

Bridging the homogeneous-heterogeneous divide: modeling spin for reactivity in single atom catalysis

1 **Fang Liu¹, Tzuhsing Yang¹, Jing Yang¹, Eve Xu¹, Akash Bajaj^{1,2}, Heather J. Kulik^{1,*}**

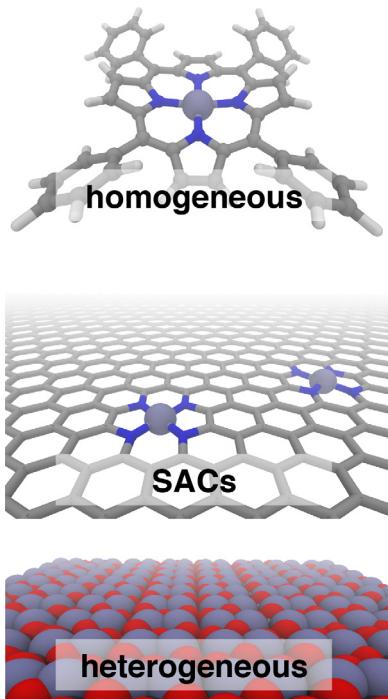
2 ¹Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA,
3 USA

4 ²Department of Materials Science and Engineering, Massachusetts Institute of Technology,
5 Cambridge, MA, USA

6 ***Correspondence:**

7 Heather J. Kulik
8 hjkulik@mit.edu

9 **Keywords: density functional theory, catalysis, single atom catalysis, spin state crossover,**
10 **transition metal chemistry.**


11 **Abstract**

12 Single atom catalysts (SACs) are emergent catalytic materials that have the promise of merging the
13 scalability of heterogeneous catalysts with the high activity and atom economy of homogeneous
14 catalysts. Computational, first-principles modeling can provide essential insight into SAC mechanism
15 and active site configuration, where the sub-nm-scale environment can challenge even the highest-
16 resolution experimental spectroscopic techniques. Nevertheless, the very properties that make SACs
17 attractive in catalysis, such as localized *d* electrons of the isolated transition metal center, make them
18 challenging to study with conventional computational modeling using density functional theory
19 (DFT). For example, Fe/N-doped graphitic SACs have exhibited spin-state dependent reactivity that
20 remains poorly understood. However, spin-state ordering in DFT is very sensitive to the nature of the
21 functional approximation chosen. In this work, we develop accurate benchmarks from correlated
22 wavefunction theory (WFT) for relevant octahedral complexes. We use those benchmarks to evaluate
23 optimal DFT functional choice for predicting spin state ordering in small octahedral complexes as
24 well as models of pyridinic and pyrrolic nitrogen environments expected in larger SACs. Using these
25 guidelines, we determine Fe/N-doped graphene SAC model properties and reactivity as well as their
26 sensitivities to DFT functional choice. Finally, we conclude with broad recommendations for
27 computational modeling of open-shell transition metal single-atom catalysts.

28 **1 Introduction**

29 Single atom catalysts (SACs)(Yang et al., 2013) are emergent catalytic materials(Yang et al.,
30 2013; Liang et al., 2015; Liang et al., 2017) that have the promise of merging the scalability of
31 heterogeneous catalysts with the high activity and atom economy of homogeneous catalysts, but the
32 reactivity of SACs is poorly understood (Figure 1). Fe/N-doped graphene SACs have been
33 demonstrated for critical transformations such as selective hydrocarbon oxidation(Liu et al., 2017),
34 including ambient methane to methanol conversion(Cui et al., 2018), and as non-Pt oxygen reduction
35 reaction (ORR) electrocatalysts (Li et al., 2016; Chen et al., 2017; Yang et al., 2018). Short-lived,
36 variable SAC active sites that are fundamentally sub-nm-scale challenge the resolution of

37 spectroscopic techniques (Fei et al., 2015; Wang and Zhang, 2016), making first-principles modeling
 38 essential to mechanistic study.

39
 40 **Figure 1.** Iron catalysts in three classes: homogeneous tetraphenyl porphyrin (top), N-doped
 41 graphene single atom catalysts (SACs, middle), and heterogeneous hematite (bottom). In all cases,
 42 carbon is shown in gray, nitrogen in blue, iron in purple, and oxygen in red.

43

44 For these emerging catalysts, changing synthesis(Liu et al., 2017) or reaction(Li et al., 2016;
 45 Zitolo et al., 2017) conditions changes the distribution of SAC coordination geometries, and the most
 46 reactive species for key reactions (e.g., ORR or selective partial hydrocarbon oxidation) remain under
 47 debate(Zitolo et al., 2015; Zhu et al., 2017; Yang et al., 2018). In selective partial hydrocarbon
 48 oxidation, spin-state-dependent reactivity of Fe/N-doped graphene SACs has been observed, with an
 49 intermediate, five-coordinate Fe(III)-N-C catalyst more reactive and selective(Liu et al., 2017) than
 50 low-spin or high-spin Fe active sites with four- or six-fold coordination. The fundamental source of
 51 this spin-state dependent reactivity remains unknown. In SAC electrocatalysts(Fei et al., 2015; Qiu et
 52 al., 2015; Zitolo et al., 2015; Back et al., 2017; Chen et al., 2017; Cheng et al., 2017; Zhang et al.,
 53 2017a; Zhang et al., 2017b; Zhu et al., 2017; Zitolo et al., 2017; Gao et al., 2018; Jiang et al., 2018;
 54 Wang et al., 2018; Zhang et al., 2018), changes in applied potential (e.g., in ORR) have been
 55 suggested to change the Fe SAC active site, possibly through a change in spin state(Zitolo et al.,
 56 2017).

57 Although perhaps surprising in the context of heterogeneous catalysis, strong spin-state
 58 dependence in reactivity is well-known in homogeneous catalyst(Schröder et al., 2000) analogues.
 59 Thus it follows that paradigms that work in coordination chemistry might apply to SACs as well. The
 60 near-octahedral coordination environment around a metal center produces distinct quantum
 61 mechanical spin states (i.e., local metal magnetic moments) that are determined by the ligand-field
 62 strength as well as oxidation state and metal identity(Tsuchida, 1938). Different spin states often
 63 have distinct reaction barriers(Schröder et al., 2000; Schwarz, 2017) in a paradigm known as two-
 64 state reactivity (TSR)(Shaik et al., 1995; Schröder et al., 2000; Schwarz, 2017). TSR was first

identified for Fe^+ ions, where oxidation of H_2 or CH_4 to H_2O or CH_3OH , respectively, is limited by spin inversion from a steep ground state, high spin (HS) surface to a more reactive but excited state low spin (LS) surface. For cases such as iron-oxo porphyrin systems that have closely degenerate spin states, different pathways can indeed lead to distinct products(Kamachi and Yoshizawa, 2003; Ji et al., 2015).

