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ABSTRACT: Machine learning the electronic structure of open shell transition metal complexes
presents unique challenges, including robust and automated data set generation. Here, we
introduce tools that simplify data acquisition from density functional theory (DFT) and
validation of trained machine learning models using the molSimplify automatic design (mAD)
workflow. We demonstrate this workflow by training and comparing the performance of
LASSO, kernel ridge regression (KRR), and artificial neural network (ANN) models using
heuristic, topological revised autocorrelation (RAC) descriptors we have recently introduced for
machine learning inorganic chemistry. On a series of open shell transition metal complexes, we
evaluate set aside test errors of these models for predicting the HOMO level and HOMO-LUMO
gap. The best performing models are ANNs, which show 0.15 and 0.25 eV test set mean absolute
errors on the HOMO level and HOMO-LUMO gap, respectively. Poor performing KRR models
using the full 153-feature RAC set are improved to nearly the same performance as the ANNs
when trained on down-selected subsets of 20-30 features. Analysis of the essential descriptors for
HOMO and HOMO-LUMO gap prediction as well as comparison to subsets previously obtained
for other properties reveals the paramount importance of non-local, steric properties in
determining frontier molecular orbital energetics. We demonstrate our model performance on
diverse complexes and in the discovery of molecules with target HOMO-LUMO gaps from a
large 15,000 molecule design space in minutes rather than days that full DFT evaluation would
require.



1. Introduction

Transition metal complexes are promising as functional materials, e.g., as spin crossover
materials'® that change properties in response to light, heat or small molecules, as
photosensitizers’ for solar cells, and they are also highly active, selective homogenous catalysts®
12 The open-shell transition metal (TM) centers of TM complexes are characterized by unpaired
electrons with differing spin and spatial symmetry that can be tuned by surrounding organic
ligands. These interactions typically require a fully quantum mechanical description, and thus the
resulting properties are both what gives these complexes great promise as functional materials
and catalysts but also makes their rational design challenging.

Computational high-throughput screening and design have become increasingly
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thanks to increases in computing power and algorithmic developments.
Nevertheless, challenges remain for high-throughput discovery in inorganic chemistry. Fewer
affordable methods such as force fields or semi-empirical methods have been developed for
inorganic chemistry'® in comparison to organic chemistry, necessitating first principles
simulation. However, transition metal chemistry is also sensitive'* > to the approximations made
in the most widely used first principles simulation techniques (i.e., density functional theory or
DFT). Inorganic chemistry discovery tools lag behind both solid state materials, where large
databases are available for repurposing and discovering new materials®*, which open source
codes such as AFLOW>2®, ASE*’, and pymatgen® enable. A number of cheminformatics tools,

such as RDKit” or OpenBabel’’, and large databases®'™*

of compact molecular representations
assist the automated simulation of organic molecules, but they are not straightforwardly

applicable to inorganic chemistry. With those challenges in mind, we introduced molSimplify™>,

the first open source toolkit for automating discovery in inorganic chemistry, using a divide and



conquer approach for transition metal complexes that uses cheminformatics tools® and force
fields for organic components and augments them with databases of quantum-mechanically-

derived rules for the metal-organic bond. These approaches enabled us to carry out automated,

high-throughput discovery in inorganic chemistry'"-*>~°.

Although DFT is the method of choice for computational materials discovery, efficient
chemical space exploration in the large combinatorial space spanned by transition metal
complexes necessitates accelerated discovery techniques. To address this challenge, we

introduced the first machine learning (ML) models to predict properties of open shell transition

metal complexes. Although ML has been increasingly widely used in property prediction® '
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(e.g., potential development**®) and materials discovery*®" especially for organic chemistry, its

successful application to inorganic chemistry has not been as prevalent. Development of ML

models for inorganic chemistry would offer the advantages of being able to predict properties at
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multiple levels of theory or differing functional blends™ and also making property

predictions in a matter of seconds that would normally take hours or days with DFT.
We thus used our molSimplify>® toolkit to generate DFT training data for ML models of
inorganic chemistry and then incorporated these models into molSimplify. Our artificial neural

networks (ANNSs) and kernel ridge regression (KRR) models predicted 1) spin state ordering to 1-
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3 kcal/mol accuracy™, ii) sensitivity of spin state ordering to DFT functional®, iii)

redox or ionization potential to 0.2 eV accuracy®, and iv) equilibrium DFT metal-ligand bond

lengths to 0.01-0.03 A in a spin and oxidation state dependent manner. We employed these
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models for materials design through a genetic algorithm optimization that estimated model
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uncertainty through heuristic distance metrics®® we determined to be superior to ensemble-
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based diagnostics in discovery". By relying on geometry-free representations that we



tailored™ °® for inorganic chemistry, we were also able to replace our database-driven approach

to structure generation” with a machine learning model®’.
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We showed that representations tailored for inorganic chemistry outperformed

whole-molecule, geometry-dependent descriptors® by as much as an order of magnitude™

on
our modest (ca. 2000-3000 equilibrium geometry) data sets. We rationalized these observations
by noting that large changes in system size (e.g., from 37 to 151 atoms) could have a limited
effect on the target property (e.g., spin splitting) if the ligand modification was metal-distant®®.
Training sets used in organic chemistry machine learning®®’ have been historically much more
homogeneous in size (e.g., closed shell singlets comprised of no more than 9 heavy C, N, O, or F
atoms®®) than is practical for inorganic chemistry where ligand structure necessitates larger and
more variable system sizes. Thus, a chief outstanding question in the field of machine learning
quantum chemistry is whether developed representations are suitably transferable.

In this work, we extend our prior ML models of transition metal chemistry to study
whole-complex frontier molecular orbital energetics, including the placement of the highest
occupied molecular orbital (HOMO) as well as the gap between the HOMO and the lowest
unoccupied molecular orbital (LUMO, i.e., HOMO-LUMO gap). Frontier molecular orbital
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energetics provide essential insight into chemical reactivity and dictate optical and electronic
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properties’*’". Although in pure DFT only the HOMO strictly carries meaning’>, significant

theoretical work has motivated the significance of the HOMO-LUMO gap” ™

, especially in
hybrid DFT”®. The rest of this manuscript is as follows. In section 2, we present an overview of
new automation features of our open source software that both enable machine learning model

training by streamlining high-throughput simulation and leverage machine learning models for

discovery. In section 3, we present the computational details of the data sets employed in this
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work. In section 4, we develop and interpret machine learning models for predicting frontier
molecular orbital energies of inorganic complexes, and we compare this prediction task to other
properties of inorganic complexes. Finally, in section 5, we provide our conclusions.

2. Software Developments.

2a. Automated Structure Validation.

