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Nontuberculous mycobacteria (NTM) are ubiquitous in the

environment and human exposure is likely to be pervasive; yet,

the occurrence of NTM-related diseases is relatively infrequent.

This discrepancy suggests that host risk factors play an integral

role in vulnerability to NTM infections. Isolated NTM lung

disease (NTM-LD) is often due to underlying anatomical

pulmonary or immune disorders, either of which may be

acquired or genetic. However, many cases of NTM-LD have no

known underlying risk factors and may be multigenic and/or

multicausative. In contrast, extrapulmonary visceral or

disseminated NTM diseases almost always have an underlying

severe immunodeficiency, which may also be acquired or

genetic. NTM cell wall components play a key role in

pathogenesis and as inducers of the host immune response.
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Introduction
Nontuberculous mycobacteria (NTM) are environmental

organisms commonly found in soil and water biofilms.

Despite the ubiquitous presence of NTM in both natural

and man-made niches and the plausible premise that

human exposure to NTM is pervasive, the prevalence

of NTM infections is fairly infrequent, suggesting that

NTM possess low to moderate pathogenicity and that

host risk factors play an integral role in vulnerability to

NTM disease. Nevertheless, the incidence of NTM

infection is increasing rapidly and now surpasses tuber-

culosis in resource-rich countries, making it imperative

that we better understand why some individuals are

susceptible to NTM infection. NTM lung disease

(NTM-LD) typically occurs in the setting of pre-existing

structural lung disease, most often emphysema or bron-

chiectasis, which may be acquired or the result of genetic

disorders. In contrast, extrapulmonary visceral organ/dis-

seminated infections almost always occur in individuals

with frank immunocompromised states, which are also

acquired or genetic. This review focuses on acquired and

genetic host susceptibility factors to these two forms of

NTM infections; in addition, we highlight NTM-derived

components that contribute to disease pathogenesis or are

exploited by the host to mount an effective immune

response.

Acquired and classical genetic disorders that
predispose to NTM-LD
Acquired and genetic disorders that predispose to NTM-

LD can be broadly classified into those that result in

anatomic lung abnormalities or immune dysfunction.

Acquired disorders include tobacco-related emphysema,

bronchiectasis as a sequela of prior unrelated infections,

silicosis, chronic aspiration, and use of corticosteroids or

other immunosuppressives such as TNFa antagonists [1–

3]. A case–control study found that emphysema, prior

hospitalization for pneumonia, thoracic skeletal abnor-

malities, low body mass index, and corticosteroid and/or

immunomodulatory drug usage were each found to be

significantly associated with Mycobacterium avium com-

plex lung disease [1].

In terms of genetic disorders, cystic fibrosis (CF) is the

best known genetic risk factor for NTM-LD [4�]. Sus-

ceptibility factors include the presence of pre-existing

bronchiectasis, inspissated secretions, and corticosteroid

use. While the intrinsic chloride channel defect may play

a role in host susceptibility to NTM, a whole exome

sequencing study of patients with NTM-LD and their

family members indicated that variants of the CF trans-
membrane conductance regulator (CFTR) gene were more

common in unaffected family members than patients

with NTM-LD [5��]. Other classical genetic disorders
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include primary ciliary dyskinesia, due to a defect in one

