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au–Zener theory and kinetic
Monte Carlo sampling for small polaron mobility of
doped BiVO4 from first-principles†

Feng Wu a and Yuan Ping *b

Transition metal oxides such as BiVO4 are promising photoelectrode materials for solar-to-fuel conversion

applications. However, their performance is limited by the low carrier mobility (especially electron mobility)

due to the formation of small polarons. Recent experimental studies have shown improved carrier mobility

and conductivity by atomic doping; however the underlying mechanism is not understood. A fundamental

atomistic-level understanding of the effects on small polaron transport is critical to future material design

with high conductivity. We studied the small polaron hopping mobility in pristine and doped BiVO4 by

combining Landau–Zener theory and kinetic Monte Carlo (kMC) simulation fully from first-principles, and

investigated the effect of dopant–polaron interactions on the mobility. We found that polarons are

spontaneously formed at V in both pristine and Mo/W doped BiVO4, which can only be described

correctly by density functional theory (DFT) with the Hubbard correction (DFT+U) or hybrid exchange-

correlation functional but not local or semi-local functionals. We found that DFT+U and dielectric

dependant hybrid (DDH) functionals give similar electron hopping barriers, which are also similar

between the room temperature monoclinic phase and the tetragonal phase. The calculated electron

mobility agrees well with experimental values, which is around 10�4 cm2 V�1 s�1. We found that the

electron polaron transport in BiVO4 is neither fully adiabatic nor nonadiabatic, and the first and second

nearest neighbor hoppings have significantly different electronic couplings between two hopping

centers that lead to different adiabaticity and prefactors in the charge transfer rate, although they have

similar hopping barriers. Without considering the detailed adiabaticity through Landau–Zener theory, one

may get qualitatively wrong carrier mobility. We further computed polaron mobility in the presence of

different dopants and showed that Cr substitution of V is an electron trap while Mo and W are “repulsive”

centers, mainly due to the minimization of local lattice expansion by dopants and electron polarons. The

dopants with “repulsive” interactions to polarons are promising for mobility improvement due to larger

wavefunction overlap and delocalization of locally concentrated polarons.
1 Introduction

Transition metal oxides (TMO) such as BiVO4, Fe2O3, and CuO
are promising candidates as photoelectrode materials in
energy conversion applications, such as photoelectrochemical
cells,1–11 due to their high stability under electrochemical
conditions compared to III–V semiconductors and desired
optical properties for visible light absorption. However, in
general, these oxides have extremely low intrinsic carrier
mobility (e.g. on the order of 0.01 cm2 V�1 s�1 hole mobility for
BiVO4 (ref. 12) compared to 1350 cm2 V�1 s�1 for silicon13),
stry, University of California, Santa Cruz,

stry, University of California, Santa Cruz,

tion (ESI) available. See DOI:

hemistry 2018
which fundamentally prevents them to reach the maximum
theoretical efficiency, and constitutes the main bottleneck of
these materials for practical applications. The extremely low
carrier mobility is characterized by thermally activated
hopping conduction,5,11 instead of band conduction in III–V
semiconductors.

The carriers in the hopping conduction of TMOs are called
“small polarons”, which are quasiparticles of electron plus local
lattice distortion as a whole. Their formation is due to the
extremely strong electron–phonon interactions, whereby the
electrons or holes are trapped by local lattice distortions, and
they hop from one lattice site to another. A spin density plot of
an electron small polaron in pristine BiVO4 is shown in Fig. 1.
Experimentally, a distinct signature of polaron hopping
conduction is that with increasing temperature the carrier
mobility increases exponentially, while in band conduction it
decreases. A linear dependence between the logarithmic
conductivity and temperature is oen observed experimentally
J. Mater. Chem. A, 2018, 6, 20025–20036 | 20025
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Fig. 1 Small polaron hopping in BiVO4. The yellow isosurface is the
spin density of the polaron. The isosurface is 0.0045 e per bohr3. Silver
ball: V atoms, red ball: O, and purple ball: Bi.
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in polaronic materials, where the slope of linear dependence is
the hopping activation energy.

Interestingly, it has been observed that certain dopants in
TMOs can improve their carrier mobility by lowering the
polaron hopping barriers (activation energies). For example, in
the case of N-doped BiVO4 with excessive oxygen vacancies, both
the carrier concentration and mobility can be enhanced.5 In
particular, formation of N–V bonds decreased the static
dielectric constant and lowered the hopping barriers of polaron
transport. Similarly, the hopping barrier can be signicantly
lowered by Li doping in CuO,14–16 i.e. the hopping barriers in
CuO decreased by an order of magnitude aer 16% Li doping,
due to a combined effect of lowering electron–phonon interac-
tion and magnetic coupling aer doping. Note that the carrier
conductivities depend on the hopping barrier exponentially sf

exp(�Ea/kBT) e.g. decreasing the hopping barrier by 25 meV can
lead to a three-fold improvement in carrier mobility. Further-
more, recent experimental work has shown that Mo/W doping
can increase the photocurrent of BiVO4.12,17–23 The photocurrent
is proportional to the product of carrier concentration and
carrier mobility (the optical absorption could also affect the
photocurrent but it has been shown to be unchanged aer W
and Mo doping24). The carrier concentration has been shown to
increase due to the shallow nature of Mo/W dopants in
BiVO4;24,25 however, whether the electron mobility of BiVO4

increases aer Mo/W doping is undetermined. Some studies
showed a lowered mobility in Mo/W doped BiVO4 (ref. 18 and
23) while others suggested a lowered activation energy of
conduction and improved carrier mobility.17 Overall, these
studies suggest the possibility of overcoming slow electronic
conduction in these TMOs by appropriate atomic doping.

However, to date, although there are several important
related discussions,26 there is still an incomplete understanding
of the doping effect on small polaron formation and mobility in
TMOs, both theoretically and experimentally. Further
improvements of conductivities in these TMOs require a ratio-
nale design of effective dopants, which need reliable ab initio
tools to make predictions for small polaron mobility.