One challenge in first-principles screening of TM complexes is confirming that large
numbers of calculations completed successfully. For example, when thousands of calculations
are carried out on a computing cluster, a fundamental issue for inorganic complex screening is
whether the expected coordination geometry was maintained during the optimization. For
example, weakly bound ligands may detach from the metal center during the optimization, either
due to poor initial geometry or electronic structure that prevents identification of a stable local
minimum on the potential energy surface near the expected geometry. To ensure that the
calculated properties are meaningful in high-throughput screening, automated tools are needed
for monitoring the geometries of inorganic complexes during and after the optimization process
(see example complex in Figure 1). To perform this monitoring, we construct a set of metrics
based on four aspects of complex geometry: the coordination number (CN), the shape of first
coordination shell (FCS), the degree of ligand distortion, and the orientation of linear ligands.
These metrics enable us to measure the difference between an observed geometry and target
geometry. In our workflow, we compare this difference to threshold values to determine if a
geometry has become invalid.

Determining CN. Rigorous CNs in inorganic complexes should be determined by detailed
analysis of the electron density to identify atoms bonded to the metal center. However, a simpler

approach that is amenable to rapid screening is to identify candidate coordinating atoms from



interatomic distances. We consider an atom, Aj;, to be a candidate coordinating atom to the metal
center, M, if the M-A distance is less than 1.35x the sum of the covalent radii of the two species
or, at most, < 2.8 A. In practice, this distance cutoff is intended to be overly inclusive (i.e., for F,
1.25 A and C 0.75 A, the cutoff is 2.72 A). Even in the case of monohapto ligands, short
intraligand bonds (e.g., C-N) can cause multiple atoms from the same ligand to be detected by
this inclusive cutoff. In cases where the initial CN is higher than expected, the set of candidate
coordinating atoms, {C;}, is checked for any two atoms that are determined to be bonded and
within the same ligand, as judged by 1.15x the sum of the covalent radii. The CN check is
particularly useful in detecting geometries where the CN is smaller than expected due to
detached ligands.

Shape of the FCS. The FCS shape can be uniquely determined by the angles formed between
coordinating atoms, C, of ith and jth ligands with M at the vertex, i.e., (C-M-C;). In the
octahedral geometries studied in this work, 6(Ci-M-C;) should be 90 or 180°, whereas they
should all be approximately 109° in a tetrahedral geometry. Use of a reference angle guarantees
the flexibility of the FCS check and does not restrict it to the octahedral complexes studied in
this work. For a given FCS, the angular deviation, AG(Ci-M-C;), can be measured by comparing
the actual and ideal 6(Ci-M-C;) values. The {C;} obtained from the initial CN check may contain
non-bonded atoms, especially for multidentate ligands. Thus, we identify a subset {ci} of
confirmed coordinating atoms by determining the optimal subset of {Cj} that minimizes the
average angular deviation, avg(A&(Ci-M-C))), 1.e., by varying the atoms over which the average
1s computed. The maximum angular deviation max(A6(C;-M-C;)) over the optimal subset {c;} is
retained as an additional check (see structure example in Figure 1). From the {c;} subset, we

obtain the metal-ligand bond lengths, d(M-Cj), which are used to compute the maximum
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difference in bond lengths, max(Ad), of ligands that should be equivalent. For octahedral
complexes with identical equatorial ligands, the largest difference in equatorial metal-ligand
bond lengths, max(Ad.,), quantifies the extent to which symmetry is preserved.

Ligand distortion. During optimization, changes in electronic structure can have an unexpected
effect on an individual ligand geometry. To detect these cases, each ligand is extracted from the
optimized structure and superimposed with its initial coordinates using the Kabsch algorithm’’,
which calculates the optimal rotation matrix that minimizes the root mean squared deviation
(RMSD). The maximum RMSD, max(RMSD), over all coordinating ligands is used as a metric

for ligand distortion (Figure 1).



Whole complex

Ligand
FCS shape orientation

Ligand distortion

Figure 1. (top) Example octahedral transition metal complex to illustrate common failure modes
for the geometry check. (middle and bottom) FCS shape, ligand orientation and ligand distortion
checks. The FCS and ligands are extracted from the whole complex (opaque sticks shown in
middle and bottom panes) to compare with idealized counterparts (translucent, black outline).

Linear ligand orientation. For a ligand with a triple bond between the coordinating atom, A, and
its nearest neighbor, B (e.g., as determined by the isolated ligand’s SMILES notation), we expect

linear coordination, i.e., M-A-B) = 180°. However, this initially linear geometry is not
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constrained in any way during a DFT calculation and can easily deviate from this expected value
(Figure 1). We compute the deviation from linearity, AG(M-A-B), and quantify any deviations by
the averaged, avg(AG(M-A-B)), and maximum, max(AGM-A-B)), deviations over coordinating
linear ligands.

The combined mAD geometry check workflow begins by obtaining a set of candidate
coordinating atoms {Cj} to assess ligand dissociation. For intact cases, a subset of confirmed
coordinating atoms is obtained by comparing to the reference angle of an idealized geometry.
(Figure 2). At this step, metrics characterizing the shape of the FCS, e.g., max(A&Ci-M-())),
avg(AO(Ci-M-Cj)), max(Ad), and max(Ad.) are calculated (Figure 2). Once the {ci} is
determined, we separate the complex into the metal center and ligands and compute ligand
structural properties, i.e., max(RMSD), avg(AG(M-A-B)), and max(AG(M-A-B)) (Figure 2). Note
that geometries with {c;} smaller than the expected value (i.e., due to ligand detachment) are

abandoned prior to these additional checks (Figure 2).

’ observed geometry |

check
[ get ON J angular deviation

}

find the
optimal subset

}

metrics for
FCS shape

CN >
expected CN?

Abandoned. i
Mark as invalid break down
the complex

(for each ligand)

Is this
ligand linear?

metrics for
ligand distortion
and orientation

Figure 2. Workflow for mAD geometry check function. Starting from the observed geometry

metrics for
ligand distortion
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(shown in green), four different checks (CN, FCS shape, ligand distortion, linear ligand
orientation) are carried out to compute the corresponding metrics (shown in light blue).
Structures found with CN smaller than the expected CN are directly categorized as bad and
abandoned for further checks (shown in red).

To assign a bad or good label for each geometry, a cutoff for each metric is required. A
geometry is categorized as bad if there exists one metric with a value larger than the cutoff,
otherwise it is labeled as good. The current cutoffs were empirically determined for octahedral
complexes based on trial and error categorization of hundreds of structures generated in prior
work» = (Table 1). Although these cutoffs are based on chemical intuition, they are consistently
applied to the data set without bias. Further refinement to this approach is to go beyond structure
and identify signatures of bad structures directly from electronic properties, which is currently

underway in our group.

Table 1. Geometry check metric cutoffs used for an octahedral transition metal complex. The
angular ligand distortion quantities are only computed for ligands that are expected to be linear.

