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In 1989, Lieb proved two theorems about the Hubbard model. One showed that the
ground state of the attractive model was a spin singlet state (S = 0), was unique, and
was positive definite. The other showed that the ground state of the repulsive model on
a bipartite lattice at half-filling has a total spin given by |(N4 — Np)/2|, corresponding
to the difference of the number of lattice sites on the two sublattices divided by two. In
the mid to late 1990’s, Shen extended these proofs to show that the pseudospin of the
attractive model was minimal until the electron number equaled 2N, where it became
fixed at J = [(Na — Np)/2| until the filling became 2Np, where it became minimal
again. In addition, Shen showed that a spin tower exists for the spin eigenstates for
the half-filled case on a bipartite lattice. The spin tower says the minimal energy state
with spin S is higher in energy than the minimal energy state with spin S — 1 until we
reach the ground-state spin given above. One long standing conjecture about this model
remains, namely does the attractive model have such a spin tower for all fillings, which
would then imply that the repulsive model has minimal pseudopsin in its ground state.
While we do not prove this last conjecture, we provide a quick review of this previous
work, provide a constructive proof of the pseudospin of the attractive model ground
state, and describe the challenges with proving the remaining open conjecture.
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1. Introduction

The single-band Hubbard model! involves electrons hopping on a lattice and their
mutual on-site repulsion when up and down spin electrons occupy the same lattice
site. It remains one of the most studied models in condensed matter physics, pri-
marily because it has been solved exactly only in one-dimensions? and in infinite
dimensions®. One interesting problem which has yielded some powerful exact re-
sults involves the quantum numbers of the ground states in sectors with different
electron number and different z-component of spin. In particular, the idea of a spin
tower, where the minimal states with different spin are ordered according to the
total spin eigenvalues, and a similar concept with respect to a pseudospin tower,
remain interesting questions for this model. This work is partly motivated by the
work by Lieb and Mattis in one-dimension?, where they proved that a spin tower
exists for one-dimensional models on a lattice. We argue below that it is likely that
this result can be extended to all dimensions for the attractive case, but are not yet
able to fully prove the result. Instead, we review much of the work of others on this
problem®5 78 and we show an alternative constructive proof for the existence of a
spin tower for the repulsive Hubbard model on a bipartite lattice at half filling.

2. Formalism

We work with single-band Hubbard model, which is defined by the following Hamil-
tonian on a general graph A with |A| vertices € A (which we refer to as sites on
the graph)

H=- Z tmyclgcya +U Z cchmTclicu. (1)
z,yEN,0 zEA

The creation (annihilation) operators for a fermion of spin o at graph site = are
defined to be ¢}, (c,,)
{cl . cyor}t+ = Ouyboos (With all creation operators anticommuting amongst them-
selves, and similarly for the annihilation operators). The matrix —t,, is the hopping

and they satisfy the canonical anticommutation relation

matrix, which is required to be real and symmetric t,, = t,, and to have a van-
ishing diagonal (¢,, = 0) and U is the on-site Hubbard interaction, which we will
take to be the same for every lattice site. The attractive case corresponds to U < 0,
while the repulsive case corresponds to U > 0.

In this work, we will focus solely on bipartite lattices. The graph is called a
bipartite lattice if it separates into two pieces, one with IV 4 lattice sites and one with
Np = |A| — N4 lattices sites (we choose N4y < Np here), and the hopping matrix
—t4y is zero whenever x and y € A sublattice and whenever x and y € B sublattice.
In other words, all of the hopping is between the two sublattices (z € A sublattice
and y € B sublattice, or wvice versa). Note that we do not require periodicity, nor
do we require Ny = Np. It has become common to call a bipartite lattice where
Ny # Np as a Lieb lattice. Examples of bipartite lattices with the same numbers
of elements in each sublattice (all with nearest-neighbor hopping only) are the one-
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dimensional lattice, the square lattice, the simple cubic lattice, the body-centered-
cubic lattice, and so on. See Fig. 1 for some examples of conventional bipartite
lattices and Lieb lattices.