Previous computational methods of small polaron mobility
have relied on applying Marcus theory in the context of
20026 | J. Mater. Chem. A, 2018, 6, 20025–20036
polaronic systems or Emin–Holstein–Sustin–Mott theory
(EHAM).27–29 Despite the signicant progress that has been
made in the calculations of small polaron mobility,30–36 several
major limitations still remain: (a) most studies for solid systems
computed the hopping rates at the adiabatic limit,30,31,37,38which
may not always be valid, especially for magnetic TMOs;14 (b) the
prefactor for polaron hopping rates was rarely computed,30,39

and an estimated value was oen used without detailed justi-
cation;34,40 (c) a simple analytic formula based on the
assumption of isotropic hopping in solids with the same
hopping rates for each hop was mostly used, which is funda-
mentally not applicable to doped solids or systems with low
symmetry.

In this paper, we will rst introduce our recent development
on rst-principles calculations of small polaron hopping
mobility by combining Landau–Zener theory including both
adiabatic and non-adiabatic electron transfer with a kinetic
Monte Carlo (kMC) sampling or specically random walk
sampling (RWS) method; next we will discuss how we apply this
method to compute hopping mobility in pristine BiVO4 and
discuss its dependence on the level of theory and the hopping
range; at the end, we will show how the dopants affect the
polaron energies and hopping mobility through our kMC
sampling, and suggest the design principles of “good dopants”
that can boost the small polaron mobility of TMOs.

2 Theory and computational methods
for small polaron hopping mobility

The theory for small polaron rates fundamentally relies on the
fact that there is a non-zero barrier for electron/hole hopping
from the initial site to the nal site, where the “site” is dened
by the charge localization volume in solids with a few angstrom
radius. The small polaron hopping transport is analogous to the
charge transfer in a molecular crystal where the charge is highly
localized on a few atoms or one molecule at each hop. Our
discussion of the theoretical methodology will start with the
denition of carrier mobility, and then its relationship with the
diffusion coefficient (D) through the Einstein–Smoluchowski
equation at the weak electric eld limit and D's relationship
with hopping transfer rates kET by kMC sampling, and aerward
computing kET by using generalized Landau–Zener theory,
where rst-principles approaches to compute each part in the
formulation will be introduced.

The carrier mobility is dened as the velocity response of
a charge carrier to an external electric eld:

mij ¼
hvii
Ej

(1)

where hvii denotes the i-th component of the time-averaged
velocity hvi of the carrier and Ej is a component of the electric
eld vector E. In the regime of a weak electric eld (the regime
we usually study), the carrier mobility can be expressed by the
Einstein–Smoluchowski (ES) equation:

mES
ij ¼ Dijq

kBT
(2)
This journal is © The Royal Society of Chemistry 2018
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where Dij is the diffusion coefficient tensor and q is the carrier
charge. The diffusion coefficient tensor Dij follows a general-
ization of Fick's law to velocity v at time t. Dij is related to the
electron transfer rate kET in each hopping process (Df kET). For
isotropic systems, a geometric factor could be used to relate D
and kET. For non-isotropic systems this needs to be sampled
statistically which we will discuss later.30,31,37

With the harmonic approximation, the electron transfer rate
in Landau–Zener (LZ) theory41–43 extended with nuclear
quantum effects is:44,45

kET ¼ kelneffG exp(�Ea/kBT) (3)

where kel and G are the thermally averaged electronic trans-
mission coefficient and nuclear tunneling factor respectively
(taking into account the quantum effects of the nuclear degree
of freedom; but we will approximate G z 1 in this study, since
it's only important for low temperature or light elements). neff is
the effective frequency along the reaction coordinate of electron
transfer and Ea is the hopping activation energy, regardless of
adiabatic or non-adiabatic processes.

The electronic transmission coefficient kel represents the
probability of electron transfer when the nuclear conguration
approaches the intersection region where the transfer may
happen.45 kel that corresponds to the situation when the
crossing point is between the two potential wells follows

kel ¼ 2PLZ/(1 + PLZ) (4)

where PLZ is the Landau–Zener transition probability for
a single potential energy surface crossing event (see Fig. 2),

PLZ ¼ 1 � exp(�2pg) (5)

And g is the adiabaticity parameter dened as

2pg ¼ p
3
2jHabj2

hneff
ffiffiffiffiffiffiffiffiffiffiffi
lkBT

p (6)

where h is the Planck constant and Hab ¼ hJa|H|JbiTS is the
Hamiltonian transition matrix element or electronic coupling
Fig. 2 Electron hopping diagram along the one dimensional config-
uration coordinate. The polaron spin densities with the yellow iso-
surface for the initial a and final b structures are shown (only local
structures of the solid are shown here).

This journal is © The Royal Society of Chemistry 2018
between initial a and nal b electronic states at the transition
state equilibrium geometry (TS), and l is the reorganization
energy as shown in Fig. 2. The deviation of kel or PLZ from unity
is generally interpreted as a non-adiabatic behavior. Note that
when PLZ(kel) / 2, Landau–Zener theory is reduced to classical
transition state theory; and when PLZ / 0, it is reduced to
Marcus theory.46

In principle, once one obtained Ea, neff, Hab, and l (if we
assume the nuclear tunneling factor G ¼ 1), the small polaron
hopping rates can be computed based on eqn (3). In practice,
these calculations have rarely been carried out for extended
solid state systems up to now. Most calculations have been
performed with nite cluster models,31,33,34,38 or hopping trans-
fer rates have been obtained at either the adiabatic or the
nonadiabatic hopping limit,34,40 or Hab has been estimated from
the energy difference between bonding and anti-bonding
polaron states computed by DFT,30,39 which may suffer from
the DFT band gap problems. Next, we will introduce how we
compute each part in eqn (3) to (6), and then how we obtain the
charge transfer rates in eqn (3) and carrier mobility in solids.
2.1 Activation energy Ea

It can be obtained through several theoretical methods
depending on adiabatic or non-adiabatic processes. A general
form independent on the adiabaticity is Ea ¼ DE‡ � D‡ (Eq. (9)),
where DE‡ is the activation energy on the diabatic potential
energy surface and D‡ is a correction factor relating DE‡ to the
activation energy on the adiabatic potential energy surface
(including the electronic coupling between the initial and nal
states, as shown in Fig. 2).35 The reaction coordinate R in Fig. 2
represents a collective variable describing relaxation of the
surrounding medium to changes in a local charge state.
Previous studies have shown that this one-dimensional cong-
uration coordinate can successfully describe the small polaron
hopping and hopping activation energies of TMOs.30,37 DE‡ and
D‡ can be obtained using:

DE‡ ¼ ðlþ DG0Þ2
4l

(7)

D‡ ¼ jHabj þ lþ G0

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ DG0Þ2

4
þ jHabj2

s
(8)

Ea¼DE‡�D‡ (9)

where DE0 is the energy difference between the minima of the
two diabatic potential energy surfaces a and b (which can also
be called “driving force” for the electron transfer), and l is the
reorganization energy as shown in Fig. 2.