In minimal model single-site catalysts, we recently demonstrated(Gani and Kulik, 2018) that bond elongation or compression has an effect similar to modulating ligand field strength, which could also alter ground state spin and reactivity in an interconnected manner. Most $\text{Fe}(\text{II})/\text{N}$ complexes have near degenerate HS and LS states because nitrogen ligands are of intermediate field strength, but small changes in the N-N separation of bidentate ligands that make up the octahedral complex are known to tune the experimental ground state of the material(Phan et al., 2017). In metal-doped graphene, strain has been predicted to change the ground state spin.(Huang et al., 2011) Even changes in orientation of ligands (i.e., one equatorial swapped with one axial) have been experimentally observed to change the favored ground state spin of related molecular complexes(Andris et al., 2016).

The confined nature of metal d states and interactions with localized p orbitals from organic ligand atoms imparts properties to open-shell SACs in a manner more closely resembling the chemical bonding of homogeneous catalysts than bulk metal counterparts. These very features, i.e., quantum size effects (Yang et al., 2013) at an open shell, high-valent metal atom, that make SACs reactive for essential catalytic transformations(Qiao et al., 2011; Yang et al., 2013; Zitolo et al., 2015; Zitolo et al., 2017; Zhang et al., 2018) also make conventional computational tools used in heterogeneous catalysis (i.e., plane wave, semi-local density functional theory or DFT) ill-suited to predictive SAC study. Well-localized electrons are disproportionately affected by self-interaction error in approximate DFT(Cohen et al., 2011; Kulik, 2015), leading to an imbalanced treatment of differing spin and oxidation states(Ganzenmüller et al., 2005; Kulik et al., 2006; Droghetti et al., 2012; Ioannidis and Kulik, 2015; Mortensen and Kepp, 2015; Gani and Kulik, 2017; Ioannidis and Kulik, 2017).

Despite evidence of the importance of spin in homogeneous(Abram et al., 2014; Zhu et al., 2016; Schwarz, 2017) and SAC catalysts(Liu et al., 2017), most first-principles studies of SACs(Chu et al., 2015; Ma et al., 2016; Xu et al., 2018) have avoided directly quantifying the role of metal center spin in reactivity, with few exceptions(Impeng et al., 2014; Fong et al., 2018; Sirijaraensre and Limtrakul, 2018). In most studies, the magnetic moment is calculated with a semi-local DFT functional known to produce erroneous magnetic moments(Kulik, 2015; Ioannidis and Kulik, 2017; Janet et al., 2017; Wilbraham et al., 2017) and the magnetization is often allowed to vary along the reaction coordinate(Xu et al., 2018). However, in confined metal centers, spin states are well defined and transitions between spin states occur with low probability because they are quantum mechanically forbidden. Spin state transitions can become kinetically limiting(Shaik et al., 1995; Schröder et al., 2000; Schwarz, 2017), explaining unexpected experimental reactivity(Andris et al., 2016). Within the homogeneous catalysis community(Harvey, 2014; Hernández-Ortega et al., 2015), significant effort has been made to develop tools or assess whether spin crossover is kinetically limiting but not in SACs.

Unfortunately, given the importance of spin in predicting reactivity, spin state ordering is highly sensitive to the exchange-correlation functional employed in approximate DFT(Ganzenmüller et al., 2005; Kulik et al., 2006; Droghetti et al., 2012; Ioannidis and Kulik, 2015; Mortensen and Kepp, 2015; Ioannidis and Kulik, 2017). Semi-local (e.g., generalized gradient approximation, GGA)

DFT functionals widely employed for their good cost/accuracy balance for many properties consistently stabilize overly-delocalized, covalent states(Autschbach and Srebro, 2014). GGAs thus favor the increased bonding in low-spin over high-spin states(Kulik, 2015; Gani and Kulik, 2017; Ioannidis and Kulik, 2017; Janet et al., 2017; Wilbraham et al., 2017). Hybrid functionals, which incorporate an admixture of HF exchange, are employed in organic chemistry to correct delocalization errors(Kümmel and Kronik, 2008). In transition metal catalysis, the fraction of HF exchange required, as judged by comparison to experiment or accurate correlated wavefunction theory (WFT) reference, is strongly system dependent(Bruschi et al., 2004; Ganzenmüller et al., 2005; Smith et al., 2005; Bowman and Jakubikova, 2012; Droghetti et al., 2012; Ioannidis and Kulik, 2015; Verma et al., 2017).

Thus, in this work, we carry out highly accurate correlated wavefunction theory calculations to develop benchmarks for transition metal complex spin state ordering with ligands that model the environment observed in single atom catalysts. Using these benchmarks, we identify trends in DFT functional performance, and then we evaluate how these observations influence prediction of the stability, reactivity, and ground state in models of Fe(II)/N-doped graphene SACs. Finally we provide our conclusions and outlook, including recommendations for computational modeling in this emergent space of single atom catalysis.

2 Computational Details

2.1 Octahedral Transition Metal Complexes

Initial structures of octahedral transition metal (TM) complexes with H₂O, NH₃, pyridine, and pyrrole ligands were built with the molSimplify toolkit (Ioannidis et al., 2016) with both ligand force-field pre-optimization and trained metal-ligand bond length features enabled. For the hexa-aqua and hexa-ammine complexes, M(II) Ti-Ni and M(III) V-Cu metals were studied, but the pyrrole and pyridine ligands were only studied in complex with Fe(II) or Fe(III). The formal charges assigned to the ligands were neutral in all cases except for pyrrole, which was given a -1 charge. High-spin (HS)-low-spin (LS) states studied in this work were defined as: triplet-singlet for d^2 Ti(II)/V(III) and d^8 Ni(II)/Cu(III), quartet-doublet for d^3 V(II)/Cr(III) and d^7 Co(II)/Ni(III), quintet-singlet for d^4 Cr(II)/Mn(III) and d^6 Fe(II)/Co(III), and sextet-doublet for d^5 Mn(II)/Fe(III). Intermediate-spin (IS) states were also studied: triplet d^4 Cr(II)/Mn(III) or d^6 Fe(II)/Co(III) and quartet d^5 Mn(II)/Fe(III).