(a)
(o,

P

(b) O
—
o—O0—o

Fig. 1. Different bipartite lattice types. (a) One-dimensional linear chain (N4 = Np) and (b)
nearest-neighbor square lattice (N4 = Np). (¢) One-dimensional Lieb-lattice (N4 # Np) and
(d) two-dimensional Lieb-lattice (N4 # Np). The open circles are the A sublattice and the solid
circles are the B sublattice. The lines denote hopping matrix connections between lattice sites
(which always connect solid circles to open circles).

o
[ ]

® O
O

A4
@

'Y
A\
4
raY
A 4

O0——0O0—@&

One technical point we need to handle first is that the fermionic operators
all anticommute with each other. We will assume without loss of generality that
all fermionic operators with the same spin anticommute with each other, but
those with different spins commute. This can be accomplished by making the
unitary transformation ¢, — (—=1)"c,, and ij — (—1)N¢CLT. Here, we have
No = cn Moo = Y pen ChoCuoo- The phase factor will change the anticommutator
to a commutator whenever we anticommute two fermionic operators of different
spin. As we will see below, because we work in a sector with fixed up and down
spin particle numbers, this transformation has no effect on the energy eigenvalues,
the quantum numbers, or the dynamics of the Hubbard model. So we simply as-
sume that the same spin operators anticommute, but the opposite spin operators
commute.

Our next step is to describe the operators that commute with the Hubbard
Hamiltonian and to describe the operators whose quantum numbers we will be
examining in the ground state and in the different energy towers that we consider
in this work. The first set of operators we consider are the total number operators
for spin up and spin down, which were defined above. We find that both N} and
N, commute with H and hence the number of up spin particles and the number
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of down spin particles are separately conserved by the Hamiltonian. It turns out
that we can construct two different SU(2) algebras that either commute with the
Hubbard Hamiltonian or they form raising and lowering operator relationships with
H. The first of these are the total spin SU(2) operators, which are defined via

_ 1
ST =) el S5 =D clyey, and 5F = 5 (Nt = Ny). (2)
zeEA zeEA

These operators can be verified to satisfy the conventional SU(2) algebra:
[S%,8%]_ = 8%, [ST,87]. =267 (3)

and they also all commute with #: [S#, H]_ = [S*, H]_ = 0. This means the eigen-
states of the Hubbard Hamiltonian form total spin multiplets, with each member
of the multiplet having the same energy.

Before we define the pseudospin operators, we must define the symbol II,, which
is equal to 1 if x € A sublattice and equals 0 if x € B sublattice. Then the
pseudospin operators become

Jt = Z(_l)HICLTCaTvi7 J = Z(—I)H””cﬁcu, and J* = %(NT + Ny —|A]).(4)
TEA zEA

They also satisfy an SU(2) algebra: [JZ, J¥]_ = 4+J* and [J*,J7]_ =
2J%. Furthermore, all spin operators and pseudospin operators commute. Finally,
while the z-component of pseudospin commutes with the Hubbard Hamiltonian
[J#,H]- = 0, the pseudospin raising and lowering operators are raising and lower-
ing operators for H: [H, J*]_ = +UJ*. So, as the eigenvalue of J* changes, the
number of electrons in the state changes, and the energy of the eigenstate also shifts
by multiples of U. This will become clear as we discuss some examples below when
we discuss pseudospin towers.

The original proof by Lieb® involves a variational argument with the wavefunc-
tion expressed in a form that is called the spin-reflection symmetric form. We start
by fixing the values for the total electron number N and the number of up spins
M and the number of down spins N — M. When considering the problem of an
even number of electrons, we can search for the ground state in the sector where
the eigenvalue of S* is equal to zero (N = 2M), since every spin multiplet has a
representative with S* = 0. We choose a complete set of M-particle basis functions
for spinless fermions on the lattice denoted {¢,}. These basis functions are cho-
sen to be degree-M polynomials of the creation operators with real coefficients. A
simple counting argument shows there are exactly |A|!/[M!(|]A] — M)!] = R such
wavefunctions for each spin. We write an arbitrary wavefunction with 2M electrons
and S* = 0 as follows:

R
=Y Wasdar @ dsy, (5)

a,f=1
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where the R? complex numbers that determine the wavefunction are organized as
an R x R matrix denoted by W,g. Note that the same basis functions are used for
both spins and the order of the basis functions is the same for both spins as well.