In this paper we compared the barriers Ea obtained with
several approaches: the Climbing Image-Nudged Elastic Band
(NEB) approach47 through which the barrier is dened as the
difference between the initial state and the transition state
(saddle point) with both electronic and ionic relaxation where
the relaxed congurations of the images satisfy the perpendic-
ular component of the force equal to zero and the transition
J. Mater. Chem. A, 2018, 6, 20025–20036 | 20027
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state has only one large imaginary frequency along the
minimum energy pathway obtained by NEB, the commonly
used linear interpolation (LERP) of congurations between the
initial and nal polaron states with linearly interpolated atomic
positions and only electronic relaxation48 and the barrier is
dened between the highest energy along the pathway and the
energy of initial state, and the Constrained Density Functional
Theory (CDFT) method to obtain barriers based on eqn (7) and
(9), with a new implementation for solids.49 This method has
been recently applied to calculating the polaron hopping
barriers of metal oxides.50
2.2 Effective frequency neff

We obtained it through transition state theory with harmonic
approximations, when a transition state can be well-
dened. We note that for cases without a well-dened transi-
tion state (which means a non-adiabatic charge transfer
process), the Marcus theory formula is used instead:

k ¼ 2p
ħ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT

p jHabj2G exp

 
�ðDG0 þ lÞ2

4lkBT

!
; where an effec-

tive frequency is not necessary. The former case obtained
through transition state theory assumes that a hopping process
proceeds over a transition state, which is in thermodynamic
equilibrium with its surroundings. The vibrational degrees of
freedom at the transition state and the initial state determine
the partition function. Ab initio phonon calculations provide all
vibrational terms, i.e. the zero-point energy, temperature
dependent part of the internal energy and vibrational entropy,
taking into account the full coupling of the vibrational modes
between the polarons and the host lattice. The effective
frequency entering the rate equation eqn (3) and (6) is given
by:30,51

neff ¼ kBT

h

ZTS

ZGS

¼ kBT

h

Y3N�6

i

�
2 sinh

�
hnGS

i

2kBT

��
Y3N�7

i

�
2 sinh

�
hnTSi
2kBT

�� (10)

where ZTS and ZGS are the partition functions for the transition
state and the ground state, respectively; ni represent vibrational
eigenmodes of the corresponding geometry. The details of
geometry optimization and phonon calculations can be found
in the ESI.†
2.3 Kinetic Monte Carlo simulation for D

In order to accurately take into account the anisotropic polaron
hopping in pristine and doped systems, we implemented the
kMC sampling to simulate the diffusion coefficients and
hopping mobility in doped TMOs. The diffusion coefficient can
be expressed as36,52,53

D ¼ lim
t/N

D
LðtÞ2

E
2Nt

(11)

where N is the dimensionality of the kMC process, hL(t)2i is the
mean squared displacement (MSD) and t is the time. The MSD
20028 | J. Mater. Chem. A, 2018, 6, 20025–20036
is determined from the hopping rate kET and the distance
between two lattice sites for each hop included in the kMC
simulation (details of the algorithm and numerical tests can be
found in the ESI†). Aerward we can obtain hopping mobility
through the Einstein–Smoluchowski (ES) equation in eqn (2).
The main advantage of the above statistical sampling approach
over the analytic solution used in past work is that it takes into
account different hopping rates statistically and, most impor-
tantly, can also be applied to disordered and defective systems,
which have a signicant value for practical applications. The
electronic structure and geometry relaxation calculations are
performed in open source plane wave code Quantum-
ESPRESSO54 by using norm-conserving pseudopotentials55 with
several exchange correlation functionals, as will be discussed
later. More computational details can be found in the ESI.†

3 Results and discussion
3.1 Small polaron hopping conduction of pristine BiVO4

3.1.1 Activation barriers Ea with different theoretical
methods. The most important quantity for small polaron
hopping rates kET and mobility is the hopping activation barrier
(Ea) in eqn (3), due to its exponential relationship with kET. We
will examine the Ea of BiVO4 with various computational
methods in this section. The stable room temperature phase of
BiVO4 is monoclinic, which has a very similar atomic structure
to its high temperature tetragonal phase.56 The tetragonal phase
consists of VO4 and BiO8 polyhedra, with only one set of V–O
bond lengths and two sets of Bi–O bond lengths. Each oxygen
atom is three coordinated with one V and two Bi atoms. The
monoclinic phase structure can be viewed as a slightly distorted
tetragonal phase structure, and the V–O bond lengths are split
into two groups at the two sides of V (bond length splitting,
BLS). Consistent with past work,57,58 we found that at both the
DFT+U and PBE levels of theory, all V–O bond lengths become
very close and the BLS at the monoclinic phase cannot be
correctly described; instead, by increasing the exact exchange
ratio above 10%, the experimental monoclinic BLS can be
reproduced.58 The previous rst-principles calculation of the
BiVO4 band structure shows that the effect of BLS (or the
difference between tetragonal andmonoclinic phase structures)
is mainly important at the valence band maximum (VBM), but
the conduction band minimum is weakly affected,58 which
indicates that the BLS may have minimum effects on the elec-
tron conduction compared to the hole conduction, as discussed
below.

