
1 

 

Strategies and Software for Machine Learning 

Accelerated Discovery in Transition Metal 

Chemistry 

Aditya Nandy1,2,#, Chenru Duan1,2,#, Jon Paul Janet1, Stefan Gugler1,3, and Heather J. Kulik1,*  

1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 
02139 

2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 
3Laboratorium für Physikalische Chemie,  ETH Zürich, Vladimir-Prelog-Weg 

2, 8093 Zürich, Switzerland 
#These authors contributed equally. 

 
ABSTRACT: Machine learning the electronic structure of open shell transition metal complexes 
presents unique challenges, including robust and automated data set generation. Here, we 
introduce tools that simplify data acquisition from density functional theory (DFT) and 
validation of trained machine learning models using the molSimplify automatic design (mAD) 
workflow. We demonstrate this workflow by training and comparing the performance of 
LASSO, kernel ridge regression (KRR), and artificial neural network (ANN) models using 
heuristic, topological revised autocorrelation (RAC) descriptors we have recently introduced for 
machine learning inorganic chemistry. On a series of open shell transition metal complexes, we 
evaluate set aside test errors of these models for predicting the HOMO level and HOMO-LUMO 
gap. The best performing models are ANNs, which show 0.15 and 0.25 eV test set mean absolute 
errors on the HOMO level and HOMO-LUMO gap, respectively. Poor performing KRR models 
using the full 153-feature RAC set are improved to nearly the same performance as the ANNs 
when trained on down-selected subsets of 20-30 features. Analysis of the essential descriptors for 
HOMO and HOMO-LUMO gap prediction as well as comparison to subsets previously obtained 
for other properties reveals the paramount importance of non-local, steric properties in 
determining frontier molecular orbital energetics. We demonstrate our model performance on 
diverse complexes and in the discovery of molecules with target HOMO-LUMO gaps from a 
large 15,000 molecule design space in minutes rather than days that full DFT evaluation would 
require.  
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1. Introduction 

 Transition metal complexes are promising as functional materials, e.g., as spin crossover 

materials1-6 that change properties in response to light, heat or small molecules, as 

photosensitizers7 for solar cells, and they are also highly active, selective homogenous catalysts8-

12. The open-shell transition metal (TM) centers of TM complexes are characterized by unpaired 

electrons with differing spin and spatial symmetry that can be tuned by surrounding organic 

ligands. These interactions typically require a fully quantum mechanical description, and thus the 

resulting properties are both what gives these complexes great promise as functional materials 

and catalysts but also makes their rational design challenging.  

 Computational high-throughput screening and design have become increasingly 

prominent13-17 thanks to increases in computing power and algorithmic developments. 

Nevertheless, challenges remain for high-throughput discovery in inorganic chemistry. Fewer 

affordable methods such as force fields or semi-empirical methods have been developed for 

inorganic chemistry18 in comparison to organic chemistry, necessitating first principles 

simulation. However, transition metal chemistry is also sensitive19-23 to the approximations made 

in the most widely used first principles simulation techniques (i.e., density functional theory or 

DFT). Inorganic chemistry discovery tools lag behind both solid state materials, where large 

databases are available for repurposing and discovering new materials24, which open source 

codes such as AFLOW25-26, ASE27, and pymatgen28 enable. A number of cheminformatics tools, 

such as RDkit29 or OpenBabel30, and large databases31-32 of compact molecular representations 

assist the automated simulation of organic molecules, but they are not straightforwardly 

applicable to inorganic chemistry. With those challenges in mind, we introduced molSimplify33, 

the first open source toolkit for automating discovery in inorganic chemistry, using a divide and 
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conquer approach for transition metal complexes that uses cheminformatics tools30 and force 

fields for organic components and augments them with databases of quantum-mechanically-

derived rules for the metal-organic bond. These approaches enabled us to carry out automated, 

high-throughput discovery in inorganic chemistry11, 33-36. 

 Although DFT is the method of choice for computational materials discovery, efficient 

chemical space exploration in the large combinatorial space spanned by transition metal 

complexes necessitates accelerated discovery techniques. To address this challenge, we 

introduced the first machine learning (ML) models to predict properties of open shell transition 

metal complexes. Although ML has been increasingly widely used in property prediction37-41 

(e.g., potential development42-45) and materials discovery46-50 especially for organic chemistry, its 

successful application to inorganic chemistry has not been as prevalent. Development of ML 

models for inorganic chemistry would offer the advantages of being able to predict properties at 

multiple levels of theory51-52 or differing functional blends53 and also making property 

predictions in a matter of seconds that would normally take hours or days with DFT.  

We thus used our molSimplify33 toolkit to generate DFT training data for ML models of 

inorganic chemistry and then incorporated these models into molSimplify. Our artificial neural 

networks (ANNs) and kernel ridge regression (KRR) models predicted i) spin state ordering to 1-

3 kcal/mol accuracy53, ii) sensitivity20-21, 23, 35, 54-55 of spin state ordering to DFT functional53, iii) 

redox or ionization potential to 0.2 eV accuracy56, and iv) equilibrium DFT metal-ligand bond 

lengths to 0.01-0.03 Å in a spin and oxidation state dependent manner. We employed these 

models for materials design through a genetic algorithm optimization57-58 that estimated model 

uncertainty59-60 through heuristic distance metrics53 we determined to be superior to ensemble-

based diagnostics in discovery58. By relying on geometry-free representations61-64 that we 
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tailored53, 56 for inorganic chemistry, we were also able to replace our database-driven approach 

to structure generation33 with a machine learning model35.  

We showed that representations tailored for inorganic chemistry53, 56 outperformed 

whole-molecule, geometry-dependent descriptors65 by as much as an order of magnitude53, 56 on 

our modest (ca. 2000-3000 equilibrium geometry) data sets. We rationalized these observations 

by noting that large changes in system size (e.g., from 37 to 151 atoms) could have a limited 

effect on the target property (e.g., spin splitting) if the ligand modification was metal-distant56. 

Training sets used in organic chemistry machine learning66-67 have been historically much more 

homogeneous in size (e.g., closed shell singlets comprised of no more than 9 heavy C, N, O, or F 

atoms66) than is practical for inorganic chemistry where ligand structure necessitates larger and 

more variable system sizes. Thus, a chief outstanding question in the field of machine learning 

quantum chemistry is whether developed representations are suitably transferable.  

In this work, we extend our prior ML models of transition metal chemistry to study 

whole-complex frontier molecular orbital energetics, including the placement of the highest 

occupied molecular orbital (HOMO) as well as the gap between the HOMO and the lowest 

unoccupied molecular orbital (LUMO, i.e., HOMO-LUMO gap). Frontier molecular orbital 

energetics provide essential insight into chemical reactivity68-69 and dictate optical and electronic 

properties70-71. Although in pure DFT only the HOMO strictly carries meaning72, significant 

theoretical work has motivated the significance of the HOMO-LUMO gap73-74, especially in 

hybrid DFT75-76. The rest of this manuscript is as follows. In section 2, we present an overview of 

new automation features of our open source software that both enable machine learning model 

training by streamlining high-throughput simulation and leverage machine learning models for 

discovery. In section 3, we present the computational details of the data sets employed in this 
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work. In section 4, we develop and interpret machine learning models for predicting frontier 

molecular orbital energies of inorganic complexes, and we compare this prediction task to other 

properties of inorganic complexes. Finally, in section 5, we provide our conclusions.  