The wavefunction is normalized, which implies that TeWiW = TeWWw' =
D e P |Was|? = 1. We define a many-body kinetic-energy matrix (for a single spin
species) via

Kap = (¢al | = D tayche, | 195) (6)

z,yeN

and a many-body number matrix (also for a single spin species) via

(La)ap = (alcle.lop)- (7)

Both of these matrices are Hermitian, of course, but because the basis functions
are real and the same for both spins, these matrices are actually real symmetric
matrices.

The Schrodinger equation Hy = E then becomes

KW+WKT+UZL;CWL£ = EW or KW+WK+UZL;EWL$:EW (8)
zEA TEA

where matrix multiplication is implied and we used the fact that K and L, are
symmetric matrices (this is why we need the hopping matrix to be real). If we take
the Hermitian conjugate of the latter equation, we find

WK+ KW'+ Uy LWL, = EW! (9)
TEA

where we used the Hermiticity of the K and L, matrices. This implies that if W
is a wavefunction with energy FE, then W' is also a wavefunction with energy E.
By forming W + W' and (W — W), we can always find a wavefunction with a
Hermitian matrix and the same energy FE, so without any loss of generality, we can
assume the W is a Hermitian matrix (but this does not imply it is a real symmetric
matrix, although it could be). Note that this proof shows that W is Hermitian
in the original real basis {¢,}. But, because Hermiticity is preserved under all
unitary transformations, this implies that W is Hermitian in any basis that is a
unitary transformation of the original basis.

3. Summary of Lieb’s proofs

Lieb’s proof that the ground state contains a spin-singlet state employs the following
variational argument®. Using the fact that W is Hermitian, allows us to write the
nomalization condition as TrW? = 1 and we find the energy satisfies

E=2TKW?+U>» TtWL,WL, (10)
zEA
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where we assume the wavefunction is normalized. We next define the matrix abso-
lute value to satisfy

W] = VW2 (11)

where we always choose the nonnegative square roots. This is constructed by first
diagonalizing the matrix W, replacing the diagonal elements by their absolute val-
ues, and then applying the inverse transformation back to the original basis. It
does not correspond to taking the absolute value of each matrix element of W.
Note that if we replace W by |W|, then TrKW?2 is unchanged, because W2 = |[W|2.
For the second term, we expand the trace in the basis where W and |W| are both
diagonal. In that basis, we have both W and |W| are diagonal with matrix el-
ements w, and |wel, respectively. We find TrtW L, WL, = 3 4 wawg|(Lz)apl?s
while Tr|[W|L,|W|Ly =35 |wa ||ws||(Ls)ap|?. Hence, because U < 0, the energy
E cannot increase when we compute the variational energy for the state |W|. This
means that if W is a ground state, then || is also a ground state. This result is
called spin-reflection positivity.

So amongst all possible ground states in the S, = 0 sector, at least one satisfies
W = |W/|. It turns out that this condition implies that the ground state includes a
spin singlet with S = 0. To prove this, we need to show that at least one diagonal
element of |[W] is nonzero when we express the wavefunction in the localized basis
(corresponding to product states of ¢/ acting on the vacuum state). This is because
a nonzero diagonal matrix element means that the wavefunction has a nonzero
coefficient for the state that has all of the up spins at precisely the same lattice
sites as the down spins. This state is a spin singlet because all doubly occupied sites
are spin singlets. The proof is simple. The matrix |W| is positive semidefinite. But
all positive semidefinite matrices must have diagonal elements that are positive
or zero and they must have at least one nonzero diagonal element or they are
identically zero. But since Tr|[W|? = 1, we cannot have |[W| = 0, so at least one
diagonal element is nonzero. This means amongst all of the ground states, at least
one is a spin singlet.