Coordination number

CN
6
Shape of the first coordination sphere
avg(A 6(G-M-C;)) max(A 8(Ci-M-C;)) max(Ad) max(Ad,,)

22.5° 1.00 A 035A

12°
Ligand distortion

max(RMSD) max(A 6(M-A-B))
avg(A 6(M-A-B))
0.30 A’ 28°
20°

2b. Automated Design Software.
We have developed open-source Python packages for first-principles and ML-driven
screening of TM complexes: 1) molSimplify» » », a 3D-structure generation and manipulation

toolbox that is tailored for TM complexes, and ii) molSimplify Automatic Design (mAD), a
10



molSimplify extension for materials design. The molSimplify code enables commandline
generation of accurate initial geometries of inorganic complexes by preoptimizing organic
ligands with force fields and attaching ligands to predefined coordination geometries at
database” = or machine learning (i.e., neural network) predicted® bond lengths. Both codes are
available on github»* and on our website". Although we recently demonstrated the mAD code for
surrogate model-driven spin crossover (SCO) design®, we now introduce the logic and core
functions of mAD that enabled that approach. mAD can be used as a general purpose tool to
streamline and mitigate some of the challenges in high-throughput inorganic complex screening

(Figure 3).

mAD

) IMC )-»[ genes

metal, .
ligands l Fe, oxalate, bipy

molSimplify

geometry,
input files

DFT

analysis

ML predictions

derived AEq-L,
properties] Egomo,/LumMo

design logic |tm—

Figure 3. Workflow for mAD with key mAD components shown in blue: transition metal
chemical (TMC) space is discretized into genes, converted to 3D geometries and optional input
files using molSimplify (shown in green), and properties are either calculated using an external
DFT package using molSimplify-generated input files or internal ML models. Results are
analyzed and guide iterative discovery using the design logic in mAD. An example 3D geometry
is shown in inset.

The mAD code enables evolutionary-algorithm based materials optimization® of TM
11



complexes. A TM complex is described as a set of genes, where each gene refers to a distinct
design element to evaluate and optimize. For spin splitting energetics, the genes of a TM
complex correspond to a metal, oxidation state, and ligands. For example, if the design space is
restricted to homoleptic complexes, there will be only one ligand gene, whereas relaxing
symmetry (e.g., to distinct axial and equatorial ligands) increases the number of ligand genes to
two or more. For catalysis, the appropriate gene choice could correspond to a fixed choice of
metal and equatorial ligands while the axial species are obtained from a list of relevant reactive
intermediates. The user provides to the program a list of possible identities for each ligand gene,
which can be either drawn from the common ligands built into molSimplify or input as SMILES.
From the list of possible ligands, a population of genes that will encode a set of complexes can
be generated randomly or by user-specified indices for the desired ligands.

Once a population of genes is assembled, mAD can either use the molSimplify neural
network to estimate properties (e.g. spin splitting or bond lengths) or to generate initial
geometries and input files for DFT calculations, with native support for TeraChem (Figure 3). In
developing mAD, we have used a highly modular structure that supports easy extension. Since
molSimplify supports generating other electronic structure input files (e.g., Q-Chem and Orca),
the only requirements to switch mAD to other codes is to modify job submission scripts and
revise post-processing Python functions. Generated jobs are tracked in plain text files within a
job subfolder and submitted to a computing queue, with native support for SGE and SLURM.
The job script and run parameters are both customizable by the user either by pointing to a
custom script in the mAD input file or by editing the initially generated queue interface files,
which are then reused by mAD. Given the flexibility of the input structure, mAD runs can be

carried out with either single point energy evaluations at guessed geometries, as in our previous
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work=, or with full geometry optimizations. For time-consuming full geometry optimizations,
mAD contains a number of helpful features to ensure that these jobs complete successfully, as
described next. Ongoing efforts in our group are focused on increasing code and queue support
of molSimplify and mAD, and interested users are encouraged to keep up to date on these

improvements through github’®*°

and our website®'.

The mAD process can be run persistently in the background or with a user-scheduled
cron and requires only standard user permissions. Once running, the mAD code monitors the
submitted jobs by periodically querying the queuing system and inspecting completed jobs for
convergence and completion at a valid structure (see sec. 2a). The monitoring intervals and
maximum time for mAD to run can be specified by the user. Unfinished calculations that pass
geometry inspection are automatically restarted by mAD up to a maximum number of three
times by default, but this can be customized by the user in the mAD input file. Completed
calculations that have good geometries are inspected for deviations of the expectation value of
the S operator (i.e., <§>>) from the expected value, indicating broken symmetry between spin up
and spin down orbitals that suggests the total spin assigned in the calculation is not well-defined
within approximate DFT. Once a calculation passes both of those tests, it is grouped with related
calculations needed to calculate a target property, e.g., high- and low-spin energies of the same
complex are needed to calculate a spin-splitting energy. The specified target properties for each
complex are collected and used to inform future calculations, e.g., through fitness function
evaluation. The mAD code generates descriptor representations and computes the molSimplify-
built-in ML model prediction and distance-based uncertainty measures, where applicable, for
each attempted calculation to enable easy model retraining or extension. Data provenance is

established by storing the configuration and software versions used in all calculations in the
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mAD run output files.

Once properties are available for all sets of genes (i.e., TM complexes) in the current
generation or have been excluded due to calculation failures, mAD can propose new candidate
materials. The current version of mAD supports a basic genetic algorithm that has the capacity to
use either DFT or ML predictions. For ML predictions, mAD supports balancing property
optimization with distance from training data to conduct design in large, varied design spaces
while maintaining model confidence*. This approach could also be used for active learning,
which has shown promise»* in materials optimization.

The mAD code includes automation of subsequent calculations that depend on an initial
geometry optimization. Some examples of supported calculations are single point energies with
implicit solvent incorporated, Hessian calculations, or calculations carried out with a different
DFT functional (e.g., varied HF exchange fraction). These derivative jobs can be automatically
generated and submitted by mAD using both the parent optimized geometry as well as converged
wave functions as initial guesses, where appropriate. In HF exchange fraction resampling, for
example, the default behavior after converging an initial optimization at B3LYP (20% HF) is to
scan the range 25% to 30% and then 15% to 0% in 5% increments, always using the converged
wave function of the previous step in order to ensure the same electronic state is converged,
regardless of HF exchange fraction used.

3. Computational Details.

We trained all ML models on electronic structure properties of octahedral inorganic
complexes obtained from previous work~. Here, we expand on our prior predictions» * of spin-
state splitting, ionization/redox potential, and bond lengths to now predict highest occupied (and

lowest unoccupied molecular orbital (HOMO and LUMO) energies and gaps. We selected the
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redox data set used in prior work to predict adiabatic ionization and redox potentials rather than
larger data sets used for spin splitting prediction= ». The redox prediction models are physically
most similar to our present goal of predicting HOMO and LUMO energies, where the former
should correspond to the vertical ionization energy” in an exact functional.

