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Abstract—Vehicles now include Electronic Control Units
(ECUs) that communicate with each other via broadcast net-
works. Cyber-security professionals have shown that such em-
bedded communication networks can be compromised. Very
recently, it has been shown that embedded devices connected to
commercial vehicular networks can be manipulated to perform
unintended actions by injecting spoofed messages. Such attacks
can be hard to detect as they can mimic safety critical actions per-
formed by ECUs. We present a precedence graph-based anomaly
detection technique to detect malicious message injections. Our
approach can detect malicious message injections and is able to
distinguish them from safety critical actions like hard braking.

Index Terms—J1939, Application Layer, Message Injection,
Precedence Graph, Time Series, Anomaly Detection

I. INTRODUCTION AND RELATED EFFORTS

A. CAN and SAE J1939

Modern vehicles have a number of embedded electronic
devices that control the vehicle operation and are referred
to as Electronic Control Units (ECUs). ECUs communicate
with each other over the Controlled Area Network (CAN)
bus. The CAN protocol [1] facilitates highly reliable commu-
nication over a multi-master broadcast bus by using a priority
based arbitration scheme. However, it does not indicate how
messages are used by ECUs. Such decisions are made using
specifications and protocols designed to run over the CAN bus.
While passenger vehicles mostly adopt manufacturer defined
standards and specifications [2], commercial vehicles such as
trucks and buses use a common standard specified in the SAE
J1939 [3] documents. These common set of standards aid
in reliable and interoperable communication between ECUs
manufactured by different OEMs.

B. Command Injection Attacks and Detection Challenges

Researchers [4], [5] have shown that passenger vehicles can
allow both physical and remote access to the CAN bus. Thus,
an attacker may inject malicious messages into the CAN bus
[6], [7], [8] and disrupt regular vehicle functions. Burakova
et al. [2] showed that by injecting J1939 standardized control
command messages (command injection attacks), driving criti-
cal ECUs such as the Engine ECU can be tricked into perform-
ing activities potentially causing damage to heavy vehicles.

In order to formulate a successful attack, the attacker needs
to have adequate information about the underlying network.
Although the openly available J1939 standards makes this task
easier for the attacker, OEM specific engineering aspects like
whether a particular message is supported by an ECU or how
an ECU reacts to a specific command, may be hidden from
an attacker [10]. While developing the attacks, Burakova et al.
[2] had to modify some of their initial strategies based on the
observed ECU reactions. Based on this observation, we posit
that before launching an actual attack, an attacker may probe
or fuzz test the underlying network and the ECUs attached to
it. In this paper, we attempt to detect such command injection
attacks and associated probing/fuzzing activities.

Since J1939 standards are followed ubiquitously, a com-
mand message on the network can be easily identified at
runtime. However, since commands are J1939 specific mes-
sages it may be hard to distinguish malicious injections from
legitimate ones. Even if the attacker injects a bursty sequence
of command messages to establish continuous control over
an ECU, it may still be hard to distinguish, as similar bursty
sequences may be observed when safety critical units like anti-
lock braking and traction control systems attempt to stabilize
the vehicle during hard braking or drive slips. Although
the latter case denotes some form of driving anomaly, it is
not necessarily malicious and in this work we attempt to
distinguish between malicious command injections and safety
critical legitimate ones.

A number of challenges are associated with this problem.
First, we need to eliminate false positives (as mentioned in
the previous paragraph). Second, malicious message injection
detection needs to be done in (almost) real-time [11]. Third,
the solution needs to be readily deployable across different
models of commercial vehicles that are driven in various
conditions. Traditional supervised anomaly detection systems
rely on previously recorded information that represent the
normal state of operations and compare runtime operations
with the recorded traffic. Such solutions are infeasible as
vehicles differ with respect to their normal characteristics as
the drivers have different styles and the road conditions also
vary.



C. Related Efforts

To the best of our knowledge, there is only one proposal
[12] that has been made to detect intrusions on J1939-based
networks. This paper proposes to use a machine learning
based approach to solve the aforementioned problem. Machine
learning based intrusion detection approaches [13], [14] have
been adopted previously in passenger vehicles. However, such
approaches require offline training data to characterize normal
vehicular operations. In-vehicular communication traffic de-
pends largely on the internal mechanics, the driver’s behavior
and environmental factors. Therefore, supervised anomaly
detectors trained on sample dataset obtained from one driving
condition may not be effective to detect attacks executed under
different driving conditions. A second category of approaches
look at timing or message frequency based anomalies [15],
[16], [17]. Legitimate command injections can be bursty and
situational and hence may be difficult to characterize normality
using message transmission rates. Muter et al. [18] propose
an entropy-based approach and flag peaking system entropy
values as intrusions. However, they do not consider the opera-
tional situation of a vehicle [19]. For example, under abnormal
driving conditions like hard brakes and drive slips, the entropy
of the communication system can observe peaking values
thereby increasing the chance of false alarms. Signature-based
approaches [20], [21] have also been proposed, but creating
and updating attack signatures in the domain of vehicular
security can be difficult [11].

In this paper we make the following contributions:

1) We first propose an approach which models sequentially
arriving discrete J1939 parameters using a modified
representation of precedence graphs [22] which we refer
to as Report Precedence Graphs (RPGs).

2) We then introduce two features that can be used
to characterize normal driving behavior and legiti-
mate/malicious command injections from periodically
generated RPGs. The two features, Normalized Graph
Flux Capacity (NGFC) and Edge Weight Distribution
Skewness (EWS), are based on the structural nature
of the graph and do not rely on individual message
contents. Thus, J1939 specific domain knowledge is only
used to generate RPGs and not for detecting injections.
We thus posit, that our approach may be used equally
efficiently on passenger cars if such RPGs can be built
from manufacturer specifications.