2. Software Developments. 

2a. Automated Structure Validation. 

One challenge in first-principles screening of TM complexes is confirming that large 

numbers of calculations completed successfully. For example, when thousands of calculations 

are carried out on a computing cluster, a fundamental issue for inorganic complex screening is 

whether the expected coordination geometry was maintained during the optimization. For 

example, weakly bound ligands may detach from the metal center during the optimization, either 

due to poor initial geometry or electronic structure that prevents identification of a stable local 

minimum on the potential energy surface near the expected geometry. To ensure that the 

calculated properties are meaningful in high-throughput screening, automated tools are needed 

for monitoring the geometries of inorganic complexes during and after the optimization process 

(see example complex in Figure 1). To perform this monitoring, we construct a set of metrics 

based on four aspects of complex geometry: the coordination number (CN), the shape of first 

coordination shell (FCS), the degree of ligand distortion, and the orientation of linear ligands. 

These metrics enable us to measure the difference between an observed geometry and target 

geometry. In our workflow, we compare this difference to threshold values to determine if a 

geometry has become invalid. 

Determining CN. Rigorous CNs in inorganic complexes should be determined by detailed 

analysis of the electron density to identify atoms bonded to the metal center. However, a simpler 

approach that is amenable to rapid screening is to identify candidate coordinating atoms from 
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interatomic distances. We consider an atom, Ai, to be a candidate coordinating atom to the metal 

center, M, if the M-A distance is less than 1.35x the sum of the covalent radii of the two species 

or, at most, < 2.8 Å. In practice, this distance cutoff is intended to be overly inclusive (i.e., for F, 

1.25 Å and C 0.75 Å, the cutoff is 2.72 Å). Even in the case of monohapto ligands, short 

intraligand bonds (e.g., C-N) can cause multiple atoms from the same ligand to be detected by 

this inclusive cutoff. In cases where the initial CN is higher than expected, the set of candidate 

coordinating atoms, {Ci},  is checked for any two atoms that are determined to be bonded and 

within the same ligand, as judged by 1.15x the sum of the covalent radii. The CN check is 

particularly useful in detecting geometries where the CN is smaller than expected due to 

detached ligands. 

Shape of the FCS. The FCS shape can be uniquely determined by the angles formed between 

coordinating atoms, C, of ith and jth ligands with M at the vertex, i.e., θ(Ci-M-Cj). In the 

octahedral geometries studied in this work, θ(Ci-M-Cj) should be 90 or 180°, whereas they 

should all be approximately 109° in a tetrahedral geometry. Use of a reference angle guarantees 

the flexibility of the FCS check and does not restrict it to the octahedral complexes studied in 

this work. For a given FCS, the angular deviation, Δθ(Ci-M-Cj), can be measured by comparing 

the actual and ideal θ(Ci-M-Cj) values. The {Ci} obtained from the initial CN check may contain 

non-bonded atoms, especially for multidentate ligands. Thus, we identify a subset {ci} of 

confirmed coordinating atoms by determining the optimal subset of {Ci} that minimizes the 

average angular deviation, avg(Δθ(Ci-M-Cj)), i.e., by varying the atoms over which the average 

is computed. The maximum angular deviation max(Δθ(Ci-M-Cj)) over the optimal subset {ci}  is 

retained as an additional check (see structure example in Figure 1).  From the {ci} subset, we 

obtain the metal-ligand bond lengths, d(M-Ci), which are used to compute the maximum 
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difference in bond lengths, max(Δd), of ligands that should be equivalent. For octahedral 

complexes with identical equatorial ligands, the largest difference in equatorial metal-ligand 

bond lengths, max(Δdeq), quantifies the extent to which symmetry is preserved.  

Ligand distortion. During optimization, changes in electronic structure can have an unexpected 

effect on an individual ligand geometry. To detect these cases, each ligand is extracted from the 

optimized structure and superimposed with its initial coordinates using the Kabsch algorithm77, 

which calculates the optimal rotation matrix that minimizes the root mean squared deviation 

(RMSD). The maximum RMSD, max(RMSD), over all coordinating ligands is used as a metric 

for ligand distortion (Figure 1). 
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Figure 1. (top) Example octahedral transition metal complex to illustrate common failure modes 
for the geometry check. (middle and bottom) FCS shape, ligand orientation and ligand distortion 
checks. The FCS and ligands are extracted from the whole complex (opaque sticks shown in 
middle and bottom panes) to compare with idealized counterparts (translucent, black outline). 

 
 Linear ligand orientation. For a ligand with a triple bond between the coordinating atom, A, and 

its nearest neighbor, B (e.g., as determined by the isolated ligand’s SMILES notation), we expect 

linear coordination, i.e., θ(M-A-B) = 180°. However, this initially linear geometry is not 
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constrained in any way during a DFT calculation and can easily deviate from this expected value 

(Figure 1). We compute the deviation from linearity, Δθ(M-A-B), and quantify any deviations by 

the averaged, avg(Δθ(M-A-B)), and maximum, max(Δθ(M-A-B)),  deviations over coordinating 

linear ligands.  

The combined mAD geometry check workflow begins by obtaining a set of candidate 

coordinating atoms {Ci} to assess ligand dissociation. For intact cases, a subset of confirmed 

coordinating atoms is obtained by comparing to the reference angle of an idealized geometry.  

(Figure 2). At this step, metrics characterizing the shape of the FCS, e.g., max(Δθ(Ci-M-Cj)), 

avg(Δθ(Ci-M-Cj)), max(Δd), and max(Δdeq) are calculated (Figure 2). Once the {ci} is 

determined, we separate the complex into the metal center and ligands and compute ligand 

structural properties, i.e., max(RMSD), avg(Δθ(M-A-B)), and max(Δθ(M-A-B)) (Figure 2). Note 

that geometries with {ci} smaller than the expected value (i.e., due to ligand detachment) are 

abandoned prior to these additional checks  (Figure 2). 

 
Figure 2. Workflow for mAD geometry check function. Starting from the observed geometry 



10 

 

(shown in green), four different checks (CN, FCS shape, ligand distortion, linear ligand 
orientation) are carried out to compute the corresponding metrics (shown in light blue). 
Structures found with CN smaller than the expected CN are directly categorized as bad and 
abandoned for further checks (shown in red). 

 

To assign a bad or good label for each geometry, a cutoff for each metric is required. A 

geometry is categorized as bad if there exists one metric with a value larger than the cutoff, 

otherwise it is labeled as good. The current cutoffs were empirically determined for octahedral 

complexes based on trial and error categorization of hundreds of structures generated in prior 

work53, 56 (Table 1). Although these cutoffs are based on chemical intuition, they are consistently 

applied to the data set without bias. Further refinement to this approach is to go beyond structure 

and identify signatures of bad structures directly from electronic properties, which is currently 

underway in our group.  