The original data set consists of geometry optimized inorganic complexes with
M(IT)/M(IIT) oxidation states of Co, Cr, Fe, and Mn metals in high-spin (HS) and low-spin (LS)
states initially intended for ionization potential and redox potential calculation*. The HS-LS
definitions in prior work were: quintet-singlet for d° Co(IIl)/Fe(Il), sextet-doublet for o
Fe(IIT)/Mn(1I), quintet-triplet for ¢* Mn(III)/Cr(Il), and quartet-doublet for both ¢° Cr(IIl) and d’
Co(II). The lack of isolated Mn(III) singlet gas phase ions* originally motivated® our definition
for the d* complexes. However, we have since revised the &' LS definition to singlet to increase
correspondence with the d° systems. The ligands in this redox data set* were CO, pyridine, water,
furan, and methyl isocyanide. The symmetry was restricted to a single equatorial ligand identity
with up to two distinct axial ligands (i.e., M(L;)4L,L3) for a theoretical total of 1200 compounds.
Considering the multiple states required to obtain a redox potential, this space corresponded to
300 redox potential evaluations defined in terms of the M(II) ground state and ionization to an
M(III) electronic state with a spin multiplicity that differed only by one. In that work®, only 185
of the 300 theoretical redox potential evaluations were possible due to challenges in completing
one of the three needed calculations.

In addition to using a revised singlet definition for Mn(III)/Cr(II) in the present work, we
also perform the newly introduced geometry check to ensure the fidelity of the DFT geometry
optimized structures (see sec. 2a). Complexes with geometries that failed the geometry check

(217 of 1200) were eliminated from the set (see Supporting Information). Structures with
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deviations of <§>> > 1.0 from expected values (109 of 1200) were also eliminated (see
Supporting Information). Our final revised redox data set consists of 874 structures, 555 of
which were also used for ionization and redox potential prediction in Ref. . The 319 additional
data points correspond to those that either differ in spin state definition or were not part of the
necessary calculations for the ionization potential prediction.

Although the HOMO-LUMO properties reported in this work were generated during
those prior simulations, we briefly review the computational details of those calculations.
Structures were generated by first building an initial geometry with molSimplify* and then

carrying out DFT geometry optimizations using the TeraChem®

graphical processing unit
(GPU)-accelerated quantum chemistry package. The B3LYP~ hybrid DFT functional was used
in combination with the LANL2DZ~ effective core potential for transition metals and the 6-31G*
basis for all other atoms. The effect of using a modest basis set, which enables larger data set
generation for ML models, was found to be limited in prior work on the relative energies of
interest®. All calculations were spin-unrestricted, with virtual and occupied orbitals level-shifted”
by 1.0 and 0.1 eV, respectively.

It is well known that pure Kohn-Sham DFT underestimates HOMO-LUMO gaps’>> due
to both delocalization error and limits of the exact theory.”***> However, HOMO-LUMO gaps are
on a firmer foundation in generalized Kohn-Sham (KS) DFT’® (i.e., the hybrid functionals used
in this work). In open shell systems, ionization processes to which FMOs and their energies
should correspond can originate in either majority or minority spin. In this work, we adopt the
convention of training models on the strict energetic definition of HOMO and LUMO. In

practice, this means that in some metals, we are training on the gap between a spin up (o)

HOMO and spin down () LUMO (quintet Fe(III)(CO)s), whereas in others, we are learning the
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gap between the o HOMO and LUMO (quartet Mn(III)(CO)e). This approach is consistent with
our observations that ML test set errors on redox and ionization potentials from a mixture of spin
states were no worse than models trained on only a single spin state~.

4. Machine Learning Inorganic Chemistry Properties.

4a. Overview of Feature Sets and Models.

Feature sets. The manner in which molecular structures are converted into numerical
inputs is a critically important aspect of atomistic machine learning”®**. We have observed good
performance of machine learning models trained on metal-centric (i.e., containing only
information about atoms in the first few coordination spheres’) topological heuristic
representations of inorganic complexes®. Avoiding incorporation of explicit geometry
dependence enables metal-ligand bond length prediction by molSimplify™® structure generation®
routines and makes straightforward the prediction of properties that depend on multiple
geometries.

We recently introduced a systematic approach to inorganic chemistry featurization that
blends metal-centric and whole-complex topological properties in a feature set referred to as
revised autocorrelation functions (RACs). These RACs, variants of graph autocorrelations® ",
are sums of products and differences of atomic properties (i.e., electronegativity, nuclear charge,
topology, covalent radius, and identity) (Figure 4). We demonstrated these RACs to be predictive
featurizations for inorganic chemistry properties, such as spin-state splitting and ionization/redox
potential. Over all possible origins (i.e., metal-centered, mc, or ligand-centered, Ic) and
definitions, there are 42d+30 theoretical RAC features, where d is the maximum distance in
bonds through which two atoms are correlated in a single descriptor (mc examples shown in

Figure 4).°° As described in previous work’®, this number of features arises from the fact that
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there are 6d4+6 RACs for each of the five atomic property product RACs (i.e., 30d+30), and there
are no zero-depth difference descriptors, only three non-trivial start/scope definitions, and / is
excluded, giving 12d difference RACs for a total of 42d+30 productive and difference RACs.

A given depth cutoff does not mean that whole-molecule information is excluded, but it
does allow the user to choose not to directly correlate in a single feature the product of properties
of two atoms farther apart than a certain topological distance. Indeed, we found benefit in
limiting d to three bond paths in KRR model training, thereby making the theoretical RAC space
156 features in size, 5 of which are constant for the octahedral complexes studied in this and
prior work. The full definition of the RAC representation also included oxidation state, spin

state, denticity and Hartree-Fock (HF) exchange for a total of 155 features.”

Figure 4. Example RACs depicted on the structure of Fe(CO)s(misc) in ball and stick
representation (iron is brown, oxygen is red, nitrogen is blue, carbon is gray and hydrogen in
white sticks, CO ligands are semitransparent). The example paths shown are for depth one and
two mc RACs (mc-1 in blue or mc-2 in orange, respectively) shown only on the misc ligand. We
characterize RACs by locality relative to metal center: proximal (prox in red for metal and first

shell as in mc-1), intermediate (mid in green for second shell as in mc-2), and distal (dist in blue
for third shell or beyond).

In the present work, all complexes in the training set contain identical denticity (i.e.,
monodentate) ligands so we exclude the denticity descriptor, and all training data uses the

B3LYP (i.e., 20% exchange) functional so we exclude the HF exchange feature (see
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Computational Details). These omissions leave a full RAC set consisting of 153 features
(Supporting Information Table S1). We now compare the performance of RAC featurization for
predicting HOMO-LUMO energetics with 1) a linear LASSO regression model, i1) a KRR model
with a Gaussian kernel, and iii) an ANN. We partition the data set into training and test sets
using an 80%/20% random split and fix the training/test definitions to enable comparison across
all ML models.