2.2 Fe/N-doped Graphene SAC Finite Models

Two possible Fe(II) coordination environments in finite graphitic SAC models were investigated with DFT, and in both the metal is coordinated by four nitrogen atoms substituted in the graphene structure. In both cases, we employ a hydrogen-atom-terminated graphene flake to avoid increasing computational cost in accordance with prior SAC computational studies that used finite models(Xu et al., 2018). First, a FeN₄C₁₀ compound (chemical formula: C₃₆N₄H₁₆Fe) was studied in which all coordinating nitrogen atoms were in six-membered rings (i.e., pyridinic N). This structure is formed by removing two adjacent C atoms from C₄₂H₁₆ and replacing the four C atoms surrounding the vacancy with N atoms. This active site would correspond to two adjacent point defects in graphene, as has been observed experimentally(Banhart et al., 2011). A second compound, FeN₄C₁₂ (chemical formula: C₄₀N₄H₁₆Fe), was also studied in which all coordinating nitrogen atoms were in five-membered rings (i.e., pyrrolic N). This structure was formed by removing two C atoms from a C₄₆H₁₆ structure, which contains two seven-membered rings in the center surrounded by four five-membered rings. Thus, this structure would require vacancy migration experimentally (Banhart et al., 2011). The two C atoms were removed from where the seven membered rings are joined, and

154 the four inward-facing C atoms that are part of the five-membered rings were replaced with N atoms.
 155 All initial coordinates were generated by drawing the 2D structures with ChemDraw and converting
 156 the xml structures to 3D coordinates with the molSimplify (Ioannidis et al., 2016) interface to
 157 OpenBabel(O'Boyle et al., 2011) followed by force field optimization with the universal force
 158 field(Rappé et al., 1992). Singlet, triplet, and quintet spin states were studied, and all simulations had
 159 zero net charge.

160 **2.3 Fe/N-doped Graphene SAC Periodic Models**

161 Periodic analogues to the flake models were studied starting from a 4×4 supercell of graphene
 162 at its experimental lattice parameter (Trucano and Chen, 1975). A smaller supercell than suggested
 163 (i.e., 7×7) in previous work(Krasheninnikov et al., 2009) was used for computational efficiency, and
 164 future work should focus on the effect of supercell size on dopant properties. The pyridinic ($\text{FeN}_4\text{C}_{18}$)
 165 SAC model was created following the same vacancy/N-atom replacement approach as in the finite
 166 case. For the pyrrolic ($\text{FeN}_4\text{C}_{20}$) SAC model, we started from the pyridinic case, inserting C atoms
 167 into the five-membered FeN_2C_2 ring. Next, we adjusted the adjacent six-membered rings into five-
 168 membered rings to create pyridinic N atoms. In this small supercell, an eight-membered C ring was
 169 then formed next to the five membered rings. Neutral systems were studied by spin polarized, fixed
 170 magnetization periodic calculations in singlet, triplet, and quintet states.

171 **2.3.1 Localized Basis Set DFT Calculations**

172 *Transition metal complexes.* All LS, IS, and HS complexes were geometry optimized with DFT
 173 using the PBE0(Adamo and Barone, 1999) (default 25% exchange) global hybrid GGA functional
 174 (Adamo and Barone, 1999) with the def2-TZVP basis set (Weigend and Ahlrichs, 2005) in ORCA
 175 v.4.0(Neese, 2018). Singlet states were calculated in a restricted formalism, whereas all remaining
 176 calculations were open shell and required level shifting (Saunders and Hillier, 1973) in select cases to
 177 aid self-consistent field convergence typically with a value of 1.0 eV but as large as 100.0 eV in one
 178 case ($[\text{Mn}(\text{NH}_3)_6]^{2+}$). The optimizations were carried out using BFGS algorithm in redundant internal
 179 coordinates implemented to the default tolerances of 3×10^{-4} hartree/bohr for the maximum gradient
 180 and 5×10^{-6} hartree for the change in self-consistent field (SCF) energy between steps. All
 181 calculations at other levels of theory or with differing functional definitions were obtained as single
 182 point energies on these optimized geometries. The effect of Hartree-Fock (HF) exchange fraction
 183 choice on spin-state energetics within DFT was investigated by altering the fraction in a modified
 184 form of the PBE0 (default 25% exchange) global hybrid. The HF exchange fraction was varied from
 185 as low as 0% (i.e., a pure PBE GGA (Perdew et al., 1996)) to as high as 100% HF exchange in
 186 increments of 10-20%, as indicated in the text, again using the def2-TZVP basis set. In previous
 187 work(Gani and Kulik, 2016), we found tuning range-separation parameters in range-corrected
 188 hybrids to have a comparable effect on density and energetics of transition metal complexes to global
 189 exchange tuning, and therefore we focus on only global exchange tuning in this work.

190 *Fe/N-doped Graphene Flake Models.* Geometry optimizations and single-point energy
 191 calculations were performed with ORCA v4.0. All DFT methodology was kept the same as for
 192 transition metal complexes, including geometry optimizing at PBE0 (25% exchange) and carrying
 193 out single points at modified exchange fractions in PBE0 in 10% increments in conjunction with the
 194 def2-TZVP basis set, except as noted below. All singlet, triplet, and quintet calculations were carried
 195 out in an unrestricted formalism. All calculations employed the resolution of identity (RI)(Baerends
 196 et al., 1973; Whitten, 1973; Dunlap et al., 1979; Eichkorn et al., 1995; Eichkorn et al., 1997; Kendall
 197 and Fruchtl, 1997) and the chain-of-sphere (COSX)(Neese et al., 2009) approximations with the
 198 auxiliary basis set def2/J(Weigend, 2006) and def2-TZVP/C(Hellweg et al., 2007) for all atoms to

199 accelerate the calculations while introducing marginal errors(Kossmann and Neese, 2009). Molecular
200 structures and orbitals were visualized and plotted with VESTA(Momma and Izumi, 2011).