Table 1. Geometry check metric cutoffs used for an octahedral transition metal complex. The 
angular ligand distortion quantities are only computed for ligands that are expected to be linear. 

Coordination number 

CN 
   

6 
   

Shape of the first coordination sphere 

avg(Δθ(Ci-M-Cj)) max(Δθ(Ci-M-Cj)) max(Δd) max(Δdeq) 

12° 
22.5° 1.00 Å 0.35 Å 

Ligand distortion 
max(RMSD) 

avg(Δθ(M-A-B)) 
max(Δθ(M-A-B)) 

0.30 Å2 
20°   

28°  

 

2b. Automated Design Software. 

We have developed open-source Python packages for first-principles and ML-driven 

screening of TM complexes: i) molSimplify33, 35, 78, a 3D-structure generation and manipulation 

toolbox that is tailored for TM complexes, and ii) molSimplify Automatic Design (mAD), a 
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molSimplify extension for materials design. The molSimplify code enables commandline 

generation of accurate initial geometries of inorganic complexes by preoptimizing organic 

ligands with force fields and attaching ligands to predefined coordination geometries at 

database33, 35, 78 or machine learning (i.e., neural network) predicted53 bond lengths. Both codes are 

available on github79-80 and on our website81. Although we recently demonstrated the mAD code for 

surrogate model-driven spin crossover (SCO) design58, we now introduce the logic and core 

functions of mAD that enabled that approach. mAD can be used as a general purpose tool to 

streamline and mitigate some of the challenges in high-throughput inorganic complex screening 

(Figure 3).   

 
Figure 3. Workflow for mAD with key mAD components shown in blue: transition metal 
chemical (TMC) space is discretized into genes, converted to 3D geometries and optional input 
files using molSimplify (shown in green), and properties are either calculated using an external 
DFT package using molSimplify-generated input files or internal ML models. Results are 
analyzed and guide iterative discovery using the design logic in mAD. An example 3D geometry 
is shown in inset. 

 

The mAD code enables evolutionary-algorithm based materials optimization58 of TM 
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complexes. A TM complex is described as a set of genes, where each gene refers to a distinct 

design element to evaluate and optimize. For spin splitting energetics, the genes of a TM 

complex correspond to a metal, oxidation state, and ligands. For example, if the design space is 

restricted to homoleptic complexes, there will be only one ligand gene, whereas relaxing 

symmetry (e.g., to distinct axial and equatorial ligands) increases the number of ligand genes to 

two or more. For catalysis, the appropriate gene choice could correspond to a fixed choice of 

metal and equatorial ligands while the axial species are obtained from a list of relevant reactive 

intermediates. The user provides to the program a list of possible identities for each ligand gene, 

which can be either drawn from the common ligands built into molSimplify or input as SMILES. 

From the list of possible ligands, a population of genes that will encode a set of complexes can 

be generated randomly or by user-specified indices for the desired ligands.  

Once a population of genes is assembled, mAD can either use the molSimplify neural 

network to estimate properties (e.g. spin splitting or bond lengths) or to generate initial 

geometries and input files for DFT calculations, with native support for TeraChem (Figure 3). In 

developing mAD, we have used a highly modular structure that supports easy extension. Since 

molSimplify supports generating other electronic structure input files (e.g., Q-Chem and Orca), 

the only requirements to switch mAD to other codes is to modify job submission scripts and 

revise post-processing Python functions. Generated jobs are tracked in plain text files within a 

job subfolder and submitted to a computing queue, with native support for SGE and SLURM. 

The job script and run parameters are both customizable by the user either by pointing to a 

custom script in the mAD input file or by editing the initially generated queue interface files, 

which are then reused by mAD. Given the flexibility of the input structure, mAD runs can be 

carried out with either single point energy evaluations at guessed geometries, as in our previous 
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work58, or with full geometry optimizations. For time-consuming full geometry optimizations, 

mAD contains a number of helpful features to ensure that these jobs complete successfully, as 

described next. Ongoing efforts in our group are focused on increasing code and queue support 

of molSimplify and mAD, and interested users are encouraged to keep up to date on these 

improvements through github79-80 and our website81. 

The mAD process can be run persistently in the background or with a user-scheduled 

cron and requires only standard user permissions. Once running, the mAD code monitors the 

submitted jobs by periodically querying the queuing system and inspecting completed jobs for 

convergence and completion at a valid structure (see sec. 2a). The monitoring intervals and 

maximum time for mAD to run can be specified by the user. Unfinished calculations that pass 

geometry inspection are automatically restarted by mAD up to a maximum number of three 

times by default, but this can be customized by the user in the mAD input file. Completed 

calculations that have good geometries are inspected for deviations of the expectation value of 

the Ŝ2  operator (i.e., <Ŝ2>) from the expected value, indicating broken symmetry between spin up 

and spin down orbitals that suggests the total spin assigned in the calculation is not well-defined 

within approximate DFT. Once a calculation passes both of those tests, it is grouped with related 

calculations needed to calculate a target property, e.g., high- and low-spin energies of the same 

complex are needed to calculate a spin-splitting energy. The specified target properties for each 

complex are collected and used to inform future calculations, e.g., through fitness function 

evaluation. The mAD code generates descriptor representations and computes the molSimplify-

built-in ML model prediction and distance-based uncertainty measures, where applicable, for 

each attempted calculation to enable easy model retraining or extension. Data provenance is 

established by storing the configuration and software versions used in all calculations in the 
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mAD run output files. 

Once properties are available for all sets of genes (i.e., TM complexes) in the current 

generation or have been excluded due to calculation failures, mAD can propose new candidate 

materials. The current version of mAD supports a basic genetic algorithm that has the capacity to 

use either DFT or ML predictions. For ML predictions, mAD supports balancing property 

optimization with distance from training data to conduct design in large, varied design spaces 

while maintaining model confidence58. This approach could also be used for active learning, 

which has shown promise82-83 in materials optimization.  

The mAD code includes automation of subsequent calculations that depend on an initial 

geometry optimization. Some examples of supported calculations are single point energies with 

implicit solvent incorporated, Hessian calculations, or calculations carried out with a different 

DFT functional (e.g., varied HF exchange fraction). These derivative jobs can be automatically 

generated and submitted by mAD using both the parent optimized geometry as well as converged 

wave functions as initial guesses, where appropriate. In HF exchange fraction resampling, for 

example, the default behavior after converging an initial optimization at B3LYP (20% HF) is to 

scan the range 25% to 30% and then 15% to 0% in 5% increments, always using the converged 

wave function of the previous step in order to ensure the same electronic state is converged, 

regardless of HF exchange fraction used. 

3. Computational Details. 

We trained all ML models on electronic structure properties of octahedral inorganic 

complexes obtained from previous work56. Here, we expand on our prior predictions53, 56 of spin-

state splitting, ionization/redox potential, and bond lengths to now predict highest occupied (and 

lowest unoccupied molecular orbital (HOMO and LUMO) energies and gaps.  We selected the 
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redox data set used in prior work to predict adiabatic ionization and redox potentials rather than 

larger data sets used for spin splitting prediction53, 56. The redox prediction models are physically 

most similar to our present goal of predicting HOMO and LUMO energies, where the former 

should correspond to the vertical ionization energy72 in an exact functional. 