To understand the difference of electron transport between
tetragonal and monoclinic phases, we further investigated how
the hopping barriers depend on the tetragonal and monoclinic
structures, along with the comparison between different DFT
functionals and theoretical methods for activation barriers (i.e.
NEB, LERP, and CDFT), as shown in Table 1 and summarized
below. Firstly, we found that the hopping barriers increase with
the fraction of Fock exchange a in hybrid functionals (253 meV
at a¼ 0.1449; 357 meV at a¼ 0.25) based on constrained DFT.49

This is a general physical effect independent of the specic
systemwe study: increasing a in hybrid functionals will increase
This journal is © The Royal Society of Chemistry 2018
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Table 1 Polaron hopping activation barriers of nearest neighbor
hopping in pristine tetragonal and monoclinic BiVO4, computed with
four different methods, including Constrained DFT (CDFT), Nudged
Elastic Bands (NEB), Linear Interpolation (LERP) and Parabola Fitting
(Parabola Fit), at DFT+U (U (V) ¼ 2.7 eV), dielectric dependent hybrid
functional (DDH, a ¼ 0.1449) and PBE0 (a ¼ 0.25). Note that all the
geometries are optimized at the corresponding level of theory; at
DFT+U, the monoclinic phase does not have a bond length splitting
(BLS), unlike at hybrid functionals

Method DFT method Phase Barrier (meV)

CDFT Hybrid-DDH Tetragonal 253
CDFT Hybrid-DDH Monoclinic 249
CDFT Hybrid-PBE0 Monoclinic 357
CDFT DFT+U Monoclinic 217
NEB DFT+U Monoclinic 247
LERP DFT+U Monoclinic 257
Parabola t Hybrid-PBE0 Monoclinic 546
Parabola t Hybrid-PBE0 Monoclinic 460 (ref. 58)

Fig. 3 Spin density plots of the polaronic ground state (left) and
hopping transition state (right). We showed that the spin density of the
excess electron is well localized inside the VO4 tetrahedra at the
ground state, and the transition state is simply a combination of two
localized half-electrons on two sites. The isosurface is 0.0045 e per
bohr3.

Table 2 Key parameters computed fully from first-principles for the
charge transfer rate at 300 K of the first (1NN) and second nearest
neighbor (2NN) hopping studied in this work: electron coupling matrix
Hab, electron transmission coefficient kel, transfer probability PLZ,
reorganization energy l and hopping barrier Ea

Hopping 1NN 2NN

Distance Å 3.9 5.0
Hab (meV) 91 24
hneff (meV) 276 297
l (eV) 1.20 1.27
PLZ 0.60 0.057
kel 0.75 0.11
Ea (meV) (NEB) 250 269
kET (s�1) 4 � 109 3 � 108
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the electronic wavefunction localization and lower the elec-
tronic coupling between two hopping sites (lower Hab), and
therefore increase the hopping barriers. At the limit of a ¼ 0 (at
the PBE level), we cannot obtain a positive hopping barrier or
localized small polaron state, due to the charge delocalization
error in DFT semi-local functionals. Therefore, PBE does not
describe the conduction of BiVO4 as an activated polaron
hopping which is fundamentally contradictory to the experi-
mental conductivity measurements, and should not be used to
describe the electronic structure and carrier transport in BiVO4.

Secondly, the hopping barriers are very similar between
tetragonal and monoclinic phases by CDFT at the same level of
theory, specically the dielectric dependent hybrid functional
(DDH) where a depends on the inverse of the high frequency
dielectric constant 3N, with a ¼ 0.1449 (computed 3N ¼ 6.9) for
BiVO4.5

Thirdly, DFT+U and DDH give similar barriers within 40meV
(computed with CDFT). As DDH generally provides a reliable
electronic structure and polaronic properties for bulk
systems,59,60 the similar results between DDH and DFT+U (U (V)
¼ 2.7 eV based on past work5,57) show the reliability of DFT+U
calculations for the hopping barriers of BiVO4, which are also
more computationally affordable. Therefore, we used DFT+U for
barrier calculations with other methods as well, such as
Climbing Image-Nudged Elastic Bands (NEB) and Linear
Interpolation (LERP). Note that both NEB and LERP assume the
adiabaticity of the charge transfer process; namely a well-
dened transition state is necessary to dene the barrier
height. Indeed, we found a well-dened transition state of the
nearest neighbor hopping in BiVO4, where the spin density is
distributed equally on two hopping sites (see Fig. 3), which
proves the validity of NEB and LERP methods. Indeed, CDFT,
NEB and LERP give similar barriers (217, 247, and 257 meV
respectively) for the monoclinic phase at the DFT+U level of
theory. Therefore, we mostly used the NEB method with DFT+U
for the barrier calculations in the rest of this paper for a good
balance between accuracy and computational cost. On the other
hand, the parabola tting which neglects the electron coupling
This journal is © The Royal Society of Chemistry 2018
between two diabatic states will signicantly overestimate the
barrier of this adiabatic process (546 meV in this work, and 460
meV in ref. 37, strongly overestimated compared with 357 meV
by CDFT with the same functional PBE0).

3.1.2 Effective frequency neff and charge transfer rate kET.
All parameters used in Landau–Zener theory for charge transfer
rates kET are computed and summarized in Table 2. We exam-
ined both the rst (1NN) and second nearest neighbor (2NN)
hoppings as we found that their hopping barriers are compa-
rable (see Table 2); and a recent study21 claimed that a second
nearest neighbor hopping may have signicant contribution to
the hopping mobility in BiVO4. Hab and l are computed from
CDFT in a supercell of 192 atoms with DFT+U. Due to the high
computational cost, the effective frequencies were computed
from G-point phonons of the ground state and transition state
in a supercell of 96 atoms using eqn (10). Details of phonon
frequency calculations and the effective frequency from the
classical high-temperature limit are provided in the ESI.† The
effective frequency depends on the temperature,and in Table 2
we listed the effective frequencies at 300 K that we used in later
simulations of polaron mobility at 300 K for consistency.