3) Finally, we present a real-time detection algorithm which
makes one-step-ahead [23] time series predictions, and
compares the obtained NGFC and EWS values with
their predicted counterparts to detect injection attempts.
Using a moving window of 30 seconds, our approach
detects malicious injections and distinguishes them from
legitimate commands. Furthermore, since we do not
make use of any offline training data or previously
crafted attack signatures, our approach can be used
readily on any vehicle, driven by any driver and under
any environmental conditions.

Fig. 1: SAE J1939 Protocol Stack

Fig. 2: J1939 Message [25]

The rest of the paper is organized as follows. Section II
highlights some preliminaries of the J1939 protocol stack and
introduces RPGs. Section III characterizes message injection
attacks using the newly introduced features, namely, NGFC
and EWS. Section IV demonstrates our approach for detecting
intrusions in real-time. Section V showcases the ability of our
approach to detect command injection attacks, even in the
presence of safety critical activities like hard braking. Section
VI highlights the contributions and suggests possible future
directions.

II. BACKGROUND AND PRELIMINARIES

A. SAE J1939 Application and Data-Link Layer Specifications

The SAE J1939 specifications are organized based on the
OSI seven layer networking model. Of the seven layers, the
most critical are the Application Layer [24] and the Data-
link Layer [25]. The Data-link layer specifications enable
reliable data-transfer between ECUs and the Application layer
specifies how the recipient ECUs interpret the messages and
realize various vehicular parameters embedded in them. The
J1939 protocol stack1 is shown in Fig. 1. Messages created
at the Application layer must be transmitted through the
Physical/CAN layer. J1939 standards allow message sizes to
be greater than maximum limitation imposed by the underlying
CAN standards. Consequently, J1939 messages are broken
down into smaller units and then transmitted on the physical
bus as sequence of bits constituting CAN frames. Here we
focus only on J1939 messages that fit into one CAN frame
and refer to it as a message.

ECUs, listening on a CAN network, read CAN frames from
the bus and process them following upper layer standards, like
SAE J1939. After removing CAN specific information bits
from the message, the remaining bits are interpreted using the
J1939 Protocol Data Unit (PDU) format shown in Fig. 2. A

1SAE specification documents are available for 4 of the 7 OSI layers at
http://www.sae.org/standardsdev/groundvehicle/j1939a.htm

http://www.sae.org/standardsdev/groundvehicle/j1939a.htm


J1939 message is split into an Identifier field and a Data field.
The Identifier field consists of 6 different components namely,
Priority (P), Extended Data Page (EDP), Data Page (DP),
PDU Format (PF), PDU Specific (PS) and Source Address
(SA). P and SA denote the criticality and originator ECU of
the message respectively. EDP and DP are predefined 1-bit
binary values specified in the Data-link layer documentation
[25]. The information contained in the EDP, DP, PF and PS
fields can be combined to obtain two critical J1939 concepts
namely, Parameter Group Number (PGN) and the Destination
Address (DA) for a J1939 message. PGNs are unique numbers,
assigned to each message, that can be used to determine the
meaning of a J1939 message. For example, messages related to
torque or speed control correspond to PGN 0 (000016). If the
value in the PF field is less than 240, the PGN is calculated
only on the basis of the EDP, DP and PF fields, while the
PS field expresses the destination address. Otherwise, the
PGN is calculated using bits from the EDP, DP, PF and
PS fields, and the destination address is interpreted as 255.
Thus, J1939 standards allow broadcast messages as well as
destination specific messages. J1939 messages corresponding
to a particular PGN can be transmitted periodically or in an
ad-hoc manner [9].

Values of different vehicular parameters are encoded in the
data field of the J1939 message. In order to obtain these values,
the PGN for a message is first calculated using the logic
expressed above. The J1939 Digital Annex [26] maps every
PGN to a set of Suspect Parameter Numbers or SPNs. SPN
determines how J1939 data is utilized by application software
and firmware. Each SPN is attributed to a starting bit position
in a message and a length which can be used to extract the
exact set of message bits that correspond to that SPN. These
bits are then converted to application understandable forms
using resolution and offset factors, also assigned to the same
SPN. To clearly comprehend the above mentioned procedure
let us consider the example J1939 message (split into ID and
Data fields) shown below.

ID → 110︸︷︷︸
P

PGN︷ ︸︸ ︷
0︸︷︷︸

EDP

0︸︷︷︸
DP

11111101︸ ︷︷ ︸
PF

11100001︸ ︷︷ ︸
PS

00110001︸ ︷︷ ︸
SA

Data→ 01100100︸ ︷︷ ︸
SPN2609

111111 01︸︷︷︸
SPN7853

11111111111111..

Since the value contained in the PF field is greater than 240,
the PGN is calculated using all of EDP, DP, PF and PS fields.
In this case the binary to decimal conversion yields PGN
64993, which denotes “Cab A/C Climate System Information”
[26]. From the J1939 Digital Annex, this PGN is associated
with 2 distinct SPNs:

• 2609 “Cab A/C Refrigerant Compressor Outlet Pressure”,
expressed in byte 1 (from left) and calculated by multiply-
ing the decimal equivalent with the resolution “16kPa/bit”
and adding to it an offset of “0”.

• 7853 “Air Conditioner Compressor Status”, expressed in
byte 2 (from left) bits 0 to 1 and used in binary form.

Report Interpretation SA PGN
0 Accelerator pedal 1 in low idle condition 0016 61443
1 Brake pedal released 0016 65265
2 Proprietary retarded control mode 0F16 61440
3 Low idle governor retarded control mode 0F16 61440
4 Accelerator pedal 1 not in low idle condition 0016 61443
5 Brake pedal depressed 0016 65265

TABLE I: Report Interpretations from RPG in Fig. 3

The actual value of the “Cab A/C Refrigerant Compressor
Outlet Pressure” can thus be calculated as 011001002 ∗1610+
010 → 10010 ∗ 1610 → 1600 kPa. Similarly, the “Air Con-
ditioner Compressor Status” is set to 012 which denotes that
the “Air Conditioner Compressor is ON” [26]. Note that the
message bits which are not used for parameter instantiations
are set to 1.

