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In 1989, Lieb proved two theorems about the Hubbard model. One showed that the
ground state of the attractive model was a spin singlet state (S = 0), was unique, and

was positive definite. The other showed that the ground state of the repulsive model on
a bipartite lattice at half-filling has a total spin given by |(NA −NB)/2|, corresponding
to the difference of the number of lattice sites on the two sublattices divided by two. In
the mid to late 1990’s, Shen extended these proofs to show that the pseudospin of the

attractive model was minimal until the electron number equaled 2NA where it became
fixed at J = |(NA − NB)/2| until the filling became 2NB , where it became minimal
again. In addition, Shen showed that a spin tower exists for the spin eigenstates for
the half-filled case on a bipartite lattice. The spin tower says the minimal energy state

with spin S is higher in energy than the minimal energy state with spin S − 1 until we
reach the ground-state spin given above. One long standing conjecture about this model
remains, namely does the attractive model have such a spin tower for all fillings, which

would then imply that the repulsive model has minimal pseudopsin in its ground state.
While we do not prove this last conjecture, we provide a quick review of this previous
work, provide a constructive proof of the pseudospin of the attractive model ground
state, and describe the challenges with proving the remaining open conjecture.
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1. Introduction

The single-band Hubbard model1 involves electrons hopping on a lattice and their

mutual on-site repulsion when up and down spin electrons occupy the same lattice

site. It remains one of the most studied models in condensed matter physics, pri-

marily because it has been solved exactly only in one-dimensions2 and in infinite

dimensions3. One interesting problem which has yielded some powerful exact re-

sults involves the quantum numbers of the ground states in sectors with different

electron number and different z-component of spin. In particular, the idea of a spin

tower, where the minimal states with different spin are ordered according to the

total spin eigenvalues, and a similar concept with respect to a pseudospin tower,

remain interesting questions for this model. This work is partly motivated by the

work by Lieb and Mattis in one-dimension4, where they proved that a spin tower

exists for one-dimensional models on a lattice. We argue below that it is likely that

this result can be extended to all dimensions for the attractive case, but are not yet

able to fully prove the result. Instead, we review much of the work of others on this

problem5,6,7,8 and we show an alternative constructive proof for the existence of a

spin tower for the repulsive Hubbard model on a bipartite lattice at half filling.

2. Formalism

We work with single-band Hubbard model, which is defined by the following Hamil-

tonian on a general graph Λ with |Λ| vertices x ∈ Λ (which we refer to as sites on

the graph)

H = −
∑

x,y∈Λ,σ

txyc
†
xσcyσ + U

∑
x∈Λ

c†x↑cx↑c
†
x↓cx↓. (1)

The creation (annihilation) operators for a fermion of spin σ at graph site x are

defined to be c†xσ (cxσ) and they satisfy the canonical anticommutation relation

{c†xσ, cyσ′}+ = δxyδσσ′ (with all creation operators anticommuting amongst them-

selves, and similarly for the annihilation operators). The matrix −txy is the hopping

matrix, which is required to be real and symmetric txy = tyx and to have a van-

ishing diagonal (txx = 0) and U is the on-site Hubbard interaction, which we will

take to be the same for every lattice site. The attractive case corresponds to U < 0,

while the repulsive case corresponds to U > 0.

In this work, we will focus solely on bipartite lattices. The graph is called a

bipartite lattice if it separates into two pieces, one with NA lattice sites and one with

NB = |Λ| −NA lattices sites (we choose NA ≤ NB here), and the hopping matrix

−txy is zero whenever x and y ∈ A sublattice and whenever x and y ∈ B sublattice.

In other words, all of the hopping is between the two sublattices (x ∈ A sublattice

and y ∈ B sublattice, or vice versa). Note that we do not require periodicity, nor

do we require NA = NB . It has become common to call a bipartite lattice where

NA ̸= NB as a Lieb lattice. Examples of bipartite lattices with the same numbers

of elements in each sublattice (all with nearest-neighbor hopping only) are the one-
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dimensional lattice, the square lattice, the simple cubic lattice, the body-centered-

cubic lattice, and so on. See Fig. 1 for some examples of conventional bipartite

lattices and Lieb lattices.