From Table 2 we can see that the transfer probability PLZ is
0.6 for the rst nearest neighbor (1NN) hopping, which is on the
borderline of adiabatic hopping PLZ / 1 and nonadiabatic
J. Mater. Chem. A, 2018, 6, 20025–20036 | 20029
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Table 4 Drift mobility along different axes with and without second
nearest-neighbor hopping in the ab-plane at 300 K. 1NN denotes the
first nearest neighbor hopping and 2NN denotes the second nearest
neighbor hopping. Note that with kel ¼ 1, the ma/mc ratio including 2NN
(1NN + 2NN) is significantly overestimated compared with full
Landau–Zener theory (with computed kel)

Neighbor kel

Mobility (10�4 cm2 V�1 s�1)

Avg. ab-plane c-axis ma/mc

Only 1NN 0.75 1.38 0.90 2.35 0.38
1NN + 2NN 0.75/0.11 1.55 1.15 2.34 0.49
1NN + 2NN 1/1 3.06 3.19 2.82 1.13

Table 3 Electron drift mobility of pristine and doped BiVO4 from
experiments and first-principles calculations at room temperature
300 K

System Method
Electron dri mobility
(cm2 V�1 s�1)

0.3% Wa Experiment21 5 � 10�5

1% Wb Experiment18 2.2 � 10�4

Pristine This work 1.38 � 10�4

3% Mo(W) This work 1.07 � 10�4

6% Mo(W) This work 0.91 � 10�4

a Deduced from DC conductivity and the Seebeck coefficient.
b Measured combined electron and hole mobility from time-resolved
microwave conductivity.
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hopping PLZ / 0, and closer to the adiabatic one. Meanwhile,
the second nearest (2NN) hopping has PLZ ¼ 0.1, which is small
and we could state that this process is closer to nonadiabatic.
The small PLZ for the 1NN compared to the 2NN is because the
adiabaticity parameter in eqn (6) is proportional to the square of
electronic coupling Hab, which is in turn proportional to the
overlap of electronic wavefunctions between two hopping sites.
For both 1NN and 2NN hoppings, the electron is localized on
VO4. However, the hopping distances are different (i.e. 3.9 Å.
for 1NN and 5.2 Å. for 2NN), and the wavefunction overlap
decreases exponentially with distances that lead to small Hab

and low PLZ for 2NN. Interestingly, for the 2NN hopping, we still
found a well-dened transition state and a barrier of 269 meV
obtained by NEB, similar to the barrier obtained by CDFT (294
meV) where adiabaticity is not assumed in eqn (9). Note that the
transition from adiabatic to non-adiabatic does not have a clear
boundary, so the PLZ at which the transition state cannot be
dened is undetermined. Neither 1NN nor 2NN PLZ is very close
to 0 or 1, which means that the polaron hopping in BiVO4 is
neither completely adiabatic nor nonadiabatic, and demon-
strates the importance of applying Landau–Zener theory here
instead of classical transition state theory (which is only valid
for an adiabatic process) or Marcus theory (which is only
applicable to a nonadiabatic process).

The main difference between the rst and second nearest
neighbor hopping is the electron coupling matrix Hab, which is
4 times larger for 1NN hopping than 2NN hopping. This is
a direct consequence of a longer hopping distance (i.e. 5.0 Å in
2NN compared to 3.9 Å in 1NN): as the polaron localization
length stays the same, the wavefunction overlap between two
hopping sites is strongly reduced due to the exponential decay
of wavefunctions, leading to a strong reduction of Hab. This
results in the adiabaticity parameter g 16 times smaller in 2NN
than 1NN due to the |Hab|

2 term in eqn (6). The difference of
adiabaticity between different hoppings in the same system can
also be found in other materials, like the intralayer hopping and
interlayer hopping in FePO4, which has a layered structure.39

3.1.3 Small polaron mobility m for pristine BiVO4.
Computing the polaron hopping mobility from kMC simula-
tions can easily take into account the anisotropicity and 2NN
hopping, instead of using an analytic formula where only one
barrier can be included as with most of the past work.21,22,37,39

We always included the 1NN hopping that has a 3.9 Å distance
between two hopping centers and has the smallest barrier.
Meanwhile, we also considered the 2NN hopping which has a 5
Å distance and a comparable hopping barrier to 1NN as shown
in Table 2. Interestingly, from Landau–Zener theory we found
that the 2NN hopping charge transfer rate kET is less than 1/10
of 1NN in Table 2, so the 2NN hopping has an insignicant
effect on the mobility by kMC simulations as shown in Table 4.
Therefore, 2NN hopping can be safely neglected in the mobility
simulation of BiVO4. With the computational techniques and
numerical inputs discussed above, we obtained the mobility of
pristine BiVO4 in reasonably good agreement with the experi-
mental results of lightly doped BiVO4 as shown in Table 3.
Previous studies with kinetic Monte Carlo simulation34 signi-
cantly overestimated the barrier with the linear interpolation
20030 | J. Mater. Chem. A, 2018, 6, 20025–20036
method and thus likely underestimated the carrier mobility. In
addition, the polaron transport process was assumed to be fully
adiabatic in previous studies of BiVO4,21 where kel is approxi-
mated to be 1. We note that this assumption is not reliable in
BiVO4, which could lead to qualitatively wrong results, such as
the mobility ratio along a and c lattice directions ma/mc as dis-
cussed below.

It has been experimentally observed that the hopping
conductivity of monoclinic BiVO4 is anisotropic.21 The aniso-
tropicity of carrier conduction has been found in other metal
oxides as well, mainly due to specic geometric characteristics
such as a layered structure.30 The anisotropicity is also observed
in our kMC simulation as shown in Table 4. However, in BiVO4,
there is no such prominent geometry feature, and thus this
anisotropic mobility must be related to more subtle structural
differences among three lattice directions in BiVO4. Based on
a simple geometric relation (details can be found in the ESI†),
when only the nearest neighbor hopping is considered, the
square of displacement L2 along the a- or b-axis on average is
only 0.38 times that along the c-axis in BiVO4. Since the diffu-
sion coefficient D is proportional to L2 (eqn (11)), D or the
mobility m (linearly proportional to D in eqn (2)) along the a- or
b-axis is only 0.38 times that along the c-axis, which agrees with
our kMC simulation in Table 4.