According to the J1939 specifications, some SPNs are used
to denote states of various vehicular functional parameters. For
example, the 2 bit SPN 597 can take 4 values, two of which
denote states like brake pressed (002) and released (012). We
refer to these SPNs as state SPNs (sSPN ).

B. Report Precendence Graphs (RPG)

RPGs are used to express the temporal relationships be-
tween various vehicular parameters. We begin by defining the
concept of a report.

Definition 1 (Report). Reports are the basic units of state
information received on the CAN bus. A report can be ex-
pressed as a set of sSPN-value-source triples contained in a
single J1939 message.
r = {(sSPN, v, sa)| (∃PGN,
sSPNs are assigned to PGN and transmitted by source sa) ∧
(v ∈ {0, 1}length of sSPN)}

A report is a collection of sSPN-value pairs from a single
message transmitted by a specific source. Since messages
on the J1939 network are distinguished using PGNs, ev-
ery report is associated with a single PGN. For example,
{(597,002,002),(598,012,002)} is a report generated from a
message associated with the PGN 65265 and transmitted
by source 0016 corresponding to the Engine ECU. This de-
notes the state information (Brake pedal released,
Clutch pedal depressed). Since the same PGN can
be transmitted by different ECUs, multiple reports can be
associated with the same PGN, albeit being distinguished by
the source address of that ECU. Note that, some SPN and
sSPN values may denote parameters not being supported by
the vehicle. These are denoted by sets of ’1’s in the binary
representation of the corresponding sSPN values and we ignore
them when generating reports.

Definition 2 (Report Precedence Graph). The Report Prece-
dence Graph (RPG) is a labeled directed graph G = (R, T, L)
where each node r ∈ R is a report and each edge 〈ri, rj〉 ∈ T
denotes report rj transmitted after report ri (ri ≺ rj with no
other rk such that ri ≺ rk and rk ≺ rj), a total of li,j ∈ L
number of times.



Fig. 3: Runtime Instance of a Report Precendence Graph

Fig. 3 shows a 15 second snapshot of an RPG built from
3 distinct PGNs transmitted on a heavy vehicle CAN bus by
the engine (0016) and the retarder (0F16). Table I shows the
interpretation [26] of the RPG in Fig. 3. The edge labels in the
graph denote the number of times reporti precedes reportj .
Assuming that the only ECUs connected to a CAN bus are the
engine (0016) and retarder (0F16) and only 3 distinct PGNs
are transmitted, a third party tool sniffing the bus can construct
the RPG by following the steps shown below.

1) Observe the PGNs in the message, such as, 61443,
65265 or 61440.

2) Interpret the vehicle parameters embedded in the mes-
sage by evaluating SPN values.

3) Express a report as a collection of sSPN-value pairs
from a given source. As an example, Report 0 from the
engine is constructed by observing just one SPN-value
pair {(558, 012)} from PGN 61443.

4) When a new message is seen on the bus, repeat steps 1
to 3 and create an edge from the previously seen report
to the newly formed report to denote temporal prece-
dence. Note that the RPG does not represent transitive
precedences (definition 2).

This procedure appears in lines 1-10 of Algorithm 1 in Section
IV.

Two observations can be made from the RPG in Fig. 3:
• Firstly, reports generated from PGN 65265 (1 and 5) are

always preceded by reports generated from PGN 61443
(0 and 4). Similarly, reports generated from PGN 61440
(2 and 3) are always preceded by reports generated from
PGN 65265 (1 and 5). This implies that in the period
of 15 seconds during which this RPG was built PGNs
61443, 65265 and 61440 were seen on the bus in the
following order: 61443 ≺ 65265 ≺ 61440. We believe
this order depends on engineering and/or specification
related factors like ECU firmware programming logic,
PGN transmission rates etc.

• Secondly, all reports generated from one PGN are not
equally likely to precede all reports generated from
another PGN, even if the first PGN is seen before the
second in the bus traffic. For example, although all of
reports 2, 3, 4 and 5 occur in the given time period
and PGN 65265 is seen before PGN 61440, report 2 is
never preceded by report 5. In other words, driving states
seen in that period of time did not require the retarder
to be under proprietary control when brakes were being
pressed. This reflects temporal behavioral aspects of the
driver and the vehicle.

The RPG thus reflects both behavioral and engineer-
ing/specification related aspects of the vehicle.

III. CHARACTERIZING NETWORK INTRUSIONS USING
RPGS

We now highlight features of the RPG that can be used to
characterize normal driving scenarios and command injections.

A. Normal Driving

The driving pattern of a truck depends on how the driver
responds to external stimuli. Predicting such subtle external
changes a priori is hard and cannot be easily inferred from the
in-vehicle bus traffic. For instance, just by observing the bus
traffic, it is difficult to predict the external road conditions and
the driver’s response. However, once such a change in external
stimuli happens and the driver reacts, regular precedence
patterns can be observed in the RPG. Fig. 3 shows one such
scenario where proprietary control mode of the retarder is
activated only when the brake pedal is released. Note that,
such patterns reflect the engineering and behavioral aspect of
the driver/vehicle under certain driving states.

At any given point there may exist some less frequent report
precedences. For example, in Fig. 3 we observe that reports 4,
0 and 3 precede each other less frequently. Such unexpected
precedences that are rare do not hinder our detection approach
presented in the next section.