The original data set consists of geometry optimized inorganic complexes with 

M(II)/M(III) oxidation states of Co, Cr, Fe, and Mn metals in high-spin (HS) and low-spin (LS) 

states initially intended for ionization potential and redox potential calculation56. The HS-LS 

definitions in prior work were: quintet-singlet for d6 Co(III)/Fe(II), sextet-doublet for d5 

Fe(III)/Mn(II), quintet-triplet for d4 Mn(III)/Cr(II),  and quartet-doublet for both d3 Cr(III) and d7 

Co(II). The lack of isolated Mn(III) singlet gas phase ions84 originally motivated53 our definition 

for the d4 complexes. However, we have since revised the d4 LS definition to singlet to increase 

correspondence with the d6 systems. The ligands in this redox data set56 were CO, pyridine, water, 

furan, and methyl isocyanide. The symmetry was restricted to a single equatorial ligand identity 

with up to two distinct axial ligands (i.e., M(L1)4L2L3) for a theoretical total of 1200 compounds. 

Considering the multiple states required to obtain a redox potential, this space corresponded to 

300 redox potential evaluations defined in terms of the M(II) ground state and ionization to an 

M(III) electronic state with a spin multiplicity that differed only by one. In that work56, only 185 

of the 300 theoretical redox potential evaluations were possible due to challenges in completing 

one of the three needed calculations. 

In addition to using a revised singlet definition for Mn(III)/Cr(II) in the present work, we 

also perform the newly introduced geometry check to ensure the fidelity of the DFT geometry 

optimized structures (see sec. 2a). Complexes with geometries that failed the geometry check 

(217 of 1200) were eliminated from the set (see Supporting Information). Structures with 



16 

 

deviations of <S2> > 1.0 from expected values (109 of 1200) were also eliminated (see 

Supporting Information). Our final revised redox data set consists of 874 structures, 555 of 

which were also used for ionization and redox potential prediction in Ref. 56. The 319 additional 

data points correspond to those that either differ in spin state definition or were not part of the 

necessary calculations for the ionization potential prediction.  

Although the HOMO-LUMO properties reported in this work were generated during 

those prior simulations, we briefly review the computational details of those calculations. 

Structures were generated by first building an initial geometry with molSimplify81 and then 

carrying out DFT geometry optimizations using the TeraChem85-86 graphical processing unit 

(GPU)-accelerated quantum chemistry package. The B3LYP87-89 hybrid DFT functional was used 

in combination with the LANL2DZ90 effective core potential for transition metals and the 6-31G* 

basis for all other atoms. The effect of using a modest basis set, which enables larger data set 

generation for ML models, was found to be limited in prior work on the relative energies of 

interest35. All calculations were spin-unrestricted, with virtual and occupied orbitals level-shifted91 

by 1.0 and 0.1 eV, respectively. 

It is well known that pure Kohn-Sham DFT underestimates HOMO-LUMO gaps92-93 due 

to both delocalization error and limits of the exact theory.94-95 However, HOMO-LUMO gaps are 

on a firmer foundation in generalized Kohn-Sham (KS) DFT76 (i.e., the hybrid functionals used 

in this work). In open shell systems, ionization processes to which FMOs and their energies 

should correspond can originate in either majority or minority spin. In this work, we adopt the 

convention of training models on the strict energetic definition of HOMO and LUMO.  In 

practice, this means that in some metals, we are training on the gap between a spin up (α) 

HOMO and spin down (β) LUMO (quintet Fe(III)(CO)6), whereas in others, we are learning the 
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gap between the α HOMO and LUMO (quartet Mn(III)(CO)6). This approach is consistent with 

our observations that ML test set errors on redox and ionization potentials from a mixture of spin 

states were no worse than models trained on only a single spin state56. 

4. Machine Learning Inorganic Chemistry Properties. 

4a. Overview of Feature Sets and Models. 

Feature sets. The manner in which molecular structures are converted into numerical 

inputs is a critically important aspect of atomistic machine learning96-98. We have observed good 

performance of machine learning models trained on metal-centric (i.e., containing only 

information about atoms in the first few coordination spheres99) topological heuristic 

representations of inorganic complexes53. Avoiding incorporation of explicit geometry 

dependence enables metal-ligand bond length prediction by molSimplify33 structure generation35 

routines and makes straightforward the prediction of properties that depend on multiple 

geometries.  

We recently introduced a systematic approach to inorganic chemistry featurization that 

blends metal-centric and whole-complex topological properties in a feature set referred to as 

revised autocorrelation functions (RACs)56. These RACs, variants of graph autocorrelations61-64,  

are sums of products and differences of atomic properties (i.e., electronegativity, nuclear charge, 

topology, covalent radius, and identity) (Figure 4). We demonstrated these RACs to be predictive 

featurizations for inorganic chemistry properties, such as spin-state splitting and ionization/redox 

potential. Over all possible origins (i.e., metal-centered, mc, or ligand-centered, lc) and 

definitions, there are 42d+30 theoretical RAC features, where d is the maximum distance in 

bonds through which two atoms are correlated in a single descriptor (mc examples shown in 

Figure 4).56 As described in previous work56, this number of features arises from the fact that 
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there are 6d+6 RACs for each of the five atomic property product RACs (i.e., 30d+30), and there 

are no zero-depth difference descriptors, only three non-trivial start/scope definitions, and I is 

excluded, giving 12d difference RACs for a total of 42d+30 productive and difference RACs.  

A given depth cutoff does not mean that whole-molecule information is excluded, but it 

does allow the user to choose not to directly correlate in a single feature the product of properties 

of two atoms farther apart than a certain topological distance. Indeed, we found benefit in 

limiting d to three bond paths in KRR model training, thereby making the theoretical RAC space 

156 features in size, 5 of which are constant for the octahedral complexes studied in this and 

prior work. The full definition of the RAC representation also included oxidation state, spin 

state, denticity and Hartree-Fock (HF) exchange for a total of 155 features.56  

 
Figure 4. Example RACs depicted on the structure of Fe(CO)5(misc) in ball and stick 
representation (iron is brown, oxygen is red, nitrogen is blue, carbon is gray and hydrogen in 
white sticks, CO ligands are semitransparent). The example paths shown are for depth one and 
two mc RACs (mc-1 in blue or mc-2 in orange, respectively) shown only on the misc ligand. We 
characterize RACs by locality relative to metal center: proximal (prox in red for metal and first 
shell as in mc-1), intermediate (mid in green for second shell as in mc-2), and distal (dist in blue 
for third shell or beyond).  

 

In the present work, all complexes in the training set contain identical denticity (i.e., 

monodentate) ligands so we exclude the denticity descriptor, and all training data uses the 

B3LYP (i.e., 20% exchange) functional so we exclude the HF exchange feature (see 
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Computational Details). These omissions leave a full RAC set consisting of 153 features  

(Supporting Information Table S1). We now compare the performance of RAC featurization for 

predicting HOMO-LUMO energetics with i) a linear LASSO regression model, ii) a KRR model 

with a Gaussian kernel, and iii) an ANN. We partition the data set into training and test sets 

using an 80%/20% random split and fix the training/test definitions to enable comparison across 

all ML models. 