Fig. 1. Different bipartite lattice types. (a) One-dimensional linear chain (NA = NB) and (b)
nearest-neighbor square lattice (NA = NB). (c) One-dimensional Lieb-lattice (NA ̸= NB) and
(d) two-dimensional Lieb-lattice (NA ̸= NB). The open circles are the A sublattice and the solid

circles are the B sublattice. The lines denote hopping matrix connections between lattice sites
(which always connect solid circles to open circles).

One technical point we need to handle first is that the fermionic operators

all anticommute with each other. We will assume without loss of generality that

all fermionic operators with the same spin anticommute with each other, but

those with different spins commute. This can be accomplished by making the

unitary transformation cx↑ → (−1)N↓cx↑ and c†x↑ → (−1)N↓c†x↑. Here, we have

Nσ =
∑

x∈Λ nxσ =
∑

x∈Λ c
†
xσcxσ. The phase factor will change the anticommutator

to a commutator whenever we anticommute two fermionic operators of different

spin. As we will see below, because we work in a sector with fixed up and down

spin particle numbers, this transformation has no effect on the energy eigenvalues,

the quantum numbers, or the dynamics of the Hubbard model. So we simply as-

sume that the same spin operators anticommute, but the opposite spin operators

commute.

Our next step is to describe the operators that commute with the Hubbard

Hamiltonian and to describe the operators whose quantum numbers we will be

examining in the ground state and in the different energy towers that we consider

in this work. The first set of operators we consider are the total number operators

for spin up and spin down, which were defined above. We find that both N↑ and

N↓ commute with H and hence the number of up spin particles and the number
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of down spin particles are separately conserved by the Hamiltonian. It turns out

that we can construct two different SU(2) algebras that either commute with the

Hubbard Hamiltonian or they form raising and lowering operator relationships with

H. The first of these are the total spin SU(2) operators, which are defined via

S+ =
∑
x∈Λ

c†x↑cx↓ , S
− =

∑
x∈Λ

c†x↓cx↑ , and Sz =
1

2
(N↑ −N↓). (2)

These operators can be verified to satisfy the conventional SU(2) algebra:

[Sz, S±]− = ±S± , [S+, S−]− = 2Sz (3)

and they also all commute with H: [Sz,H]− = [S±,H]− = 0. This means the eigen-

states of the Hubbard Hamiltonian form total spin multiplets, with each member

of the multiplet having the same energy.

Before we define the pseudospin operators, we must define the symbol Πx which

is equal to 1 if x ∈ A sublattice and equals 0 if x ∈ B sublattice. Then the

pseudospin operators become

J+ =
∑
x∈Λ

(−1)Πxc†x↑c
†
x↓ , J

− =
∑
x∈Λ

(−1)Πxcx↑cx↓ , and Jz =
1

2
(N↑ +N↓ − |Λ|).(4)

They also satisfy an SU(2) algebra: [Jz, J±]− = ±J± and [J+, J−]− =

2Jz. Furthermore, all spin operators and pseudospin operators commute. Finally,

while the z-component of pseudospin commutes with the Hubbard Hamiltonian

[Jz,H]− = 0, the pseudospin raising and lowering operators are raising and lower-

ing operators for H: [H, J±]− = ±UJ±. So, as the eigenvalue of Jz changes, the

number of electrons in the state changes, and the energy of the eigenstate also shifts

by multiples of U . This will become clear as we discuss some examples below when

we discuss pseudospin towers.

The original proof by Lieb5 involves a variational argument with the wavefunc-

tion expressed in a form that is called the spin-reflection symmetric form. We start

by fixing the values for the total electron number N and the number of up spins

M and the number of down spins N −M . When considering the problem of an

even number of electrons, we can search for the ground state in the sector where

the eigenvalue of Sz is equal to zero (N = 2M), since every spin multiplet has a

representative with Sz = 0. We choose a complete set of M -particle basis functions

for spinless fermions on the lattice denoted {ϕα}. These basis functions are cho-

sen to be degree-M polynomials of the creation operators with real coefficients. A

simple counting argument shows there are exactly |Λ|!/[M !(|Λ| −M)!] = R such

wavefunctions for each spin. We write an arbitrary wavefunction with 2M electrons

and Sz = 0 as follows:

ψ =

R∑
α,β=1

Wαβϕα↑ ⊗ ϕβ↓, (5)



November 18, 2017 23:22 WSPC/INSTRUCTION FILE
yalta˙freericks˙2017

Spin and pseudospin towers of the Hubbard model on a bipartite lattice 5

where the R2 complex numbers that determine the wavefunction are organized as

an R×R matrix denoted by Wαβ . Note that the same basis functions are used for

both spins and the order of the basis functions is the same for both spins as well.