The 2NN hopping is in the ab-plane, so the faster the 2NN
hopping is, the larger the ma/mc mobility ratio will be. If both
1NN and 2NN hoppings are assumed to be fully adiabatic with
kel z 1, the kMC simulation will give ma/mc ¼ 1.13, which is
qualitatively wrong. This is because the 2NN hopping has a kel 7
This journal is © The Royal Society of Chemistry 2018
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times smaller than that of 1NN, which will give a smaller charge
transfer rate (see Table 2) and a small contribution to carrier
mobility. With correct kel for both 1NN and 2NN hopping rates,
the carrier mobility did not change much aer we added 2NN
hopping; therefore we will neglect 2NN hopping in the next
sections.
Fig. 4 Total energies of polaronic states as a function of dopant–
polaron distances in Mo (3%, 6%) and W (3%) doped supercells. 3%
doping corresponds to one dopant per 192 atom supercell (32 BiVO4

units). All values are referenced to the most stable site with a dopant–
polaron distance of around 7 Å (with the lowest total energies).
3.2 Small polaron mobility of doped BiVO4

3.2.1 Polaron energies as a function of dopant–polaron
distances. In this section we will discuss the polaron–dopant
interaction and understand its effect on the mobility and
underlying mechanism, which is critical to further design of
materials with improved carrier mobility. Here we chose three
n-type representative dopant Cr, Mo and W substitution of V
atoms as examples to compare their effects on polaron hopping
transport properties. The structural models are constructed on
the basis of the chemical formula BiV1�xMxO4, where x is the
dopant concentration and M can be Cr, Mo or W. We chose 3%
and 6% doping concentrations as two examples in order to
study the effect of doping concentration on polaron transport.
The models are a 96-atom (6%) or a 192-atom (3%) supercell
with a V atom substituted by a dopant atom.We note that at 6%,
we expect signicant dopant–dopant interaction, different from
a dilute limit.

To understand the nature of polaron–dopant interaction, we
rst compared the total energies/stability when the extra elec-
tron from n-type dopants localizes at different V or dopant sites.
In particular, for the case of Cr, we found that the excess elec-
tron from Cr can only be stabilized at the Cr atom and form
a lled gap state that is mainly composed of Cr d orbitals just
below the conduction band (as shown in the projected density
of state and gap state wavefunction in the ESI†). In other words,
the electron from Cr cannot be ionized easily and form a stable
electron polaron at V, similar to the ndings in ref. 57. This is
due to the highly localized 3d orbitals of the Cr atom. Therefore,
Cr has an oxidation state of 5+ and is a donor (that potentially
forms a 6+ state) with a very high ionization energy as discussed
in ref. 61. As a result, Cr acts as an electron trap and electron–
hole recombination center.

In contrast, for the case of Mo and W doping, one electron is
spontaneously ionized from Mo/W, localizes at the V site and
forms a small polaron accompanied by local lattice distortions.
In another word, the extra electron from Mo/W (as an n-type
dopant) is thermodynamically more stable (i.e. having a lower
energy) to localize around a V site to form small polarons than
to localize around the dopant sites. The interaction between
Mo/W dopants and electron polarons can be understood from
the change of total energies as a function of distances between
the dopant and polaron in Fig. 4. We can identify two shells of
neighbor sites around one MoO4 or WO4 tetrahedron with
different trends. In the rst shell (with Mo/W–V distances
between 3 and 7 Å), the total energy decreases as a function of
the dopant–polaron distances; therefore, the interaction
between the two is repulsive and the polaron prefers to move
away from the Mo/W dopant. In the second shell (with Mo/W–V
distances between 7 and 11 Å), the total energy increases
This journal is © The Royal Society of Chemistry 2018
slightly as a function of dopant–polaron distances which indi-
cates a weak attractive interaction. Outside the second shell, the
interaction between a polaron and a dopant is negligible, so the
formation energy recovers the bulk limit. The boundary
between the two shells is approximately 7 Å (where the
minimum total energy in Fig. 4 is used as the reference zero),
which is already the largest dopant–polaron distance in the 6%
Mo doping supercell so the second shell exists only in lower
concentration systems, e.g. the 3% doping case. We note that
the total energies as a function of dopant–polaron distances in
3% W doped BiVO4 have very similar values to the case of 3%
Mo doping (reference to the polaron energy minimum at 7 Å) as
shown in Fig. 4.

In general, the ionized n-type dopants (which are positively
charged) and electron polarons have attractive electrostatic
interactions, which should not facilitate the polaron conduc-
tion in the crystal. The effect that counters the electrostatic
attraction stems from the local lattice distortion of dopants and
polarons. Specically, in pristine and doped BiVO4, when
a polaron was formed at a VO4 site, the V–O bond length is
stretched by 0.1 Å. Meanwhile, the Mo–O or W–O bond length
(even aer being ionized) is 0.06 Å longer than the V–O one
without a polaron. Two larger tetrahedra are energetically
unfavorable to stay close, in order to minimize the local lattice
distortions. We would expect this effect to decrease faster than
electrostatic interactions as the bond energy scales as zr2

(where r is the bond length) near equilibrium positions in the
harmonic approximation. On the other hand, the electrostatic
attraction being a long-range interaction decreases as r�1. As
a combination of two counteracting effects, the lattice distor-
tion dominates at a short polaron–dopant distance and elec-
trostatic attraction dominates at a long polaron–dopant
distance, which correspond to the two shells we showed in Fig. 4
respectively; then the energy minimum appears at the boundary
between the rst and the second shell. The energy required to
move a polaron from the energy minimum (7 Å to the dopant) to
the bulk region is only approximately 30 meV, which indicates
that polarons can move away from this energy minimum easily
J. Mater. Chem. A, 2018, 6, 20025–20036 | 20031
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Table 5 Hopping barriers computed by NEB along two directions at
different sites of 3% Mo doped BiVO4. L and R refer to the left and right
sides of L 4 R in the first column. Site names Vi are shown in Fig. 5
which are defined by the distances to the Mo dopant

Sites(L 4 R) Ea(L 4 R) (meV) Ea(R 4 L) (meV)

Pristine 250 250
V1 4 V2 231 268
V1 4 V4 213 296
V2 4 V3 236 255
V2 4 V6 240 260
V3 4 V4 243 268
V3 4 V5 240 260
V3 4 V7 250 242
V8 4 V6 252 243
V7 4 V6 254 241
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at room temperature. Overall, though all three dopants (Cr, Mo
and W) are n-type, the interaction between Mo/W and polarons
is dominated by a ”repulsive” interaction, which is opposite to
Cr being an electron ”trap”; the different types of interaction
determine whether dopants will facilitate or hinder the polaron
transport.

