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Abstract

To identify the robust settings of the control factors, it is very important to under-

stand how they interact with the noise factors. In this article, we propose space-filling

designs for computer experiments that are more capable of accurately estimating the

control-by-noise interactions. Moreover, the existing space-filling designs focus on uni-

formly distributing the points in the design space, which are not suitable for noise

factors because they usually follow non-uniform distributions such as normal distribu-

tion. This would suggest placing more points in the regions with high probability mass.

However, noise factors also tend to have a smooth relationship with the response and

therefore, placing more points towards the tails of the distribution is also useful for ac-

curately estimating the relationship. These two opposing effects make the experimental

design methodology a challenging problem. We propose optimal and computationally

efficient solutions to this problem and demonstrate their advantages using simulated

examples and a real industry example involving a manufacturing packing line.

KEY WORDS: Computer experiments, Experimental design, Gaussian process,

Optimal designs, Quality improvement, Robust parameter design.
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1 INTRODUCTION

Robust parameter design is a cost-efficient technique for quality improvement. Originally

proposed by Taguchi (1987), the technique has been widely adopted in industries for system

(product or process) optimization. The core idea is to first divide the factors in the system

into two groups: control factors and noise factors. Control factors are those factors in the

system than can be cost-effectively controlled. On the other hand, noise factors are those

factors which are either impossible or too expensive to control. For example, in product

design of a razor for shaving, blade thickness, gap between the blades, angle of the blades,

etc. are control factors, whereas consumer attributes like the skin type, hair length and

density, and product usage attributes like the pressure applied on the skin, handle angle,

etc. are noise factors. Since the noise factors are uncontrollable, they introduce variability

in the performance of the product. Robust parameter design is a technique to find a setting

of the control factors (also known as parameter design) that will make the system robust or

insensitive to the noise factors. Thus, under a robust parameter design, the output becomes

less affected by the noise variability even when the noise factors are left uncontrolled. This

is why the approach using robust parameter design is less costly than the other quality

improvement techniques, which try to directly control the noise factors in the system.

The key to a successful robust parameter design is in identifying important control-by-

noise interactions of the system. Only when such interactions exist we can use the control

factors to reduce the sensitivity of the noise factors. These interactions are usually unknown

in practice and their existence need to be investigated through experimentation. Thus de-

signing good experiments is a crucial step in robustness studies. Many efficient experimental

design techniques are proposed in the literature such as cross arrays (Taguchi, 1987) and

single arrays (Welch et al., 1990; Shoemaker et al., 1991; Wu and Zhu, 2003; Kang and

Joseph, 2009). A thorough discussion of these techniques can be found in the books by Wu

and Hamada (2009) or Myers et al. (2016).

The aforementioned experimental design techniques are mainly proposed for physical

experimentation except for the work of Welch et al. (1990). Recently computer experiments

have become very common in industry. That is, if a computer model is available that can
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simulate the physical system, then the experiments can be performed in computers instead of

the physical system. It is becoming very common for industry to develop a computer model

for product design like simulating the performance of a razor. One particular example

from Procter & Gamble involving the development of a computer model that simulates

a critical transformation of a packing line, that involves both control and noise factors,

will be discussed in more detail later in the paper. Computer experiments can bring in

tremendous cost savings because direct experimentation with the real physical system is

always more expensive than investing on some computer time. However, there are several

aspects of computer experiments that necessitate the use of a different experimental design

technique or philosophy compared to those of physical experiments (Sacks, Welch, Mitchell

and Wynn, 1989). Since most computer models are deterministic in nature, randomization

and replications are not needed. Fractional factorial and orthogonal array-based design

techniques that are prevalent in physical experiments lead to replications when projected

onto subspace of factors and thus are unsuitable for computer experiments. Split-plot designs

that are considered to be useful in robustness studies (Bingham and Sitter, 2003) become

unnecessary as run orders and restrictions on randomization will not affect the computer

model outputs. This led to the development of space-filling designs in computer experiments.

The existing work on robust parameter design using space-filling designs do not make

any distinction between control and noise factors. A distinction is made only at the analysis

stage (Welch et al., 1990; Chen et al., 2006; Apley et al., 2006; Bates et al., 2006; Tan,

2015). Sequential designs that directly attempt to find robust settings of control factors

using expected improvement-type algorithms are proposed in the literature (Williams et al.,

2000; Lehman et al., 2004), but we are not aware of any work on space-filling designs. It is

important to develop space-filling designs that distinguish control and noise factors because

their distributional properties are entirely different. Control factors are assumed to follow a

uniform distribution, whereas noise factors typically follow non-uniform distributions such

as normal distribution. Their nature of randomness is also different. Noise factors are intrin-

sically random and can vary over time and space. On the other hand, control factors remain

fixed once their levels are chosen. A uniform distribution is imposed on the control factors

only to represent our indifference on the choice of level given the range of possible values for
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each control factor. Thus, unlike the control factors, most of the “action” in the noise factor

space takes place in the regions of high probability mass. Therefore, space-filling designs

that uniformly spread out points in the experimental region are not adequate for robust pa-

rameter design experiments. Moreover, the existing space-filling designs are not designed for

precise estimation of control-by-noise interactions. In this article we propose a new version

of space-filling design that is capable of estimating the control-by-noise interactions more

precisely and puts more points in regions that matters the most.

The article is organized as follows. In Section 2, we propose a model-based optimal

experimental design for robustness studies. Because of certain computational and practical

difficulties associated with this approach, in Section 3, we propose a modified space-filling

design as an alternative. In Section 4, we investigate the optimal choice of noise levels for the

experiment. Extension of designs to deal with internal noise factors is proposed in Section 5.

The proposed methodology is applied in a simulated example and the packing line computer

experiment from Procter & Gamble in Section 6. We conclude with some remarks in Section

7.