Linear model. In linear models, RAC features are weighted by coefficients in a linear
combination to be correlated with the output variable. We employed L1-norm-regularized linear
regression (LASSO'") as implemented in the scikit-learn software package'®'. LASSO prevents
overfitting by using regularization to reduce the coefficients of the least-predictive variables to
zero, and the hyperparameter (i.e., adjustable parameter) that is associated with the regularization
strength was selected by 10-fold cross-validation (CV) error (Supporting Information Figure S1).

KRR model. In kernel based ML methods, inputs are non-linearly transformed into a
higher dimensional space, more flexibly fitting data sets than is possible in a linear model. As it
is impractical to work directly in a high dimensional space, a so-called kernel trick is used to
yield the kernel matrix from the inner products of original inputs, thus encoding the geometric
similarities in the original space. KRR is a method that combines the kernel trick with the least
squares loss and L2-norm regularization'”, and we employ a Gaussian kernel using the scikit-
learn software package'’'. The two adjustable hyperparameters in a KRR model are the
regularization coefficient and kernel width (i.e., decay length by which distant points contribute
to predicting a specific point). This hyperparameter selection was accelerated using the Bayesian
optimization Python library Hyperopt'®, which optimizes the expected improvement during

hyperparameter optimization rather than using an exhaustive grid search (Supporting Information
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Figure S2). As with the linear model, we employed the 10-fold CV mean absolute error (MAE)
for hyperparameter selection.

ANN model. Our previous work™ demonstrated ANNs for inorganic chemistry, especially
for prediction on diverse test molecules. The ANN models in the present work were trained using
the keras software package'** with TensorFlow'®, and hyperparameters were obtained with the
Hyperopt'® package. The 80% training partition of the full data set was further partitioned
randomly into a 90% train and 10% validation set to ensure that the ANN was not overfit
(Supporting Information Figure S3). The optimal ANN topology for HOMO level (HOMO-
LUMO gap) was determined to be an input layer, two fully connected hidden layers with 500
(300) nodes each, and an output layer. Each hidden layer of an ANN transforms the input
features through non-linear amplification (here, with rectified linear unit'®® non-linearities) and a
linear activation function (i.e., linear combinations of feature weights arising from prior layers) is
used in the output layer. To avoid overfitting, dropout regularization, i.e., zeroing out nodes
within a network at a fixed 22% (31%) probability, was used to regularize the network, as in
previous work>®. Although increasing dropout increases training errors by eliminating network
dependence on specific nodes, it generally improves test errors and ANN generalization, as we
have previously shown on inorganic complex data sets™. To further reduce overfitting, L2-norm
weight regularization was used at every layer of the network, with the regularization
hyperparameter set to be 1x10™ (1x10~). The ANN was trained with batch optimization with
batch size 50 using an Adam'”’ optimizer (see Supporting Information Table S2).

Feature selection. Reduction of the dimensionality of the original representation of the
data set by techniques broadly referred to as feature selection can provide insight into data

sets'®. By eliminating less informative features, simple linear or kernel based models (e.g.,
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KRR) can achieve higher out-of-sample performance. Based on our prior comparison of several
feature selection techniques®, we employ random forest as a starting point because it provides a
low cost estimate of feature importance. Applying feature selection (for example with random

forest models'”

) allows the relative importance of these different descriptors to be assessed for
different prediction targets, for example, in previous work revealing that spin splitting is more
locally controlled by first-shell effects as compared to redox potential’®. Here, we employ
random forest to rank the descriptors by an importance score'” and add them sequentially to the
target feature set using recursive feature addition (RFA)'®®. This differs from our prior work by
combining RFA with random forest feature sets, whereas we previously used error cutoffs in the
random forest model to directly select features. At each iteration, a KRR model is trained with
the new feature set, and a descriptor is kept only if it improves performance. The first KRR
model is trained only on oxidation state and spin multiplicity, and it and subsequent KRR models
are judged by the 10-fold CV MAE of KRR after hyperparameter optimization. We continue
RFA until the performance of the selected feature set levels off and stops improving (Supporting
Information Figure S4). Although the non-linearity of ANNs is expected to obviate explicit
feature selection, we also employ these selected subsets to test whether feature selection has any
benefit for ANN performance.
4b. Model Performance.

We first trained linear (i.e., LASSO) and KRR models with RAC-153 and feature
selected subsets for HOMO level prediction. The HOMO values in the data set range from -27 to
-11 eV and have a mean of -15.81 eV. The inherently regularized LASSO model produces

balanced train (0.80 eV) and test (0.71 eV) MAEs (Table 2 and Supporting Information Table

S3). However, the lack of coupling between features or higher order terms in the linear model
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limits its predictive accuracy especially at low HOMO values (Figure 5 and Table 2). Moving
beyond linear models to a KRR model trained with RAC-153 features improves test MAE to
0.25 eV (Table 2). As expected, incorporation of non-linear dependences reduces the MAE of
the KRR model with respect to LASSO, although we note that the lower train MAE of 0.12 eV is
suggestive of overfitting that is common with KRR models (Table 2). Applying RFA to RAC-
153 retains only 29 features (RFA-29). Consistent with prior work’®, this reduction improves
KRR test MAE to 0.18 eV (Table 2 and Supporting Information Table S4). This improved
performance can be understood as arising from improved distribution of training complexes in a
space that has fewer uninformative features.

Table 2. Mean absolute errors (MAEs) for LASSO, KRR (RAC-153 or RFA-selected subsets),
and ANN ML models: training set, CV partition, test set, and OH64.

Model Train MAE CV MAE (eV) Test MAE (eV) OH64 MAE
(eV) (eV)
HOMO level
LASSO 0.80 0.82 0.71 1.85
KRR (RAC-153) 0.12 0.23 0.25 6.10
KRR (RFA-29) 0.04 0.17 0.18 1.55
ANN 0.05 0.17 0.17 1.87
AE,

LASSO 0.68 0.70 0.47 9.47
KRR (RAC-153) 0.16 0.35 0.33 11.58
KRR (RFA-22) 0.08 0.26 0.23 2.60
ANN 0.06 0.23 0.22 2.56
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Figure 5. Train (red filled circles) and test (blue filled circles) HOMO level prediction model
performance for LASSO (left), KRR (middle), and ANN (right). All results are shown as parity
plots with the actual HOMO values and a black dotted parity line.
We then trained an ANN model using RAC-153 features and obtained a comparable test
MAE of 0.17 eV (0.05 eV train MAE) to the RFA-29 KRR (0.18 eV) (Figure 5 and Table 2).
Although ANN structure essentially incorporates feature selection via nonlinear activation that
zeroes out less-predictive features, we tested the performance of an ANN using RFA-29 features.
We kept fixed all hyperparameters aside from the number of inputs and found that the
performance of the ANN trained on RFA-29 was comparable to or only weakly improved over
the RAC-153 ANN, with train and test MAEs of 0.06 and 0.15 eV, respectively. As expected,
feature selection is likely unnecessary with an ANN because the ANN is robust to uninformative
features, but feature selection does provide the added advantage that complex similarity can
more readily be interpreted through distances in a smaller feature space™ .
Overall, train and test errors appear balanced in all models across the range of HOMO
level wvalues, except in the case of LASSO where train and test errors both appear
disproportionately large at both high and low HOMO levels, indicative of the insufficiency of the

