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Understanding mechanisms of bacterial eradication is critically important for
overcoming failures of antibiotic treatments. Current studies suggest that the
clearance of large bacterial populations proceeds deterministically, while for
smaller populations, the stochastic effects become more relevant. Here, we
develop a theoretical approach to investigate the bacterial population
dynamics under the effect of antibiotic drugs using a method of first-passage
processes. It allows us to explicitly evaluate the most important characteristics
of bacterial clearance dynamics such as extinction probabilities and extinction
times. The new meaning of minimal inhibitory concentrations for stochastic
clearance of bacterial populations is also discussed. In addition, we investigate
the effect of fluctuations in population growth rates on the dynamics of bac-
terial eradication. It is found that extinction probabilities and extinction
times generally do not correlate with each other when random fluctuations
in the growth rates are taking place. Unexpectedly, for a significant range of
parameters, the extinction times increase due to these fluctuations, indicating
a slowing in the bacterial clearance dynamics. It is argued that this might be
one of the initial steps in the pathway for the development of antibiotic resist-
ance. Furthermore, it is suggested that extinction times is a convenient measure
of bacterial tolerance.

1. Introduction

The rise of pathogenic bacteria that are resistant to antibiotics is one of the
major global health threats of the twenty-first century. High mortality rates and
increasing healthcare costs associated with fighting bacterial infections call for
designing new effective therapeutic strategies [1,2]. A major challenge in overcom-
ing treatment failures comes from ineffective eradication of antibiotic-susceptible
bacteria [3—5]. Despite the introduction and wide application of a very large range
of antibiotics since the 1940s, important aspects of how antibiotics clear bacterial
population at all levels (molecular, cellular and population) remain unclear.
A deeper understanding of the underlying dynamics of bacterial clearance
requires not only extensive laboratory studies but also the development of new
theoretical approaches to investigate the bacterial response to antibiotics [6].
Majority of current experimental and theoretical studies focus on the eradica-
tion of initially large quantities of bacteria [7-9], and it was shown that a
deterministic picture describes well the decrease in these bacterial populations
[9,10]. In this deterministic framework, the dynamics of bacterial populations
exposed to an antibiotic is characterized by a minimum inhibitory concentration
(MIC), the minimal drug concentration required to inhibit bacterial growth
[9-11]. The MIC can be regarded as a threshold on the antibiotic concentration
such that only above the MIC a bacterial population can undergo full extinction,
while for concentrations below the MIC the infection will never disappear.
However, it can be argued that it is also critically important to investigate
the clearance dynamics for small bacterial populations. Failure to completely
eradicate a population of bacteria can have two main consequences. First,
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even a small number of surviving bacteria can restore infec-
tions [12-14]. There are indications that as few as 10-100
bacterial cells, such as Salmonella or Shigella, are enough to
restart the infection. Second, certain strains of surviving
cells may develop antibiotic resistance, which, in turn, can
complicate subsequent therapies [15-17]. Therefore, the
effective treatment of infections requires not only the
reduction of a large population number to a small number
but also the complete eradication of the bacterial population
[18-20].

Despite earlier technical problems [7,8], recent experiments
were able to quantitatively investigate the antibiotic-induced
clearance of small bacterial populations [21]. It was demon-
strated that stochastic factors play much more important
roles under these conditions. For example, Coates et al. [21]
showed that even in sub-MIC antibiotic concentrations, bac-
terial populations decline with non-zero probability. This
means that under the same conditions some populations
experience growth with cells continuously dividing, while
other populations quickly become extinct. A Markovian prob-
abilistic birth-and-death model was introduced to uncover the
relationship between the extinction probability and the anti-
biotic concentration [21]. This stochastic approach predicted
that antibiotics induce fluctuations in bacterial population
numbers. These fluctuations, in turn, lead to the stochastic
nature of the clearance of small bacterial populations.

Although the Markovian model developed by Coates et al.
successfully described the experimental observations, it could
not predict an extinction time, i.e. the mean time at which the
given number of bacterial cells will go to zero. This is a very
important property of bacterial
dynamics because it gives a better measure of the efficiency
of the antibiotic treatments than the extinction probability.
One could use an analogy with thermodynamic and kinetic

population  clearance

descriptions of chemical processes. Thermodynamics gives
the probability for the process to happen, but if the process
is actually taking place in real time, it is determined by kinetic
rates. In our language, this means that the large extinction
probability might not always correlate with fast removal of
bacterial infection. While the extinction probability can give
a qualitative measure of the bacterial population dynamics,
the extinction time is much more useful in the quantitative
characterization of bacterial resistance and tolerance. It
seems that the development of new drugs and new therapies
in fighting against bacteria should use this quantity as a
measure of their success.