201 **2.3.2 Periodic DFT Calculations**

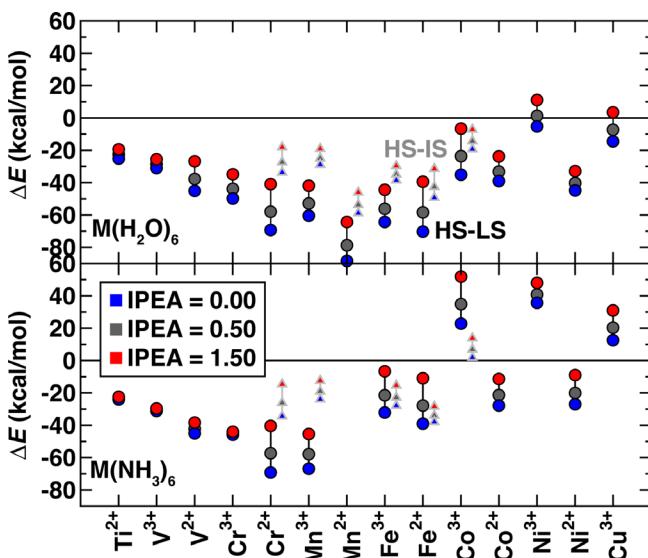
202 All systems were calculated with both the PBE(Perdew et al., 1996) semi-local GGA functional
203 and the HSE06 (Heyd et al., 2003; 2006) local, range-separated GGA hybrid using the plane wave,
204 periodic boundary condition Quantum-ESPRESSO (Paolo et al., 2009) code. Norm-conserving
205 pseudopotentials for C, N, and Fe were generated with OPIUM (Rappe et al., 1990). The
206 wavefunction and charge density cutoffs employed were 50 Ry and 200 Ry, respectively. A
207 Monkhost-Pack k-point grid of $8 \times 8 \times 1$ was used for efficiency after confirming convergence of total
208 energies with k-point mesh size. Total energies were converged to 0.1 meV and forces were
209 converged to 1 meV/Å. Quantum-ESPRESSO post-processing tools were employed to visualize the
210 spin density and projected density of states. Variable cell relaxation was employed to obtain final
211 lattice parameters with PBE GGA for the pyridinic (result: $8.34 \text{ \AA} \times 7.55 \text{ \AA}$) and pyrrolic (result:
212 8.35 \AA) models. A vacuum between each SAC layer of 10 \AA was included along with a dipole
213 correction to limit periodic image effects(Bengtsson, 1999). The HSE06 calculations were obtained
214 as single point energies applied to these structures.

215 **2.3.3 Correlated WFT**

216 Complete active-space second-order perturbation theory (CASPT2) (Andersson et al., 1992)
217 calculations were performed with OpenMolcas (Aquilante et al., 2016) on M(II)/M(III) hexa-aqua
218 and hexa-ammine octahedral complexes. Calculations were carried out with two active space
219 definitions: the *standard active space* and an *extended active space*. For the *standard active space*,
220 we followed literature recommendations for TM complexes (Pierloot, 2003; Veryazov et al., 2011) to
221 include five orbitals with TM $3d$ character, two σ bonding orbitals describing covalent metal-ligand
222 bonding, and five double-shell d orbitals for mid-row and later transition metals (i.e., Mn(II/III) and
223 later). For n $3d$ electrons, the *standard active space* is $(n+4, 7)$ (i.e., for Sc-Cr) or $(n+4, 12)$ (i.e., for
224 Mn-Cu). In the *extended active space*, we followed additional literature recommendations
225 (Wilbraham et al., 2017) to include the metal $3s$ orbital and an unoccupied counterpart, giving an
226 active space of $(n+6, 9)$ (i.e., for Sc-Cr) or $(n+6, 14)$ (i.e., for Mn-Ni). Relativistic atomic natural
227 orbital (ANO-rcc) basis sets (Roos et al., 2004; 2005) contracted to $[7s6p5d3f2g1h]$ for the metal
228 center, $[4s3p2d1f]$ for O and N, and $[3s1p]$ for H were used together with the scalar relativistic
229 Douglas-Kroll Hamiltonian (Douglas and Kroll, 1974; Hess, 1986). The 10 core orbitals were frozen
230 in all calculations. An imaginary level shift (Forsberg and Malmqvist, 1997) of 0.1 was used, and a
231 zeroth-order Hamiltonian empirical correction, i.e., the IPEA shift (Ghigo et al., 2004), was set as 0.5
232 or varied as described in the main text to identify the effect on spin state energetics. For difficult to
233 converge complete active space self-consistent field iterations, a level shift was applied to the
234 Hamiltonian with shift value 1.0.

235

236 **3 Results and Discussion**


237 **3.1 Spin State Ordering in Model Complexes**

238 **3.1.1 Correlated WFT Results**

239 We first conducted correlated wavefunction theory (WFT) calculations to generate reference
240 spin-splitting energies of model first row octahedral transition metal complexes. Our focus is on

weak field hexa-aqua and hexa-ammine complexes that are small (i.e., 19 to 25 atoms in size) and of comparable ligand field strength to the coordination environment in SACs. Although CASPT2 is often the method of choice for predicting spin state energetics for molecules that are either too large or multireference in character to be comfortably treated with CCSD(T) (Pierloot et al., 2017), a number of calculation parameters can strongly influence the CASPT2 predictions. Specifically, spin state energetics can be influenced by the active space choice and the formulation of the zeroth-order Hamiltonian, i.e. the value of the IPEA shift (Ghigo et al., 2004). Here, we investigate the effects of both of these factors and then select reference results for DFT calculations.

Several studies (Kepenekian et al., 2009; Lawson Daku et al., 2012; Vela et al., 2016; Pierloot et al., 2017) have shown that the standard IPEA shift of 0.25 a.u. in CASPT2 overstabilizes high spin states. However, there is no universal agreement about the best solution to this problem. Some (Kepenekian et al., 2009; Lawson Daku et al., 2012; Vela et al., 2016) have recommended increasing the IPEA shift to 0.5-0.7 a.u. based on comparison with experimental or MRCI results, whereas others (Pierloot et al., 2017) recommend the standard IPEA value because increased IPEA can reduce the high spin bias but only at the expense of deteriorating the CASPT2 description of valence correlation. To understand the effect of IPEA shift, we obtained CASPT2 spin-splitting energies with IPEA shifts of 0.0, 0.50, and 1.5 and standard active spaces (Figure 2 and see Computational Details). For all complexes, increasing IPEA shifts ΔE_{H-L} towards more positive values, reducing high spin stabilization. The range of energetics calculated with different IPEA values for each complex provide a measure of IPEA sensitivity of each transition metal complex's spin-splitting energy (Figure 2). The IPEA sensitivity is consistently largest for cases where the high spin state has four more unpaired electrons than the low spin state (i.e., Cr^{2+} through Co^{3+}).

Figure 2. CASPT2 spin splitting energetics in kcal/mol for ΔE_{H-L} (circles) and ΔE_{H-I} (triangles), as indicated in inset, of hexa-aqua (top) and hexa-ammine (bottom) transition metal complexes. Results are shown for 3 IPEA shifts: 0.00 (blue symbols), 0.50 (dark gray symbols), and 1.50 a.u.. Both M(II) and M(III) complexes are shown sorted by the number of 3d electrons, from Ti^{2+} to Cu^{3+} .