Next, Lieb showed that if the lattice is connected, then the ground state is
unique. We now summarize that proof. The basic strategy is to show that if W
is a ground-state, then we must have W = £|W/|. Suppose there are two ground-
states W1 and Ws. Then the matrix W(a) = Wy + aWs is also a ground-state. If
we pick o = —TrW;/TrWa, then TriW(a) = 0 = Tr|W(«)|. This means that the
ground-state corresponding to W («) is neither positive semidefinite nor negative
semidefinite. But, since |W(«)| is also a ground-state and is positive semidefinite
with a vanishing trace, it must be identically zero, which is not possible. So, one
cannot have two linearly independent ground-states.

In order to prove that W = £|W/|, we construct the kernel of the matrix R =
|W| — W, which is positive semidefinite. The kernel of R is the set of vectors {V'}
that satisfy RV = 0. To establish this result, we need to show the kernel of R,
which we denote by @ is either the entire vector space, or just the null vector. We
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start from the Schrodinger equation in Eq. (8), and take the expectation value with
respect to a vector V in Q:

VI(KR+ RK + U Y L,RL,)V = EVIRV. (12)
zEA
But RV = VIR = 0, so we have erA ViL,RL,V = 0. This then implies that
if Ve @ then L,V € @, because the positive semidefiniteness of R implies that
each VI L,RL,V = 0 which requires RL,V = 0. Hence, L, maps the kernel Q into
itself. Now multiply the Schrédinger equation on the right by V, to find

(KR+RK+U Y LyRL,)V = ERV. (13)
zEA

Since RV =0 and RL,V =0, we find RKV = 0. Hence if V € @, then KV € Q.
The hopping matrix ¢, creates a bond between lattice sites x and y if ¢, # 0.
The hopping matrix is said to be connected, if for any two lattice sites x and y, there
a set of bonds that connect x with y. This can also be stated as there is a chain of
lattice sites * = xg, T1, T2, ..., Tn, Y = Tp41 such that tue te 2y - e,y # 0. The
connectedness property translates from the hopping matrix to the many-body states
in the localized basis introduced earlier. This means for any state ¢/ cf - clM |0)

X xT
is connected to any other state c;fll CLQ e CLM |0) by a chain of K,g ané Li matrices.
To find the nonzero chain of matrix elements, we first find a path in the single-spin
many-body space that connects the state with a fermion at sites 1, xs2, ..., T to
Y1, Y2, - - ., yu- This path is made in the following fashion®: Suppose that 2 # yas.
Construct a path with the hopping matrix elements from site z,; to yps using
nonzero hopping matrix elements. Such a path always exists because the hopping
matrix is connected. Locate every fermion in the set {x;} that lie on the path.
Starting with the last fermion in the chain (which could be the one at xj if no
other fermions lie on the path), move it one step at a time from its current location
until it reaches yps. Next, take the next to last fermion on the path, and move
it to the position occupied by the last fermion before it was moved. Continue in
turn doing this for all fermions on the path until you have moved all of them,
including the last one ;. At this stage, we have moved the fermion from zps to
yu, and have left all of the other fermions in the set {z;} unchanged. Repeat this
procedure for xp;—1 and yp—1, for zpr—o and yps—o, all the way down to z; and
y1. Then we have found the path in the many-body space connecting these two
states. Consider an elemental step where we start with a fermion at site a which
we can move to site 8 since tog # 0; assume as well that all the other sites are
labeled by z; for ¢ = 1,..., M — 1. The operator that connects these two many
body states is Lg([[,e(s,) La) K La(Il,eqs,y La), which is composed entirely by K
and L, matrices. Hence, the operator that connects the state with fermions at
{z;} to the state with fermions at {y;} can be constructed entirely out of K and L,
matrices. Suppose that @) has a nonzero vector V in it. There is a basis state, where
the fermions are at sites {x;}, such that ([[,cy,,) Lo)V # 0. Then we can connect
this state to any other many-body state using products of K and L, matrices.
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Hence, every basis vector in the many-body space can be mapped to every other
basis vector. Since we started with a vector that is in @), and the K and L, matrices
keep vectors inside ), we have shown that all vectors in the many-body space are
in (. The other option is that @) has no vectors in it except for the zero vector. This
then proves that W = 4|W|, which then implies that the ground-state is unique.