In this study, we developed a discrete-state stochastic
model of the antibiotic-induced clearance of bacteria that
employs a method of first-passage probabilities. This
method has been successfully used to analyse multiple pro-
cesses in chemistry, physics and biology [22-24]. It allows
us to quantitatively describe the stochastic dynamics of
bacterial eradication by explicitly calculating extinction prob-
abilities and extinction times and clarifying the physical
meaning of the MIC. Our method is also applied to investi-
gate the effect of fluctuations in the growth rates on the
stochastic clearance of bacterial populations. These fluctu-
ations can be attributed to various environmental factors
such as the availability of nutrients, changes in osmolarity
and other factors [25]. Our results suggest that these fluctu-
ations influence the extinction probabilities and extinction
times differently. There is a large range of antibiotic concen-

trations when the extinction times increase due to

fluctuations, and this corresponds to the slowdown of the
dynamics of bacterial eradication. We speculate that this
might be a first step in developing antibiotic resistance. It is
also argued that extinction times is a convenient new measure
of bacterial tolerance.

2. Model
2.1. Stochastic clearance with a constant growth rate

We start our analysis by considering a simple stochastic
model for the clearance of bacteria as shown in figure 1a.
Our goal is to obtain a minimal theoretical description of bac-
terial clearance dynamics. For this reason, the model is
characterized by only two parameters: the rate of cell
growth A and the rate of cell death ¢ (figure 1a). The bacterial
growth rate is generally controlled by environmental factors
such as the availability of nutrients, temperature, osmotic
pressure and other factors [25]. When exposed to antibiotics,
the cell growth rate can also depend on the antibiotic concen-
tration [26]. Also, as a possible mechanism of antibiotic
resistance, bacteria can sequester, degrade or modify anti-
biotics [27,28]. This, in turn, might significantly complicate
the relationships between the cell death and growth rates.
For the sake of simplicity, we assume that the cell growth
rate is independent of antibiotic concentration and remains
constant over different generations, while the cell death
rate, ¢, is controlled by the antibiotic concentration. It is
also assumed here that if the bacterial population reaches
size N, the organism hosting the bacteria will change its be-
haviour and it goes into another metabolic state. This
different metabolic state might correspond, for example, to
the situation when bacteria produce so many toxins that
they damage normal cell membranes and/or inhibit normal
protein synthesis in the host organisms. It might also describe
a state in which the host organism mounts an active immune
response, strongly modifying all metabolic processes in the
system [29]. Also, the bacteria might achieve antibiotic resist-
ance or the organism might even die from the infection. This
is known as a fixation.

To describe dynamical transitions in the system, we define
F,(t) as a probability density function to clear the system from
infection at time ¢ if the initial population number (so-called
inoculum size) is equal to 1 (1 < n < N — 1). The temporal evol-
ution of this probability function is governed by the following
backward master equation [23,24]:

WO gy 1)+ mAFa) ~ n O+ DR @)

Introducing the Laplace transform of this function,
Fu(s) = J;” Fa(t)e™, we transform the backward master
equation into

C+r+6)R6) = oFa@ + AFa®.  (22)

Because we are mostly interested in the stationary dynamic
behaviour at long times (s — 0), the following expansion can
be written:

Fo(s) = f — sb,. 2.3)

Then F,(s = 0) = f, yields the first-passage probability of bac-
terial clearance or simply the extinction probability for
the bacterial population with inoculum size n. It can be
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Figure 1. (a) Schematic of the single growth-rate model for the clearance of bacteria. Each staten (n =10, 1, . .

., N) represents a bacterial population with n cells.

The states 0 and N correspond to the bacterial eradication (no cells in the system), and the fixation, respectively. From each state n, the bacterial population can
change to the state n + 1 (growth) with a total rate nA, or it can jump to the state n — 1 (shrinking) with a total rate n¢b. We define the normalized death rate,
x as the ratio of death rate and growth rate, x = /A. Analytical calculations of extinction probabilities (b) over n — x parameter space for N = 50; (c) for a
specific mid-size inoculum (n = N/2) over N — x parameter space. (Online version in colour.)

shown that the extinction probability is given by (see appendix
A.1 for details)

XN — oy
fo= 4

where a parameter x = ¢/ A can be viewed as an effective death
rate for the bacterial population normalized over the growth
rate. Since in our model it is assumed that the growth rate
does not depend on the death rate, the extinction probability
is determined only by the ratio of ¢ and \.

Our analytical results for the extinction probability are
presented in figure 1. The dependence of the bacterial clear-
ance probability (from equation (2.4)) on the initial size of
the bacterial population and on the values of x is given in
figure 1b. For x =1, which corresponds to ¢ =\, the cell
growth and death rates are equal to each other. In this
state, which in the deterministic picture of bacterial clearance
is described as the MIC, the extinction probability linearly
decreases with the inoculum size, f, = (N — n)/N. In this
case, the growth and the death rates are the same, and the
probability of bacterial clearance is proportional to the rela-
tive distance from the initial state n to the fixation state N.
The smaller the inoculum size, the larger the probability to
eradicate the infection. But even for n =1, the extinction
probability is not equal to one [fi(x=1)= (N — 1)/N <1].