2 MODEL-BASED OPTIMAL DESIGNS

Let x = (x1, . . . , xp)
′ be the set of control factors and z = (z1, . . . , zq)

′ the set of (external)

noise factors. The case of internal noise factors and the differences between the two types

will be discussed later. We assume that x ∈ X = [0, 1]p and z ∈ Z, the support of the

distribution of z which could be Rq. The response y is a deterministic function of both

control and noise factors given by y = g(x, z). Depending on the type of characteristic such

as smaller-the-better, larger-the-better, or nominal-the-best, we can impose a quality loss

function on y. Let L(y) be such a loss function. Then, the objective of robust parameter

design is to find the setting of control factors that minimizes the expected loss, where the

expectation is taken with respect to the distribution of noise factors. Let f(z) denote the

probability density function of z. Then, the robust parameter design can be obtained by

min
x∈X

∫
Z
L{g(x, z)}f(z)dz. (1)
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Since the function g(·, ·) is available only as a computer code, an experiment will be conducted

to estimate it. Let D = {x1, . . . ,xp, z1, . . . ,zq} be the experimental design with n runs,

where xj = (x1j, . . . , xnj)
′ and zk = (z1k, . . . , znk)

′ denote the settings of the jth and kth

control and noise factors, respectively. Let yi be the ith output from the computer model,

i = 1, . . . , n.

A Gaussian process model or kriging (Santner et al., 2003) is commonly used for esti-

mating g(·, ·). So assume

g(x, z) ∼ GP (µ, τ 2R(·, ·)), (2)

where µ and τ 2 are the unknown mean and variance parameters, and R(·, ·) is the correlation

function. A commonly used correlation function is the Gaussian correlation function given

by

R(xi − xj, zi − zj) = exp{−
p∑
l=1

θxl (xil − xjl)2 −
q∑
l=1

θzl (zil − zjl)2},

where θx = (θx1 , . . . , θ
x
p)′ and θz = (θz1, . . . , θ

z
q)
′ are the unknown correlation parameters of

the control and noise factors, respectively. Let θ be a p + q column vector containing θx

and θz. We will use this correlation function throughout this article, but other correlation

functions are also allowed as long as they can produce smooth realizations of the response in

the noise factor space. The smoothness assumption with respect to noise factors is critical

for our methodology and we will exploit it for developing the experimental designs. The

Gaussian process can be viewed as a prior on the unknown function and therefore, we can

obtain its posterior distribution using Bayes theorem (Santner et al., 2003):

g(x, z)|y ∼ N
(
ĝ(x, z), τ 2MSE(x, z;D,θ)

)
, (3)

where ĝ(x, z) = µ+ r(x, z)′R−1(y − µ1) and

MSE(x, z;D,θ) = 1− r(x, z)′R−1r(x, z),

where y = (y1, . . . , yn)′, r(x, z) is an n× 1 vector with ith element R(x− xi, z − zi), R is

an n×n matrix with ijth element R(xi−xj, zi−zj), and 1 is a vector of 1’s having length
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n. For simplicity, we chose to ignore the extra variability due to the estimation of µ and θ.

See Müller et al. (2012) and Müller et al. (2014) for a discussion on the effect of this extra

variability on experimental design.

The posterior mean ĝ(x, z) can be used as an estimate of the response function from the

experiment (also known as metamodel, surrogate model, or emulator). Then, the optimiza-

tion in (1) can be simplified as

min
x∈X

∫
Z
L{ĝ(x, z)}f(z)dz. (4)

It is also possible to incorporate the uncertainties in the estimation of g(·, ·) in the optimiza-

tion as in Apley and Kim (2011) and Tan and Wu (2012), but it will not be considered here

for the sake of simplicity. The problem we are trying to solve is how to design the experiment

D so that we can accurately estimate the solution to the optimization problem in (4).

Clearly, the optimization in (4) will give the true robust setting if ĝ(x, z) is the true

response surface, that is, if MSE(x, z;D,θ) = 0 for all x ∈ X and z ∈ Z. Thus we should

design the experiment so that MSE(x, z;D,θ) is as small as possible. Furthermore, a careful

examination of (4) reveals an important insight on the experimental design problem. We

need an accurate g(·, ·) only in the regions of z where f(z) is large. In other words, if f(z) is

small in some regions, then the inaccuracies in the estimation of g(·, ·) in those regions will

not affect the robust settings. This makes the experimental design problem for robustness

different from that of a usual computer experiment. In fact, it makes sense to focus on the

estimated solution to the optimization problem in (4) as proposed in Ginsburg and Ben-Gal

(2006) rather than the estimation of g(·, ·). However, their approach works only for linear

models fitted to physical experimental data. In contrast, the models considered in computer

experiments are highly nonlinear and thus, finding an explicit solution to (4) is not feasible.

So in this work we will focus on the estimation of g(·, ·). Although this approach may not

look ideal for the robustness objective, it does have certain advantages. The loss functions

are many times loosely defined and one may want to investigate solutions to different possible

choices of loss function (Joseph, 2004). Moreover, in real problems, there can be multiple

quality characteristics and thus one may need to be satisfied with a compromise solution,
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which can be different from the optimal solution in (4). Thus an accurate g(·, ·) in the region

of interest can be more beneficial than an accurate solution to (4) obtained for a specific

choice of loss function and quality characteristic.