 Linear model. In linear models, RAC features are weighted by coefficients in a linear 

combination to be correlated with the output variable. We employed L1-norm-regularized linear 

regression (LASSO100) as implemented in the scikit-learn software package101. LASSO prevents 

overfitting by using regularization to reduce the coefficients of the least-predictive variables to 

zero, and the hyperparameter (i.e., adjustable parameter) that is associated with the regularization 

strength was selected by 10-fold cross-validation (CV) error (Supporting Information Figure S1).  

KRR model. In kernel based ML methods, inputs are non-linearly transformed into a 

higher dimensional space, more flexibly fitting data sets than is possible in a linear model. As it 

is impractical to work directly in a high dimensional space, a so-called kernel trick is used to 

yield the kernel matrix from the inner products of original inputs, thus encoding the geometric 

similarities in the original space. KRR is a method that combines the kernel trick with the least 

squares loss and L2-norm regularization102, and we employ a Gaussian kernel using the scikit-

learn software package101. The two adjustable hyperparameters in a KRR model are the 

regularization coefficient and kernel width (i.e., decay length by which distant points contribute 

to predicting a specific point). This hyperparameter selection was accelerated using the Bayesian 

optimization Python library Hyperopt103, which optimizes the expected improvement during 

hyperparameter optimization rather than using an exhaustive grid search (Supporting Information 



20 

 

Figure S2). As with the linear model, we employed the 10-fold CV mean absolute error (MAE) 

for hyperparameter selection.  

 ANN model. Our previous work53 demonstrated ANNs for inorganic chemistry, especially 

for prediction on diverse test molecules. The ANN models in the present work were trained using 

the keras software package104 with TensorFlow105, and hyperparameters were obtained with the 

Hyperopt103 package. The 80% training partition of the full data set was further partitioned 

randomly into a 90% train and 10% validation set to ensure that the ANN was not overfit 

(Supporting Information Figure S3). The optimal ANN topology for HOMO level (HOMO-

LUMO gap) was determined to be an input layer, two fully connected hidden layers with 500 

(300) nodes each, and an output layer. Each hidden layer of an ANN transforms the input 

features through non-linear amplification (here, with rectified linear unit106 non-linearities) and a 

linear activation function (i.e., linear combinations of feature weights arising from prior layers) is 

used in the output layer. To avoid overfitting, dropout regularization, i.e., zeroing out nodes 

within a network at a fixed 22% (31%) probability, was used to regularize the network, as in 

previous work53. Although increasing dropout increases training errors by eliminating network 

dependence on specific nodes, it generally improves test errors and ANN generalization, as we 

have previously shown on inorganic complex data sets53. To further reduce overfitting, L2-norm 

weight regularization was used at every layer of the network, with the regularization 

hyperparameter set to be 1x10-4 (1x10-3). The ANN was trained with batch optimization with 

batch size 50 using an Adam107 optimizer (see Supporting Information Table S2).  

Feature selection. Reduction of the dimensionality of the original representation of the 

data set by techniques broadly referred to as feature selection can provide insight into data 

sets108. By eliminating less informative features, simple linear or kernel based models (e.g., 
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KRR) can achieve higher out-of-sample performance. Based on our prior comparison of several 

feature selection techniques56, we employ random forest as a starting point because it provides a 

low cost estimate of feature importance. Applying feature selection (for example with random 

forest models109) allows the relative importance of these different descriptors to be assessed for 

different prediction targets, for example, in previous work revealing that spin splitting is more 

locally controlled by first-shell effects as compared to redox potential56. Here, we employ 

random forest to rank the descriptors by an importance score109 and add them sequentially to the 

target feature set using recursive feature addition (RFA)108. This differs from our prior work by 

combining RFA with random forest feature sets, whereas we previously used error cutoffs in the 

random forest model to directly select features. At each iteration, a KRR model is trained with 

the new feature set, and a descriptor is kept only if it improves performance. The first KRR 

model is trained only on oxidation state and spin multiplicity, and it and subsequent KRR models 

are judged by the 10-fold CV MAE of KRR after hyperparameter optimization. We continue 

RFA until the performance of the selected feature set levels off and stops improving (Supporting 

Information Figure S4). Although the non-linearity of ANNs is expected to obviate explicit 

feature selection, we also employ these selected subsets to test whether feature selection has any 

benefit for ANN performance. 

4b. Model Performance. 

We first trained linear (i.e., LASSO) and KRR models with RAC-153 and feature 

selected subsets for HOMO level prediction. The HOMO values in the data set range from -27 to 

-11 eV and have a mean of -15.81 eV. The inherently regularized LASSO model produces 

balanced train (0.80 eV) and test (0.71 eV) MAEs (Table 2 and Supporting Information Table 

S3). However, the lack of coupling between features or higher order terms in the linear model 
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limits its predictive accuracy especially at low HOMO values (Figure 5 and Table 2). Moving 

beyond linear models to a KRR model trained with RAC-153 features improves test MAE to 

0.25 eV (Table 2). As expected, incorporation of non-linear dependences reduces the MAE of 

the KRR model with respect to LASSO, although we note that the lower train MAE of 0.12 eV is 

suggestive of overfitting that is common with KRR models (Table 2). Applying RFA to RAC-

153 retains only 29 features (RFA-29). Consistent with prior work56, this reduction improves 

KRR test MAE to 0.18 eV (Table 2 and Supporting Information Table S4). This improved 

performance can be understood as arising from improved distribution of training complexes in a 

space that has fewer uninformative features.  

Table 2. Mean absolute errors (MAEs) for LASSO, KRR (RAC-153 or RFA-selected subsets), 
and ANN ML models: training set, CV partition, test set, and OH64. 

Model Train MAE 
(eV) 

CV MAE (eV) Test MAE (eV) OH64 MAE 
(eV) 

 HOMO level 

LASSO 0.80 0.82 0.71 1.85 
KRR (RAC-153) 0.12 0.23 0.25 6.10 
KRR (RFA-29) 0.04 0.17 0.18 1.55 
ANN 0.05 0.17 0.17 1.87 
 ΔEg 

LASSO 0.68 0.70 0.47 9.47 
KRR (RAC-153) 0.16 0.35 0.33 11.58 
KRR (RFA-22) 0.08 0.26 0.23 2.60 
ANN 0.06 0.23 0.22 2.56 
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Figure 5. Train (red filled circles) and test (blue filled circles) HOMO level prediction model 
performance for LASSO (left), KRR (middle), and ANN (right). All results are shown as parity 
plots with the actual HOMO values and a black dotted parity line. 

 

We then trained an ANN model using RAC-153 features and obtained a comparable test 

MAE of 0.17 eV (0.05 eV train MAE) to the RFA-29 KRR (0.18 eV) (Figure 5 and Table 2). 

Although ANN structure essentially incorporates feature selection via nonlinear activation that 

zeroes out less-predictive features, we tested the performance of an ANN using RFA-29 features. 