For x <1 (sub-MIC conditions), the extinction probability is
a decaying function of the inoculum size n. In this case, the
growth rate is faster than the death rate, and the larger the
inoculum size, the harder for the system to reach the total era-
dication of the infection (n = 0 state). One could also see this
more clearly in the limit of x — 0 and N — co when we have
fa = x". This implies that even for sub-MIC conditions (low
antibiotic concentrations) the extinction probability is never
equal to zero, which is a clear signature of the stochastic
effects in the bacterial clearance dynamics. The situation
is different for x >1 (large antibiotic concentrations),
when the extinction probability is always close to one
except in the region near the fixation state N. This can be
also seen from the case of x >1 and N — o0 when we
obtain f, > 1 — x" V. This result suggests that even for con-
centrations above MIC the extinction probability is never
equal to one, which is again due to the stochastic fluctu-
ations in the system. Our analytical calculations are
verified with Monte Carlo computer simulations, in
which we used typical doubling times associated with
bacteria E. coli, in range from 20 to 300 min [25].

The stochastic effects of the bacterial clearance can be
understood better if we consider the extinction probability
of a specific inoculum size (n = N/2), equally distant from
the state n =0 (eradication) and n = N (fixation), which is
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Figure 2. Analytical calculations for the extinction times (in minutes): (a) as a function of the inoculum size for three different values of x; and (b) as a function of

the parameter x for different inoculum sizes (n = 10, 25 and 40). In all calculations N = 50 and A = 1/60 min~"

plotted in figure 1c. One can see that the dependence of the
extinction probability on x follows a logistic sigmoid curve.
The steepness of the curve at the midpoint (x =1) is con-
trolled by the values of n and N. In other words, for x <1
the extinction probability is still non-zero, while for x > 1, it
is still less than one. Therefore, x =1 does not satisfy the
classical definition of the MIC as the MIC required for clear-
ance. Thus, we need to calculate the effective saturation value
for which the extinction probability becomes very high and
realistically not much different from one. This might be
viewed as an effective MIC for stochastic bacterial clearance.
This saturation point is given by (see appendix A.2)

N
Xsat = 1 +m (25)

For the special case n = N/2, this equation yields xs, =1 +
4/N. Therefore, as N increases the steepness of the curve
becomes sharper, such that the extinction probability
becomes insensitive to population number while it is ultra-
sensitive with respect to x. In this case, the large population
alleviates the stochastic effects in the bacterial clearance,
and x = 1 yields the MIC, as expected.

Theoretical calculations also predict that the extinction
probability strongly depends on inoculum size and on its
relative distance to the fixation state N, as illustrated in
figure 1b. For n =1, the dependence on x is linear for small
antibiotic concentrations (x < 1), while n =N — 1 is almost
zero for x < 1 and it is slowly approaching one for larger anti-
biotic concentrations. These different behaviours are again a
consequence of the stochastic nature of bacterial population
clearance. A critically important property of bacterial eradica-
tion is how long does it take to clear the infection from the
host, which is known as the extinction time. This timescale
is crucial for the development of new therapies and it can
be also useful in quantifying bacterial tolerance, which is
the ability of a bacterial population to survive at longer
periods of time exposed to antibiotics [30]. Our first-passage
probabilities method is a powerful tool to evaluate this quan-
tity. We define T, as a mean first-passage time to reach the
extinction state (n =0) from the inoculum of size n, and
this is exactly the extinction time. Using the probability

were used. (Online version in colour.)

density function F,(t), it can be written as

oo tFa(t)dt
[P Fatydt

Using the Laplace transform and equation (2.3), we obtain

(2.6)

—OF,/0sl,_y _ b,

T, =——"—==—. 2.7
" Fs=0) fu @7
As explained in appendix A.1, the extinction time is explicitly
given by
_ 1 1—2" 2N — )N F - 1)
AN — ) (x—1) |1 - xN £ k

=1
nlN

k)(xn -k _ 1):| . (28)

k=

[y

It can be shown that for x =1 that the expression for the
extinction time takes the form

_ (N R S Y V)
Tn/\(Nn){ Z Z . } (2.9)

For x>1 and N — o, the extinction times are given by
(see appendix A.1)

-1

1{x -1 x 1

A _ - j
T = A x—l1 (x—l) o ka ’ 210

— ],()
while for x — 0 we have
11 x

T, ~—1|— 2.11
" )\{nJrnJrl+ ] ( )