3.2.2 Polaron mobility of doped BiVO4 with kMC sampling.
Through coupling charge transfer rates by Landau–Zener theory
(eqn (3)) and kMC sampling, we for the rst time simulated the
polaron mobility in the presence of dopants under this frame-
work fully from rst-principles. We obtained optimized polaron
structures at all non-equivalent sites and computed hopping
rates between all rst nearest neighbor (1NN) pairs, and then
used them as inputs for kMC simulations of hopping mobility.
As discussed earlier, only 1NN is necessary for mobility calcu-
lations and 2NN has negligible contributions; therefore, all the
1NN hopping barriers were computed by NEB at the DFT+U
level, and neff and PLZ were kept at the same values as the pris-
tine systems.

Multiple nonequivalent hopping paths exist in the doped
system (3% Mo doping) when the periodic boundary condition
is applied, as shown in Fig. 5. The corresponding barriers ob-
tained by the NEB method are listed in Table 5. They are no
longer symmetric as pristine BiVO4; instead, generally along
one hopping direction (e.g. le side (L) / right side (R)) the
barrier is lower than the one in pristine, and along the reversed
hopping direction R / L, the barrier is higher. This is because
the interaction between the Mo/W dopants and small polarons
is repulsive at a short range as discussed in the previous section,
which leads to a lower barrier to hop away from the dopant and
a higher barrier to hop towards the dopant. We also found that
the barriers between two directions (L/ R and R/ L) in Table
5 become closer when the distance between a dopant and
Fig. 5 V atoms in the 3% Mo doped BiVO4 supercell. Hopping paths
listed in Table 5 are marked as arrows. V1 to V8 are sorted in an
ascending order based on their distances to the nearest Mo atom
(considering the periodic boundary condition). Equivalent V atoms are
marked with the same color. For simplicity, only one of equivalent
hopping paths is shown in the figure.

20032 | J. Mater. Chem. A, 2018, 6, 20025–20036
a small polaron is larger, due to a weaker dopant–polaron
interaction. Eventually a value close to the pristine bulk
hopping barrier will be recovered when dopants and polarons
are far enough from each other.

Due to the broken symmetry in the presence of dopants, the
carrier mobility of doped systems requires statistical sampling
of hopping rates along all possible pathways with periodic
boundary conditions. The kinetic Monte Carlo simulation with
the barriers in Table 5 as inputs is performed to obtain the
electron mobility in pristine and doped systems. The details of
the kMC sampling can be found in the ESI.† An effective barrier
can be dened from mobilities at different temperatures as
m(T) ¼ A exp (�Eeff/kBT). At room temperature, the effective
barrier is 250 meV for the pristine system and 267 meV for the
3% Mo doped system with part of hopping paths shown in
Fig. 5. The computed mobilities are listed in Table 3. Our
computed carrier mobility has reasonably good agreement with
experimental results,18,21 which validates our methodology and
numerical implementation. Overall the Mo or W doping (3%)
did not affect the mobility signicantly from our calculations
(slightly decreased from the pristine systems), for which
underlying physics will be discussed in detail below.

In general, polaron transport pathways in a doped system
can be classied into two groups as shown in Fig. 6: (A) polarons
which do not cross regions that have interaction with dopants
(represented by a red dashed circle in Fig. 6) and (B) polarons
which pass through those interaction regions. For (A), all
hopping barriers along the pathway are close to the pristine
system so the overall transport rate also recovers the pristine
limit, which is referred to as “A-Pristine-like” in Fig. 6.

For the group (B), when the dopant–polaron interaction is
attractive (i.e. along the “B-Trap” pathway in Fig. 6), the polaron
will move closer to dopants with a lower barrier (E3 in Fig. 6)
compared with the barrier in pristine systems. The rst step
determines whether the polaron will prefer to move along
pathway “B-Trap” instead of “A-Pristine-like” due to a low
barrier. Then the second step with a higher barrier than pristine
(E4 in Fig. 6) is the rate-determining step and causes the
hopping rate along this pathway “B-Trap” to be slower than “A-
Pristine-like”, or polarons could not even get out of trap
This journal is © The Royal Society of Chemistry 2018
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Fig. 6 Schematic diagram of polaron transport processes in doped
BiVO4 with periodic boundary conditions. The red dashed circle shows
the region where the dopant–polaron interaction is non-negligible.
Polarons hopping along pathway A are not affected by dopants while
the ones along pathway B are affected. The polaron–dopant inter-
action can be repulsive or attractive (trap), so there are three kinds of
pathways in total: (A-Pristine-like), (B-Repulsive) and (B-Trap). E1 and
E3 are the barriers to jump into the interaction region, E2 and E4 are the
barriers to jump out of this region and E0 is the hopping barrier in the
pristine system. For the dopant–polaron repulsive interaction (e.g. Mo
and W doping) we have E1 > E0 > E2 and for the attractive interaction
(e.g. Cr doping as a trap) we have E3 < E0 < E4. Therefore, to pass this
interaction region, a polaron must overcome a larger barrier and
a smaller barrier than E0.

Fig. 7 Schematic diagram showing how dopants having a repulsive
interaction with polarons can boost the polaron transport through
locally concentrated polarons. We considered the same number of
polarons in the pristine system (left) and the doped system with
repulsive dopant–polaron interactions (right). Because dopants like
Mo/W push away polarons to regions distant to all dopants, polarons
have a higher local concentration in such regions. Therefore polarons
can have larger wavefunction overlaps that may form more delo-
calized wavefunctions (shown as a larger blue region in the figure) that
may improve the hopping conduction.
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position 2 at room temperature. So the overall mobility along
“B-Trap” will be lower than that in the pristine system, and the
dopants act as a “trap” of the polaron, such as the case of Cr
doping.

When the dopant–polaron interaction is repulsive (i.e. along
the “B-Repulsive” pathway in Fig. 6), the polaron must over-
come a higher barrier (E1) to move closer to the dopant and
then move further with a lower barrier (E2) compared with the
pristine barrier. This high barrier step (E1) slows down the
overall hopping rate of this pathway, and also lowers the
probability of choosing this pathway “B-Repulsive”. As a result,
if the “A-Pristine-like” pathway exists in the sample, it will
dominate the transport process, which means that the mobility
will recover that of the pristine system. This is the case for Mo-
doped BiVO4 in our kMC simulation.

Therefore for such simulations with only one polaron and
one dopant in a supercell, once all hopping paths in an in-
nitely large system are considered, one can either get a smaller
mobility when the dopant is a trap (“B-Trap” in Fig. 6) or
a mobility similar to the pristine bulk when the dopant has
a repulsive interaction with the polaron (“B-Repulsive” in
Fig. 6), if the bulk region is recovered in the supercell, i.e.
“A-Pristine-like” path exists.

