . , n, j = 1, . . . , p} are independent
mean-zero random variables with finite fourth moment, then

E

√
λmax

(
ZT Z

) ≤ C

⎛

⎝max
i

√∑

j

EZ2
i j +max

j

√∑

i

EZ2
i j + 4

√∑

i, j

EZ4
i j

⎞

⎠

for some universal constant C. In particular, if EZ4
i j are uniformly bounded, then

λmax

(
ZT Z

n

)
= Op

(
1+

√
p

n

)
.

Proposition E.5 [50] Suppose {Zi j : i = 1, . . . , n, j = 1, . . . , p} are independent
mean-zero σ 2-sub-gaussian random variables. Then there exists a universal constant
C1,C2 > 0 such that

P

⎛

⎝
√

λmax

(
ZT Z

n

)
> Cσ

(
1+

√
p

n
+ t

)⎞

⎠ ≤ 2e−C2nt2 .
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Proposition E.6 [49] Suppose {Zi j : i = 1, . . . , n, j = 1, . . . , p} are i.i.d. σ 2-sub-
gaussian random variables with zero mean and unit variance, then for ε ≥ 0

P

⎛

⎝
√

λmin

(
ZT Z

n

)
≤ ε(1−

√
p − 1

n
)

⎞

⎠ ≤ (Cε)n−p+1 + e−cn

for some universal constants C and c.

Proposition E.7 [37] Suppose {Zi j : i = 1, . . . , n, j = 1, . . . , p} are independent
σ 2-sub-gaussian random variables such that

Zi j
d= −Zi j , Var(Zi j ) > τ 2

for some σ, τ > 0, and p/n → κ ∈ (0, 1), then there exists constants c1, c2 > 0,
which only depends on σ and τ , such that

P

(
λmin

(
ZT Z

n

)
< c1

)
≤ e−c2n .
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