The results of our calculations for the extinction times are
presented in figure 2. As expected, it takes longer to clear the
infection for larger inoculum sizes (figure 2). For large anti-
biotic concentrations (x > 1), the extinction time is shorter
and it depends weaker on the inoculum size n. For small anti-
biotic concentrations (x < 1),
infection is larger and it is more sensitive to the inoculum

the time to eradicate the

size. More interesting behaviour is observed when we ana-

lyse the extinction time for different antibiotic
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Figure 3. Schematic of the model for the clearance of bacteria with fluctuating growth rates. The model comprises two coupled lattices. At each state n on lattice 1
(lattice 2), population can jump to state n + 1 with growth rate nA; (nA,). Death rates are equal along the lattices. Also, & and <y are rates to transition between

lattices.

concentrations (figure 2b). A non-monotonic behaviour as a
function of x is predicted, and the largest extinction time is
observed for MIC conditions (x = 1). Increasing the antibiotic
concentrations (x > 1) shortens the time for bacterial clear-
ance because the drive to infection eradication becomes
stronger. However, the surprising observation is that lower-
ing the antibiotic concentrations below MIC (x < 1) can also
accelerate the bacterial clearance despite the fact that the
probability of clearance decreases. This can be explained by
the following arguments. At these conditions, only those bac-
terial populations lead to the full eradication that rapidly
shrink. If it is not fast, the shrinking of the bacterial popu-
lation will be reversed and the infection will spread again.
This is another non-trivial signature of the stochastic effects
in the bacterial clearance dynamics. However, we should
also emphasize here that increasing parameter N lowers the
stochastic effects.

Our analysis of extinction times allows us to reinterpret the
meaning of MIC. For N — o from (2.10) we conclude that
the extinction time diverges logarithmically for x — 1, and it
becomes infinite for x < 1. This suggests a new more practical
definition of the MIC (x = 1). It is the antibiotic concentration at
which the extinction time is maximal (for finite bacterial popu-
lations), or it is the antibiotic concentration below which the
extinction times diverge (for N — ). This analysis also
suggests that, from the practical point of view, to eliminate
the infection it is important to apply the antibiotic concen-
trations that significantly differ from the MIC to avoid the
slowdown in the dynamics.

It is interesting to compare our theoretical predictions
with experimental measurements of stochastic bacterial clear-
ance [21]. In these experiments, the stochastic population
dynamics of bacteria exposed to bactericidal drugs have
been monitored starting from single E. coli bacteria for sub-
MIC conditions (x = 0.8) and for concentrations above the
MIC (x = 1.2). It was also estimated that the growth rate is \ >~
1/100 min~*. Then using (2.10) and (2.11), we predict that for
both cases, x = 0.8 and x = 1.2, the extinction times are close to
200 min, which agrees well with these experimental observations.

2.2. Stochastic clearance with fluctuations in the
growth rate

Although the mechanisms of the development of antibio-
tic resistance remain not fully understood, recent studies
suggest that random fluctuations of various parameters can
stimulate the bacterial tolerance to antibiotic drugs [6,31].

Bacterial population dynamics are subject to intrinsic stochas-
ticity because of variations in gene expression and subject to
extrinsic stochasticity due to environmental variations. For
example, single-cell experiments have shown that the dur-
ation of the cell cycle is subject to random fluctuations
[25,32]. In this case, cell cycle duration follows a distribution
with certain variance. We can investigate the effect of growth-
rate fluctuations on the bacterial clearance dynamics using
our theoretical first-passage probabilities method. To do so,
we introduce a simple model as shown in figure 3. It is
assumed that the infection can spread with two growth
rates, \; and \,, while the death rate ¢ is assumed to be
the same in both populations. The system can stochastically
transition between two different growth regimes with rates
6 and v (figure 3). For the sake of simplicity, in calculations,
we assume that 8 = . Similar deterministic models for popu-
lation dynamics in fluctuating environments have been
already discussed [33-35].

In this model, we define F)(t) and F?(t) as the prob-
ability density functions to clear the system from infection
if the bacterial population starts with 1 cells while growing
with the rate Ny or \,, respectively. The temporal evolution
of these probability functions is governed by the following
backward master equations:

dFM (¢
#() F(1)1(t) + n)\lF(l)l(t) + n'yF(z)(t)
~ (n8 - nb - mADF(D) 212)
and
(2)
dFCnlt(t) 7’Z¢F11 1(t) + T’Z)tzF”Jrl(t) + TZSF(l)(t)
= 1y -+ np+ W)FX). 2.13)

In general, it is difficult to obtain a full analytical solution for
this problem for arbitrary N. However, exact solutions for
simple cases with N=2 and N =23 can be derived (see
appendix A.3 for details).