The wavefunction is normalized, which implies that TrW †W = TrWW † =∑
αβ |Wαβ |2 = 1. We define a many-body kinetic-energy matrix (for a single spin

species) via

Kαβ = ⟨ϕα|

−
∑

x,y∈Λ

txyc
†
xcy

 |ϕβ⟩ (6)

and a many-body number matrix (also for a single spin species) via

(Lx)αβ = ⟨ϕα|c†xcx|ϕβ⟩. (7)

Both of these matrices are Hermitian, of course, but because the basis functions

are real and the same for both spins, these matrices are actually real symmetric

matrices.

The Schrödinger equation Hψ = Eψ then becomes

KW +WKT + U
∑
x∈Λ

LxWLT
x = EW or KW +WK + U

∑
x∈Λ

LxWLx = EW (8)

where matrix multiplication is implied and we used the fact that K and Lx are

symmetric matrices (this is why we need the hopping matrix to be real). If we take

the Hermitian conjugate of the latter equation, we find

W †K +KW † + U
∑
x∈Λ

LxW
†Lx = EW † (9)

where we used the Hermiticity of the K and Lx matrices. This implies that if W

is a wavefunction with energy E, then W † is also a wavefunction with energy E.

By forming W +W † and i(W −W †), we can always find a wavefunction with a

Hermitian matrix and the same energy E, so without any loss of generality, we can

assume the W is a Hermitian matrix (but this does not imply it is a real symmetric

matrix, although it could be). Note that this proof shows that W is Hermitian

in the original real basis {ϕα}. But, because Hermiticity is preserved under all

unitary transformations, this implies that W is Hermitian in any basis that is a

unitary transformation of the original basis.

3. Summary of Lieb’s proofs

Lieb’s proof that the ground state contains a spin-singlet state employs the following

variational argument5. Using the fact that W is Hermitian, allows us to write the

nomalization condition as TrW 2 = 1 and we find the energy satisfies

E = 2TrKW 2 + U
∑
x∈Λ

TrWLxWLx (10)
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where we assume the wavefunction is normalized. We next define the matrix abso-

lute value to satisfy

|W | =
√
W 2 (11)

where we always choose the nonnegative square roots. This is constructed by first

diagonalizing the matrix W , replacing the diagonal elements by their absolute val-

ues, and then applying the inverse transformation back to the original basis. It

does not correspond to taking the absolute value of each matrix element of W .

Note that if we replace W by |W |, then TrKW 2 is unchanged, because W 2 = |W |2.
For the second term, we expand the trace in the basis where W and |W | are both

diagonal. In that basis, we have both W and |W | are diagonal with matrix el-

ements wα and |wα|, respectively. We find TrWLxWLx =
∑

αβ wαwβ |(Lx)αβ |2,
while Tr|W |Lx|W |Lx =

∑
αβ |wα||wβ ||(Lx)αβ |2. Hence, because U < 0, the energy

E cannot increase when we compute the variational energy for the state |W |. This
means that if W is a ground state, then |W | is also a ground state. This result is

called spin-reflection positivity.

So amongst all possible ground states in the Sz = 0 sector, at least one satisfies

W = |W |. It turns out that this condition implies that the ground state includes a

spin singlet with S = 0. To prove this, we need to show that at least one diagonal

element of |W | is nonzero when we express the wavefunction in the localized basis

(corresponding to product states of c†x acting on the vacuum state). This is because

a nonzero diagonal matrix element means that the wavefunction has a nonzero

coefficient for the state that has all of the up spins at precisely the same lattice

sites as the down spins. This state is a spin singlet because all doubly occupied sites

are spin singlets. The proof is simple. The matrix |W | is positive semidefinite. But

all positive semidefinite matrices must have diagonal elements that are positive

or zero and they must have at least one nonzero diagonal element or they are

identically zero. But since Tr|W |2 = 1, we cannot have |W | = 0, so at least one

diagonal element is nonzero. This means amongst all of the ground states, at least

one is a spin singlet.