linear model for capturing the phenomena that give rise to extreme HOMO values (Figure 5). For

instance, LASSO significantly overestimates the DFT HOMO of -23.76 eV for a singlet
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[Co(H,0)s(CO)]*" complex by 2.57 eV, whereas KRR and ANN errors are smaller at -0.80 eV
and 0.00 eV, respectively (Supporting Information Figure S5). However, it is difficult to
generalize these observations across all deep HOMO level compounds: LASSO conversely
overestimates the DFT HOMO (-23.80 e¢V) of quintet [Mn(CO)s]’" by a comparable amount to
the underestimate error in KRR and ANN (1.21 eV vs. -1.25 and -1.08 eV, respectively, see
Supporting Information Figure S5). All models perform well (0.1 eV absolute error) on certain
higher HOMO level (DFT value: -13 eV) compounds, such as Fe(II) and Mn(I) complexes that
are a heteroleptic mixture of equatorial pyridines with strong field axial CO ligands (Supporting
Information Figure S5).

In addition to the HOMO level, we trained LASSO, KRR, and ANN models to predict
the HOMO-LUMO gap, AE, (Table 2 and Supporting Information Figure S6). The AE, values
range from 0 to 8 eV with a mean of 3.10 eV. Although the LASSO gap prediction test MAE of
0.47 eV is smaller in an absolute sense than the HOMO prediction error, it is a larger percentage
of the range (6% of the AE, 8 eV range vs. 4% of the 16 eV HOMO range), indicating somewhat
degraded performance in comparison to HOMO level prediction (Table 2). The test MAE of a
KRR model trained on RAC-153 also shows worsened test MAE of 0.35 eV, and the higher train
MAE of 0.16 eV for AE, (vs. 0.12 ¢V for the HOMO level) is suggestive of more difficulty
fitting the training data with the RAC feature set. Feature selection with RFA retains 22 features
and significantly improves test MAE to 0.23 eV (Table 2 and Supporting Information Table S5).
We note that even after feature selection the larger train MAE of 0.08 eV (vs. 0.04 eV) and
larger relative test MAE indicates that the AE, prediction task is more challenging than direct
HOMO level prediction (Table 2). Such challenges in predicting AE, are also observed in

degraded ANN model performance (train MAE: 0.06; test MAE: 0.22 eV) that is comparable to
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the RFA-22 KRR (Table 2).
The increased difficulty in predicting AE, over the HOMO level is at odds with our
observations of comparable prediction accuracy between ionization potential and redox

potential’ 6

, suggesting there may be more noise arising from opposing effects in HOMO and
LUMO variation that go into the gap prediction. In the present work, we constructed the training
set for HOMO level and AE, prediction to maximize the similarity to training sets used in
previous work for predicting gas phase, adiabatic ionization potential and redox (i.e., solvent and
thermodynamically-corrected) potential®®. In prior work™®, we obtained 0.2-0.3 eV test set MAE
for redox potentials (or 3-4% of the 6.7 eV mean value) and comparable relative MAEs of 0.4-
0.6 eV (3-4% of the 14.4 eV mean value) for adiabatic ionization potentials. These ranges
corresponded to feature selection with random forest generally improving redox potential
prediction but slightly worsening ionization potential predictions™. In the present work, KRR
test set MAEs using features ranked with random forest and then confirmed with RFA are
comparable to or slightly better than the prior work for the HOMO: the 0.18 eV test set MAE is
1% of the -15.81 eV mean value, and slightly worse for AE,: the 0.23 eV test set MAE is 7% of
the 3.10 eV mean value. Analysis of the effect of the feature selection on principal component
analysis (PCA) distributions of the data sheds light on this difference in model error (Supporting
Information Figures S7-S8). Specifically, feature selection distributes the data more evenly and
clusters deep HOMO level compounds in a distinct spatial location from shallow HOMO level
compounds (Supporting Information Figure S7). Conversely, the effect is more muted for AE,
data, with some very small gap compounds still near large gap compounds, although feature
selection does spread out the compounds more significantly (Supporting Information Figure S8).

Analysis of the character of selected feature sets is useful for understanding the length
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scale and character of substituent atomic interactions that give rise to properties, even when
sophisticated models (e.g., ANNs) are not very sensitive to input features. Here we again®
distinguish the features by relative locality of the atoms in the property: proximal, intermediate,
and distal (Figure 4). We also again®® classify atomic properties as either electronic (i.e.,
electronegativity and nuclear charge) or steric (i.e., size, identity, and topology) in nature. The
RFA-selected 29 and 22 feature sets obtained for the HOMO level and AE,, respectively, contain
higher distal and steric feature weights in comparison to the spin-splitting (26 features) feature
set obtained from random forest previously™® (Figure 6 and Supporting Information Tables S1
and S6). Even though the 38-feature set selected by random forest for redox potential prediction
also contains higher distal and steric feature weights than the spin splitting set, it surprisingly has
a strong electronic contribution from the metal center that is particularly absent in the HOMO
level set and also reduced in the AE, set (Figure 6 and Supporting Information Table S7). A
comparison to 28 features selected on gas phase ionization potential data by random forest shows
strong dissimilarity to the frontier orbital models, weighting the steric contribution even more
strongly (Supporting Information Figure S9). However, we note that the random forest feature
set was not as predictive on gas phase ionization potential as it was on other quantities in that

work’®.
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38

Figure 6. Schematic of relative proximity and electronic (electronegativity and nuclear charge
RAC:s, blue) or steric (topology, identity, and size RACs, yellow) character of feature sets on a
metalloporphyrin abstraction. Feature sets are designated by their training data: spin splitting
(top left), redox potential (bottom left), HOMO-LUMO gap (top right), and HOMO level
(bottom right). Retained features from random forest are also indicated, with spin splitting and
redox from prior work™® indicated in dark gray, and the new feature sets for HOMO and HOMO-
LUMO are indicated in black. Atom sizes of the first, second shell, and beyond are scaled by the
number of descriptor dimensions involving that shell relative to the metal center, which is kept
the same size in all sets. The color bar and absolute percentages of electronic and topological
descriptors, as defined in the main text, is shown in the left inset.