To better understand the effects of fluctuation on the
dynamics of clearance, it is convenient to compare the fluctu-
ating growth model (rates \; and \,) presented in figure 3
with a single growth-rate model with X\ = (A\; + \p)/2 pre-
sented in figure la. Since the average growth rates in both
cases are the same, the possible differences in the dynamics
properties for bacterial clearance are coming from the fluctu-
ations. To quantify this effect, we define a function rg) as the
ratio of the extinction probabilities predicted by the
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fluctuating-growth model and by the single growth-rate
model:

R 2fs

Similarly, one can define a function #I for the ratio of

(avg) (1) )
T B el (2.14)

extinction times

T,(fvg) _ T:,ll) + Tﬁ,z)

(T) _
) =
" Ty 2T,

(2.15)
If rg ) > 1, then it means that fluctuations increase the extinc-
tion probability, while 7I) > 1 indicates that fluctuations
increase the extinction times.

As shown in appendix A.3, the fluctuating growth-rate
model has been solved exactly to evaluate extinction probabil-
ities and extinction times for N =3, and the results are
presented in figure 4. It is found that D is always larger
than one (figure 4a), which indicates that in the bacterial popu-
lation with fluctuations in the growth rate the probability of
eradication of infection is always larger than in the single
growth population. The effect is stronger for not very large

0.165

0 min~". (Online version in colour.)

antibiotic concentrations and for slow transitions between
two growth regimes. It can be argued that switching tran-
sitions opens new pathways for the eradication of the

bacteria, and this should increase the extinction probability.
At the same time, increasing the amplitude of the switching
transition rates leads to an effective equilibrium single
growth-rate regime with the growth rate given by the average

between two dynamic regimes, and this clearly does not

increase the extinction probability. Figure 4b presents the

ratio of extinction times, and our theory predicts that
#D > 1, ie. fluctuations in the growth rates unexpectedly

slow down the bacterial clearance dynamics, in contrast to
expectations from the extinction probabilities. The effect is
stronger for not very large antibiotic concentrations and

it disappears for x — oo. It is also strong for weak fluctuation
rates between two growth regimes. This surprising result

can be explained by noting that due to weak transition rates

the system can be effectively trapped in the regime with smal-
ler death rates, and this should slow down the bacterial

clearance dynamics.
More realistic situations of bacterial population dynamics
require consideration of systems with large N. Because
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analytical calculations cannot be done for these cases, we
explored Monte Carlo computer simulations to evaluate the
dynamic properties of stochastic bacterial clearance. The
results are presented in figure 5. One can see that for rela-
tively small antibiotic (x<1), the
fluctuations in the growth rate increase the extinction prob-
ability (figure b5a).
unfavourable for the eradication of infection, opening new
pathways should help to clear the infection. This is because
the system can spend half of the time in the dynamic regimes
with smaller death rates, which helps to fight the infection
better. However, the situation changes for large antibiotic
concentrations (x > 1), when the fluctuations decrease the
extinction probability. In this case, due to switching tran-
sitions, the system spends half of the time in the dynamic
regime where it is more difficult to eradicate the infection.

concentrations

In this case, which is generally

A more complex picture is observed when we analyse
the ratio of extinction time (figure 5b). It is found that for
small antibiotic concentrations and for very large antibiotic
concentrations the fluctuations in the growth rates lead to
slower bacterial clearance dynamics. Only for intermediate
antibiotic concentrations around MIC (x ~ 1), fluctuations
might accelerate the removal of infection. Apparently, open-
ing new pathways for x <1 and x> 1 regions lowers the
drive to eradicate the infection because the system spends
more time switching between different dynamic regimes
and not shrinking the bacterial populations.

Analysing the dynamic properties of the fluctuating
growth-rate model, two important observations can be
made. First, the extinction probability and extinction time
generally do not correlate with each other when the system
experiences fluctuations between different growth regimes.
Second, turning on the fluctuations in the growth rates of bac-
teria can significantly increase the tolerance to antibiotic
drugs for a large range of parameters. It seems reasonable
to speculate that bacteria might explore this option in fighting
against antibiotics.

We theoretically investigated the clearance of bacterial
populations under the effect of antibiotic drugs by concentrat-
ing on stochastic aspects of this process. To understand better
the mechanisms of eradication of infection, a method of first-
passage probabilities is introduced. This allows us to obtain a
comprehensive description of bacterial clearance dynamics.
Two important dynamic features, extinction probabilities and
extinction times, are explicitly calculated. We also clarified
the physical meaning of MIC in the systems where the stochas-
ticity is more relevant. Furthermore, using our method, we
investigated the effect of fluctuations in the growth rates on
the bacterial population dynamics, and we find that these
random fluctuations affect differently extinction probabilities
and extinction times. For the single growth-rate model, our
analysis shows that extinction probabilities depend strongly
on the antibiotic concentration, the inoculum size and the dis-
tance to the fixation state N. But the stochastic effects show up
in observations that, even for concentrations above the MIC,
the extinction probabilities are not equal to one, while for con-
centrations below the MIC the extinction probabilities are not
equal to zero. More complex behaviour is observed for extinc-
tion times. For finite-size bacterial populations, the extinction
times show non-monotonic dependence on the antibiotic con-
centrations with the maximum at the MIC. The unexpected
acceleration in the eradication of infection for concentrations
below the MIC is explained by the fact that the successful