B. Command Injections

Fig. 4 shows the RPG after malicious spoofed messages
were injected in the same time frame of generation as the
original RPG shown in Fig. 3. The newly introduced attack
report is a commanding RPM to the engine and is
labeled 6 in Fig. 4. Burakova et al. [2] theorized that prolonged
injection of this command, with high RPM values, can damage
the engine. As mentioned in section I-C, this can also be a
fuzzing or probing attempt to observe the response of the
engine ECU to such a command. To mimic both the above
mentioned scenarios, the RPG in Fig. 4 was generated by
repeating the injected messages at a 50% probability for
a period of 15 seconds. Similar to [15], we assume that
the injected messages exist on the bus along with normal
messages.

There are two observations to be made from Fig. 4.



Fig. 4: Runtime Instance of a Report Precedence Graph Under
Message Injection Attack

a) Average Flux Capacity of an RPG: At the time of
normal driving the precedence patterns seen in the RPG reflect
the normal engineering and behavioral aspects of the vehicle.
Thus, if the RPG lacks some of these patterns significantly in
the bus traffic, it indicates some form of anomalous activity.
If the attacker has no prior knowledge of how the vehicle is
engineered or how a driver behaves, the precedence patterns
will be random and there will be no strong coherence with
report precedences generated from normal traffic.

To quantify occurrences of random precedence we make use
of the concept of flux capacity. Flux capacity was introduced
by Martinez et al. [27] to quantify the amount of information
flow that passes through gene regulators. It is defined as the
product of the in-degree and out-degree of a node. In this work,
we use it to denote the number of two-edge paths passing
through a report r in an RPG.

fcri = |(rj , ri)| ∗ |(ri, rk)| ∀(rj , ri), (ri, rk) ∈ T

= din(ri) ∗ dout(ri)

For example, the flux capacity of report 6 in the Fig. 4 is
calculated as 6*6 = 36. This is also the number of two edge
paths passing through report 6.

Using the concept of flux capacity we now define the
concept of Normalized Graph Flux Capacity (NGFC) as:

Definition 3 (Normalized Graph Flux Capacity). The Normal-
ized Graph Flux Capacity of an RPG = (R, T, L) denotes the
amount of randomness observed in report precedences.

NGFC =
∑|R|

i=1 fcri
|R|3

NGFC is thus the cumulative flux capacity of all reports
in the RPG, normalized to the cubic power of the number of
reports R. The choice of the cubic power in the denominator
is motivated by the extreme case, where, if an RPG is a
complete graph having n nodes, will be of the order of n3

(a) RPG Fig. 3 - Normal Driv-
ing Conditions

(b) RPG Fig. 4 - Message In-
jection Attacks

Fig. 5: RPG Edge Weight Distributions

(
∑n

i=1(n− 1) ∗ (n− 1)). Thus, as random precedences begin
to be seen in the RPG and every report becomes equally likely
to be preceded by every other report, the NGFC value starts
approaching 1 (n

3

n3 ). This phenomenon can be observed in Fig.
4 where the NGFC is calculated to be 0.27, almost double of
what is calculated from Fig. 3 i.e 0.12.

b) Skewness in Edge Weight Distribution of an RPG:
Another important feature that can be observed from the RPG
in Fig. 3 and Fig. 4 is the skewness of distribution of the edge
weights (EWS). As observed from Fig. 5, the distribution of
the edge weights under an attack becomes increasingly more
right-skewed. In other words, the level of positive skewness
increases in the Fig. 5b as compared to Fig. 5a. Python-
Scipy’s skewness [28] measure2 for the distribution in Fig.
5a is obtained as -0.113 and that for the distribution in Fig.
5b is obtained as 0.745.

The increase in positive skew under an attack can be
attributed to the same factor as that observed in the previous
case. Due to the random precedences observed after the
introduction of report 6 in Fig. 4, the injected report interleaves
with normal reports and the original edge weights in Fig.
3 reduce, making room for new, less-weighted edges. For
example, the weight for edge 〈r0, r1〉 reduces from 63 to 54
and newer lower weight edges such as 〈r6, r5〉 and 〈r3, r6〉 are
introduced. In other words, the incapability of the attacker to
predict the normal report precedences leads to the introduction
of random, less-weighted edges, thereby increasing the overall
skewness.

IV. DETECTING INTRUSIONS IN REAL TIME

RPGs are useful in observing temporal relationships be-
tween various vehicular parameters which describe the behav-
ior of the driver or functionalities performed by the vehicle.
Moreover, RPGs can be used to detect command injections in
embedded vehicular networks using NGFC and EWS. We now
describe how these two features are used to detect command
injection attacks.

2Measured as g = m3

m
3/2
2

, where m3 and m2 are the third and second

moments about the mean.



Fig. 6: Sampled NGFC and EWS Time Series

A. Representing Runtime Vehicular Traffic as NGFC and EWS
Time Series

1) Sampling Window: NGFC and EWS are calculated on
pre-built RPGs. In order to build an RPG one needs to observe
a set of J1939 messages on the CAN bus for some period
of time. We refer to this period as sampling period during
which NGFC and EWS values are sampled. Calculating graph-
based and statistical features can be time-consuming. ECUs
often operate under strong resource constraints [29] and thus
processing large graphs in real time might lead to undesired
performance bottlenecks. It is therefore desirable to calculate
NGFC and EWS during a sampling period, while a new
RPG is built in parallel. Then again, the sampling period
should not be too large, as in that case, one might under-
sample the feature values, therefore hindering the detection
process. Keeping these factors in mind, we decided to choose
a sampling period of 1 sec. We also noticed that most critical
J1939 PGNs (having priority ≤ 3 ) are transmitted at rates of
1 sec or lower. A sampling period of 1 sec would thus allow
us to see most critical J1939 messages on the bus.