Although differences in down-selected feature sets can be informative for guiding
iterative design of materials properties, we have previously demonstrated good transferability
between feature sets for differing properties. We may expect such observations to hold here for
HOMO level and AE, prediction, particularly because the weight of steric and distal features
appears comparable between the two sets (Figure 6). Indeed, KRR with the AEg-selected RFA-22
produces a HOMO level test MAE of 0.19 eV, only slightly increased over the RFA-29 set (0.18
eV). Using the larger RFA-29 feature set to train a HOMO level KRR model degrades
performance (0.26 eV test MAE) slightly more over the original model (0.23 eV test MAE). The
electronically-weighted and metal-centric features of the redox and spin splitting feature sets

further degrade test MAEs for HOMO level (0.21-0.24 eV test MAE) and AE, (0.29 eV test
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MAE), although both still outperform the models trained on RAC-153 (Supporting Information
Tables S8-S9).

To test the ability to extrapolate in discovery with our models, we evaluated the HOMO
level and AE, models on a new set of 64 octahedral homoleptic complexes (OH64) with
monodentate ligands containing up to two heavy C, N, O atoms (Supporting Information Table
S10 and structures and more details provided in the Supporting Information). These OH64
complexes contain the same metal centers (Co, Cr, Fe, Mn) in the same oxidation and spin states
complexed with 8 unique but similar composition (i.e., C, N, O, and H-containing) ligands.
Specifically, the ligands include NH,CH3;, NHCH,, NCH, N,, OCH,, NH3, N,H,, and NHO,
where the first atom is the one that coordinates the metal (Supporting Information Table S10).
Despite some similarities, these complexes were absent from training data, and only 8% (54 of
699) of the training data contains homoleptic complexes. The differences between OH64 and the
redox set produces large distances of the newly generated molecules to training data (5-nearest-
neighbor, 5-NN, distance of OH64 to training: 9.6 vs. 5-NN redox test to train: 2.2) potentially
limiting prediction by interpolative (e.g., KRR) or overfit models. Properties of the two sets also
differ, likely due to the smaller size of OH64 complexes: AE, (HOMO level) averages 5.81 eV (-
18.79 eV) for OH64 vs. 3.10 eV (-15.81 eV) for the training set (Supporting Information Figure
S10).

As expected, all model MAEs increase on the OH64 set in comparison to the test set
MAE (Table 2). Somewhat surprisingly, the best performing model on the HOMO level is the
feature-selected KRR (OH64 MAE: 1.55 eV), although both the ANN (1.87 e¢V) and LASSO
(1.85 eV) perform reasonably (Table 2). In particular, LASSO error from test set MAE to OH64

MAE increases the least (0.71 eV vs. 1.85 eV), but the LASSO model performs much more
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poorly on AE, prediction (OH64 MAE 9.47 eV vs. 0.47 eV) (Table 2). Relative model
performance (i.e., test vs. OH64) worsens in all cases on AE, over the HOMO, potentially due to
relatively strong size dependence of the HOMO level vs. more subtle effects that dictate the gap.
Without feature selection, KRR models that use the full RAC-153 space perform the worst of all
models, including LASSO, giving OH64 MAEs of 6.10 eV for the HOMO and 11.58 eV for AE,
(Table 2). This large error is due to the large Euclidean distance between the training set and
OH64 molecules in the latent space, leading to unsupported (i.e., mean value) predictions by the
KRR model. Thus, for extrapolation to diverse molecules, feature selection is essential to
enhance the role of the most important chemical factors in model prediction when using small
training sets as we have in this work.

We examined OH64 HOMO level performance and identified two N-coordinating ligand
complexes on which the ANN model performed alternately well or poorly (Figure 7). In the
training set only a single N-coordinating ligand, pyridine, is present, meaning that the most
similar complexes to the OH64 cases may instead have non-N-coordinating ligands with more
similar topology. Nevertheless, we observe that singlet [Co(NH,CHs)s]*™ is well predicted by our
model (-19.91 eV from the ANN vs. -20.00 eV for DFT) (Figure 7). Conversely, the quintet
[Mn(HNNH)]*" complex HOMO level is underestimated by 4.9 eV, which is almost double the
MAE for the ANN on the OH64 set (Figure 7 and Table 2). We attribute this performance
difference due to the similarity of methylamine ligands to other training set chemistry and
relative dissimilarity of the HNNH ligand that involves a N-N double bond not present in the
training set. In order to avoid such large errors as observed for the HNNH ligand in the future, a
more diverse training set, better metrics for model uncertainty (i.e., to limit prediction on

uncertain compounds), and a better match between training and prediction molecules will all be
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beneficial. For example, an ANN trained to predict spin splitting™ on a broader data set from our
prior work™ *® with RACs™® only has a 3 kcal/mol error for the same compound. Overall, these
results reinforce observations that ML model test set error is an insufficient indicator of the
likely errors™ on extrapolative complexes, and that relative similarity of diverse or discovery

target molecules must be taken into account when applying ML models to new compounds.

[Co(NH,CH,)s]**|[Mn(HNNH)]3*
DFT -20.00 eV -18.64 eV
ANN -19.91 eV -23.55 eV

Figure 7. Example molecules from the diverse OH64 test set: (left) small ANN error (0.09 eV)
with respect to DFT in a singlet [Co(NH,CH;)s]®" complex and (right) large ANN error (-4.91
eV) with respect to DFT for a quintet [Mn(HNNH)s]>" complex. Metals are shown as spheres
and coordinating atoms as sticks, with C atoms in gray, N atoms in blue, and H atoms in white.

4c. Optimizing Frontier MO Properties.

Given the trained HOMO level and AE, models, we now demonstrate how such models
can accelerate materials design when used for scoring in combination with a genetic algorithm
(GA), as implemented in mAD’®. Here, we use the ANN model that predicts AE, to design a TM
complex with a target AE, of 4 eV in its ground spin state, as indicated by a spin splitting
ANN™. The design space is constructed from a series of genes: i) one for any of four metals, Co,
Cr, Mn, Fe, in two oxidation states, +2 or +3, and i1) 15 monodentate ligands with up to three
unique coordinating species per complex, with C, N, or O connecting atoms (Supporting
Information Table S11). Specifically, 1800 ligand combinations are possible: 15 homoleptic, 210

with a single unique axial species (i.e., M(L)s(L2)), 210 with unique equatorial and axial species
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(i.e., M(L1)4(L2)2), and 1365 with the same equatorial ligands but two unique axial ligands (i.e.,
M(L)4(L2)(L3)). In total, the metal and ligand combinations give rise to 14,400 possible
complexes, 699 of which (4.9%) were in the training data, and the space is larger than in
previous work despite a smaller (i.e., 15 vs. 35°®) ligand pool, owing to the inclusion of more
asymmetric complexes. The fitness function used here to target AE, values is modified from the

form we used for targeting spin splitting in previous work™®:

(‘(maX(Q 3.75-AE  J+max(0, AEﬂzs))) ‘(dd]z

F , =e e ™ (1)

where the first term is a flat bottom exponential penalty for AE, values that are distant (i.e., > =+
0.25 eV) from the target value of 4.0 eV and the second term is a penalty on distance to training
data. Although we previously introduced a distance penalty approach to enable discovery in an
ANN with knowledge of uncertainty®®, in the present work, we select dopt = 30 to encourage
discovery of previously unseen complexes, penalizing values of d > 10 in RAC-153 descriptors.
Although d values in RAC-153 are not equivalent to the prior work in MCDL-25, this
weak penalty is generally more encouraging of new complex discovery than in our prior work.
The motivation for this weaker penalty is also that, without feature selection, RAC-153
exaggerates small differences in ligand connectivity, producing much larger distances in feature
space than would be observed in the nearsighted MCDL-25 and lessening the value of distance
control in limiting model uncertainty (Figure 8). A moderate distance in RAC-153 for metal-
distant differences (e.g., d = 5 for cyanopyridine ligands in place of pyridine in a training set
complex) is due to the higher weight of distal features in the full RAC-153 space over MCDL-25
(Figures 4 and 8). Larger distances (d = 10) are observed when both connectivity and spin state

change, as is the case for quintet [Cr(CO)s(tbisc)]*" (tbisc = t-butyl-isocyanide), which is quite
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far from the closest training structure, singlet [Cr(CO)s(pyridine)]*" (Figure 8). Thus, penalizing
distances above d = 10, which typically correspond to substantial differences in multiple ligands,
oxidation, or spin states, encourages most exploration by the ANN but avoids cases where
molecules are extremely distant from training data (Figure 8). In all cases, the ANN predicts
comparable AE, (ca. 4-5 eV) for these Cr(II) complexes, but we should expect the ANN to be
more reliably predictive (i.e., closer to the DFT result) on cases with distances closer to the

training data.

oY 2

Figure 8. Depiction of Euclidean norm distance of GA hit complexes (top) to closest available
training data (bottom) illustrated on a family of related Cr complexes. All GA hit complexes are
quintet Cr(II), and training data points change oxidation/spin state in the following cases only:
the d = 5 training point is Cr(III) high spin, d = 10 is Cr(II) low spin, d = 15 is Cr(III) high spin.
The distance at which distances are penalized is indicated with a dashed green vertical line.

Starting from a pool of 20 randomly selected complexes, the GA is run for 21 generations
with both distance control as in eq. 1 as well as diversity control’® on the mutation probability,
Pmut. Here, pmye 18 increased from its default value of 0.15 to 0.65 whenever the diversity (i.e.,
unique complexes in a generation) falls below 25%, and it is returned to 0.15 once diversity

increases to 25% or higher. The mean fitness function rises rapidly to 0.85 in the first five
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generations and remains there for the rest of the GA run, leading to local exploration around
similar compounds in the remaining generations (Supporting Information Figure S11). At the
end of the GA run, we recover both complexes from the training set (e.g., quartet
Co(I)(pyr)4(HO)(misc), with ANN AE, = 4.17 eV) and new complexes (e.g., quintet Fe(II)(CN-
pyr)s4(misc)(furan), with ANN AE, = 3.83 V) (Figure 9).

In total, 105 new compounds are discovered during the GA run with an average distance
of 7.9 to training data, and only 9 of these compounds were previously employed in training
(Supporting Information). Over a 10 complex subset of these new compounds with an average
ANN-predicted gap of 4.00 eV, the average AE, from DFT with full geometry optimizations is
3.97 eV (Supporting Information Table S12). The MAE over all compounds for the ANN with
respect to DFT is 0.27 €V, a modest increase from the 0.22 eV AE, test set MAE for the ANN
(Table 2 and Supporting Information Table S12). Errors ranged from as small as 0.01 eV with
respect to DFT values and as large as 0.98 eV in one case (Supporting Information Table S12).
In this design space, the objective function is easily fulfilled by a large number of compounds,
therefore motivating the use of multi-objective optimization in future studies, e.g., by optimizing

both the AE, as well as placement of HOMO and LUMO levels.

AEg =4.17 eV % AEg =3.83 eV
d=0 c d=4.51

Figure 9. Leads from GA run with the ANN predicted AE, in eV and closest training data in
inset green rectangle with Euclidean norm distance indicated in green: (left) lead quartet
[Co(pyr)s(H,0)(misc)]*" (where misc = methylisocyanide and pyr = pyridine) is also in the
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training set and (right) lead quintet [Fe(CN-pyr)s(furan)(misc)]”*" (where CN-pyr = 4-
cyanopyridine) is closest to a training point singlet [Fe(pyr)s(furan)(misc)]*".
5. Conclusions.

We introduced software automation tools that enable the training of and exploit the use of
machine learning models. The geometry checks we introduced ensure that new simulation data
for machine learning models is robust without requiring manual validation. The molSimplify
automatic design (mAD) workflow enables automated property optimization using genetic
algorithms (GAs) with custom fitness functions. When using machine learning model energetics
are used in mAD fitness functions, we showed that knowledge of model uncertainty, as judged
through distance to training data, can be used fruitfully for chemical discovery.

To demonstrate the power of our RAC topological representation for inorganic chemistry,
we train three types of machine learning models, LASSO, KRR, and ANNs. We had previously
developed models to predict adiabatic gas phase ionization potential, redox potential, bond
length, and spin splitting. In this work, we demonstrated the performance of RACs for predicting
HOMO levels and HOMO-LUMO gaps for the first time. These models included the first ANNs
trained on the RAC representation, which showed the best (ca. 0.15-0.20 eV) test set MAE
performance on predicting the HOMO level of a diverse set of open shell transition metal
complexes in varying spin and oxidation state. Performance on HOMO-LUMO gaps was slightly
poorer (test set MAE ca. 0.25 eV) for all models. Although KRR performance using the full
RAC-153 data set was inferior to the ANN, KRR models trained on RFA-selected feature sets
that included 22 and 29 features for HOMO and HOMO-LUMO gap, respectively, showed
nearly comparable performance to the ANN. The proximal/distal and electronic/steric blend of

HOMO and HOMO-LUMO feature sets were comparable: both emphasized non-local, steric
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properties even more than prior redox or ionization potential data sets. The feature sets
demonstrated good transferability between the HOMO and HOMO-LUMO properties but
previously selected electronic and metal-focused sets, e.g., from spin splitting or redox potential
performed less well.

Overall, diverse molecule performance was tested on a series of 64 small transition metal
complexes, and HOMO and HOMO-LUMO errors increased by around an order of magnitude,
particularly for unusual complexes containing types of bonds not present in the training data.
With this model uncertainty in mind, a mAD GA run with fitness function designed to enable
discovery of complexes with a 4 eV HOMO-LUMO gap was carried out in a design space of
nearly 15,000 complexes. This screen recovered both complexes from our training set as well as
new lead candidates in a matter of minutes, demonstrating the power of ML models for rapid
pre-screening of a large design space. The next step will be to pursue active learning strategies
that exploit, rather than avoid, regions of uncertainty for machine learning models, which is

currently the focus of work underway in our group.
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