Thus, our aim is to findD such that MSE(x, z;D,θ) is small. However, since MSE(x, z;D,θ)

is a function of x and z, it is not possible to find such a design over the entire experimental

region. Instead, a feasible approach is to minimize the average of MSE(x, z;D,θ), that is

min
D

∫
X

∫
Z

MSE(x, z;D,θ)f(z)dzdx. (5)

This design criterion is the same as the integrated mean squared error criterion in the

literature (Sacks, Welch, Mitchell and Wynn, 1989; Santner et al., 2003) except that we

use the density of z as a weight function. This is quite a natural modification of the existing

criterion and agrees with our intuition that we should give more weights for regions where

f(z) is large. Surprisingly, we found that the solution to (5) places points in extremely low

probability regions which are not very useful for finding the robust setting. This problem can

be alleviated if we use the root-mean squared prediction error, which directly corresponds

to confidence intervals of the prediction. Thus, consider a modified criterion

min
D

IRMSE(D,θ) = min
D

∫
X

∫
Z

√
MSE(x, z;D,θ)f(z)dzdx. (6)

This is a more meaningful criterion as it tries to minimize the expected volume of the

confidence region of the predictions. We may generalize this criterion to

min
D

IRMSEk(D,θ) = min
D

[∫
X

∫
Z

{√
MSE(x, z;D,θ)f(z)

}k
/Ckdzdx

]1/k

(7)

for k > 0 and Ck =
∫
Z f

k(z)dz. The special case of k = 2 is of great interest as it is

analytically tractable in some situations. Let IMSE = IRMSE2
2. Thus,

min
D

IMSE(D,θ) = min
D

∫
X

∫
Z

MSE(x, z;D,θ)f 2(z)/C2dzdx. (8)

Interestingly, this is the same as the integrated mean squared error criterion in the literature
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but with a weight function f 2(z). In the case of uniform distributions, f(·) or f 2(·) doesn’t

make any difference, but for non-uniform distribution this does make a big difference. We

will see later that f 2(·) gives the right scaling and provides meaningful solutions to the robust

parameter design problem.

A major challenge of using the foregoing criteria is that they are functions of the unknown

correlation parameters θ. One can minimize IRMSE (or IMSE) for a guessed value of θ, but

the optimal design may not work well for another value of θ. A potential fix to overcome

this problem is to first average the IRMSE over a prior distribution of θ and find the design

using

min
D

∫
IRMSE(D,θ)p(θ)dθ.

This is a computationally intensive problem because R is a function of θ and thus, inverting

R and then integrating the IRMSE is time consuming. Moreover, this criterion doesn’t

work well in practice because MSE(x, z;D,θ) increases with θ and therefore, the criterion

is dominated by the large values of θ. Sacks, Schiller and Welch (1989) proposed to overcome

this problem by standardizing the criteria with respect to the optimal design obtained for a

given value of θ. See Pratola et al. (2016) for a Bayesian version of this approach. Let Θ be

a compact set containing the possible values of θ. Then, Sacks et al.’s approach is to find

the design to maximize the minimum efficiency:

max
D

min
θ∈Θ

IRMSE(D∗(θ),θ)

IRMSE(D,θ)
, (9)

where D∗(θ) = argminD IRMSE(D,θ). This criterion is extremely computationally in-

tensive because one needs to find the optimal design for every possible value of θ ∈ Θ,

which is difficult in high dimensions. Sacks, Schiller and Welch (1989) tried to circumvent

this problem by letting θxi = θzj = θ0 for all i = 1, . . . , p and j = 1, . . . , q and then taking

a few discrete values of θ0. In our experience, this simplification results in designs having

poor projections in subspaces of the factors, which is undesirable. One possible approach to

improve the projections is to assign independent prior distributions for each of the unknown

correlation parameters as in Joseph et al. (2015). However, this would make the computa-

tion of (9) very expensive. For example, even if we choose only three discrete values for each
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correlation parameter, the total number of possible values in Θ would become 3p+q which

can be quite high when p and/or q is large.

Because of the foregoing difficulties, in the next section we will develop space-filling

designs which are easy to compute and are model-robust. We will modify them so that they

will perform well according to the criterion in (9).

3 SPACE-FILLING DESIGNS

Space-filling designs aim at filling the experimental region evenly with as few gaps as possible.

These designs are robust to modeling choices and thus, are widely used as designs for com-

puter experiments. Popular space-filling designs include Latin hypercube designs (McKay

et al., 1979), distance-based designs such as maximin and minimax (Johnson et al., 1990),

uniform designs (Fang and Wang, 1994), and several useful variants of them such as max-

imin Latin hypercube designs (Morris and Mitchell, 1995) and maximum projection designs

(Joseph et al., 2015). See Joseph (2016) for a recent review of space-filling designs. However,

these designs are developed for general purpose applications such as function approximation

and not specifically for robustness experiments. As mentioned in the introduction, control-

by-noise interactions are especially important for identifying robust settings. Therefore, we

may hope to improve the performance of space-filling designs by improving their ability

to estimate the control-by-noise interactions, possibly by sacrificing other not so important

effects.

In the physical experiments’ literature, there are mainly two classes of designs suitable for

robustness experiments: cross arrays (Taguchi, 1987) and single arrays (Welch et al., 1990;

Shoemaker et al., 1991). To develop single arrays, one needs to first quantify the importance

of each effect (Bingham and Sitter, 2003; Wu and Zhu, 2003). This was not too difficult

with the fractional factorial experiments because such designs usually have only two or three

levels for each factor. In contrast, computer experiments have large number of levels for

each factor and therefore, numerous effects are involved in the modeling. This makes the

effect ordering a difficult task. Thus, cross arrays seems to be an easier and straightforward

approach for computer experiments.
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To develop cross arrays, we first need to choose an n1-run design Dx for the control

factors (known as control array) and another n2-run design Dz for the noise factors (known

as noise array). Cross array can then be obtained by repeating the noise array for each run

of the control array, which will have a total of n1n2 number of runs. We will denote the

cross array by D = Dx ×Dz. The suitability of a cross array for robustness experiments

should be evident from its construction. We can estimate the effect of noise factors under

each settings of the control factors in Dx, which enables one to choose the control factor

setting that makes the noise factors’ effect on the response as small as possible. As shown

in Wu and Hamada (2009) (see Theorem 11.1), if control factor effects are estimable from

Dx and noise factor effects from Dz, then the two-factor interactions between control and

noise factors are estimable and clear in D.