of several cilia genes that encode microtubule and dynein

arm proteins, resulting in ciliary dysfunction, decreased

ability to clear airway infections and mucus, and a vicious

cycle of airway inflammation, infection, and mucostasis,

the denouement of which is bronchiectasis and recurrent

infections including NTM [6�]. Alpha-1-antitrypsin

(AAT) deficiency predisposes to emphysema, but bron-

chiectasis is also a known complication [7]. We previously

reported that the presence of AAT anomalies — mostly

heterozygous — were more common in patients with

NTM-LD compared to the general U.S. population

[8]. AAT deficiency may also compromise the ability of

macrophages to control NTM infections [9]. Tracheo-

bronchomegaly (Mounier–Kuhn syndrome) may be con-

genital, acquired, or may be secondary to other primary

disorders [10,11]. Pathogenesis of the congenital form is

due to atrophy or absence of elastic fibers and smooth

muscle tissues of the large airways, resulting in gross

enlargement of the trachea and main bronchi as well as

airway wall diverticulae, which can serve as reservoirs for

recurrent infections including NTM-LD. Pulmonary

alveolar proteinosis (PAP) is characterized by diffuse

accumulation of amorphous, lipoproteinaceous material

in the distal air spaces. Congenital PAP is due to mutation

of genes that encode a-subunit or bc-subunit of GM-CSF

receptor, or surfactant protein-B. The acquired form of

PAP is primarily due to the presence of auto-antibodies to

GM-CSF. Functional deficiency of the GM-CSF protein

or signaling impairs surfactant disposal by lung macro-

phages and leads to the accumulation of surfactant in the

alveolar spaces and intracellularly in phagocytes; the

latter process further compromises both macrophage

function and activation of adaptive immunity, and pre-

disposes to opportunistic infections including NTM [12].

The underlying B and T cell defects observed with CVID

can lead to recurrent airway infections and bronchiectasis,

the latter a prime substrate for NTM infection [13].

NTM-LD due to more recently identified
genetic factors
The occurrence of NTM-LD in individuals without any

of the aforementioned risk factors is well recognized

[14,15]. A significant fraction of such patients possess a

life-long asthenic body habitus with thoracic cage abnor-

malities such as pectus excavatum and scoliosis, leading

to the notion that an underlying connective tissue disor-

der predisposes to NTM-LD [15–18]. Reduced body fat

in itself is a risk factor for NTM-LD [17–20]. A mecha-

nism by which low body fat content predisposes to NTM-

LD is relative deficiency of the fat-derived, satiety hor-

mone leptin, which also drives the differentiation of

uncommitted T0 cells toward the TH1, IFNg-producing
phenotype [21]. In corroboration, leptin-deficient mice

are more susceptible to Mycobacterium abscessus lung infec-

tion [22]. Moreover, NTM-LD patients have reduced

serum leptin levels [23], a loss in the normal direct

relationship between serum leptin concentration and

total body fat [17], and reduced IFNg production by their

immune cells [17,24�,25�,26].

A whole exome sequencing (WES) study of 15 NTM-

LD patients with more than one family member with

NTM-LD, 18 unaffected family members, and

54 patients with sporadic NTM-LD demonstrated that

possessing variants of several genes in the immune,

connective tissue, ciliary, and CFTR categories —

‘multigenic’ etiology as opposed to mutation of one

dominant gene — additively increases vulnerability to

NTM-LD [5��]. In another study, WES of 11 NTM-LD

subjects with slender body habitus, pectus excavatum,

and scoliosis identified four (two being sisters) subjects

with heterozygous mutations of the Macrophage-stimulat-
ing-1 Receptor (MST1R) gene [24�]. MST1R is a tyrosine

kinase receptor important for normal movement of cilia

present on cells lining the luminal surface of fallopian

tubes and airways [27]. These findings are consistent

with previous work showing reduced ciliary beat fre-

quency in the nasal epithelium as well as reduced nasal

nitric oxide in NTM-LD patients compared to controls

[28]. Ex vivo NTM infection of primary human bronchial

epithelial cells decreased the expression of genes that

encode for ciliary proteins as well as reduced the number

of ciliated cells [29�]. In other words, pre-existing ciliary

defects predispose to NTM and NTM infection itself

may, in turn, adversely affect ciliary function [30].

The reason why NTM-LD appears to be more common

in post-menopausal women is not known but is likely to

be multifactorial, including the acquisition of other risk

factors with aging (e.g. reduction in body fat, vitamin D

level, and/or sex hormones, and cumulative exposure to

environmental NTM) — resulting in a ‘tipping point’

where NTM-LD develops, analogous to the aphorism

‘the straw that broke the camel’s back’ (Figure 1). This

metaphor also serves as a reminder to clinicians to elimi-

nate as many risk factors as possible to reduce the burden

of NTM-LD.