We kept fixed all hyperparameters aside from the number of inputs and found that the 

performance of the ANN trained on RFA-29 was comparable to or only weakly improved over 

the RAC-153 ANN, with train and test MAEs of 0.06 and 0.15 eV, respectively. As expected, 

feature selection is likely unnecessary with an ANN because the ANN is robust to uninformative 

features, but feature selection does provide the added advantage that complex similarity can 

more readily be interpreted through distances in a smaller feature space53, 58.  

Overall, train and test errors appear balanced in all models across the range of HOMO 

level values, except in the case of LASSO where train and test errors both appear 

disproportionately large at both high and low HOMO levels, indicative of the insufficiency of the 

linear model for capturing the phenomena that give rise to extreme HOMO values (Figure 5). For 

instance, LASSO significantly overestimates the DFT HOMO of -23.76 eV for a singlet 
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[Co(H2O)5(CO)]3+ complex by 2.57 eV, whereas KRR and ANN errors are smaller at -0.80 eV 

and 0.00 eV, respectively (Supporting Information Figure S5). However, it is difficult to 

generalize these observations across all deep HOMO level compounds: LASSO conversely 

overestimates the DFT HOMO (-23.80 eV) of quintet [Mn(CO)6]
3+ by a comparable amount to 

the underestimate error in KRR and ANN (1.21 eV vs. -1.25 and -1.08 eV, respectively, see 

Supporting Information Figure S5).  All models perform well (0.1 eV absolute error) on certain 

higher HOMO level (DFT value: -13 eV) compounds, such as Fe(II) and Mn(II) complexes that 

are a heteroleptic mixture of equatorial pyridines with strong field axial CO ligands (Supporting 

Information Figure S5).    

In addition to the HOMO level, we trained LASSO, KRR, and ANN models to predict 

the HOMO-LUMO gap, ΔEg (Table 2 and Supporting Information Figure S6). The ΔEg values 

range from 0 to 8 eV with a mean of 3.10 eV. Although the LASSO gap prediction test MAE of 

0.47 eV is smaller in an absolute sense than the HOMO prediction error, it is a larger percentage 

of the range (6% of the ΔEg 8 eV range vs. 4% of the 16 eV HOMO range), indicating somewhat 

degraded performance in comparison to HOMO level prediction (Table 2). The test MAE of a 

KRR model trained on RAC-153 also shows worsened test MAE of 0.35 eV, and the higher train 

MAE of 0.16 eV for ΔEg (vs. 0.12 eV for the HOMO level) is suggestive of more difficulty 

fitting the training data with the RAC feature set. Feature selection with RFA retains 22 features 

and significantly improves test MAE to 0.23 eV (Table 2 and Supporting Information Table S5). 

We note that even after feature selection the larger train MAE of 0.08 eV (vs. 0.04 eV) and 

larger relative test MAE indicates that the ΔEg prediction task is more challenging than direct 

HOMO level prediction (Table 2). Such challenges in predicting ΔEg are also observed in 

degraded ANN model performance (train MAE: 0.06; test MAE: 0.22 eV) that is comparable to 
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the RFA-22 KRR (Table 2).  

The increased difficulty in predicting ΔEg over the HOMO level is at odds with our 

observations of comparable prediction accuracy between ionization potential and redox 

potential56, suggesting there may be more noise arising from opposing effects in HOMO and 

LUMO variation that go into the gap prediction. In the present work, we constructed the training 

set for HOMO level and ΔEg prediction to maximize the similarity to training sets used in 

previous work for predicting gas phase, adiabatic ionization potential and redox (i.e., solvent and 

thermodynamically-corrected) potential56. In prior work56, we obtained 0.2-0.3 eV test set MAE 

for redox potentials (or 3-4% of the 6.7 eV mean value) and comparable relative MAEs of 0.4-

0.6 eV  (3-4% of the 14.4 eV mean value) for adiabatic ionization potentials. These ranges 

corresponded to feature selection with random forest generally improving redox potential 

prediction but slightly worsening ionization potential predictions56. In the present work, KRR 

test set MAEs using features ranked with random forest and then confirmed with RFA are 

comparable to or slightly better than the prior work for the HOMO: the 0.18 eV test set MAE is 

1% of the -15.81 eV mean value, and slightly worse for ΔEg: the 0.23 eV test set MAE is 7% of 

the 3.10 eV mean value. Analysis of the effect of the feature selection on principal component 

analysis (PCA) distributions of the data sheds light on this difference in model error  (Supporting 

Information Figures S7-S8). Specifically, feature selection distributes the data more evenly and 

clusters deep HOMO level compounds in a distinct spatial location from shallow HOMO level 

compounds (Supporting Information Figure S7). Conversely, the effect is more muted for ΔEg 

data, with some very small gap compounds still near large gap compounds, although feature 

selection does spread out the compounds more significantly (Supporting Information Figure S8).   

 Analysis of the character of selected feature sets is useful for understanding the length 
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scale and character of substituent atomic interactions that give rise to properties, even when 

sophisticated models (e.g., ANNs) are not very sensitive to input features. Here we again56 

distinguish the features by relative locality of the atoms in the property: proximal, intermediate, 

and distal (Figure 4). We also again56 classify atomic properties as either electronic (i.e., 

electronegativity and nuclear charge) or steric (i.e., size, identity, and topology) in nature. The 

RFA-selected 29 and 22 feature sets obtained for the HOMO level and ΔEg, respectively, contain 

higher distal and steric feature weights in comparison to the spin-splitting (26 features) feature 

set obtained from random forest previously56 (Figure 6 and Supporting Information Tables S1 

and S6). Even though the 38-feature set selected by random forest for redox potential prediction 

also contains higher distal and steric feature weights than the spin splitting set, it surprisingly has 

a strong electronic contribution from the metal center that is particularly absent in the HOMO 

level set and also reduced in the ΔEg set (Figure 6 and Supporting Information Table S7).  A 

comparison to 28 features selected on gas phase ionization potential data by random forest shows 

strong dissimilarity to the frontier orbital models, weighting the steric contribution even more 

strongly (Supporting Information Figure S9). However, we note that the random forest feature 

set was not as predictive on gas phase ionization potential as it was on other quantities in that 

work56. 
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Figure 6. Schematic of relative proximity and electronic (electronegativity and nuclear charge 
RACs, blue) or steric (topology, identity, and size RACs, yellow) character of feature sets on a 
metalloporphyrin abstraction. Feature sets are designated by their training data: spin splitting 
(top left), redox potential (bottom left), HOMO-LUMO gap (top right), and HOMO level 
(bottom right). Retained features from random forest are also indicated, with spin splitting and 
redox from prior work56 indicated in dark gray, and the new feature sets for HOMO and HOMO-
LUMO are indicated in black. Atom sizes of the first, second shell, and beyond are scaled by the 
number of descriptor dimensions involving that shell relative to the metal center, which is kept 
the same size in all sets. The color bar and absolute percentages of electronic and topological 
descriptors, as defined in the main text, is shown in the left inset. 