The following result shows how to construct an optimal cross array that minimizes the

IMSE criterion in (8). The proof is given in the Appendix.

Theorem 1. If a product correlation is used between control and noise factors, then an

IMSE-optimal cross array can be obtained by crossing an IMSE-optimal control array and

an IMSE-optimal noise array.

The IMSE optimal designs are closely related to the space-filling designs. For example,

when f(z) = 1, as k →∞ in (7),

IRMSE∞(D) = max
X

max
Z

MSE(x, z;D),

which is minimized by a minimax distance design when the correlations are small (Johnson

et al. 1990). The assumption of small correlations is justifiable in the control factor space,

but not in the noise factor space. This is mainly because the realistic ranges of noise factors

are much smaller than the possible ranges of control factors and therefore, it is quite likely

that the noise-response relationship can be adequately modeled using a smooth Gaussian

process. Moreover, Noise factors have nonuniform distributions. We will discuss on how to

modify the space-filling designs for the noise array in the next section.

A simple example can be used to illustrate why the cross arrays are useful in estimating

control-by-noise interactions. Consider two control factors (x1 and x2) and two noise factors
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(z1 and z2). Suppose we choose a Maximin Latin hypercube design (MmLHD) with four

runs for the control array and another MmLHD with five runs for the noise array. Then

the cross array will have 20 runs. Their two-factor projections are shown in Figure 1. We

can see that the projections are very poor in the control factor space and the noise factor

space, but the projections are excellent on the control-by-noise factor space. Thus, we can

obtain a good estimation of the control-by-noise interactions using this design. However, the

estimation of the pure control or noise factor effects can be poor compared to using a 20-run

MmLHD for the four factors.
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Figure 1: Two-dimensional projections of a cross array obtained by crossing a 4-run MmLHD
for control factors and 5-run MmLHD for noise factors.

Although the cross array looks promising for robustness experiments, it has certain dis-

advantages for using in computer experiments. Each control factor level is replicated n2
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number of times and noise factor level n1 number of times. Thus, the number of levels is

much smaller than that of a comparable single array, which has n1n2 number of levels for each

factor. This can lead to poor estimation of nonlinear effects and higher order interactions in

the control and noise factor spaces. This disadvantage of the cross array is amplified if there

are only a few factors that are active. We propose an idea to overcome this disadvantage.

We can jitter each point in the cross array to increase the number of levels for each

factor. The resulting design will still posses the good estimation ability of control-by-noise

interactions because the response values observed over adjacent points are expected to be

highly correlated. However, if the jittering radius is small, then there will be no improvement

in the estimation of the pure control and noise factor effects. On the other hand, if the

jittering radius is large, then the resulting design can lose its ability to efficiently estimate

the control-by-noise interactions. So how much to jitter is a critical question and we have

an intuitive solution for this. Let Ji be the cross product of the voronoi regions of the design

points in the control and noise arrays corresponding to the ith point in the cross array. Now

jitter the ith point within Ji. We will call the resulting design a Jittered Cross Array (JCA).

We can do better than a random jittering. Since our aim is to overcome the issue with

projections, we can choose the points in Ji, i = 1, . . . , n, that will ensure good projections.

We propose a sequential algorithm for doing this. Start from the center point (.5, . . . , .5)

and add one point at a time from Ji sequentially using the maximum projection (MaxPro)

criterion (Joseph et al., 2015):

Di = min
u∈Ji

i−1∑
j=1

1∏p
l=1 (ul −Djl)2

, (10)

for i = 2, . . . , n. This algorithm adds points sequentially in a greedy manner such that the

ith point is as far as possible from the previously chosen points under the MaxPro criterion.

Although the MaxPro criterion ensures that no two levels can be the same, the levels may

not be equally spaced. So at the end we force them to be equally spaced, which can be easily

done by ordering the levels. So the final design is like a Latin hypercube design (LHD), but

with some clustering in the control and noise factor spaces. JCA shouldn’t be confused with

a cascading LHD (Handcock, 2007), which has clusters in the full-dimensional space and
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doesn’t have a crossed array structure.

The two-dimensional projections of the JCA for the previous example is shown in Figure

2. We can now see the 20 points in the x1 × x2 and z1 × z2 projections as opposed to only

four and five points in the cross array. The projections in the control-by-noise spaces are

still very good. We can also observe the clusters in the control (symbols) and noise (color)

spaces, which shows that the cross array structure is approximately maintained. We will

study the performance of these designs using simulated and real examples in a later section

after deciding the optimal choice of noise array.
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Figure 2: Two-dimensional projections of the jittered cross array in 20 runs with two control
and two noise factors. The control factor levels in the cross array are coded by the plotting
symbols and noise factor levels by color.
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4 NOISE ARRAY

In this section we will discuss three possibilities for the choice of noise array. The first one

is the most intuitive choice, but the latter two are better for robustness experiments.

4.1 Transformed Design

As mentioned earlier, the distribution of the noise factors are usually nonuniform. On the

other hand, most space-filling designs are closely related to a uniform distribution as they

try to spread out the points evenly in the experimental region. This suggests that we can

possibly use the inverse probability transform method to transform the noise factor columns

in a space-filling design to have the right distribution. More specifically, assume that the

noise factors are independent. Let Fl(zl) be the distribution function of zl, l = 1, . . . , q. Then

it can be shown that if the design {z1, . . . ,zq} minimizes the discrepancy from a uniform

distribution, then {F−1
1 (z1), . . . , F−1

q (zq)} minimizes the F -discrepancy (Fang and Wang,

1994, p. 21), where the transformation is applied element-wise. We will call this design a

transformed design. Note that in computer experiments, we don’t need to worry about the

number of noise levels or the spacing among the levels as in the case of physical experiments

(Del Castillo et al., 2007).