269

To focus only on spin state definitions in which the high spin state has only two more unpaired electrons, we compare the high spin/low spin splitting, ΔE_{H-L} , for early and late TMs with

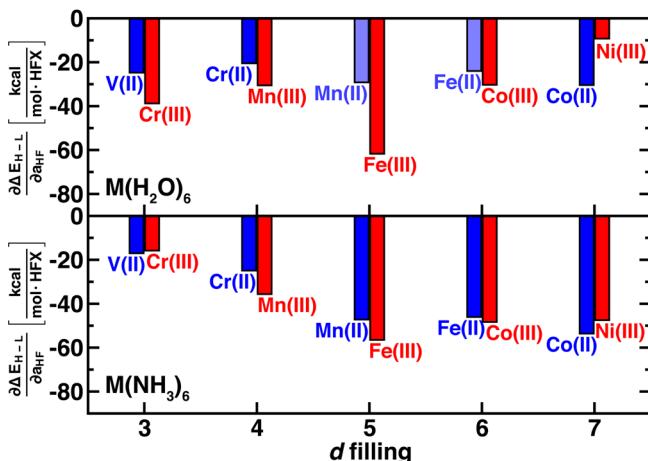
272 the high spin/intermediate spin splitting, ΔE_{H-I} , for mid-row TMs. For these two electron differences,
 273 we observe similar sensitivities, with a ca. 10-20 kcal/mol positive shift when the IPEA is changed
 274 from 0.0 to 1.5 a.u. (Figure 2). This observation excludes only very early or late TM complexes that
 275 have even smaller sensitivities. In comparison, the 4 electron-difference cases have higher
 276 sensitivities of around 30 kcal/mol or more (Figure 2). Overall, most early- and mid-row complexes
 277 remain high-spin regardless of the IPEA shift (i.e., below the zero axis in Figure 2). The smaller
 278 energetic differences between states in later TM complexes (e.g., hexa-aqua Ni(III)) mean that the
 279 IPEA shift can change the ground state from high spin to low spin for very large IPEA shifts. For
 280 subsequent calculations, we selected the 0.5 a.u. IPEA shift but note that variation across the
 281 commonly employed range of 0.0-0.5 a.u. can shift the predicted ΔE_{H-L} (ΔE_{H-I}) spin-splitting for mid-
 282 row (e.g., Fe(II/III)) complexes by around 10 (3) kcal/mol (Figure 2).

283 We next investigated the effect of use of a standard active space versus a more extended
 284 active space in the CASPT2 calculations of ΔE_{H-L} and ΔE_{H-I} using the 0.5 a.u. IPEA shift
 285 (Supplementary Material Table 1). For most complexes, the energetic difference due to active space
 286 change is on the order of a few kcal/mol, which suggests that the calculation is converged with
 287 respect to active space size, as motivated in previous work (Wilbraham et al., 2017). The major outlier
 288 identified is $[\text{Mn}(\text{NH}_3)_6]^{2+}$, which is strongly low-spin in the standard active space but becomes high-
 289 spin like hexa-aqua Mn(II) with the extended active space, exhibiting greater active space
 290 dependence than had been observed in Mn(II) porphyrins (Yang et al., 2016) (Supplementary
 291 Material Table 1). This discrepancy is likely caused by orbital rotation of some active orbitals into
 292 the inactive metal $3s/4s$ orbitals, as suggested in recent work (Radon and Drabik, 2018) on aqua
 293 complexes. After removing this outlier, the mean absolute difference between the standard and
 294 extended active space results for all ΔE_{H-L} and ΔE_{H-I} combinations is 3.3 kcal/mol for the hexa-aqua
 295 and 5.9 kcal/mol for the hexa-ammine complexes. The mean signed error is near zero for the hexa-
 296 aqua cases, and weakly negative (ca. -3 kcal/mol) for the hexa-ammines (Supplementary Material
 297 Table 1). Generally, discrepancies are smallest for the hexa-aqua complexes throughout and
 298 especially small for the early or late TMs (e.g., Ti^{2+} - V^{2+} and Ni^{3+} - Cu^{3+}), typically as little as 0-2
 299 kcal/mol (Supplementary Material Table 1). In mid-row cases, there is no universal preference over
 300 whether ΔE_{H-L} or ΔE_{H-I} has more active space dependence.

301 Given the small size of the studied octahedral complexes, we selected the extended active
 302 space calculations as reference values for comparison to DFT. Use of the larger active space changed
 303 some ground state spin assignments. When calculated with the extended active space, almost all
 304 hexa-aqua complexes are high spin, excluding only weakly low spin $[\text{Ni}(\text{H}_2\text{O})_6]^{3+}$ with a ΔE_{H-L} of
 305 0.49 kcal/mol. The slightly stronger ligand field in the hexa-ammine complexes produces some
 306 additional LS late-TM complexes (e.g., Co(III) and Cu(III)) along with the analogous Ni(III)
 307 complex. Examining isoelectronic metals generally reveals that the later, more oxidized metal has
 308 only a weak high-spin-stabilizing effect that can be smaller than the ligand-field effect in cases where
 309 the two metals converge to similar electronic states (Figure 2 and Supplementary Material Table 1).

310 3.1.2 DFT Functional Performance

311 Despite the high accuracy of CASPT2 for treating spin state energetics in TM complexes, the
 312 high computational cost and sensitivity to active space definition and parameters limit its application
 313 to SACs. We thus sought to identify the extent to which DFT functionals can be selected or tuned to
 314 reproduce the spin-splitting energetics obtained with CASPT2. We focused on the exchange fraction
 315 within the global hybrid PBE0 (Adamo and Barone, 1999), motivated by previous observations of
 316 comparable behavior in tuning range-separated hybrids (Gani and Kulik, 2016), global hybrids with a


317 different correlation functional(Ioannidis and Kulik, 2015), or those that incorporate meta-GGA
 318 exchange (Ioannidis and Kulik, 2017).

319 From all complexes studied with CASPT2, we narrowed our focus to those containing
 320 nominally 3-7 3d electrons (i.e., V^{2+} to Ni^{3+}) that are most likely to be good candidates for
 321 understanding spin-state dependent single atom catalysis. We determined the effect of varying PBE0
 322 exchange fraction on both ΔE_{H-L} , and ΔE_{H-I} for the relevant subset (i.e., 4-6 3d electrons). In
 323 accordance with prior work(Droghetti et al., 2012; Ioannidis and Kulik, 2015), we anticipated the
 324 sensitivity of these quantities to exchange fraction or the optimal exchange fraction to minimize error
 325 with respect to CASPT2 to be chemistry dependent. However, we aimed to identify if these trends
 326 can be readily rationalized(Gani and Kulik, 2017) or learned (Janet and Kulik, 2017) for use in SAC
 327 modeling.