2) NGFC and EWS Time Series: NGFC and EWS values
measured in the sampling period of 1 second are shown in
Fig. 6 as time series. These series were generated from one
of the recorded traffic datasets we used later (section V) for
evaluating our detection algorithm. While building the RPG
from which these NGFC and EWS values were calculated we
considered every state SPN that was transmitted on the bus.
We now demonstrate specific behavior of the time series (with
reference to Fig. 6) which can be used to individually classify
normal driving, legitimate and malicious message injections.

• Normal Driving During the periods of normal driving
both time series fluctuate around some base value, with
mostly small positive peaks. Normal driving is highly
influenced by environmental stimuli. Moreover, certain
factors like increased bus contention and fluctuating

driver behavior can alter NGFC and EWS values. Under
the assumption that such factors are independent and
identically distributed, the sampled values tend to form a
stationary time series. However, the time series may see
short trends occasionally, denoting periods of increasing
or decreasing stability. This can be seen in Fig. 6 where
the NGFC and EWS values observe increasing and de-
creasing trends towards the beginning. This is because
towards the beginning the vehicle sees new reports and
new low weighted edges being introduced. However, such
new introduction soon begins to dissipate leading to an
almost stationary time series. For the sake of simplicity
and under a lack of evidence from Fig. 6, we assume that
NGFC and EWS time series lack any form of seasonal
trends.

• Legitimate Command Injections As highlighted before,
legitimate command injections are performed in safety
critical scenarios. However, such activity is performed
by specific ECUs that follow some pre-planned or pro-
grammed behavior. This means that NGFC and EWS val-
ues obtained during those period do not exhibit significant
abruptness. This behavior can be seen in Fig. 6 and is
highlighted in blue boxes.

• Malicious Command Injections The portion of the
NGFC and EWS time series that show simultaneous
significant abrupt peaks, denote some form of unnatural
behavior leading to random low count precedences. This
is the portion where malicious commands were injected
into the recorded bus traffic. Although, the attack traffic
used to generate Fig. 6 is a simulation, we believe in a
real driving scenario even sharper abrupt peaks can be
seen if the driver or the vehicle start taking rapid cau-
tionary actions on sensing the attack, thereby generating
previously unseen and possibly random precedences.

B. Detection Methodology

To detect message injection attacks in real-time we used
a modified form of the methodology used by Brutlag et al.
in [23]. Brutlag et al. suggest making one-step-ahead predic-
tions using Holt-Winter’s exponential smoothing. However, the
NFGC and EWS time series do not exhibit any predictable
seasonal trends, but may exhibit sudden short trends. Under
this assumption, we make use of the simple exponential
smoothing and Holt’s exponential smoothing [30] technique to
make future predictions, depending on whether the small set of
predictor time series values exhibit stationarity. To verify the
assumption of stationarity, we use Augmented Dickey-Fuller
[30] unit-root test.

Algorithm 1 shows the real-time detection methodology
used to flag command injection attempts. We begin by gener-
ating the RPG in real time. Lines 1 - 10 show this process. As
newer messages are seen on the CAN bus, we generate reports
out of incoming messages if they contain state SPNs. A new
node is added to the RPG if it is not already contained in
the set of existing reports R. A new precedence edge 〈ri, rj〉
is added if it is not a self-loop. Finally, the value for li,j is



Algorithm 1 Real-Time Command Injection Attack Detection
Require: J1939 Traffic, confidence

RPG = (R, T, L), R, T, L = ∅
rcurrent = null
startTime = 0.0 sec
samplingWindow = 1 sec
dWindowCounter = 0
fcBuf, skBuf= ∅ . queue data structure

1: while there are messages in traffic do
2: ri ← Report from J1939 Message
3: if ri /∈ R then
4: R← R ∪ ri
5: end if
6: if ri 6= rcurrent ∧ rcurrent 6= null then
7: T ← T ∪ 〈rcurrent, ri〉
8: Update L, set li,j ← li,j + 1
9: end if

10: rcurrent = ri
11: if time ≥ startTime + samplingWindow then
12: dWindowCounter = dWindowCounter + 1
13: if dWindowCounter = 31 then
14: is attack = SIG-INC(fcBuf,NFGC(R,T)) ∧ SIG-

INC(skBuf,EWS(L))
15: if is attack then
16: RAISE ALARM
17: else
18: fcBuf.push(NFGC(R,T)), skBuf.push(EWS(L))
19: fcBuf.pop(NFGC(R,T)), skBuf.pop(EWS(L))
20: end if
21: dWindowCounter = dWindowCounter - 1
22: else
23: fcBuf.push(NFGC(R,T)), skBuf.push(EWS(L))
24: end if
25: startTime = time
26: RPG = (R, T, L), R, T, L = ∅
27: rcurrent = null
28: end if
29: end while
30: procedure SIG-INC(buf,current)
31: has trend = FALSE
32: if Augmented DickeyFuller test(buf).p-value ≤ .1 then
33: has trend = TRUE
34: end if
35: forecast band = Holt-Winter’s(buf,confidence,has trend)
36: if current ∈ forecast band then
37: return TRUE
38: else
39: return FALSE
40: end if
41: end procedure

updated in the list of edge weights thereby maintaining up
to date edge weights. If the samplingWindow expires (in line
11), we generate a new RPG (lines 25-27) for the next sample
window. This process can be executed in parallel to the actual
detection process (lines 11-41), thus speeding up calculations.