The independence assumption is crucial for the above simplification. This assumption can

be easily relaxed when the noise factors follows a multivariate normal distribution: N(0,Σz).

We can first find the space-filling design assuming independence and then transform using

Σ1/2Φ−1(zi), where Φ(·) is the distribution function of a standard normal variable and zi is

the ith row of the space-filling design. If the distribution is not normal, then the design can

be found using the idea of support points (Mak and Joseph, 2017b).

For illustration, let z be a normal distribution with mean 0.5 and standard deviation

σ = 1/6. These values are chosen so that the ±3σ limits of z coincide with [0, 1]. Suppose

we use n = 10 and a Gaussian correlation function: R(zi − zj) = exp{−θ(zi − zj)
2}. As

shown in (Fang and Wang, 1994, p.19), d0 = {.5/n, 1.5/n, . . . , (n − .5)/n} minimizes the

discrepancy from a uniform distribution. So the desired design can be obtained as F−1(d0).
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Figure 3 plots the weighted root mean squared error

WRMSE(x, z) =
√
MSE(x, z)f(z), (11)

for θ = 10 and θ = 1000. The design points are shown as crosses in the same plots. We can see

that the points are pulled towards the center as one would expect for a normal distribution.

However, although the transformation seems to balance the WRMSE well throughout the

region when θ = 1000, it seems to be too high in the tail regions when θ = 10. Thus, the

benefit of using a transformed design seems to depend on the smoothness of the underlying

response function. If the function is wiggly, then transformation will work great, but if the

function is smooth, the transformation may do more harm than good. As mentioned before,

the external noise factors usually have a smooth relationship with the response. Thus, θ

is expected to be small in the Gaussian correlation function. In summary, a transformed

design does not seem to be a good choice for the noise array and we need to look for other

alternatives.
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Figure 3: Plot of weighted root mean squared error against the noise factor for a 10-point
transformed design using N(.5, σ) for θ = 10 (left) and θ = 1000 (right).
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4.2 Hybrid Design

We can find the design that minimizes IRMSE in (6) for a given value of θ or even better by

maximizing the efficiency in (9). However, as mentioned before, this optimization is hard to

perform, especially in high dimensions. We propose a simple idea to overcome this problem.

We will find the optimal design for one factor, which is easier. The optimal design can be

viewed as a transformation of a uniform design. Now we use this optimal transformation on

each column of the noise factors of a space-filling design. Since the final design is obtained

using a combination of space-filling and model-based optimal design criteria, we will call the

design a hybrid design.

To fix the idea, consider a single noise factor z. Let d∗ = {z∗1 , . . . , z∗n} be the optimal

design obtained using the model-based criterion

max
d

min
θ∈Θ

IRMSE(d∗(θ), θ)

IRMSE(d, θ)
,

where

d∗(θ) = argmin
d

∫
Z

√
MSE(z;d, θ)f(z)dz.

We want to emphasize that these optimizations are computationally much simpler than those

of (9) and (6) which use the full factor space. Let {u∗i = (i − .5)/n, i = 1, . . . , n} be the

uniform design points in [0, 1]. It is easy to show that the optimal design points are distinct,

that is z∗i 6= z∗j for i 6= j. Therefore, there exists a one-to-one transformation:

z∗i = T (u∗i ), for i = 1, . . . , n. (12)

For the case of multiple factors, let U z be a space-filling design with levels {u∗1, . . . , u∗n} for

each of the noise factor. Then, the hybrid design can be obtained as

D∗z = T (U z), (13)

where the transformation T (·) is applied on each element of U z.

Consider again the same example of the previous subsection with z ∼ N(.5, 1/6) and
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formed design and optimal design with θ = 10. The optimal design points are shown as
crosses.

θ = 10. The WRMSE for the 10-run optimal design is plotted in Figure 4. We can see

that the optimal design performs much better than the transformed design. However, this

improvement is not realizable in practice because we never know the true value of θ before

the experiment. We need to choose a robust value of θ using (9).

Consider a set Θ = {5, 10, 20, 30} with z ∼ N(.5, 1/6) and n = 50. We first find the

optimal designs for each of the four values of θ ∈ Θ. A histogram of the points for one case

is shown in Figure 5. We can see that the IRMSE-optimal design points are slightly more

dispersed than the noise distribution. The efficiencies of the four designs are computed using

(9) and are plotted over θ in Figure 6. We can see that the optimal design found based on

smaller values of θ perform poorly for larger values of θ. On the other hand, the optimal

designs found using larger values of θ perform not so poorly for smaller values of θ. This

suggests that we should find the set of probable values of θ and use the largest value in that

set to generate the optimal design.

Guessing the largest possible value of θ can be challenging in a practical problem. More-

over, the numerical inaccuracies in computing IRMSE increases with n and the optimization

becomes harder and unstable. Due to these difficulties, in the next subsection, we will try
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to identify an approximate optimal design that is easier to use in practical applications.

4.3 Double Transformed Design

Let d∗ = {z∗1 , . . . , z∗n} be the optimal set of n points that minimizes the IRMSE in (6)

for a given value of θ. The empirical distribution function of this point set is given by

Fn(z) = 1/n
∑n

i=1 I(z∗i < z), where I(·) is the indicator function. Our aim is to understand

the limiting distribution of Fn(z) as n→∞, which we denote by F̃ (z). This is not an easy

problem because there is no explicit solution for the optimal design. Moreover, IRMSE is a

complex function of the design points. Therefore, we will make use of an existing result on

optimal designs for uniform distributions to get an idea of the limiting distribution.