Acquired and genetic disorders that
predispose to extrapulmonary visceral organ
and disseminated NTM infections
Acquired disorders that cause profound immunodefi-

ciency and therefore increase susceptibility to extrapul-

monary visceral/disseminated NTM disease include

untreated AIDS, presence of anti-IFNg autoantibodies,

and the use of chemotherapeutics to treat cancer, potent

immunosuppressives to prevent rejection after organ

transplantation, and TNFa antagonists or other novel

biologic agents to remedy inflammatory conditions

[31�,32,33]. There is likely a genetic component to those

with anti-IFNg antibodies as this syndrome appears to be

more common in Asians and in those with HLA

DRB16:02 or DRB05:02 [31�]. In contrast, occurrence
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of systemic NTM infections in very young individuals —

often infants — suggests mutations in genes that are

components of the IFNg-IL-12 axes and other immune

related genes that fall under the rubric of Mendelian

Susceptibility to Mycobacterial Diseases (MSMD) [34–

36]. MSDS disorders that have been linked to NTM

disease, their mode of inheritance, the major clinical

presentations, and diagnostic tests are listed in Table 1

and previously reviewed [37].

While only three cases of NTM infections in chronic

granulomatous disease (CGD) patients have been

reported in the literature, the unusual and extrapulmon-

ary involvement in these patients suggest that CGD is a

predisposing condition for NTM infections [38]. While

this observation would suggest that reactive oxygen spe-

cies (ROS) is an important host-defense factor against

NTM infections, we have found that inhibiting ROS with

a superoxide dismutase mimetic actually improved mac-

rophage killing of M. abscessus by promoting phagosome-

lysosome fusion [39].

Over-exuberant host immunity in NTM-LD
An overexuberant host immune response may also play a

part in the pathogenesis of NTM-LD. In response to

NTM lung infection, the release of elastase and metallo-

proteinases by recruited neutrophils can cause damage to

the airway epithelium by eroding mucosal barriers, result-

ing in NTM-containing microabscesses. Elastase may

also cause ciliary dysfunction, mucous gland hyperplasia,

and mucus hypersecretion that enhance NTM biofilm

formation [40,41]. Elastase and other proteases also cleave

Fcg receptors and complement receptor 1 from neutro-

phil surfaces as well as digest immunoglobulins and

complement components from mycobacterial surfaces.

These activities impair opsonization of mycobacteria

and reduce their recognition by neutrophils, leading to

decreased phagocytosis and bacterial clearance [40]. Elas-

tase also inhibits efferocytosis, impairing clearance of

apoptotic neutrophils [40]. The unphagocytosed, dead

neutrophils incite further inflammation and release highly

viscous DNA, contributing to the formation of inspissated

mucus that further impairs NTM clearance.

NTM components that induces pathogenesis
and/or host immune response
The most widely recognized immune modulatory com-

ponent of Mycobacteria is its waxy cell envelope that

facilitates survival in the environment and provides pro-

tection against antibiotics and host immune defenses.

Lipids of various composition comprise up to 60% of

the mycobacterial cell envelope compared to 20% in

Gram-negative bacteria [42]. NTM-derived lipids sub-

vert the host immune responses by suppressing host-

protective IFNg and TNFa production (Figure 2) [43].

Moreover, incubation of human peripheral blood mono-

nuclear cells (PBMC) with total lipids from M. avium
increased both the secretion of immunosuppressive mole-

cules such as prostaglandin E2 by macrophages and the

replication of intracellular NTM [44].