Without loss of generality, we assume W = |W/|. With just a little more work
we can show that the ground-state is actually positive definite not just positive
semidefinite. The argument follows precisely what was given above, but we use the
matrix |W| instead of R. Suppose |W|V = 0, so that V is in the kernel of |IW|.
Then following the above steps, we immediately find that either the kernel of |W]|
contains only the zero vector or it contains every vector. If it contains every vector,
then |W| = 0,which is not possible because TrIW?2 = 1, so it must contain just the
null vector. This implies that |W] is actually positive definite. This extension of
Lieb’s theorem was made by Shen.

4. Summary of Shen’s pseudospin proof

We prove a straightforward lemma from Shen that if one wavefunction is positive
definite and the other is positive semidefinite, then their overlap is nonzero”. Let W
be the positive definite wavefunction and W’ the positive semidefinite wavefunction.
Introduce the unitary matrix U which diagonalizes W via W = UTDU, where D
is a diagonal matrix whose diagonal elements all satisfy |ws| > 0. Then, we can
immediately compute the overlap

TWTW = TeW'TUTDU = TUW'TUTD = (UW'TU) 0wl
«

=Y UapWh, Ul lwal. (14)
aBy
But > 5. UasWg,Us, = 0 for every a because W' is positive semidefinite. Not all
can be zero or W’ = 0, which is not possible if TrW’tW’ = 1. Hence, the sum-
mation includes some nonzero terms and all nonzero terms are positive. Therefore,
TW'TW > 0.

A full pseudospin tower occurs for a fixed filling of electrons N = 2M , when the
minimal energy state for a given pseudospin is ordered according to the pseudospin
values from the lowest allowed pseudospin J = (Ng + N + A —2M)/2 up to the
maximal pseudospin J = (Np + Na)/2; that is Enin(J + 1) > Epin(J) for all
J > (Np+ Na—2M)/2. Here, the subscript min denotes the minimal energy state
with the given value of pseudospin. A partial pseudospin tower has the minimal
energy ordering down to a given pseudospin Jy and for pseudospins with lower
quantum numbers the minimal energy states are all larger than the energy of the
minimal state with pseudospin Jy. These different cases are illustrated in Fig. 2.
For the attractive Hubbard model, we have a full pseudospin tower for the case
where Ny = Np, while we have Jy = (Np — N4)/2 for a Lieb lattice. Next, we
develop how one can prove the existence of a pseudospin tower.
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Fig. 2. Schematic of a pseudospin tower for the attractive Hubbard model. (a) Pseudospin tower
for |A| = 6 on a lattice with Ny = Np and (b) pseudospin tower for |A| = 6 on a lattice with
N4 =2 and Np = 4. The energy levels are plotted on the vertical axis and the electron number
on the horizontal. We only show the lowest energy level for each pseudospin for a given number
of electrons. The thickness of the line denotes the pseudospin value, as labeled in the figure. The
energy decreases by exactly —|U| as the electron number increases by 2, as shown in the figure.
In panel (b), the minimal energy state has J = 1 for 4, 6, and 8 electrons due to the partial
pseudospin tower, which occurs on a Lieb lattice.

One can employ Shen’s lemma to find the quantum number of the ground state
of the attractive Hubbard model by finding any positive semidefinite state that has
a definite value of the particular quantum number. Then since the overlap of the
ground state with the positive semidefinite state is nonzero, it must share the same
eigenvalue with the ground state. Shen did this by finding a specific pseudospin
model that had positive semidefinite ground states, from which one can infer the
overall quantum number of the ground state®”. We adopt the same methodology
for determining the pseudospin of the ground state, but we next construct the
positive semidefinite state directly rather than inferring it from the ground state of
a pseudospin Hamiltonian.

5. Direct construction of positive semidefinite pseudospin state

The states we will consider consist of linear combinations of product states that
involve pairs of up and down spin electrons created on specific lattice sites. When ex-
pressed in the matrix form using the localized basis, these states all are represented
by diagonal matrices. If the diagonal elements are all nonnegative coefficients, then
the state is a positive semidefinite state, which will have a nonzero overlap with the
ground-state wavefunction.