events, which are rare at these conditions, must proceed very
fast. For infinitely large bacterial populations, our calculations
show that the extinction times increase with lowering of anti-
biotic concentration and diverge for concentrations at the
MIC and sub-MIC. These properties of extinction times pro-
vide an additional way of defining the conditions
corresponding to MIC.

By introducing a stochastic model in which bacteria can
randomly switch between two growth rates, we investigated
the effect of environment fluctuations in the bacterial clear-
ance dynamics. Our analytical and computer simulations
results predict that these switchings increase the extinction
probabilities for low antibiotic concentrations and decrease
them for high antibiotic concentrations. However, the effect
of fluctuations in the growth rates on extinction times is
more complex. With the exception of the intermediate con-
centrations around MIC, random switchings slow down the
bacterial clearance dynamics.

Our calculations lead to several important conclusions.
Extinction probabilities and extinction times generally do
not correlate with each other, so it is dangerous to make pre-
dictions on bacterial population dynamics by considering
only the extinction probabilities as typically done in the
field. There is a significant range of parameters when the fluc-
tuations in the growth rates lead to the overall slowing down
in the eradication of the infection. Bacterial response to anti-
biotics is a complex process, which depends on genetic and
environmental factors [36]. Some bacterial strains are difficult
to eradicate because their clearance needs a higher level of
antibiotics that are toxic to hosts. Such bacteria are commonly
known as antibiotic-resistant. It is a very challenging task to
uncover the mechanisms of the development of bacterial
resistance. Our results suggest that one of the first steps
in the resistance pathway might be due to fluctuations in
growth rates, which would give bacteria additional time to
find another means to avoid the effect of antibiotic drugs.
Although at this moment, this is just pure speculation, it
will be interesting to investigate this possibility with exper-
imental methods and more advanced theoretical approaches.

Even at concentrations above the MIC, some bacteria sur-
vive short-term exposure to antibiotics before being affected
by it. This ability of a bacterial population is known as toler-
ance [37]. In contrast to resistance, which is quantified by the
MIC, tolerance is poorly characterized. The most commonly
used approach for quantifying tolerance is the measurement
of time—kill curves [38]. Recently, a new metric for bacterial
tolerance has been introduced [30]. This new metric, known
as the minimum duration for killing 99% of the population,
MDKgy, can be evaluated by statistical analysis of measure-
ments. Our theoretical method provides the extinction time
as a new measure of bacterial tolerance. The advantage of
this approach is that it takes into account the stochastic fea-
tures of the population dynamics and it gives the average
dynamic property of the bacterial clearance, which might
be much more useful for practical applications.
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Appendix A

A.1. Exact solution for the single growth-rate model

In this appendix, we present the details for calculations of the
extinction probability and the extinction time. As given in the
main text, the temporal evolution of the first-passage prob-
ability function is governed by the following backward
master equation [23]:

dE.(®) _

~ar n@F, 1(t) + nAF,1(t) — n(A + G)F,(t).

(A1)

Introducing the Laplace transform of this probability density

function, F’n\(g) = fooo F,(t) e, we obtain

C+r+0)Es) = oFa@ + APl (A2)

To solve this recurrence relation, it is convenient to write the
following expansion:

Fy(s) ~ fu — sby. (A3)
Then F,(s = 0) = f, yields the extinction probability. To pro-
ceed further, we substitute (A 3) into (A 2):
(G424 6) (= sb) = Slfa1 = 5b-1) + Alhrer = sbsa).
(A4)
Rearranging terms yields

f" b ) _
( OED)HAr =

+ /\fn+l - 5(¢bn—1 + /\bn+l)~

Equating coefficients of s on both sides yields two recurrence
relations

A+ fs = 1+ Mo (A 6)
and
Iy @ = s — A (A7)
Equation (A 6) can be simplified as
$gn-1 = Agn, (A8)
where
o =fo—for. (A9)
Solution of (A 9) is given by
o= () - (A 10)

where x = ¢/\. To find constant g, we perform summation
over equation (A 9):

N-1  N-1  N-1
= fi—Y fin
pan ORN -y

=
fo—h+th—-fh+ +fna1-fn=fo—fn
1.