To predict the next future value, we use a set of 30 sampled
predictor values in a moving window. Consequently, an initial
set of 30 predictor values is buffered (line 23) first. From
then on, for every newly sampled NFGC or EWS value,
we compare the obtained value with the confidence band
returned by the exponential smoothing and forecast technique.
For this, we use R’s native implementation of simple and

Holt’s exponential smoothing3 and forecast4 with and without
the trend factor. If both obtained NFGC and EWS values
are outside the forecast confidence band (lines 30 - 40), we
raise an alarm and flag that sampled window as an attack
window. The forecasting process returns wider confidence
bands for bigger confidence limits, in order to enhance the
prediction accuracy. Consequently, the detection accuracy of
our approach depends heavily on the input confidence limit.
If an attack is detected, we do not consider the sampled
NFGC and EWS values obtained in that window for future
predictions. This allows us to avoid treating abnormal values
as predictors. Otherwise, we buffer the newly sampled values
(line 18) and drop the oldest value from the bottom of the
buffers fcBuf and skBuf.

V. ANALYSIS AND DISCUSSION

We now discuss the accuracy of our approach in detecting
command injection attacks.

A. Evaluation Metrics

In order to evaluate the capability of our detection approach
to distinguish between normal traffic, legitimate and malicious
command injections we choose 2 separate metrics:
• Detection Percentage: The detection percentage used is

similar to the one used in [14]. Here we consider three
separate detection percentages namely, Normal Traffic
detection percentage (NDI), Legitimate Command Injec-
tion detection percentage (LDI), Malicious Command
Injection detection percentage (MDI). The percentages
are calculated as follows.
percentage = number of flagged windows∗100

total number of windows in traffic Since
our approach splits the total observed traffic into sampling
windows of 1 second, we classify a window as containing
Normal Traffic, Legitimate Command Injection or Mali-
cious Command Injection if that window contains at least
0.25 seconds of traffic of the particular type. For example,
a window must contain at least 0.25 second of attack
traffic to be labeled as Malicious Command Injection. All
windows, apart from the command injection windows are
considered to be normal.

• Precision: Precision allows us to evaluate the strength of
our approach in detecting malicious message injections
in presence of both normal traffic and legitimate message
injections. We, therefore, define precision as follows.
precision = MDI∗100

NDI+LDI+MDI

B. Experiment Dataset and Attack Simulation Parameters

a) Recorded Drive Around Traffic: We tested our ap-
proach on previously recorded CAN traffic datasets: the Ken-
worth dataset and the Peterbilt dataset.
• The Kenworth Dataset: The Kenworth dataset set was

generated at the University of Tulsa and recorded from a
PACCAR MX powered Kenworth tractor driven around

3https://stat.ethz.ch/R-manual/R-devel/library/stats/html/HoltWinters.html
4https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/

forecast.HoltWinters

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/HoltWinters.html
https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/forecast.HoltWinters
https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/forecast.HoltWinters


Injection Parameter Normal Traffic Legitimate Command Injections Malicious Command Injections Precision
Start Time Duration Probability 80 90 99 80 90 99 80 90 99 80 90 99

Begin 1 0.1 2.02 0.50 0.00 16.67 16.67 0.00 100.00 100.00 0.00 84.26 85.35 0.00
Middle 1 0.1 0.76 0.76 0.00 16.67 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00

End 1 0.1 0.76 0.76 0.00 16.67 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Begin 7 0.1 0.51 0.51 0.00 16.67 16.67 0.00 100.00 14.29 14.29 85.34 45.40 100.00

Middle 7 0.1 0.77 0.77 0.00 16.67 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
End 7 0.1 0.77 0.77 0.00 16.67 16.67 0.00 12.50 0.00 0.00 41.75 0.00 0.00

Begin 15 0.1 0.52 0.52 0.00 16.67 16.67 0.00 40.00 6.67 6.67 69.94 27.94 100.00
Middle 15 0.1 0.76 0.76 0.00 16.67 16.67 0.00 6.67 6.67 0.00 27.66 27.68 0.00

End 15 0.1 0.79 0.79 0.00 16.67 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Begin 1 0.5 1.26 0.50 0.00 16.67 16.67 0.00 100.00 100.00 0.00 84.80 85.35 0.00

Middle 1 0.5 0.76 0.76 0.00 16.67 16.67 0.00 100.00 100.00 0.00 85.16 85.16 0.00
End 1 0.5 0.76 0.76 0.00 16.67 16.67 0.00 100.00 100.00 50.00 85.16 85.16 100.00

Begin 7 0.5 0.51 0.51 0.00 16.67 16.67 0.00 57.14 57.14 14.29 76.88 76.88 100.00
Middle 7 0.5 0.77 0.77 0.00 16.67 16.67 0.00 62.50 62.50 0.00 78.18 78.18 0.00

End 7 0.5 0.77 0.77 0.00 16.67 16.67 0.00 100.00 100.00 87.50 85.15 85.15 100.00
Begin 15 0.5 1.04 0.00 0.00 25.00 16.67 0.00 26.67 20.00 6.67 50.59 54.54 100.00

Middle 15 0.5 0.79 0.79 0.00 16.67 16.67 0.00 93.75 26.67 20.00 84.30 60.43 100.00
End 15 0.5 0.79 0.79 0.00 16.67 16.67 0.00 100.00 68.75 6.25 85.14 79.75 100.00

Begin 1 0.9 0.76 0.50 0.00 16.67 16.67 0.00 100.00 100.00 0.00 85.16 85.35 0.00
Middle 1 0.9 0.76 0.76 0.00 16.67 16.67 0.00 100.00 100.00 100.00 85.16 85.16 100.00

End 1 0.9 0.76 0.76 0.00 16.67 16.67 0.00 100.00 100.00 100.00 85.16 85.16 100.00
Begin 7 0.9 0.51 0.51 0.00 16.67 16.67 0.00 25.00 0.00 0.00 59.27 0.00 0.00

Middle 7 0.9 0.77 0.77 0.00 16.67 16.67 0.00 100.00 100.00 37.50 85.15 85.15 100.00
End 7 0.9 0.77 0.77 0.00 16.67 16.67 0.00 100.00 100.00 100.00 85.15 85.15 100.00