For uniformly distributed variables, Dette and Pepelyshev (2010) showed that a beta

distribution with density b(z;α, α) for α ∈ [0.5, 1] is optimal for a reciprocal distance criterion

which can be viewed as a surrogate for (6). See also Zhigljavsky et al. (2010) for a rigorous

justification of this result. We know that if F (·) is the distribution function of z, then

F (z) ∼ U(0, 1). Thus, by using change of variables, the optimal density of the design can

be obtained as

f̃(z) = b(F (z);α, α)f(z)

=
Γ(2α)

Γ2(α)

f(z)

{F (z)[1− F (z)]}1−α . (14)

Let Bα(z) =
∫ z

0
b(u;α, α)du be the distribution function of the beta distribution. Then, the

asymptotic distribution function of the optimal design is given by

F̃ (z) = Bα (F (z)) . (15)

Thus, if d0 denotes the uniform design, then an approximation to the optimal design can be

obtained as

d∗ = F−1
(
B−1
α (d0)

)
. (16)

To distinguish from the previous transformed design F−1(d0), we will call this the double

transformed design.
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What should be the value of α? If θ is large in the Gaussian correlation function, we

should use α = 1, which leads to the transformed design. We have seen in Figure 3 that

the transformed design indeed works well with large θ. However, as mentioned earlier, we

are more interested in small values of θ. Dette and Pepelyshev (2010) recommended using

α = 1/2, which is the limiting distribution of a D-optimal design for large degree polynomial

regression. Theorem 10.1 in Fasshauer and McCourt (2016) shows that as the correlation

parameter θ → 0, the Gaussian process predictor tends to a high degree polynomial inter-

polator and therefore, it makes sense to use an α value close to 1/2. The design points, in

this case, are the same as Chebyshev nodes, which possess minimax optimality properties

for polynomial interpolation (Trefethen, 2013). However, as discussed towards the end of

previous subsection, the optimal design based on a small value of θ may work poorly for

large values of θ. Thus, intuitively, a value of α slightly larger than 1/2 such as 2/3 or 3/4

might be a more robust choice. We investigate this more carefully below for the case of a

normal distribution.

It is easy to show that MSE(z;d) = 1 − r(z)′R−1r(z) ≤ 1 − R2(z − Q(z,d)), where

Q(z,d) is the closest point in d to z. Let

IRMSE(d) =

∫
Z

√
1−R2(z −Q(z,d))f(z)dz,

which is an upper bound of IRMSE(d). For Gaussian correlation function,

IRMSE(d) =

∫
Z

√
1− exp{−2θ(z −Q(z,d))2}f(z)dz

≈
√

2θ

∫
Z
|z −Q(z,d)|f(z)dz, (17)

where the approximation is valid for large n. Zador (1982) has shown that the design that

minimizes
∫
|z−Q(z,d)|kf(z)dz has an asymptotic distribution proportional to f 1/(1+k)(z).

This implies that the asymptotic distribution of d that minimizes IRMSE(d) should be

proportional to
√
f(z). Now consider the case of a normal distribution f(z) = φ(z; .5, σ).

Based on the simple approximation given by Bell (2015), F (z)[1 − F (z)] ≈ f 4/π(z). Sub-

stituting this approximation in (14), we obtain f̃(z) ≈ Γ(2α)/Γ2(α){f(z)}1−4(1−α)/π. This
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Figure 7: Plot of weighted mean squared error against the noise factor for a 10-point trans-
formed design using N(.5, σ), and double transformed design using (16) with α = 2/3 for
θ = 10.

will be proportional to
√
f(z) if α = 1 − π/8 ≈ 0.607. Similar exercise using IMSE gives

α = 1− π/12 ≈ 0.738. Based on these values, we choose α = 2/3 ≈ (.607 + .738)/2. Inter-

estingly, in a totally different problem setting of searching for the maximum of a continuous

function using non-adaptive algorithms, Al-Mharmah and Calvin (1996) showed that the

same beta density with α = 2/3 is optimal.

Consider the previous example with z ∼ N(.5, 1/6). The WRMSE for the double trans-

formed design using (16) with α = 2/3 is shown in Figure 7. We can see that WRMSE for

the double transformed design is much smaller than that using the transformed design, but

not as good as the optimal design in Figure 4.

The left panel of Figure 8 compares the noise distribution with the asymptotic optimal

density in (14). We can see that the density for the optimal design is more dispersed than

the original noise distribution. The right panel of Figure 8 shows the optimal density when

the noise distribution is truncated to [0, 1]. This density has three modes: one at the

center and two at the boundaries. This is an interesting result, because Taguchi (1987)

has recommended using three levels for the noise factor, one at the mean and two at the

extremes. The result in Figure 8 can be viewed as an extension of this three-level design
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for physical experiment to an n-level design for computer experiment, where projections are

important.
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Figure 8: Comparison of N(.5, σ) (left) and the asymptotic optimal density in (14) with
α = 2/3. The right panel shows the densities when the normal distribution is truncated in
[0, 1].

A similar investigation using the initial IMSE criterion in (5) shows that α ≈ 0.476 is the

optimal choice. However, this makes the optimal density quite dispersed and places points in

very low probability regions. For example, when n = 100, the points can be as far as ±3.95σ

from the center. On the other hand, α = 2/3 places points within ±3.25σ from the center,

which looks more reasonable. This is why we feel the IRMSE criterion in (6) or the IMSE

criterion in (8) is more meaningful than the IMSE criterion in (5). This was also verified

using the prediction performance on some test cases.

5 Factors with Internal Noise

There are some factors whose nominal values can be controlled, but they can vary around

their nominal values. Such factors are said to have internal noise. Examples include, part-

to-part variability within their manufacturing tolerances and process parameter variability

around its target. On the other hand, external noise factors are completely uncontrollable
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including their nominal values. Examples of external noise factors include user conditions,

incoming raw material properties, etc. In this section we will propose methods for designing

experiments with internal noise factors. One may wonder why we need to consider these

factors differently from the external noise factors. Why not just merge them with the external

noise factors and use the techniques described in the previous two sections? The reason is

that we don’t need to vary the internal noise factors in the experiment! They can be easily

introduced at the modeling stage. Thus, internal noise factors can be ignored at the design

stage although this may not be the “optimal” approach. This topic of designing experiments

with internal noise factors has received scant attention in the literature except possibly for

the work of Kang and Joseph (2009) in the case of physical experiments.