This conclusion holds only at a lower doping concentration
than 6% Mo or W, where the regions affected by dopants
This journal is © The Royal Society of Chemistry 2018
(“interaction radius” in Fig. 6 is around 7–9 Å based on calcu-
lations in Fig. 4) do not overlap with each other, assuming that
the dopants are homogeneously distributed in the material.
This will allow for “A-Pristine-like” pathways as there are no
pristine-like sites in the 6% supercell based on our calculations
in Fig. 4. In experiments the dopants are not necessarily evenly
distributed, where “A-Pristine-like” pathways may be possible
even at a higher concentration than 6%.12,18 The above discus-
sions described the physical pictures and explained the
underlying mechanism of our computed results in Table 3.

In addition, the polarons may not be homogeneously
distributed, even if the dopants are evenly distributed; instead,
in the presence of dopants similar to the case of W and Mo
doping (i.e. the polaron–dopant interaction is repulsive),
polarons are likely pushed away by dopants and concentrated in
regions distant from most dopants, as shown in Fig. 7. This
effect may play an important role in the hopping mobility but
has not been included in our supercell calculations: polaron
wavefunctions may overlap and become more delocalized
which can lower the polaron hopping barriers.37 At the highly
concentrated polaron limit, the band conduction with
completely delocalized electrons may be recovered. Therefore,
the carrier mobility we obtained for Mo and W doped samples
represents the low limit (in the absence of other dopants or
defects in the samples), which can be higher in experiments due
to inhomogeneous polaron and dopant distributions. As
J. Mater. Chem. A, 2018, 6, 20025–20036 | 20033
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discussed in the introduction, experimentally whether the
electron mobility increased or decreased in the presence of Mo/
W dopants is still controversial. Our results may explain the
physical reason for this controversy: depending on the doping
concentration and distributions, one may get lower, similar or
higher hopping mobility compared to the pristine systems.
Another complication is that the oxygen vacancy may also affect
the hopping mobility signicantly (whose concentration may
not be the same in pristine and doped systems). But it is diffi-
cult to quantify its concentration experimentally, which could
also lead to inconsistency between different experimental
results.
4 Conclusion and outlook

In conclusion, we established a theoretical framework of
coupling Landau–Zener theory and kinetic Monte Carlo (kMC)
simulations to compute hopping mobility for anisotropic and
doped systems fully from rst-principles. We used BiVO4 as an
example where we obtained electron mobility in good agree-
ment with experimental measurements. We showed that the
statistical sampling of hopping trajectories is critical for
anisotropic systems and especially important for doped
systems, where the symmetry of bulk systems is broken.

The electron polaron transport in BiVO4 is neither fully
adiabatic nor nonadiabatic, and the correct description of the
polaron hopping rate and anisotropicity demands Landau–
Zener theory instead of classical transition state theory or
Marcus theory in the corresponding adiabatic and nonadiabatic
limits. From Landau–Zener theory, the 1NN hopping has
a much larger hopping rate than the 2NN one due to much
smaller electronic couplings and kel in the latter case, although
their hopping barriers are comparable. Not taking into account
kel explicitly in the rates and assuming adiabatic transfer for
both 1NN and 2NN hoppings will result in qualitatively wrong
mobility. In addition, the electron mobility in pristine BiVO4

shows strong anistropicity, which requires statistical sampling
like kMC instead of an analytical formula with one effective
barrier.

With this approach, we also studied the doping effect on the
polaron transport properties at the microscopic level, by using
Cr, Mo, andW doped BiVO4 as examples. We showed that in the
case of BiVO4, the Mo/W dopant acts as a ”repulsive” center and
polarons will be pushed away from the dopant outside the
dopant–polaron repulsive region with a radius of around 7 Å.
This is because both Mo/W substitution of V atoms and electron
polaron formation locally expand the lattice, which creates
a short-ranged repulsive interaction between the two in order to
minimize the local strain, despite the long-range Coulomb
attraction between an ionizedMo/W dopant (positively charged)
and an electron polaron (negatively charged). On the other
hand, Cr acts as a strong trap of electrons and will lower the
hopping mobility and conductivity. The nature of dopant–
polaron interactions such as a repulsive interaction, character-
ized by total energy changes as a function of polaron–dopant
distances, can be used as an important descriptor to screen the
20034 | J. Mater. Chem. A, 2018, 6, 20025–20036
promising dopants that can potentially overcome low hopping
mobility in polaronic oxides.

For polaron mobility calculations of doped materials, we
found that a mobility either less than or equal to that in pristine
systems will be obtained, as long as the dopant and polaron
concentration is relatively low and homogeneously distributed,
i.e. numerically, one dopant and one polaron are considered in
the simulated supercell with periodic boundary conditions.
This represents a lower bound of the hopping mobility,
considering that polarons may be concentrated in small regions
distant from all dopants if dopants and polarons have repulsive
interactions. The overlap of polaron wavefunctions and forma-
tion of delocalized states can lower the hopping barriers,
improve the hopping mobility and even change the nature of
conduction.

Therefore, to boost small polaron conduction in polaronic
oxides, “good dopants” should be able to increase the overall
electronic conductivity following the criteria below: (a) being
a shallow dopant with low ionization energies such as W/Mo in
BiVO4, which can increase carrier concentration at room
temperature; (b) having a “repulsive” interaction with the
polarons instead of an attractive interaction, which can easily
hop away from the dopants, and in that case the computed
mobility should be similar to the pristine systems with the
homogeneous distribution of dopants and polarons.

Future work requires simulations with multiple dopants and
polarons in a supercell and compute dynamical electronic
couplings and hopping rates depending on polaron–polaron
distances (taking into account polaron wavefunction overlaps
quantum mechanically), which can provide a further under-
standing of the effect of inhomogeneous distribution of
dopants/polarons on polaron transport in both pristine and
doped materials. We note that our framework by coupling
Landau–Zener theory and kMC is an important forward step
towards simulating hopping mobility in anisotropic and doped
systems from rst-principles, and understand the doping effect
on polaron mobility at the microscopic level.
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