— (A11)
Combining (A 10) and (A 11) yields
N-1 N-1
=gy =1 (A 12)

k=

N

o~
I

N

Then, g is given by

1 x—1
go*( N—lxk>7xN71. (A13)
k=1
Therefore,
Mx—1
n=x"g0 = (7_1) (A 14)

Now using (A 9), we obtain the extinction probability

x—1 n-1 B XN — X"
fn—l—ng ( 1);x—xN_1. (A 15)
To calculate b,, we use equation (A7)
Sy b= b Aba. (A9
This recurrence relations can be simplified as
1
k-, (A17)
where
K, = bn+1 - bn~ (A 18)

It can be shown that the solution of equation (A17) is
given by

n—1

1 fal
NN - ! n
= KO /\ZX (I’l

1=0

(A 19)

It is convenient to rewrite the summation in the following
form

(A 20)

Solution of the recurrence relation K,, =b, 1 — b, takes the

form
(A 21)

Using boundary condition, we obtain by = Z?I:_ol K;=0.To
calculate constant K, we perform summation over (A 19)

N-1 N-1 QN1 i
K; =Ko x]*X, > T (A 22)
j=0 j=0 j=0 I=1
Thus, K is given by
xIl(f/1
T ¢ SL /) )
AL — )/ — )]
Finally, combining (A 19) and (A 21) yields b,
by = Ko| 220 —lnflzj:xf*’ﬁ (A 24)
L )\].:01:1 I

Having determined f,, and b,, we can now obtain the
expression for the extinction time,

—0F,/0s|,_g _ bu

T, =——= =—.
Fu(s =0) fa

(A 25)
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Using (A 15) and (A 24), we have

1 —xm N1 J N+l _ 5
T = {)\(xN —xm)(1 fo)} p= Z l

0 I=1
n—1

I X
|:)‘('XN - xn):| j=0 ;

which can be further simplified into

N+j—1 _
(A 26)

T _ 1 1—a" B (N — RN — 1)
AN —x)(x—1) |1 —aN — k
1N _ ky(rn—k _
N — x )Iix 1)} | a2
k=1
When x = 1, this expressions yields
1 (N—k? EN=-km—k
T = AN —n) {NZ ; k - (A28)

In the case of x > 1 and N — oo, it can be shown that

n

1|x" -1 L1
T":/\[);—l in(=9) - Z(zcz"])] (29

k=1 j=0

while for x — 0 we have

(A 30)

A.2. Calculation of the saturation point for extinction
probability

Since the extinction probability versus x follows a logistic sig-
moid curve, we can define a saturation value of x for which
the extinction probability saturates to higher values. There
is not a unique way to define this saturation point. Here,
we use a simple definition presented in [39,40]. In the sim-
plest approximation, the saturation point is the value of x at
which the straight line passing through the midpoint (x =
1), and with a slope equal to the first derivative of the extinc-
tion probability at this point, intersects with f, = 1. We start
by taking the derivative of the extinction probability f, =
(N = x™") /(N — 1) with respect to x.

dfy] NV — " N — 1) — NaV (N — x)
dafy (N 1)

~ (N —n)

- (A 31)

Using this derivate value and coordinate of the midpoint
(x=1 and f,=1/2), we can obtain the equation of the
straight line passing from the midpoint. The equation of
line is y = ax + b, where a = n(N — n)/2N. After some alge-
bra, we obtain

Y- (n(an))x 1 n(N-n)

2N 2N (A 32)

Solution of this equation at y = 1 yields the saturation point

N

Xsat = 1 + m (A 33)

This method only provides a first-order approximation for

4—

Tl Tl

_} 1

Figure 6. Schematic of the fluctuating growth-rate model for N = 3.

the saturation point. This approximation can be improved
by evaluating higher order (second, third, or fourth) deriva-
tives of f,. In this case, the straight line passes through the
point at which higher derivatives are zero.

A.3. Exact solution for the coupled-parallel lattice
model

It is difficult to obtain a general analytical solution for
equations (2.12) and (2.13). However, for the small popu-
lation numbers, the exact solution can be derived. In the
following, we present the details of our calculations for N =
3 model.

Schematic of the coupled-parallel mode is shown in
figure 6. Dynamics of this model is governed by following
backward master equations:

drl

d; = ¢Fo+ MFY +4F? — 5+ p+ A)FD, (A 34)
dF @ . sp) 5
—qr = Yot By +OF —(yH o+ MFT, (A3
dFy ) M @
= 20F +20F)) — 2y + 26+ 20)F; (A 36)
dF{ M 5 M
and  —2-=20F + 29F)) — 26+ 26+ 20)F. (A 37)
Performing the Laplace transform, we obtain
+M+ ¢+ HFY = ¢+ yFP + N FD, (A 38)
+h+o+ y)P<2’ b+ 61—“(1) + A2F<2’ (A 39)
(5 + 201 +2¢ + 28)F) = 26FV 4 26F (A 40)
and (s 42\ + 2+ 29)FY = 2¢F? 4+ 24F. (A 41)

Solving this system of four equations and four unknowns

yields F(ll), ng), F(Zl) and F(zz). Expanding these functions in
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terms of s yields the extinction probabilities,

a _ PAA(yd + 2yd + & +28¢ + &%)+ 4p(y+ 8+ P)* + 4803 + 4\3p + 4N A)

O'Neill J. 2016 Tackling drug-resistant infections
globally: final report and recommendations-the
review on antimicrobial resistance. See https://amr-
review.org/sites/default/files/160518_Final%
20paper_with%20cover.pdf.