We begin with the case M = 0 of no electrons.The zero-electron state has
J =Na+Np = |A|. If we apply JT onto this state, then JT|0) has coefficients that
are negative and positive. The operator creates a linear combination of single paired
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electrons on each site—those on the A sublattice are multiplied by —1 and those on
the B sublattice are multiplied by +1. Hence this state is not positive semidefinite.
We can form an (unnormalized) positive semidefinite state by choosing every paired
state on the A sublattice to have the coefficient N and every paired state on the
B sublattice to have the coefficient N4

[+(N=2)) =Np D chel [0)+Na Y chyel [0). (15)
zEAA z€EAB
One can immediately show that J~ |4 (N = 2)) =0, so that J = (N4 + Np — 1)
for this state, and hence the NV = 2 ground state has minimal pseudospin.

We can keep continuing in this fashion. The state with N = 2M electrons is
composed of M sites of paired electrons. We form the positive semidefinite state
with the same coefficient for product states that have m 4 pairs on the A sublattice
and mp pairs on the B sublattice (M = ma + mp), so they have the form

M
[P (N =2M)) = Z Cma,M—ma Z |ma; M —ma), (16)

ma=0 all states with
m4 pairs in Ay and
M—m4 pairs in Ap

with all ¢, , pr—m, > 0; in other words, each state of the same type has the same
coefficient in the linear combination, but different types have different coefficients.
The coefficients are chosen such that J~ | (N = 2M)) = 0, so that the state has
J = (Na+ Np — M). Finding these coefficients is a simple counting exercise. For
a given m 4, we have Ng!/[mal(Na — ma)!] x N!/[(M —ma)(Ng — M + my)!]
different states. When J~ acts on this state, each term on the A sublattice will
create m4 new terms of the form —|ma — 1; M —my) and M — m4 terms of the
form |ma, M —m4 — 1). We need the negative terms with the same numbers of
pairs on each sublattice to cancel against the positive terms. The total number of
negative terms is maNa!/[mal(Na — ma)!] x Ng!/[(M — ma){(Ng — M 4+ ma)!].
This is equal to (N4 — my + 1) copies of the Ny!/[(ma — a)/(Na — m + 1)] x
Np!/[(M —ma)(Ng — M + my)!] terms in the |ma — 1; M — m4) sector. Since
each individual term in the set of |ma — 1; M — my) set of states is created from
N4 —mg + 1 possible “father” states when a pair is removed from the A sublattice
and Ng — M + my4 “father” states when a pair is removed from the B sublattice,
all terms appear the same number of times. This implies

—(NA —my + 1)CmA,M7mA + (NB - M + mA)cmAfl,Mfm,q+1 =0, (17)

for 1 < ma < M when M < Ny4. Start with co as. Then ¢4 p—1 = (Ng — M +
Decom/Na, capr—2=(Np — M +1)(Np — M +2)conr/[Na(Na —1)], - -+,
(Ng — M+ m)! (Ng —m)!
CO,M~
(N — M) N,
As long as M < Ny, then this state [¢)1 (N = 2M)) does not remain positive
semidefinite when J¥ is applied to it, because all of the states with M + 1 pairs

Cm,M—m =

(18)
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on the A sublattice and none on the B sublattice have negative coefficients coming
from the terms in JT which create pairs on the A sublattice and acted on the
states of the form |M;0). Hence, as long as M < Ny, the ground state has minimal
pseudospin.

When M = N4, we cannot add any new pairs to the A sublattice from the
N4 = M,0) state, so it may be possible now that applying J* to this state can
lead to a positive semidefinite state. In fact, by restricting the coefficients in Eq. (18)
to run only over 1 < my < N4 for Ny < M < Np, we find that the J* operator
can be applied Ngp — N4 times and the coefficients remain all positive; they are
multiplied by Ng — M for N4 < M < Np. So the states with 2N4 < N < 2Np all
have J = Np — N4 and the ground-state pseudospin is no longer minimal.

Finally, as M runs from Np to N4+ Np, the ground state is minimal pseudospin
again. This can be seen because the positive-definite state with a definite J quantum
number no longer remains positive definite when J7 is applied to it. This occurs
because the state in the sector |M — Np; Np) has negative coefficients for all the M —
Np +1; Np) states and since they all come from just the |[M — Ng; Np) sector, the
states are not positive semidefinite. This implies that any positive semidefinite state
with a definite J value cannot be raised and still remain positive semidefinite. Hence
the positive semidefinite state must be annihilated when J* is applied, implying
the pseudospin is minimal.