Mycobacterial glycopeptidolipids (GPL) are absent from

Mycobacterium tuberculosis and Mycobacterium leprae but are

produced solely by NTM (Figure 2) [45]. GPL are

essential for both sliding motility and biofilm formation

[46,47]. The two main classes of GPL are: first, apolar,

non-specific GPL (nsGPL) produced by many NTM,

particularly M. abscessus and second, polar, serovar-specific

GPLs (ssGPL) produced by M. avium [48].

The composition and concentration of GPL vary among

species and can impact colony morphology. The nsGPL

found in the outer layer of the smooth morphotype of M.
abscessus cloaks its phosphatidyl-myo-inositol mannoside

residues located in the cell wall, thereby hindering recog-

nition of this M. abscessus strain by TLR2-bearing immune

cells [49]. As a result, M. abscessus smooth variants — which

are typically found in the environment — infect suscepti-

ble hosts. For reasons not well understood, the rough

68 Host pathogens

Figure 1
NTM LUNG DISEASE

“T
H

E
 STRAW THAT BROKE THE CAMEL’S

 B
A

C
K

”

Current Opinion in Immunology

Cartoon metaphor to illustrate that multiple factors contribute to the

denouement of NTM-LD. Accumulation of multiple risk factors — for

example, behaviors of humans and environmental factors that increase

exposure to NTM, host genetic susceptibility factors, acquired risk

factors, and other factors associated with aging — all unite to increase

one’s overall risk for developing NTM-LD. In this diagram, yellow

‘bales of straw’ are used to depict the multiple risk factors and that

one additional risk factor — shown by the single, yellow falling

straw — is enough to result in NTM-LD; that is, ‘the straw that broke

the camel’s back.’ This metaphor is a reminder that ways to minimize

any risk factors — no matter how trifle it may seem — can be

potentially beneficial.
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Table 1

Clues to the presence of an underlying genetic cause for extrapulmonary visceral/disseminated NTM disease.

Host gene abnormality (protein)

Mode of inheritance

Relative age at presentation Clues to presence of host risk

factor

Diagnostic test(s)

IFNGR1 mutations (IFNgR1a)

AR, PE–, completeb

AR, PE+, complete

AR, PE+, partialb

AD, PE++, partial

Infants, young children Disseminated NTM, BCG, and

non-typhoidal Salmonella

infections

Surface expression by flow

cytometry; functional

analysis of IFNgRc; gene

sequencing

IFNGR2 mutations (IFNgR2)

AR, PE–, complete

AR, PE+, complete

AR, PE+, partial

AD, PE+, partial

Infants, young children Disseminated NTM, BCG, and

non-typhoidal Salmonella

infections

As above

IL12B mutations

(IL-12p40 subunitd)

AR, PE–, complete

Infants, young children Disseminated NTM, BCG, and

non-typhoidal Salmonella

infections; mucocutaneous

candidal infectionse

Stimulate PBMC with

mitogen � IFNg, measure IL-

12; gene sequencing

IL12RB1 mutations

(IL-12Rb1 subunitd)

AR, PE–, complete

AR, PE+, complete

AR, PE-, partial-severe

Infants, young children Disseminated NTM, BCG, and

non-typhoidal Salmonella

infections; mucocutaneous

candidal infectionse

Surface expression by flow

cytometry; functional testing

of IL-12Rf; gene sequencing

STAT1 mutation

(Stat1a)

AR, PE–, P–, B–, complete

AR, PE+, P+, B+, partial

AD, PE+, P–, B+, partial

AD, PE+, P+, B–, partial

Infants, young children Disseminated NTM, BCG, and

non-typhoidal Salmonella

infections

Functional analysis of

Stat1ag; gene sequencing

IKBKG mutation

(NEMO, IKKg)

X-linked

Male children Ectoderm developmental

abnormalities, venous/lymphatic

vasculature abnormalities,

autoimmune/inflammatory

conditions, and infections with

bacteria, extrapulmonary NTM,

viruses, and fungi

Functional analysis of

NFkBh; gene sequencing

GATA2 mutation

(GATA2)

AD

Young child to older adults Disseminated infection with

NTM, fungus, or HPV. May be

complicated by lymphedema,

PAP, myelodysplasia, acute and

chronic myeloid leukemia

Gene sequencing,

cytopenias (monocytes, DC,

B cells, NK cells); bone

marrow shows

hypocellularity, fibrosis,

multilineage dysplasia, etc.