Next, Lieb showed that if the lattice is connected, then the ground state is

unique. We now summarize that proof. The basic strategy is to show that if W

is a ground-state, then we must have W = ±|W |. Suppose there are two ground-

states W1 and W2. Then the matrix W (α) = W1 + αW2 is also a ground-state. If

we pick α = −TrW1/TrW2, then TrW (α) = 0 = Tr|W (α)|. This means that the

ground-state corresponding to W (α) is neither positive semidefinite nor negative

semidefinite. But, since |W (α)| is also a ground-state and is positive semidefinite

with a vanishing trace, it must be identically zero, which is not possible. So, one

cannot have two linearly independent ground-states.

In order to prove that W = ±|W |, we construct the kernel of the matrix R =

|W | −W , which is positive semidefinite. The kernel of R is the set of vectors {V }
that satisfy RV = 0. To establish this result, we need to show the kernel of R,

which we denote by Q is either the entire vector space, or just the null vector. We
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start from the Schrödinger equation in Eq. (8), and take the expectation value with

respect to a vector V in Q:

V †(KR+RK + U
∑
x∈Λ

LxRLx)V = EV †RV. (12)

But RV = V †R = 0, so we have
∑

x∈Λ V
†LxRLxV = 0. This then implies that

if V ∈ Q then LxV ∈ Q, because the positive semidefiniteness of R implies that

each V †LxRLxV = 0 which requires RLxV = 0. Hence, Lx maps the kernel Q into

itself. Now multiply the Schrödinger equation on the right by V , to find

(KR+RK + U
∑
x∈Λ

LxRLx)V = ERV. (13)

Since RV = 0 and RLxV = 0, we find RKV = 0. Hence if V ∈ Q, then KV ∈ Q.

The hopping matrix txy creates a bond between lattice sites x and y if txy ̸= 0.

The hopping matrix is said to be connected, if for any two lattice sites x and y, there

a set of bonds that connect x with y. This can also be stated as there is a chain of

lattice sites x = x0, x1, x2, . . . , xn, y = xn+1 such that txx1tx1x2 · · · txny ̸= 0. The

connectedness property translates from the hopping matrix to the many-body states

in the localized basis introduced earlier. This means for any state c†x1
c†x2

· · · c†xM
|0⟩

is connected to any other state c†y1
c†y2

· · · c†yM
|0⟩ by a chain of Kαβ and Lx matrices.

To find the nonzero chain of matrix elements, we first find a path in the single-spin

many-body space that connects the state with a fermion at sites x1, x2, . . . , xM to

y1, y2, . . . , yM . This path is made in the following fashion8: Suppose that xM ̸= yM .

Construct a path with the hopping matrix elements from site xM to yM using

nonzero hopping matrix elements. Such a path always exists because the hopping

matrix is connected. Locate every fermion in the set {xi} that lie on the path.

Starting with the last fermion in the chain (which could be the one at xM if no

other fermions lie on the path), move it one step at a time from its current location

until it reaches yM . Next, take the next to last fermion on the path, and move

it to the position occupied by the last fermion before it was moved. Continue in

turn doing this for all fermions on the path until you have moved all of them,

including the last one xM . At this stage, we have moved the fermion from xM to

yM , and have left all of the other fermions in the set {xi} unchanged. Repeat this

procedure for xM−1 and yM−1, for xM−2 and yM−2, all the way down to x1 and

y1. Then we have found the path in the many-body space connecting these two

states. Consider an elemental step where we start with a fermion at site α which

we can move to site β since tαβ ̸= 0; assume as well that all the other sites are

labeled by zi for i = 1, . . . ,M − 1. The operator that connects these two many

body states is Lβ(
∏

x∈{zi} Lx)KLα(
∏

x∈{zi} Lx), which is composed entirely by K

and Lx matrices. Hence, the operator that connects the state with fermions at

{xi} to the state with fermions at {yi} can be constructed entirely out of K and Lx

matrices. Suppose that Q has a nonzero vector V in it. There is a basis state, where

the fermions are at sites {xi}, such that (
∏

x∈{xi} Lx)V ̸= 0. Then we can connect

this state to any other many-body state using products of K and Lx matrices.
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Hence, every basis vector in the many-body space can be mapped to every other

basis vector. Since we started with a vector that is in Q, and the K and Lx matrices

keep vectors inside Q, we have shown that all vectors in the many-body space are

in Q. The other option is that Q has no vectors in it except for the zero vector. This

then proves that W = ±|W |, which then implies that the ground-state is unique.