A factor with internal noise can be represented as X = x+ e, where the nominal value x

is controllable and the internal noise e is uncontrollable. Here we have used additive noise,

but the case of multiplicative noise can be handled similarly. Suppose we have estimated

the relationship with the nominal values of the factors (x) and external noise factors (z):

ĝ(x, z), then we can easily obtain the relationship with the internal noise as ĝ(x + e, z).

This is why we don’t need to vary e in the experiment.

Since a factor with internal noise is both a “control” and a “noise” factor, it make sense

to cross this factor with the other factors in the experiment. Thus, if DX denotes the design

for the factors with internal noise, then we can obtain the cross array using Dx×Dz×DX .

From this we can obtain the jittered cross array using the same algorithm discussed earlier.

Now, we only need to decide on how to choose the levels for a factor with internal noise.

As before let’s assume x to follow a uniform distribution in [0, 1] and e to have a noise

distribution with density fe(e). Because the internal noise factor is the result of not control-

ling the process well, it is mostly going to have a normal distribution. So let e ∼ N(0, σe).

The optimal design d∗ = {x∗1, . . . , x∗n} can be obtained by minimizing

IRMSE(d, θ) =

∫ 1

0

∫ ∞
−∞

√
1− r(x+ e)′R−1r(x+ e)φ(e; 0, σe)dedx,

where φ(e; 0, σe) denote the density of a normal distribution with mean 0 and standard

deviation σe. Here it is better to consider the IMSE criterion in (8) because an explicit
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expression for the integral can be obtained under a Gaussian correlation function, R(h) =

exp(−θh2). Thus,

IMSE(d, θ) =

∫ 1

0

∫ ∞
−∞
{1− r(x+ e)′R−1r(x+ e)}φ2(e; 0, σe)/C2dedx (18)

=
1

2σe
√
πC2

[
1−

∫ 1

0

tr
{
R−1A(x)

}
dx

]
, (19)

where the ijth element of A(x) is given by

Aij(x) =
1√

1 + 2θσ2
e

exp

{
− 2θ

1 + 2θσ2
e

(
x− xi + xj

2

)2
}

exp

{
−θ

2
(xi − xj)2

}
,

for i, j = 1, . . . , n. The integration with respect to x can also be done explicitly to obtain

IMSE(d, θ) =
1

2σe
√
πC2

[
1− tr

{
R−1A

}]
, (20)

where

Aij =

√
π√
2θ

{
Φ

(√
θ(2− xi − xj)√

1 + 2θσ2
e

)
− Φ

(
−
√
θ(xi + xj)√
1 + 2θσ2

e

)}
exp

{
−θ

2
(xi − xj)2

}
,

where Φ(·) is the standard normal distribution function. Similar explicit expressions could

have been obtained in the previous section as well for the external noise factors, but we didn’t

do it because of numerical issues. We found the formula in (20) to be quite vulnerable to

numerical issue when R is nearly singular, which happens when θ is small. For the external

noise factors, we need to consider small values of θ because they are expected to have a

smooth relationship with y. On the other hand, the relationship with x can be quite rough

and therefore, here we should use large values of θ which doesn’t lead to numerical problems.

As an example, consider a factor with internal noise distribution e ∼ N(0, σe). Let

σe = 1/12 and θ = 50 in the Gaussian correlation function. A 10-point optimal design is

obtained by numerically minimizing (20). Figure 9 plots the expected mean squared error

for the 10-point uniform design and the optimal design. We can see that the optimal design

is almost equally spaced but with points placed at the boundaries. Our simulations show
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Figure 9: Comparison of expected MSE for the 10-point uniform design (solid) and optimal
design (dashed) when σe = 1/12 and θ = 50. The optimal design points are shown as crosses.

that {0, 1/(n − 1), 2/(n − 1), . . . , 1} is close to optimal, which is only a slight change from

the uniform design.

6 EXAMPLES

6.1 A Simulated Example

Consider a simple example with one control and four external noise factors. Let

y =
4∑
i=1

βi(x− γi)z2
i e
−(x−γ5)2 ,

where z1, z2 ∼iid N(0, 1). We constructed a cross array using n1 = 3 equally spaced levels for

the control factor and a minimax distance design with n2 = 9 runs for the noise factors (Mak

and Joseph, 2017a). A minimax design is chosen for the noise array because it minimizes the

size of the voronoi regions and thus, the jittering will have minimum impact on the cross array

structure. From this a JCA is obtained using the sequential MaxPro algorithm described

in Section 3. For comparison, we also constructed a MaxProLHD in 27 runs. We consider
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two versions of these two designs using transformed noise array and double transformed

noise array. This gives four designs: transformed MaxPro (TrMaxPro), double-transformed

MaxPro (DTMaxPro), transformed JCA (TrJCA), and double-transformed JCA (DTJCA).

We simulated 100 cases by randomly sampling βi’s and γi’s from U(0, 1). The designs were

also generated 100 times to account for the small variations in the design algorithm. An

R code for this simulation is provided in the supplementary materials associated with this

paper.
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Figure 10: Density plots of errors in the robust settings based on the four designs in the
simulation example.

Suppose our aim is to minimize the variance of the response due to the noise factors.