 Although differences in down-selected feature sets can be informative for guiding 

iterative design of materials properties, we have previously demonstrated good transferability 

between feature sets for differing properties. We may expect such observations to hold here for 

HOMO level and ΔEg prediction, particularly because the weight of steric and distal features 

appears comparable between the two sets (Figure 6). Indeed, KRR with the ΔEg-selected RFA-22 

produces a HOMO level test MAE of 0.19 eV, only slightly increased over the RFA-29 set (0.18 

eV). Using the larger RFA-29 feature set to train a HOMO level KRR model degrades 

performance (0.26 eV test MAE) slightly more over the original model (0.23 eV test MAE).  The 

electronically-weighted and metal-centric features of the redox and spin splitting feature sets 

further degrade test MAEs for HOMO level (0.21-0.24 eV test MAE) and ΔEg (0.29 eV test 
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MAE), although both still outperform the models trained on RAC-153 (Supporting Information 

Tables S8-S9).   

  To test the ability to extrapolate in discovery with our models, we evaluated the HOMO 

level and ΔEg models on a new set of 64 octahedral homoleptic complexes (OH64) with 

monodentate ligands containing up to two heavy C, N, O atoms (Supporting Information Table 

S10 and structures and more details provided in the Supporting Information). These OH64 

complexes contain the same metal centers (Co, Cr, Fe, Mn) in the same oxidation and spin states 

complexed with 8 unique but similar composition (i.e., C, N, O, and H-containing) ligands. 

Specifically, the ligands include NH2CH3, NHCH2, NCH, N2, OCH2, NH3, N2H2, and NHO, 

where the first atom is the one that coordinates the metal (Supporting Information Table S10). 

Despite some similarities, these complexes were absent from training data, and only 8% (54 of 

699) of the training data contains homoleptic complexes. The differences between OH64 and the 

redox set produces large distances of the newly generated molecules to training data (5-nearest-

neighbor, 5-NN, distance of OH64 to training: 9.6 vs. 5-NN redox test to train: 2.2) potentially 

limiting prediction by interpolative (e.g., KRR) or overfit models. Properties of the two sets also 

differ, likely due to the smaller size of OH64 complexes: ΔEg (HOMO level) averages 5.81 eV (-

18.79 eV) for OH64 vs. 3.10 eV (-15.81 eV) for the training set (Supporting Information Figure 

S10).  

 As expected, all model MAEs increase on the OH64 set in comparison to the test set 

MAE (Table 2). Somewhat surprisingly, the best performing model on the HOMO level is the 

feature-selected KRR (OH64 MAE: 1.55 eV), although both the ANN (1.87 eV) and LASSO 

(1.85 eV) perform reasonably (Table 2). In particular, LASSO error from test set MAE to OH64 

MAE increases the least (0.71 eV vs. 1.85 eV), but the LASSO model performs much more 
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poorly on ΔEg prediction (OH64 MAE 9.47 eV vs. 0.47 eV) (Table 2). Relative model 

performance (i.e., test vs. OH64) worsens in all cases on ΔEg over the HOMO, potentially due to 

relatively strong size dependence of the HOMO level vs. more subtle effects that dictate the gap. 

Without feature selection, KRR models that use the full RAC-153 space perform the worst of all 

models, including LASSO, giving OH64 MAEs of 6.10 eV for the HOMO and 11.58 eV for ΔEg 

(Table 2). This large error is due to the large Euclidean distance between the training set and 

OH64 molecules in the latent space, leading to unsupported (i.e., mean value) predictions by the 

KRR model. Thus, for extrapolation to diverse molecules, feature selection is essential to 

enhance the role of the most important chemical factors in model prediction when using small 

training sets as we have in this work.  

We examined OH64 HOMO level performance and identified two N-coordinating ligand 

complexes on which the ANN model performed alternately well or poorly (Figure 7). In the 

training set only a single N-coordinating ligand, pyridine, is present, meaning that the most 

similar complexes to the OH64 cases may instead have non-N-coordinating ligands with more 

similar topology. Nevertheless, we observe that singlet [Co(NH2CH3)6]
3+ is well predicted by our 

model (-19.91 eV from the ANN vs. -20.00 eV for DFT) (Figure 7). Conversely, the quintet 

[Mn(HNNH)6]
3+ complex HOMO level is underestimated by 4.9 eV, which is almost double the 

MAE for the ANN on the OH64 set (Figure 7 and Table 2). We attribute this performance 

difference due to the similarity of methylamine ligands to other training set chemistry and 

relative dissimilarity of the HNNH ligand that involves a N-N double bond not present in the 

training set. In order to avoid such large errors as observed for the HNNH ligand in the future, a 

more diverse training set, better metrics for model uncertainty (i.e., to limit prediction on 

uncertain compounds), and a better match between training and prediction molecules will all be 
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beneficial. For example, an ANN trained to predict spin splitting53 on a broader data set from our 

prior work53, 56 with RACs56 only has a 3 kcal/mol error for the same compound. Overall, these 

results reinforce observations that ML model test set error is an insufficient indicator of the 

likely errors53 on extrapolative complexes, and that relative similarity of diverse or discovery 

target molecules must be taken into account when applying ML models to new compounds.  

 
Figure 7. Example molecules from the diverse OH64 test set: (left) small ANN error (0.09 eV) 
with respect to DFT in a singlet [Co(NH2CH3)6]

3+ complex and (right) large ANN error (-4.91 
eV) with respect to DFT for a quintet [Mn(HNNH)6]

3+ complex. Metals are shown as spheres 
and coordinating atoms as sticks, with C atoms in gray, N atoms in blue, and H atoms in white. 
 

4c. Optimizing Frontier MO Properties. 

Given the trained HOMO level and ΔEg models, we now demonstrate how such models 

can accelerate materials design when used for scoring in combination with a genetic algorithm 

(GA), as implemented in mAD58. Here, we use the ANN model that predicts ΔEg to design a TM 

complex with a target ΔEg of 4 eV in its ground spin state, as indicated by a spin splitting 

ANN53. The design space is constructed from a series of genes: i) one for any of four metals, Co, 

Cr, Mn, Fe, in two oxidation states, +2 or +3, and ii) 15 monodentate ligands with up to three 

unique coordinating species per complex, with C, N, or O connecting atoms (Supporting 

Information Table S11). Specifically, 1800 ligand combinations are possible: 15 homoleptic, 210 

with a single unique axial species (i.e., M(L1)5(L2)), 210 with unique equatorial and axial species 
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(i.e., M(L1)4(L2)2), and 1365 with the same equatorial ligands but two unique axial ligands (i.e., 

M(L1)4(L2)(L3)). In total, the metal and ligand combinations give rise to 14,400 possible 

complexes, 699 of which (4.9%) were in the training data, and the space is larger than in 

previous work despite a smaller (i.e., 15 vs. 3558) ligand pool, owing to the inclusion of more 

asymmetric complexes. The fitness function used here to target ΔEg values is modified from the 

form we used for targeting spin splitting in previous work58:  

 =
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  (1) 

where the first term is a flat bottom exponential penalty for ΔEg values that are distant  (i.e., > ± 

0.25 eV) from the target value of 4.0 eV and the second term is a penalty on distance to training 

data. Although we previously introduced a distance penalty approach to enable discovery in an 

ANN with knowledge of uncertainty58, in the present work, we select dopt = 30 to encourage 

discovery of previously unseen complexes, penalizing values of d > 10 in RAC-153 descriptors.  