Without loss of generality, we assume W = |W |. With just a little more work

we can show that the ground-state is actually positive definite not just positive

semidefinite. The argument follows precisely what was given above, but we use the

matrix |W | instead of R. Suppose |W |V = 0, so that V is in the kernel of |W |.
Then following the above steps, we immediately find that either the kernel of |W |
contains only the zero vector or it contains every vector. If it contains every vector,

then |W | = 0,which is not possible because TrW 2 = 1, so it must contain just the

null vector. This implies that |W | is actually positive definite. This extension of

Lieb’s theorem was made by Shen.

4. Summary of Shen’s pseudospin proof

We prove a straightforward lemma from Shen that if one wavefunction is positive

definite and the other is positive semidefinite, then their overlap is nonzero7. LetW

be the positive definite wavefunction andW ′ the positive semidefinite wavefunction.

Introduce the unitary matrix U which diagonalizes W via W = U †DU , where D

is a diagonal matrix whose diagonal elements all satisfy |wα| > 0. Then, we can

immediately compute the overlap

TrW ′†W = TrW ′†U †DU = TrUW ′†U †D =
∑
α

(UW ′†U †)αα|wα|

=
∑
αβγ

UαβW
′
βγU

∗
αγ |wα|. (14)

But
∑

βγ UαβW
′
βγU

∗
αγ ≥ 0 for every α because W ′ is positive semidefinite. Not all

can be zero or W ′ = 0, which is not possible if TrW ′†W ′ = 1. Hence, the sum-

mation includes some nonzero terms and all nonzero terms are positive. Therefore,

TrW ′†W > 0.

A full pseudospin tower occurs for a fixed filling of electrons N = 2M , when the

minimal energy state for a given pseudospin is ordered according to the pseudospin

values from the lowest allowed pseudospin J = (NB + N + A − 2M)/2 up to the

maximal pseudospin J = (NB + NA)/2; that is Emin(J + 1) > Emin(J) for all

J ≥ (NB +NA−2M)/2. Here, the subscript min denotes the minimal energy state

with the given value of pseudospin. A partial pseudospin tower has the minimal

energy ordering down to a given pseudospin J0 and for pseudospins with lower

quantum numbers the minimal energy states are all larger than the energy of the

minimal state with pseudospin J0. These different cases are illustrated in Fig. 2.

For the attractive Hubbard model, we have a full pseudospin tower for the case

where NA = NB , while we have J0 = (NB − NA)/2 for a Lieb lattice. Next, we

develop how one can prove the existence of a pseudospin tower.
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Fig. 2. Schematic of a pseudospin tower for the attractive Hubbard model. (a) Pseudospin tower
for |Λ| = 6 on a lattice with NA = NB and (b) pseudospin tower for |Λ| = 6 on a lattice with
NA = 2 and NB = 4. The energy levels are plotted on the vertical axis and the electron number

on the horizontal. We only show the lowest energy level for each pseudospin for a given number
of electrons. The thickness of the line denotes the pseudospin value, as labeled in the figure. The
energy decreases by exactly −|U | as the electron number increases by 2, as shown in the figure.
In panel (b), the minimal energy state has J = 1 for 4, 6, and 8 electrons due to the partial

pseudospin tower, which occurs on a Lieb lattice.

One can employ Shen’s lemma to find the quantum number of the ground state

of the attractive Hubbard model by finding any positive semidefinite state that has

a definite value of the particular quantum number. Then since the overlap of the

ground state with the positive semidefinite state is nonzero, it must share the same

eigenvalue with the ground state. Shen did this by finding a specific pseudospin

model that had positive semidefinite ground states, from which one can infer the

overall quantum number of the ground state6,7. We adopt the same methodology

for determining the pseudospin of the ground state, but we next construct the

positive semidefinite state directly rather than inferring it from the ground state of

a pseudospin Hamiltonian.

5. Direct construction of positive semidefinite pseudospin state

The states we will consider consist of linear combinations of product states that

involve pairs of up and down spin electrons created on specific lattice sites. When ex-

pressed in the matrix form using the localized basis, these states all are represented

by diagonal matrices. If the diagonal elements are all nonnegative coefficients, then

the state is a positive semidefinite state, which will have a nonzero overlap with the

ground-state wavefunction.