Anti-IFNg autoantibodyi

Associated with DRB16:02 and DRB 05:02

More common in Asian adults Extrapulmonary visceral/

disseminated infection with

NTM, Salmonella, fungi, and

cytomegalovirus, and varicella-

zoster virus reactivation

Anti-IFNg antibody testing by

particle-based technology or

ELISA

AD = autosomal dominant; AR = autosomal recessive; HPV = human papilloma virus; IFNgR1 = IFNg receptor subunit 1; IFNgR2 = IFNg receptor

subunit 2; IL-12Rb1 = IL-12 receptor subunit b1; NEMO = NFkB essential modulator (=IkBa kinase g subunit, IKKg), P = phosphorylation,

PE = protein expression, B = DNA binding, PAP = pulmonary alveolar proteinosis. Adapted from [34].
a Autosomal dominant IFNgR1 deficiency lacks Jak1-binding and STAT1a binding domains and thus can bind IFNg but cannot signal downstream. In

such cases, there is expression of proteins on the cell membrane but the defective IFNgR1 accumulates and competes with functioning normally

functioning IFNgR1. Most patients with complete autosomal recessive forms do not express IFNgR1 on the cell surface because of stop mutations in

the extracellular domain.
b Complete and partial refers to signaling defect.
c Stimulation of PBMC with IFNg and assaying for Stat1a phosphorylation.
d IL-12 is comprised of two subunits, IL-12p40 (IL12B gene) and IL-12p35 (IL12A gene). IL-12 receptor is comprised of two subunits, IL-12Rb1

(IL12RB1 gene) and IL-12Rb2 (IL12RB2 gene).
e While mutation is in the IL-12Rb1 subunit, the susceptibility to mucosal fungal infections is due to defective IL-23 signaling, which is required to

stimulate proliferation of TH17 cells that are required for mucosal antifungal immunity, as IL-12 and IL-23 share the IL-12p40 subunit and IL-12R and

IL-23R share the IL-12Rb1 subunit.
f Stimulation of PBMC with IL-12 and assaying for Stat4 phosphorylation.
g Stimulation of PBMC with IFNg and assay for Stat1a phosphorylation and binding to the cis-GAS DNA sequence.
h Stimulation of PBMC with lipopolysaccharide or relevant cytokine and assay for NFkB binding to its cis-regulatory element.
i While anti-IFNg antibody syndrome is considered acquired, it is associated with certain HLA genes.
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morphotype — which lacks nsGPL and is considered more

virulent — emerges later, sometimes several years after the

initial infection [50,51]. Human monocytes eradicated

smooth M. abscessus whereas rough variants persisted and

propagated in the intracellular phagosome [50]. Epidemi-

ologic and clinical data also associate rough variants with

more severe and persistent lung disease [52].

In contrast to the finding that the absence of nsGPL from

M. abscessus facilitates intracellular survival, M. avium
ssGPL is required for intracellular survival and impacts

cytokine responses, suggesting that serovar oligosacchar-

ides contribute to species-specific pathogenesis [53]. The

immunomodulatory activities of M. avium ssGPL are

varied and depend on the serovar from which it was

extracted; for example, ssGPLs from M. avium serovar

1, 2, and 8 — which are different from the ssGPLs of

serovars 4 or 20 — induce the production of TNFa and/or

prostaglandin E2 by human PBMC (Figure 2) [53,54].

ssGPL also promotes phagocytosis and inhibits

phagosome–lysosome fusion [55]. However, neither M.
abscessus nsGPL nor M. avium ssGPL contribute to resis-

tance to the LL-37 antimicrobial peptide [55].