328 As expected(Droghetti et al., 2012; Ioannidis and Kulik, 2015; Zhao and Kulik, 2018), spin-
 329 state energetics vary linearly with exchange fraction over a wide range (i.e., 0-50%) with high-spin
 330 states stabilized with increasing exchange fraction for all transition metal complexes studied
 331 (Supplementary Material Tables 2-3). We quantified the exchange sensitivity of the spin-splitting
 332 energetics(Ioannidis and Kulik, 2015) by an approximate linear fit:

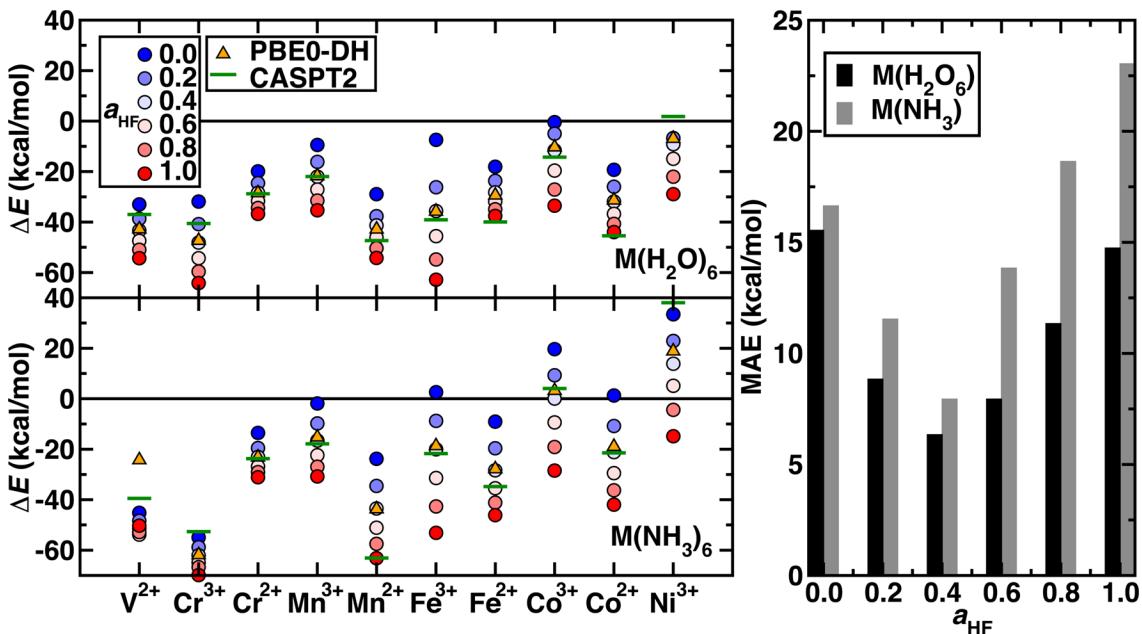
$$333 \quad \frac{\partial \Delta E_{H-L/I}}{\partial a_{HF}} \approx \frac{\Delta \Delta E_{H-L/I}}{\Delta a_{HF}} \quad (1)$$

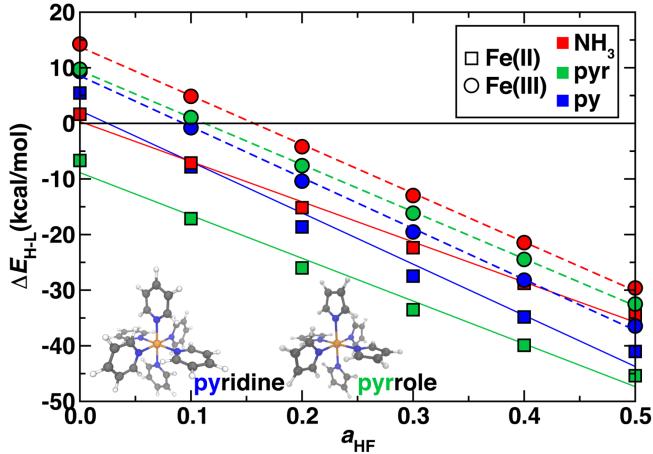
334 We use the unit notation HFX corresponding to the variation from 0% to 100% exchange. To
 335 maximize correspondence in quantities compared, we evaluate exchange sensitivity of all spin states
 336 that differ by two paired electrons: ΔE_{H-L} for $V(II)/Cr(III)$ and $Co(II)/Ni(III)$ and ΔE_{H-I} for the
 337 remaining complexes (ΔE_{H-L} values are also tabulated in Supplementary Material Table 3). The
 338 exchange sensitivity of two-electron-difference spin-state ordering for $[M(H_2O)_6]^{2+}$ complexes is
 339 relatively insensitive to 3d filling (i.e., varying only 2-4 kcal/(mol·HFX), see Figure 3). Conversely,
 340 hexa-ammine $Mn(II)$, $Fe(II)$, and $Co(II)$ complexes have increased spin-splitting exchange sensitivity
 341 over the earlier TM complexes (Figure 3). For both ligand fields, the $M(III)$ complexes are even more
 342 varied, with the least exchange sensitivity being observed in either late or early transition metal
 343 complexes (Figure 3). These observations are consistent with the fact that these complexes should
 344 have the least difference in electron delocalization between the two spin states, reducing exchange
 345 sensitivity(Gani and Kulik, 2017). Although $M(III)$ complexes are more variable, isoelectronic +2/+3
 346 complexes do have somewhat comparable exchange sensitivity (Figure 3). In comparing ΔE_{H-L} for all
 347 complexes, exchange sensitivity is universally higher for these mid-row cases due to the enhanced
 348 sensitivity of the four-electron difference energetics (e.g., $[M(H_2O)_6]^{2+}$: -57 kcal/(mol·HFX) for Mn
 349 vs. -25 kcal/(mol·HFX) for V , see Supplementary Material Figure 1).

351 **Figure 3.** Sensitivity of spin-state splitting with respect to HF exchange (i.e., $\partial\Delta E_{H-L}/\partial a_{HF}$, in
352 kcal/mol HFX) for hexa-aqua (top) and hexa-ammine (bottom) transition metal complexes. Both
353 M(II) and M(III) complexes are shown grouped by their nominal d filling from 3 to 7 $3d$ electrons for
354 V(II) to Ni(III). For the 4, 5, and 6 d -electron cases, the energy gap corresponds to high-
355 spin/intermediate-spin rather than high-spin/low-spin. Shaded bars indicate that spin contamination
356 could not be eliminated for both spin states and sensitivity may not be reliable.