We begin with the case M = 0 of no electrons.The zero-electron state has

J = NA+NB = |Λ|. If we apply J+ onto this state, then J+|0⟩ has coefficients that

are negative and positive. The operator creates a linear combination of single paired
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electrons on each site—those on the A sublattice are multiplied by −1 and those on

the B sublattice are multiplied by +1. Hence this state is not positive semidefinite.

We can form an (unnormalized) positive semidefinite state by choosing every paired

state on the A sublattice to have the coefficient NB and every paired state on the

B sublattice to have the coefficient NA

|ψ+(N = 2)⟩ = NB

∑
x∈ΛA

c†x↑c
†
x↓|0⟩+NA

∑
x∈ΛB

c†x↑c
†
x↓|0⟩. (15)

One can immediately show that J−|ψ+(N = 2)⟩ = 0, so that J = (NA +NB − 1)

for this state, and hence the N = 2 ground state has minimal pseudospin.

We can keep continuing in this fashion. The state with N = 2M electrons is

composed of M sites of paired electrons. We form the positive semidefinite state

with the same coefficient for product states that have mA pairs on the A sublattice

and mB pairs on the B sublattice (M = mA +mB), so they have the form

|ψ+(N = 2M)⟩ =
M∑

mA=0

cmA,M−mA

∑
all states with

mA pairs in ΛA and
M−mA pairs in ΛB

|mA;M −mA⟩, (16)

with all cmA,M−mA
≥ 0; in other words, each state of the same type has the same

coefficient in the linear combination, but different types have different coefficients.

The coefficients are chosen such that J−|ψ+(N = 2M)⟩ = 0, so that the state has

J = (NA +NB −M). Finding these coefficients is a simple counting exercise. For

a given mA, we have NA!/[mA!(NA −mA)!] ×NB !/[(M −mA)!(NB −M +mA)!]

different states. When J− acts on this state, each term on the A sublattice will

create mA new terms of the form −|mA − 1;M −mA⟩ and M −mA terms of the

form |mA,M − mA − 1⟩. We need the negative terms with the same numbers of

pairs on each sublattice to cancel against the positive terms. The total number of

negative terms is mANA!/[mA!(NA −mA)!]×NB !/[(M −mA)!(NB −M +mA)!].

This is equal to (NA − mA + 1) copies of the NA!/[(mA − a)!(NA − m + 1)!] ×
NB !/[(M −mA)!(NB −M +mA)!] terms in the |mA − 1;M −mA⟩ sector. Since

each individual term in the set of |mA − 1;M −mA⟩ set of states is created from

NA −ma +1 possible “father” states when a pair is removed from the A sublattice

and NB −M +mA “father” states when a pair is removed from the B sublattice,

all terms appear the same number of times. This implies

−(NA −mA + 1)cmA,M−mA
+ (NB −M +mA)cmA−1,M−mA+1 = 0, (17)

for 1 ≤ mA ≤ M when M < NA. Start with c0,M . Then c1,M−1 = (NB −M +

1)c0,M/NA, c2,M−2 = (NB −M + 1)(NB −M + 2)c0,M/[NA(NA − 1)], · · · ,

cm,M−m =
(NB −M +m)!

(NB −M)!

(NA −m)!

NA!
c0,M . (18)

As long as M < NA, then this state |ψ+(N = 2M)⟩ does not remain positive

semidefinite when J+ is applied to it, because all of the states with M + 1 pairs
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on the A sublattice and none on the B sublattice have negative coefficients coming

from the terms in J+ which create pairs on the A sublattice and acted on the

states of the form |M ; 0⟩. Hence, as long as M < NA, the ground state has minimal

pseudospin.

When M = NA, we cannot add any new pairs to the A sublattice from the

|NA = M, 0⟩ state, so it may be possible now that applying J+ to this state can

lead to a positive semidefinite state. In fact, by restricting the coefficients in Eq. (18)

to run only over 1 ≤ mA ≤ NA for NA ≤ M ≤ NB , we find that the J+ operator

can be applied NB − NA times and the coefficients remain all positive; they are

multiplied by NB −M for NA ≤M ≤ NB . So the states with 2NA ≤ N ≤ 2NB all

have J = NB −NA and the ground-state pseudospin is no longer minimal.