This establishes the proof about the pseudospin quantum number for the ground
state of the attractive Hubbard model. Our proof employed a constructive method
which created positive-semidefinite states with definite J which have nonzero over-
lap with the ground state and hence share the same quantum number.

6. Shen’s proof of the spin tower

All of the work we have done so far was for the attractive case with U < 0. The
repulsive case can be connected to the attractive one via a partial particle-hole
transformation, where we perform a particle-hole transformation on the down spin
electrons®. This takes Cpy — (—1)= CLJ/ and Cju — (=1 ¢, but leaves the up spin
electron operator unchanged. Then we find that the spin operators transform to the
pseudospin operators and vice versa. The down spin filling is transformed from M
electrons to |A| — M electrons. Finally, the interaction is changed via U — —U.
This transformation changes none of the anticommutation relations.

Let’s examine what happens to the S, = 0 states with N = 2M electrons (M
up spin and M down spin). The electron filling changes to M up spins and |A| — M
down spins, so the total filling is N = |A[, which is what we call half-filling. The z
component of the spin is now M — |A|/2, so as M runs from 0 to |A[, S, runs from
—|Al/2 to |A]/2.

If we plot the energy levels for half-filling as a function of S, a full spin tower
implies that E(]S;|) > E(|S,|) whenever |S.| > |S.|. A partial spin tower is a
spin tower for all |S,| > Sy and then E(]S,|) > E(So) for |Sz| < Sp. This implies
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Fig. 3. Schematic of a spin tower at half-filling for the repulsive Hubbard model. (a) Spin tower for
|A| = 6 on a lattice with N4 = Np and (b) spin tower for |A| = 6 on a lattice with N4 = 2 and
Np = 4. The energy levels are plotted on the vertical axis and the z-component of the electron
spin on the horizontal. We only show the lowest energy level for each total spin quantm number.
The thickness of the line denotes the spin value, as labeled in the figure. In panel (b), the minimal
energy state has S = 1 for S, = 0, £1 due to the partial spin tower, which occurs on a Lieb lattice.

that the ground state has spin Sy and a spin tower exists for spins larger than
Sp. Shen proved that on a bipartite lattice with N4 = Np, we have a full spin
tower and the ground state is a spin singlet at half-filling for the repulsive case
when U < oo. This result generalizes the Lieb-Mattis tower, which was proved for
attractive and repulsive interactions for one-dimensional systems. Shen also showed
that Sp = (N — Na)/2 for Lieb lattices. The situation is shown schematically in
Fig. 3.

The proof is rather straightforward®?. We first need to relate the energies of the
attractive and repulsive cases. In the current Hamiltonian, we have the interaction
energy is U .\ C;TCITCL 1Cyy» which clearly gives a different result if we have
zero, one or two electrons at a site. But if we instead write it in the particle-hole
symmetric formas U ) A(C;r:TCa:T - %)(cl 1€y 1), then the interaction is the same
when there are zero or two electrons on a site, while the case with one electron on a
site gives the negative value. Since the partial particle-hole transformation changes
the down filling from one to zero and vice versa as well as changing the sign of
U, it actually does not change the potential energy when written in this form.
This means the attractive and repulsive cases have the same potential energy. The
kinetic energy is also unchanged for the half-filled case, because the kinetic energy
for the up spins are unchanged in the transformation. For the down spins, the filling
goes from M to |A| — M, but because of the bipartite nature of the hopping, the
kinetic energy with M particles and with M holes (or |A|— M particles) is identical.
Hence the energies are the same for the modified interaction after the particle-hole
transformation.

Now the conversion from the original interaction and the particle-hole symmetric
one requires us to add —U ZmGA(CITTCmT + ciwc_u) + U|A|/4. All of our previous
energy eigenstates are eigenstates of this additional operator as well, so the shift of
the eigenvalues can be immediately computed. More importantly, the shift has no
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effect on the pseudospin eigenvalues or the spin eigenvalues.