357

358 The remaining question is whether the exchange fraction can be appropriately tuned within
359 PBE0 to obtain ΔE_{H-L} and ΔE_{H-I} values that match CASPT2 results. Comparing the range of spin-
360 splitting energies obtained from 0-100% exchange to the CASPT2 extended active space values
361 generally reveals that high exchange fractions (c.a. 40%) are required to reproduce CASPT2 results
362 (Figure 4 and ΔE_{H-L} -only results shown in Supplementary Material Figure 2). With the exception of
363 Ni(III) or V(II)/Cr(III) hexa-ammines, pure PBE GGA ΔE values are much more positive (i.e., low-
364 spin biased) than the WFT results (Figure 4). Increasing exchange thus in most cases improves
365 agreement with WFT, but the optimal exchange fraction for reproducing CASPT2 result varies
366 significantly for the different complexes (Figure 4). For five of the cases (e.g., midrow Mn(II)(H₂O)₆,
367 Fe(II)(NH₃)₆, and Co(II)(H₂O)₆), the optimal exchange fraction is larger than 0.4, whereas the
368 majority of the remaining complexes would require exchange fractions of 0.0-0.4 to recover the
369 CASPT2 value (Figure 4). Only three complexes (i.e., V(II)(H₂O)₆, Cr(III)(H₂O)₆, and Ni(III)(H₂O)₆)
370 have an optimal exchange fraction corresponding to typically applied (Ioannidis and Kulik, 2015)
371 values of around 10-30%.




Figure 4. (left) Spin-splitting energetics (in kcal/mol) corresponding to ΔE_{H-I} for Cr^{2+} - Co^{3+} and ΔE_{H-L} for all other cases shown for hexa-aqua (top) and hexa-ammine (bottom) complexes. Modified PBE0 GGA hybrid results are shown as circles. The exchange fraction, a_{HF} , is colored from blue for 0.0 (pure GGA) to red for 1.0 (full HF exchange), according to the inset legend. Reference CASPT2 results with the extended active space and IPEA shift of 0.5 a.u. are shown as green horizontal lines. The PBE0-DH results are shown as orange triangles. (right) MAE (in kcal/mol) at several exchange fractions for the hexa-aqua and hexa-ammine complexes indicated at left.

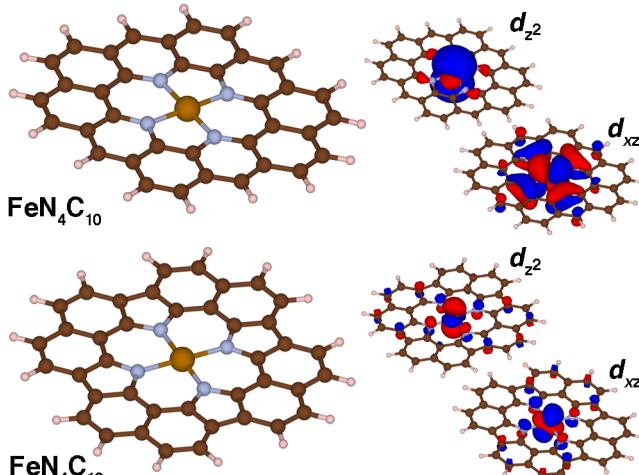
Considering overall performance on the 20 TM complexes, incorporating any exact exchange reduces the mean absolute error (MAE) of spin-splitting energies with respect to WFT. From PBE to 20% to 40% exchange, the MAE decreases monotonically from 17 to 12 to 8 kcal/mol for hexa-ammines and comparably (i.e., 16 to 9 to 6 kcal/mol) for hexa-aquas (Figure 4). Increasing HF exchange higher than 40% increases the MAE again for both ligand fields. For these two weak ligand fields, the optimal exchange fraction is more metal dependent than ligand field dependent, producing comparable optimal exchange values for fixed metal and oxidation state (Figure 4). Recent work (Wilbraham et al., 2018) has suggested double hybrids (DH, i.e., with MP2 long-range correlation) could improve predictions of spin-state ordering. We selected the PBE0-DH, which contains 50% global HF exchange for comparison to GGA global hybrid results (Figure 4). The PBE0-DH results are comparable to those obtained with a modified PBE0 global hybrid GGA with 40% exchange (i.e., MAE of 8 kcal/mol for hexa-ammine complexes and 6 kcal/mol for hexa-aqua complexes, see Supplementary Material Table 4). Given the higher computational cost and scaling of the double hybrids, tuned GGA hybrids would remain a preferable choice for modeling larger systems.

3.1.3 Comparison of Nitrogen-Containing Ligands

So far, we have studied model complexes and confirmed the importance of incorporating exact exchange in DFT functionals to reproduce correlated WFT reference spin-splitting energetics. We next considered the transferability of exchange sensitivity of DFT spin-splitting energetics for octahedral transition metal complexes that contain coordination environments similar to Fe/N-doped graphene SAC models. The two ligands we used to represent these environments were pyridine (py) in which the coordinating nitrogen is in a six membered carbon-containing ring and pyrrole (pyr) in which the coordinating nitrogen is in a five membered carbon-containing ring (Figure 5 inset and see

402 Computational Details). With a pure PBE GGA, all TM complexes except for hexa-pyr Fe(II) are
 403 low spin, whereas exchange fractions above approximately 15% instead result in all ground states
 404 being assigned as high spin (Figure 5). The trend with exchange is again linear as in the hexa-
 405 ammine complexes, although the linearity is slightly reduced for Fe(II) vs. Fe(III) complexes (Figure
 406 5).

407
 408 **Figure 5.** Sensitivity to HF exchange fraction (a_{HF}) of high-spin/low-spin splitting ($\Delta E_{\text{H-L}}$, in
 409 kcal/mol) for Fe(II) (squares) and Fe(III) (circles) homoleptic octahedral transition metal complexes
 410 with NH₃ (red symbols), pyridine (blue symbols), and pyrrole (green symbols) ligands. The structures
 411 of pyridine and pyrrole compounds are shown in inset in ball and stick (gray carbon, blue nitrogen,
 412 white hydrogen, and orange for iron). A zero axis is shown that indicates change in favored ground
 413 state spin.