Finally, asM runs from NB to NA+NB , the ground state is minimal pseudospin

again. This can be seen because the positive-definite state with a definite J quantum

number no longer remains positive definite when J+ is applied to it. This occurs

because the state in the sector |M−NB ;NB⟩ has negative coefficients for all theM−
NB +1;NB⟩ states and since they all come from just the |M −NB ;NB⟩ sector, the
states are not positive semidefinite. This implies that any positive semidefinite state

with a definite J value cannot be raised and still remain positive semidefinite. Hence

the positive semidefinite state must be annihilated when J+ is applied, implying

the pseudospin is minimal.

This establishes the proof about the pseudospin quantum number for the ground

state of the attractive Hubbard model. Our proof employed a constructive method

which created positive-semidefinite states with definite J which have nonzero over-

lap with the ground state and hence share the same quantum number.

6. Shen’s proof of the spin tower

All of the work we have done so far was for the attractive case with U < 0. The

repulsive case can be connected to the attractive one via a partial particle-hole

transformation, where we perform a particle-hole transformation on the down spin

electrons5. This takes cx↓ → (−1)Πxc†x↓ and c†x↓ → (−1)Πxcx↓ but leaves the up spin

electron operator unchanged. Then we find that the spin operators transform to the

pseudospin operators and vice versa. The down spin filling is transformed from M

electrons to |Λ| −M electrons. Finally, the interaction is changed via U → −U .

This transformation changes none of the anticommutation relations.

Let’s examine what happens to the Sz = 0 states with N = 2M electrons (M

up spin and M down spin). The electron filling changes to M up spins and |Λ|−M
down spins, so the total filling is N = |Λ|, which is what we call half-filling. The z

component of the spin is now M − |Λ|/2, so as M runs from 0 to |Λ|, Sz runs from

−|Λ|/2 to |Λ|/2.
If we plot the energy levels for half-filling as a function of Sz, a full spin tower

implies that E(|Sz|) > E(|S′
z|) whenever |Sz| > |S′

z|. A partial spin tower is a

spin tower for all |Sz| > S0 and then E(|Sz|) > E(S0) for |SZ | < S0. This implies
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Fig. 3. Schematic of a spin tower at half-filling for the repulsive Hubbard model. (a) Spin tower for
|Λ| = 6 on a lattice with NA = NB and (b) spin tower for |Λ| = 6 on a lattice with NA = 2 and

NB = 4. The energy levels are plotted on the vertical axis and the z-component of the electron
spin on the horizontal. We only show the lowest energy level for each total spin quantm number.
The thickness of the line denotes the spin value, as labeled in the figure. In panel (b), the minimal
energy state has S = 1 for Sz = 0,±1 due to the partial spin tower, which occurs on a Lieb lattice.

that the ground state has spin S0 and a spin tower exists for spins larger than

S0. Shen proved that on a bipartite lattice with NA = NB , we have a full spin

tower and the ground state is a spin singlet at half-filling for the repulsive case

when U < ∞. This result generalizes the Lieb-Mattis tower, which was proved for

attractive and repulsive interactions for one-dimensional systems. Shen also showed

that S0 = (NB −NA)/2 for Lieb lattices. The situation is shown schematically in

Fig. 3.

The proof is rather straightforward6,7. We first need to relate the energies of the

attractive and repulsive cases. In the current Hamiltonian, we have the interaction

energy is U
∑

x∈Λ c
†
x↑cx↑c

†
x↓cx↓, which clearly gives a different result if we have

zero, one or two electrons at a site. But if we instead write it in the particle-hole

symmetric form as U
∑

x∈Λ(c
†
x↑cx↑−

1
2 )(c

†
x↓cx↓−

1
2 ), then the interaction is the same

when there are zero or two electrons on a site, while the case with one electron on a

site gives the negative value. Since the partial particle-hole transformation changes

the down filling from one to zero and vice versa as well as changing the sign of

U , it actually does not change the potential energy when written in this form.

This means the attractive and repulsive cases have the same potential energy. The

kinetic energy is also unchanged for the half-filled case, because the kinetic energy

for the up spins are unchanged in the transformation. For the down spins, the filling

goes from M to |Λ| −M , but because of the bipartite nature of the hopping, the

kinetic energy withM particles and withM holes (or |Λ|−M particles) is identical.

Hence the energies are the same for the modified interaction after the particle-hole

transformation.