So, at this stage we know the following: (1) the S, = 0 attractive eigenstates map
to J, = 0 repulsive eigenstates corresponding to half-filling; (2) for a given J, value
for the attractive case, we know the J value of the minimal energy eigenstate, so
for the repulsive case at half-filling we know the S eigenvalue of the minimal energy
state for fixed S,; and (3) the energy eigenvalues for the repulsive and attractive
cases are the same.

Now focus on the repulsive case at half-filling. We have that Sop = (Ng—Na)/2.
If S, > Sp, then we know the minimal energy states for |S,| > |S,| must satisfy
E(|S.|) > E(]S.]). This follows because in the attractive case, when we apply J+
to the minimal energy state with a given J, < 0 value, the energy changes by
U — U = 0 for the modified potential. But the minimal energy state with J, 4+ 1
must be lower in energy. Performing the partial particle-hole transformation then
yields the desired result. If |S,| < So, then E(|S,|) > E(Sy) follows because the
minimal energy state is a pseudospin multiplet for the attractive case. This then
establishes the (partial) spin tower. Since we are at half-filling, the term we added to
the Hamiltonian is just a constant, so we can remove it and go back to the original
Hamiltonian, and the result remains the same—the repulsive Hubbard model has
the same spin tower at half-filling.

Note that this shows that the ground state is ferrimagnetic (with S = |[Np —
N4|/2) on a Lieb lattice. In particular, it agrees with the known spin of the ground
state of an antiferromagnetic Heisenberg model, to which the repulsive Hubbard
model maps when U is positive and large in magnitude*®.

7. Remaining conjecture about ground-state quantum numbers
and towers for the Hubbard model

What remains to be proved is that the attractive case has a spin tower for all even
fillings. If true, then the particle-hole transformation would show that the pseu-
dospin quantum number of the repulsive model with even numbers of electrons has
minimal pseudospin. Heuristically, this result is obviously true when U is nega-
tive and large in magnitude. For then it costs too much energy to unbind a pair
of electrons and there is not enough kinetic energy gain, so the ground state has
all electrons paired. Increasing the spin requires the breaking of a pair, which in-
creases the energy by |U|, which occurs for each increased spin. Hence, one gets a
spin tower. The same thing occurs for small U approaching zero, if the bandstruc-
ture is nondegenerate. Then, by filling the states in from the lowest energy level
upward, we find we have to move pairs of electrons off the same energy level to
higher levels, which also will yield the spin tower.

In general, it is difficult to use any of the similar strategies that worked with
the above proofs for these cases because Ny # N| implies that the matrix W is
not square. Furthermore, because the up spin and down spin basis functions are
different, we can no longer show that W is Hermitian. The situation of nonzero
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S, and half-filling, is however, unique in that this case does have square matrices.
Furthermore, if one can establish a spin tower here, one can establish it at all other
fillings too by using pseudospin raising and lowering operators. But one cannot
show that W is Hermitian anymore, which makes the general approach to solving
the problem difficult (that is, spin-reflection positivity cannot be employed in this
case).

We spent some time focusing on singular value decompositions to employ with
variational arguments, but were not able to be successful with any of these argu-
ments. We feel the best line of attack at this point is to focus on different variational
ideas that go beyond using the matrix representation for the wavefunction. But we
do not have any concrete ideas for what might actually work.

8. Conclusions

In this work, we gave a brief review of Lieb’s two theorems proved in 1989 about
the Hubbard model and some of Shen’s extensions of these proofs. In particular, we
showed an alternative proof to Shen’s proof of the pseudospin quantum number of
the ground state for the attractive model and how one can employ that to establish
a spin tower for the repulsive Hubbard model at half-filling. Our proof involved a
constructive approach for positive semidefinite wavefunction with definite values of
pseudospin. We ended with some conjectures about the remaining open problem
which would establish a spin tower for the attractive case and would determine the
minimal pseudospin of the repulsive model ground state. Knowing the quantum
number of the ground state of the Hubbard model could then be employed to im-
prove exact diagonalization and other numerical methods for computing properties
of these models.
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