First we fit kriging models using the data generated by each of the four designs. Then we

computed the true robust setting of the control factor (x∗) by minimizing the variance and

also the robust settings obtained from the fitted models based on the four designs (x∗1, x
∗
2, x
∗
3,

and x∗4). Figure 10 shows the density plots of the errors x∗i − x∗, for i = 1, 2, 3, 4. We can

see that the DTJCA gives the best performance followed by TrJCA.
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6.2 A Real Example

Computer experiments with noise factors are quite common for the simulations conducted

at The Procter & Gamble Company. The specific example we will use in our study in-

volves a manufacturing packing line. The example has been slightly modified for the benefit

of simplicity and to prevent disclosure of any potential sensitive information. A computer

simulator was developed for one critical transformation of the packing line involving trans-

port of the package for product fill. A computer experiment with nine input factors was

performed and an emulator was built. In this study, we use this emulator for investigating

the robustness. Variables x1, x2, x3, x4, x5, and x6 are process variables such as speed of the

line and dimensions of the puck that transports the package that will remain fixed or easy

to control once they are chosen and therefore are defined as control factors. Variables z1,

z2, and z3 are material properties of the packaging component such as density and modu-

lus which are defined as noise factors given that there is variation in normal production of

the material supplier. The output response from the computer simulation is the amount

of deflection of the package (deviation from a vertical orientation) after the puck, which

is holding the package, comes to a stop on the packing line for product filling. Figure 11

provides an illustration of dispensing the product into the package, which is represented by

the vertical cylinder. The base, which holds the cylinder, is the puck that transports the

package through the packing line. The illustration on the left represents no defection which

is favorable, while the illustration on the right represents large deflection which can cause

quality issues on the packing line like product spill. A quality issue will require the packing

line to be shut down and can have a significant impact on throughput. The objective of this

study is to find the settings for the six control factors that are robust to the variation of the

three noise factors. From historical data, the noise factors are found to be approximately

normally distributed. After re-scaling, we let zi ∼iid N(.5, σ) for i = 1, 2, 3 with σ = 1/6.

First we generated a minimax design with n1 = 2 × 6 + 1 = 13 runs for the six control

factors and another minimax design with n2 = 2 × 3 + 1 = 7 runs for the three noise

factors. The JCA in 91 runs is thus obtained using the sequential MaxPro algorithm and

then performed the double transformation on the noise factor columns using (16). We
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Figure 11: Illustration of the package deflection during product filling. Large deflections
such as the one shown on the right side can cause product spill.

also generated a MaxProLHD in 91 runs for comparison and transformed using the noise

distribution. Kriging models were fitted to the data generated from the two designs. We

found the prediction errors from the two fitted models to be close, but there was some major

differences in the estimation of control-by-noise interactions. Figure 12 shows the interaction

between x2 and z3, which is the most significant interaction in this experiment. Clearly, the

new double transformed JCA did a much better job in accurately estimating the interaction

than the existing transformed MaxProLHD.

7 CONCLUSIONS

In this paper we have proposed space-filling designs that are suitable for identifying robust

settings using computer experiments. The key idea was to jitter the points in a cross array

using the maximum projection criterion. We called the new design Jittered Cross Array.

We have also proposed how to optimally choose the noise array. The most intuitive way

to construct the noise array is to transform the columns of the array using the inverse

cumulative distribution function of the noise factors. This will pull the design points to the

high probability region of the noise distribution. However, we found this “pulling effect”
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Figure 12: Interaction plot of x2 against z3 in the real example. The left panel shows the
interaction obtained using the existing transformed MaxProLHD and the right panel using
the new double transformed JCA.

to be too extreme. This was mainly because the response is usually a smooth function of

the noise factors and to precisely estimate a smooth function it is desirable to push the

points outward from the center. The optimal design balances this “pulling” and “pushing”

effects. We found that pushing the points uniformly distributed in the unit interval using

a Beta(2/3, 2/3) distribution before applying the inverse probability transform to be close

to asymptotically optimal for normally distributed noise variables. We have also proposed

model-based methods to obtain the optimal transformation for any noise distribution, but

it requires specification of the upper bound of certain correlation parameters.

A disadvantage of the jittered cross array is that the total number of runs can become

prohibitively large when the number of control and noise factors is large. One way to

overcome this is to use single arrays. We believe that developing such arrays for computer

experiments will be a good direction for future research.

SUPPLEMENTARY MATERIALS

R codes and datasets: The R codes for the simulation in Section 6.1 and the datasets for

the example in Section 6.2 can be downloaded as a .zip file.

29



ACKNOWLEDGMENTS

This research is supported by a U.S. National Science Foundation grant DMS-1712642 and

a U.S. Army Research Office grant W911NF-17-1-0007.

APPENDIX: Proof of Theorem 1

Consider a production correlation R(xi − xj, zi − zj) = Rx(xi − xj)Rz(zi − zj). Now, if

D = Dx×Dz, then R = Rx⊗Rz and r(x, z) = rx(x)⊗rz(z), where ⊗ denotes Kronecker

product (see, for example, Hung et al. 2015). Then, by using the properties of Kronecker

products

r(x, z)′R−1r(x, z) = (rx(x)⊗ rz(z))′(Rx ⊗Rz)
−1rx(x)⊗ rz(z)

= (rx(x)′ ⊗ rz(z)′)(R−1
x ⊗R−1

z )rx(x)⊗ rz(z)

= (rx(x)′R−1
x ⊗ rz(z)′R−1

z )rx(x)⊗ rz(z)

= (rx(x)′R−1
x rx(x))⊗ (rz(z)′R−1

z rz(z))

= rx(x)′R−1
x rx(x)rz(z)′R−1

z rz(z).

Thus,

IMSE(D) =

∫
X

∫
Z
{1− rx(x)′R−1

x rx(x)rz(z)′R−1
z rz(z)}f 2(z)/C2dzdx

= 1−
∫
X
rx(x)′R−1

x rx(x)dx

∫
Z
rz(z)′R−1

z rz(z)f 2(z)/C2dz

= 1− (1− IMSE(Dx))(1− IMSE(Dz)).

Thus, minD IMSE(D) = 1− (1−minDx
IMSE(Dx))(1−minDz

IMSE(Dz)).
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