Although d values in RAC-153 are not equivalent to the prior work in MCDL-2558, this 

weak penalty is generally more encouraging of new complex discovery than in our prior work. 

The motivation for this weaker penalty is also that, without feature selection, RAC-153 

exaggerates small differences in ligand connectivity, producing much larger distances in feature 

space than would be observed in the nearsighted MCDL-25 and lessening the value of distance 

control in limiting model uncertainty (Figure 8). A moderate distance in RAC-153 for metal-

distant differences (e.g., d = 5 for cyanopyridine ligands in place of pyridine in a training set 

complex) is due to the higher weight of distal features in the full RAC-153 space over MCDL-25 

(Figures 4 and 8). Larger distances (d = 10) are observed when both connectivity and spin state 

change, as is the case for quintet [Cr(CO)5(tbisc)]2+ (tbisc = t-butyl-isocyanide), which is quite 
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far from the closest training structure, singlet [Cr(CO)5(pyridine)]2+ (Figure 8). Thus, penalizing 

distances above d = 10, which typically correspond to substantial differences in multiple ligands, 

oxidation, or spin states, encourages most exploration by the ANN but avoids cases where 

molecules are extremely distant from training data (Figure 8). In all cases, the ANN predicts 

comparable ΔEg (ca. 4-5 eV) for these Cr(II) complexes, but we should expect the ANN to be 

more reliably predictive (i.e., closer to the DFT result) on cases with distances closer to the 

training data. 

 
Figure 8. Depiction of Euclidean norm distance of GA hit complexes (top) to closest available 
training data (bottom) illustrated on a family of related Cr complexes. All GA hit complexes are 
quintet Cr(II), and training data points change oxidation/spin state in the following cases only: 
the d = 5 training point is Cr(III) high spin, d = 10 is Cr(II) low spin, d = 15 is Cr(III) high spin. 
The distance at which distances are penalized is indicated with a dashed green vertical line. 

 

Starting from a pool of 20 randomly selected complexes, the GA is run for 21 generations 

with both distance control as in eq. 1 as well as diversity control58 on the mutation probability, 

pmut. Here, pmut is increased from its default value of 0.15 to 0.65 whenever the diversity (i.e., 

unique complexes in a generation) falls below 25%, and it is returned to 0.15 once diversity 

increases to 25% or higher. The mean fitness function rises rapidly to 0.85 in the first five 



33 

 

generations and remains there for the rest of the GA run, leading to local exploration around 

similar compounds in the remaining generations (Supporting Information Figure S11). At the 

end of the GA run, we recover both complexes from the training set (e.g., quartet 

Co(II)(pyr)4(H2O)(misc), with ANN ΔEg = 4.17 eV) and new complexes (e.g., quintet Fe(II)(CN-

pyr)4(misc)(furan), with ANN ΔEg = 3.83 eV) (Figure 9).  

In total, 105 new compounds are discovered during the GA run with an average distance 

of 7.9 to training data, and only 9 of these compounds were previously employed in training 

(Supporting Information). Over a 10 complex subset of these new compounds with an average 

ANN-predicted gap of 4.00 eV, the average ΔEg from DFT with full geometry optimizations is 

3.97 eV (Supporting Information Table S12). The MAE over all compounds for the ANN with 

respect to DFT is 0.27 eV, a modest increase from the 0.22 eV ΔEg test set MAE for the ANN 

(Table 2 and Supporting Information Table S12). Errors ranged from as small as 0.01 eV with 

respect to DFT values and as large as 0.98 eV in one case (Supporting Information Table S12). 

In this design space, the objective function is easily fulfilled by a large number of compounds, 

therefore motivating the use of multi-objective optimization in future studies, e.g., by optimizing 

both the ΔEg as well as placement of HOMO and LUMO levels.   

 
Figure 9. Leads from GA run with the ANN predicted ΔEg in eV and closest training data in 
inset green rectangle with Euclidean norm distance indicated in green: (left) lead quartet 
[Co(pyr)4(H2O)(misc)]2+ (where misc = methylisocyanide and pyr = pyridine) is also in the 
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training set and (right) lead quintet [Fe(CN-pyr)4(furan)(misc)]2+ (where CN-pyr = 4-
cyanopyridine) is closest to a training point singlet [Fe(pyr)4(furan)(misc)]2+. 
 

5. Conclusions. 

 We introduced software automation tools that enable the training of and exploit the use of 

machine learning models. The geometry checks we introduced ensure that new simulation data 

for machine learning models is robust without requiring manual validation. The molSimplify 

automatic design (mAD) workflow enables automated property optimization using genetic 

algorithms (GAs) with custom fitness functions. When using machine learning model energetics 

are used in mAD fitness functions, we showed that knowledge of model uncertainty, as judged 

through distance to training data, can be used fruitfully for chemical discovery. 

 To demonstrate the power of our RAC topological representation for inorganic chemistry, 

we train three types of machine learning models, LASSO, KRR, and ANNs. We had previously 

developed models to predict adiabatic gas phase ionization potential, redox potential, bond 

length, and spin splitting. In this work, we demonstrated the performance of RACs for predicting 

HOMO levels and HOMO-LUMO gaps for the first time. These models included the first ANNs 

trained on the RAC representation, which showed the best (ca. 0.15-0.20 eV) test set MAE 

performance on predicting the HOMO level of a diverse set of open shell transition metal 

complexes in varying spin and oxidation state. Performance on HOMO-LUMO gaps was slightly 

poorer (test set MAE ca. 0.25 eV) for all models. Although KRR performance using the full 

RAC-153 data set was inferior to the ANN, KRR models trained on RFA-selected feature sets 

that included 22 and 29 features for HOMO and HOMO-LUMO gap, respectively, showed 

nearly comparable performance to the ANN. The proximal/distal and electronic/steric blend of 

HOMO and HOMO-LUMO feature sets were comparable: both emphasized non-local, steric 
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properties even more than prior redox or ionization potential data sets. The feature sets 

demonstrated good transferability between the HOMO and HOMO-LUMO properties but 

previously selected electronic and metal-focused sets, e.g., from spin splitting or redox potential 

performed less well.  

Overall, diverse molecule performance was tested on a series of 64 small transition metal 

complexes, and HOMO and HOMO-LUMO errors increased by around an order of magnitude, 

particularly for unusual complexes containing types of bonds not present in the training data. 

With this model uncertainty in mind, a mAD GA run with fitness function designed to enable 

discovery of complexes with a 4 eV HOMO-LUMO gap was carried out in a design space of 

nearly 15,000 complexes. This screen recovered both complexes from our training set as well as 

new lead candidates in a matter of minutes, demonstrating the power of ML models for rapid 

pre-screening of a large design space. The next step will be to pursue active learning strategies 

that exploit, rather than avoid, regions of uncertainty for machine learning models, which is 

currently the focus of work underway in our group. 
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