Now the conversion from the original interaction and the particle-hole symmetric

one requires us to add −U
∑

x∈Λ(c
†
x↑cx↑ + c†x↓cx↓) + U |Λ|/4. All of our previous

energy eigenstates are eigenstates of this additional operator as well, so the shift of

the eigenvalues can be immediately computed. More importantly, the shift has no
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effect on the pseudospin eigenvalues or the spin eigenvalues.

So, at this stage we know the following: (1) the Sz = 0 attractive eigenstates map

to Jz = 0 repulsive eigenstates corresponding to half-filling; (2) for a given Jz value

for the attractive case, we know the J value of the minimal energy eigenstate, so

for the repulsive case at half-filling we know the S eigenvalue of the minimal energy

state for fixed Sz; and (3) the energy eigenvalues for the repulsive and attractive

cases are the same.

Now focus on the repulsive case at half-filling. We have that S0 = (NB−NA)/2.

If Sz > S0, then we know the minimal energy states for |Sz| > |S′
z| must satisfy

E(|Sz|) > E(|S′
z|). This follows because in the attractive case, when we apply J+

to the minimal energy state with a given Jz < 0 value, the energy changes by

U − U = 0 for the modified potential. But the minimal energy state with Jz + 1

must be lower in energy. Performing the partial particle-hole transformation then

yields the desired result. If |Sz| < S0, then E(|Sz|) > E(S0) follows because the

minimal energy state is a pseudospin multiplet for the attractive case. This then

establishes the (partial) spin tower. Since we are at half-filling, the term we added to

the Hamiltonian is just a constant, so we can remove it and go back to the original

Hamiltonian, and the result remains the same—the repulsive Hubbard model has

the same spin tower at half-filling.

Note that this shows that the ground state is ferrimagnetic (with S = |NB −
NA|/2) on a Lieb lattice. In particular, it agrees with the known spin of the ground

state of an antiferromagnetic Heisenberg model, to which the repulsive Hubbard

model maps when U is positive and large in magnitude4,5.

7. Remaining conjecture about ground-state quantum numbers

and towers for the Hubbard model

What remains to be proved is that the attractive case has a spin tower for all even

fillings. If true, then the particle-hole transformation would show that the pseu-

dospin quantum number of the repulsive model with even numbers of electrons has

minimal pseudospin. Heuristically, this result is obviously true when U is nega-

tive and large in magnitude. For then it costs too much energy to unbind a pair

of electrons and there is not enough kinetic energy gain, so the ground state has

all electrons paired. Increasing the spin requires the breaking of a pair, which in-

creases the energy by |U |, which occurs for each increased spin. Hence, one gets a

spin tower. The same thing occurs for small U approaching zero, if the bandstruc-

ture is nondegenerate. Then, by filling the states in from the lowest energy level

upward, we find we have to move pairs of electrons off the same energy level to

higher levels, which also will yield the spin tower.

In general, it is difficult to use any of the similar strategies that worked with

the above proofs for these cases because N↑ ̸= N↓ implies that the matrix W is

not square. Furthermore, because the up spin and down spin basis functions are

different, we can no longer show that W is Hermitian. The situation of nonzero
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Sz and half-filling, is however, unique in that this case does have square matrices.

Furthermore, if one can establish a spin tower here, one can establish it at all other

fillings too by using pseudospin raising and lowering operators. But one cannot

show that W is Hermitian anymore, which makes the general approach to solving

the problem difficult (that is, spin-reflection positivity cannot be employed in this

case).

We spent some time focusing on singular value decompositions to employ with

variational arguments, but were not able to be successful with any of these argu-

ments. We feel the best line of attack at this point is to focus on different variational

ideas that go beyond using the matrix representation for the wavefunction. But we

do not have any concrete ideas for what might actually work.

8. Conclusions

In this work, we gave a brief review of Lieb’s two theorems proved in 1989 about

the Hubbard model and some of Shen’s extensions of these proofs. In particular, we

showed an alternative proof to Shen’s proof of the pseudospin quantum number of

the ground state for the attractive model and how one can employ that to establish

a spin tower for the repulsive Hubbard model at half-filling. Our proof involved a

constructive approach for positive semidefinite wavefunction with definite values of

pseudospin. We ended with some conjectures about the remaining open problem

which would establish a spin tower for the attractive case and would determine the

minimal pseudospin of the repulsive model ground state. Knowing the quantum

number of the ground state of the Hubbard model could then be employed to im-

prove exact diagonalization and other numerical methods for computing properties

of these models.
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