Brooks BD, Brooks AE. 2014 Therapeutic strategies
to combat antibiotic resistance. Adv. Drug Deliv. Rev.
78, 14-27. (d0i:10.1016/j.addr.2014.10.027)
Weidner W, Ludwig M, Brahler E, Schiefer HG.
1999 Outcome of antibiotic therapy with
ciprofloxacin in chronic bacterial prostatitis. Drugs
58, 103—106. (doi:10.2165/00003495-199958002-
00021)

1 2 2 2 2 2 2 4 (A 42)
AN (Y84 20) + (5+ )*) + 407 (v + 8+ ¢)* + 4\3(5 + ¢)* + ANy + 4227
@ PAA (Y5 + 2yp + 8 + 28¢ + ) + 4y + 8+ ) + 4N (v + Ao + P) + 40 1) (A1)
! APV +2d) + (54 ) + 442 (Y + 6+ P> +4N3(5+ ¢ + AN + 4w
0 _ APP 4298 + 29X + 2y + & + 81 + Oha + 28¢ + Madh + A3 + &) (A 44)
2 Ad(Y(8+2¢) + (54 &) + 4P (y + 8+ ) + 4A(S+ B)? + Ady + 4N W
nd o _ AP 28+ Y\ + yho + 2y + & + 280 + 284 + M+ AT + &) (A 45)
2 Ad(Y(8+2¢) + (54 ¢)) + 4P (y + 8+ ) + 4N(S+ )2 + Ady + 4N W
and, the extinction times
70 _ ~4ha(y+28+24) — 2By + 8+ 3M +3¢) —2Ay+ 6+ ) —6h(y+ 8+ @) — 212
1 = =
L OB+ 24)(y+ 8+ ¢) +6¢7 (Y4 8+ ) +6d(y+ 5+ ¢ +6A (v + ha + ) + 6B+ )+ MY (A 46)
@ 7
70 _ ~20a(y+36+3¢) — M(8y+45+6Ms +8¢) —2Ay+ 5+ ) —6h(y+ 8+ @) — 222
@
A
+6)\2(8+2¢)(y+ 84 )+ 647 (y+ 6+ ) +6P(y+ 6+ P +6X2(y+ A+ d) +603(6+ )+ MY (A 47)
@ 7
T(l) _ 73(’)’4‘ 8+)t2 + d))
2 A
N 2B(6X2(8 4 2d)(y + 6+ &) + 6¢* (Y + 6+ &) + 6d(y+ 8+ > + 612 (y+ A2 + P) + 6X3(8+ ) + M Y) (A 48)
o
3('}/+ ) + /\1 + (;[))
2)
and Ty = e
N 61284 2d)(y+ 8+ &) + 6* (Y + 6+ &) + 6d(y+ 8+ ) +6X2(y+ A+ ) + 613+ P+ M Y (A 49)
@ 7
where parameters ¥, A, A, 0, Y, 5, (), A, B and C are given by:
A=+ y8+2yM +2yd + Ay + 28 + Aacp + A3 + ¢,
A =4V + y8 + 2y + 28¢ + ¢) + 4Aa(2Y8 + 2y + 28¢ + ¢) + 80N + 4A3h,
V= 429X + 2y + o + A2 + ¢7,
0=V + Y8+ YAy + 2yh + 28\ + 28¢ + Ay + ¢,
O = 4 p(Y8+2¢) + (5+ )?) + 42 (v + 8+ B)* + 4A2(5 + ¢)* + ANy + 422V,
5= 40(y8 + 2yp + 8 +26h + ¢*) + 4d(y+ 6+ ¢)* + 4T +46)3 +4)3¢,
Y =120(y 4 8+ @) + 6(y + 2¢)(y + 8 + ¢) + 642,
A =4 (y8+ 2y + & +26h + ¢P) + 4d(y + 8+ ) + 42 (y + A2 + d) + 4N 0,
B =19 +295+ 2y + 2y + 8 + S\ + Sy + 28 + Aacp + A + ¢
and C=9 +2y8+ Y\ + YAy +2yd + & + 2601 +28p + M+ A2 + ¢ (A 50)
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