Other glycolipids including phosphatidylinositol (PI),

lipomannan (LM), lipoarabinomannans (LAM), and the

mycolic acid-arabinogalactan-peptidoglycan (mAGP)

complex are ubiquitous mycobacterial lipids that provide

70 Host pathogens
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Cartoon depicting some of the major glycolipids of M. tuberculosis and NTM. Included are the non-specific glycopeptidolipids (nsGPL) and

serovar-specific GPL (ssGPL) that are present only on NTM. Some of the host immune effects of these different components are listed; as can be

seen, a panoply and occasional opposing effects have been reported. While many of the components are found in both M. tuberculosis and NTM,

most of the effects listed were studied with M. tuberculosis components; that is, except for the GPL, much fewer studies have been performed

with glycolipids from NTM. AraLAM = arabinose-capped lipoarabinomannan, ManLAM = mannose-capped LAM, PILAM = phosphatidylinositol-

capped LAM, LM = lipomannan, PIM2 = phosphatidylinositol dimannoside, mAGP = mycolic acid-arabinogalactan-peptidoglycan complex.
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a barrier against toxic agents and also modulate host

immune responses. Mycobacterial-derived PI plays

important structural and physiological roles [56]. LM

elicits a strong proinflammatory cytokine response,

including IL-12 production, and apoptosis of macrophage

cell lines [57]. LM from M. chelonae, M. kansasii, and M.
bovis perform dual functions by both stimulating and

inhibiting pro-inflammatory cytokine production in bone

marrow-derived macrophages from MyD88-deficient and

TLR-deficient mice [58]. Various forms of LAM have

been described. ManLAM of pathogenic M. tuberculosis,
M. leprae, and M. avium binds poorly to the pattern-

recognition receptor DC-SIGN [59]. PILAM (LAM with

phosphatidylinositol caps) of M. fortuitum and M. smegma-
tis induces the production of pro-inflammatory cytokines

IL-12, TNFa, and IL-8 from differentiated THP-1

human macrophages [60]. AraLAM (LAM without caps)

is found in M. chelonae and several other rapidly growing

mycobacteria [61]. Purified AraLAM from M. smegmatis
administered into the lungs of various genetically modi-

fied mice triggered — through TLR2 — an acute inflam-

matory response and neutrophil influx essential for M.
smegmatis clearance [62].

New sequencing technologies are revolutionizing our

ability to understand NTM pathogenesis. Whole genome

sequencing and bioinformatic methodologies have been

used to obtain information about NTM taxonomy, biol-

ogy, and pathogenesis. For example, an in silico study

identified mycobacterial genes from a novel clinical

NTM organism including pathogenicity genes associated

with cell wall integrity, resistance to host toxic com-

pounds, and immune evasion. Similarly, hierarchical in
silico approaches identified plasmids, virulence factors

and resistance genes with potential as drug/vaccine tar-

gets [63]. Bioinformatic studies have also revealed dele-

tions of M. tuberculosis virulence gene complexes includ-

ing phospholipase C, phenolglycolipids, and the ESX

secretion system in Mycobacterium colombiense [64��]. More

provocative studies indicate M. abscessus has also incorpo-

rated phospholipase and transporter genes from distantly

related environmental bacteria including other actinobac-

teria that may have important roles in organism virulence

[65].

Conclusion
Patients with NTM-LD or extrapulmonary visceral/dis-

seminated NTM disease each have a unique set of

acquired and/or genetic risk factors. Other host factors

such as low body fat as well as exposure to environmental

sources of NTM coupled to host behaviors that increase

exposure and acquisition of NTM infection play impor-

tant roles in the pathogenesis of NTM disease. In addi-

tion, NTM virulence and immune evasive mecha-

nisms — largely attributed to glycolipid cell wall

components — play a crucial part in determining the

development of bona fide NTM disease.
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