Begin 15 0.9 1.04 0.00 0.00 25.00 13.33 0.00 33.33 0.00 0.00 56.14 0.00 0.00
Middle 15 0.9 0.78 0.78 0.00 16.67 16.67 0.00 33.33 33.33 20.00 65.63 65.64 100.00

End 15 0.9 0.79 0.79 0.00 16.67 16.67 0.00 100.00 100.00 100.00 85.14 85.14 100.00
Total 0.82 0.65 0.00 17.29 16.55 0.00 62.63 51.70 24.56 63.57 53.84 51.85

TABLE II: Analysis results on Kenworth Dataset

a block. Messages on the CAN bus were logged for a
drive cycle of around 410 seconds thus producing a total
of 410 detection windows. The total number of messages
observed on the high speed CAN bus were 137317, which
included 49 state SPNs thereby generating a total of 45
legitimate reports. There were three hard braking events
in the recorder bus traffic at around 102-103 second, 260-
262 second and 275 -278 seconds, which cumulatively
occupied a total of 12 Legitimate Command Injection
windows. This dataset allowed us to detect the accuracy
of approach in detecting attacks during a steady driving
process.

• The Peterbilt Dataset: The Peterbilt dataset (http://
tucrrc.utulsa.edu/J1939.html) was taken from a 2008 Pe-
terbilt straight crane truck with a Paccar PX-8 engine.
Messages on the CAN bus were logged for a drive
cycle of around 74 seconds thus producing a total of
74 detection windows. The total number of messages
observed on the high speed CAN bus were 16204, which
included 60 state SPNs thereby generating a total of 25
legitimate reports. There was one hard braking events in
the recorder bus traffic at around 55 - 59 seconds, which
cumulatively occupied a total of 5 Legitimate Command
Injection windows. This dataset allowed us to detect the
accuracy of approach in detecting attacks during a short
and erratic driving process.

b) Simulated Injection Attacks: Burakova et al. [2] de-
scribed their attacks on paper and included publicly hosted
video links in their publication. However, to the best of our
knowledge, there is no publicly available recorded network
traffic showcasing the attacks they demonstrated. Furthermore,

it is not always possible to record traffic which includes attacks
on actual vehicles. Owing to the above mentioned challenges
and keeping in tune with other researchers [14], [16], we
decided to simulate message injection attempts by manually
injecting malicious traffic into the Kenworth and Peterbilt
datasets. Although, such a simulation does not effectively
reproduce the behavior of the entire vehicular system under
attack, we believe that in a real attack scenario the amount of
randomness in the RPG will increase further due to unplanned
defensive actions taken by the driver, even though such actions
may not be successful in stabilizing the vehicle.

The attack traffic was modeled on the command injection
attack performed by Burakova et al. [2]. Messages with PGN
0 (intended to command high RPMs to the Engine) were
manually inserted into the recorded traffic at various positions,
with different probabilities and for various time periods. We
did not override any existing message [15] in the recorded
traffic, as such attempts have been shown to be detectable by
previous message frequency-based IDS. The tampered traffic
was then replayed to mimic a drive cycle under attack and
our detection algorithm was run to detect malicious message
injections.

In order to test the accuracy of the IDS, three different times
were chosen to perform injection attacks: begin which was
right after the initial 30 seconds of data buffering, middle and
end which were towards the middle and end of the traffic. The
three start times allowed us to observe the detection accuracies
during various phases of the drive cycle. We chose 3 different
attack injection durations and probabilities. Higher durations
meant prolonged injections whereas higher probabilities meant
higher number of injected messages. Thus, a short duration

http://tucrrc.utulsa.edu/J1939.html
http://tucrrc.utulsa.edu/J1939.html


Injection Parameter Normal Traffic Legitimate Command Injections Malicious Command Injections Precision
Start Time Duration Probability 80 90 99 80 90 99 80 90 99 80 90 99

Begin 1 0.1 1.47 1.47 0.00 0.00 0.00 0.00 100.00 100.00 0.00 98.55 98.55 0.00
Middle 1 0.1 1.47 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 98.55 100.00 100.00

End 1 0.1 2.94 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Begin 7 0.1 0.00 0.00 0.00 0.00 0.00 0.00 16.67 16.67 0.00 100.00 100.00 0.00

Middle 7 0.1 0.02 0.00 0.00 0.60 0.00 0.00 100.00 1.17 100.00 99.39 100.00 100.00
End 7 0.1 3.13 1.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Begin 15 0.1 3.64 0.00 0.00 40.00 0.00 0.00 50.00 28.57 0.00 53.40 100.00 0.00
Middle 15 0.1 1.45 0.00 0.00 0.00 0.00 0.00 66.67 66.67 22.22 97.87 100.00 100.00

End 15 0.1 3.64 1.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Begin 1 0.5 1.47 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 98.55 100.00 100.00

Middle 1 0.5 1.47 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 98.55 100.00 100.00
End 1 0.5 2.94 1.47 0.00 0.00 0.00 0.00 100.00 100.00 0.00 97.14 98.55 0.00

Begin 7 0.5 0.02 0.00 0.00 0.00 0.00 0.00 100.00 100.00 14.29 99.98 100.00 100.00
Middle 7 0.5 0.02 0.00 0.00 60.00 0.00 0.00 100.00 100.00 100.00 62.49 100.00 100.00

End 7 0.5 3.13 1.56 0.00 0.00 0.00 0.00 100.00 100.00 0.00 96.97 98.46 0.00
Begin 15 0.5 0.00 0.00 0.00 0.00 0.00 0.00 107.14 107.14 78.57 100.00 100.00 100.00

Middle 15 0.5 1.69 0.00 0.00 100.00 100.00 0.00 100.00 100.00 70.00 49.58 50.00 100.00
End 15 0.5 3.64 1.82 0.00 0.00 0.00 0.00 35.71 28.57 0.00 90.76 94.02 0.00

Begin 1 0.9 1.47 1.47 0.00 0.00 0.00 0.00 100.00 0.00 0.00 98.55 0.00 0.00
Middle 1 0.9 1.47 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 98.55 100.00 100.00

End 1 0.9 2.94 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Begin 7 0.9 0.02 0.00 0.00 0.00 0.00 0.00 100.00 100.00 0.00 99.98 100.00 0.00

Middle 7 0.9 0.02 0.00 0.00 60.00 0.00 0.00 100.00 100.00 28.57 62.49 100.00 100.00
End 7 0.9 3.13 1.56 0.00 0.00 0.00 0.00 20.00 20.00 0.00 86.47 92.76 0.00

Begin 15 0.9 3.70 0.00 0.00 0.00 0.00 0.00 66.67 66.67 6.67 94.74 100.00 100.00
Middle 15 0.9 1.69 0.00 0.00 0.00 0.00 0.00 70.00 70.00 10.00 97.64 100.00 100.00

End 15 0.9 3.64 1.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 1.86 0.65 0.00 9.65 3.70 0.00 67.88 59.46 30.75 73.34 75.27 48.15

TABLE III: Analysis results on Peterbilt Dataset

Dependent Variables Independent Variables
Normal Traffic
Detection Ratio

Legitimate
Command
Injection
Detection Ratio

Malicious
Command
Injection
Detection Ratio

Precision

Start Time 0.08 -0.02 0.21 0.05
Duration -0.07 0.03 -0.27 0.01

Probability -0.05 0.01 0.48 0.44
Confidence -0.81 -0.86 -0.35 -0.12

TABLE IV: Detection Factor Correlations for Kenworth
Dataset

Dependent Variables Independent Variables
Normal Traffic
Detection Ratio

Legitimate
Command
Injection
Detection Ratio

Malicious
Command
Injection
Detection Ratio

Precision

Start Time 0.37 -0.03 -0.35 -0.43
Duration 0.06 0.2 -0.18 0.01

Probability 0 0.02 0.06 0.06
Confidence -0.64 -0.22 -0.33 -0.22

TABLE V: Detection Factor Correlations for Peterbilt Dataset

command injection with high probability signifies bursty at-
tack traffic, whereas a long duration low probability attack
may signify a possible probing or fuzzing attempt.

C. Performance Evaluation and Discussion

Tables II and III show the detection percentages and preci-
sion values for different experiment treatments.

a) Attack Detection Accuracy: Malicious Command In-
jection detection percentages were fairly high for both datasets
at 80% and 90% confidence intervals. The same was not
observed for 99% confidence, since increasing the confidence
interval increased the prediction confidence bands, thereby
including some peaking NFGC and EWS values which were
detected as attacks for 80% and 90% confidence respec-
tively. Tables IV and V show negative correlations with the
confidence interval showing that increasing the confidence

decreases the attack detection accuracy. It can also be observed
from Table II that our approach detected 24, 24, and 15 of the
27 attack attempts made on the Kenworth Dataset at different
confidence intervals thus displaying very high chances for an
attack to be detected at 80% and 90% confidence intervals.
Similarly, from Table III we detected 22, 21, 13 of the 27
attack attempts made on the Peterbilt Dataset at different
confidence intervals, thus reestablishing the efficacy of our
approach. As mentioned earlier, we use only a small set of
runtime predictor values (and no previous knowledge) to make
one-step-ahead predictions. This makes our approach agnostic
to particulars of different drive cycles. Observations from Ta-
bles IV and V show that none of the attack parameters affected
the detection accuracy significantly across both datasets.

b) Normal Traffic and Legitimate Traffic Detection: For
experiments performed on both the Kenworth and Peterbilt
datasets, we observed significantly less detection percentages
for both Normal Traffic and Legitimate Message Injections.
We can thus conclude that our approach performs reasonably
well in detecting attacks, while avoiding false positives even
in presence of safety critical actions like hard-braking. The
precision values from Tables II and III aid in strengthening
this claim further. Because, decreasing confidence limits can
increase both true positive and false positive rates (and vice-
versa) we believe finding an optimal confidence limit is a
separate challenge that should be addressed in the future.
However, the initial results show that our approach works best
for a 90% confidence limit.

c) Satisfying Other Technical Constraints: All bus mes-
sages must be represented in an RPG in our approach. Thus,
a dedicated device for intrusion detection may speed up the



approach and also alleviate additional burden on other ECUs.
Algorithm 1 shows that the detection procedure can be divided
into two modules, building the RPG and detecting intrusions
using the RPG, that can be executed in parallel. Building
the RPG takes a fixed samplingWindow amount of time. The
detection procedure depends on the size of the RPG (which
sets a linear upperbound for NGFC and EWS calculations)
and the size of input (buf ) to the prediction algorithm. Since
we fix the size of the input to 30, the detection time is only
bounded by the size of the RPG formed in 1 second. Since
most messages on the CAN bus are periodic and not many
PGNs are supported for a given vehicle, the size of the RPG
will be relatively small. For example, during the entire runtime,
the Kenworth and Peterbilt datasets observed a total of 45 and
25 reports respectively and in a span of 1 second we expect
this value to be even lower.

VI. CONCLUSION AND FUTURE WORK

We proposed a precedence graph based approach for real-
time intrusion detection in heavy vehicles. The efficacy of
our approach was proved by testing it on real-world data
infused with injected messages. In future, we aim to extend
the analysis process to ascertain optimum confidence bands
for the detection procedure. Our approach currently detects
malicious message injections at the application and data-link
layers of the J1939 protocol stack by performing message level
inspections. We aim to extend this approach to detect other
malicious activities including message integrity violations and
attacks at lower layers of the J1939 protocol stack.
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