414

415 The $\Delta E_{\text{H-L}}$ values are within approximately 7 kcal/mol for all complexes of the same
 416 oxidation state across the full range of exchange due to the relatively similar ligand field strengths of
 417 the N-containing ligands and comparable metal-ligand bond lengths (Supplementary Material Table
 418 5). However, the hexa-ammines are generally the most low-spin-favoring, whereas the SAC-like
 419 nitrogen complexes have a slightly increased high-spin bias. In analogy to ligand field arguments for
 420 $\Delta E_{\text{H-L}}$, exchange sensitivities, $\frac{\partial \Delta E_{\text{H-L}}}{\partial a_{\text{HF}}}$, of spin splitting are also comparable for ammonia, pyridine and
 421 pyrrole complexes (Figure 5). For $\frac{\partial \Delta E_{\text{H-L}}}{\partial a_{\text{HF}}}$, NH₃ and pyrrole are very similar in both Fe(II) (-72 and -77
 422 kcal/(mol·HFX)) and Fe(III) (-88 and -85 kcal/(mol·HFX)), whereas pyridine has slightly larger
 423 slope of -92 kcal/(mol·HFX) in both oxidation states. These observations are consistent with the
 424 previously observed greater sensitivity to the ligand identity than to oxidation state for Fe(II)/Fe(III)
 425 (Ioannidis and Kulik, 2015). Due to the similar spin-splitting energetics and sensitivities to exchange,
 426 we expect that our observations on hexa-ammine complexes are applicable to pyridinic and pyrrolic
 427 nitrogen-containing complexes and materials as well. Thus, for larger SAC models, we recommend
 428 either typical exchange fractions for qualitative ground state spin assignment (i.e., high spin) or
 429 higher exchange fractions (ca. 40-50%) that showed better performance in the hexa-ammine cases to
 430 reproduce WFT results.

431

432 3.2 Graphene Flake Models of SACs

433 Fe/N-doped graphitic SACs are expected based on experimental spectroscopic
 434 characterization(Zitolo et al., 2015; Chen et al., 2017; Liu et al., 2017) to consist of Fe metal centers
 435 coordinated by pyridinic or pyrrolic nitrogen atoms. These experimental observations come from a
 436 combination of aberration corrected scanning tunneling electron microscopy to confirm well-isolated
 437 metal sites as well as numerous spectroscopic techniques (e.g., X-ray absorption spectroscopy) to
 438 confirm the metal coordination(Zitolo et al., 2015; Chen et al., 2017; Liu et al., 2017). Although the
 439 most reactive SAC active site remains an open question, we consider in this work two limits in finite
 440 graphene flake SAC models that contain either four pyridinic ($\text{FeN}_4\text{C}_{10}$) or pyrrolic ($\text{FeN}_4\text{C}_{12}$) N
 441 atoms (Figure 6). Due to the rigidity of the graphene flakes, singlet Fe(II) pyridinic (py) and pyrrolic
 442 (pyr) Fe-N bond lengths are shorter than the corresponding py or pyr octahedral complexes (py: 1.90
 443 vs. 2.08 Å or pyr: 1.97 Å vs. 2.11 Å, see Supplementary Material Tables 5-6). This rigidity in the
 444 SAC models without any displacement of iron from the plane that has been observed in
 445 porphyrins(Sahoo et al., 2015) also leads to average Fe-N distances being invariant to spin state.
 446 There is a marginal (ca 0.01 Å) increase from singlet to quintet spin states for the $\text{FeN}_4\text{C}_{10}$ SAC in
 447 comparison to large (ca. 0.16-0.20 Å) bond length increases from singlet to quintet in the Fe(II)(py)₆
 448 complex (Supplementary Material Tables 5-6). The Fe-N distances are shorter in pyridinic $\text{FeN}_4\text{C}_{10}$
 449 than in pyrrolic $\text{FeN}_4\text{C}_{12}$ (i.e., 1.90 Å vs. 1.96 Å) due to smaller N-N separations ($\text{FeN}_4\text{C}_{10}$: 2.61 Å
 450 and 2.75 Å, $\text{FeN}_4\text{C}_{12}$: 2.75 Å). Despite this difference in N-N separation, which has previously been
 451 noted to influence experimental spin state ordering(Phan et al., 2017), the PBE0 ground state spin is
 452 triplet in both models (Supplementary Material Table 7).

453
 454 **Figure 6.** Molecular structures (left) and singly occupied d_{xz} and d_z^2 spin-up molecular orbitals (right)
 455 for $\text{FeN}_4\text{C}_{10}$ and $\text{FeN}_4\text{C}_{12}$ graphene flake SAC models in the triplet state. The positive and negative
 456 phases of the wavefunction are shown in red and blue, respectively. An isosurface of 0.01 e was used
 457 for the orbitals of $\text{FeN}_4\text{C}_{10}$ and of 0.03 e for those of $\text{FeN}_4\text{C}_{12}$ for clarity. All structures are shown in
 458 ball and stick representation with carbon in brown, hydrogen in white, nitrogen in light blue, and iron
 459 in orange.

460

461 The two singly occupied orbitals in both triplet SAC models correspond to the d_{xz} and d_z^2
 462 orbitals consistent with expectations for square-planar coordinated triplet Fe(II) (Figure 6). Small
 463 differences are observed in the orbital character due to the lower symmetry for the pyridinic $\text{FeN}_4\text{C}_{10}$
 464 flake: in this case, d_{xz} and d_{yz} degeneracy is broken (Figure 6). The longer N-N separation along the
 465 x -axis leads to a pure d_{xz} orbital vs. d_{xz} and d_{yz} mixing for the case of pyrrolic $\text{FeN}_4\text{C}_{12}$ (Figure 6). In

466 both cases, weak coupling is observed between the metal-centered orbitals and *p*-orbitals of both the
 467 N and C atoms in the graphene flake (Figure 6).

468 For both SAC models at the PBE0 level of theory, singlet and quintet states reside
 469 approximately 4-6 kcal/mol and 12 kcal/mol above the triplet ground state, respectively, and thus
 470 singlet-quintet $\Delta E_{\text{H-L}}$ is around +6-8 kcal/mol (Supplementary Material Table 7). These observations
 471 contrast with the octahedral models: $\Delta E_{\text{H-L}}$ for $\text{Fe}(\text{II})(\text{py})_6$ is -15 kcal/mol and is -30 kcal/mol for
 472 $\text{Fe}(\text{II})(\text{pyr})_6$ (Supplementary Material Table 4). These differences can be traced to several factors,
 473 including the coordination number (4 vs. 6) in the models as well as rigidity of the graphene flakes
 474 that compress Fe-N bonds to values more commensurate with equilibrium low-spin geometries.
 475 Finally, examining the electronic structure of the SAC models reveals distribution of spin not just on
 476 the metal but also on the flake in the high spin states, particularly for the pyrrolic $\text{FeN}_4\text{C}_{12}$ models
 477 (Supplementary Material Tables 8-9). Even in the triplet ground state this is apparent with a magnetic
 478 moment of $2.2 \mu_B$, close to that expected (i.e., $2 \mu_B$) for $\text{FeN}_4\text{C}_{10}$, but with a larger $2.7 \mu_B$ on Fe for
 479 $\text{FeN}_4\text{C}_{12}$ (Supplementary Material Tables 8-9). The singlet $\text{FeN}_4\text{C}_{12}$ is also open shell with a 1.4-2.0
 480 μ_B magnetic moment on Fe (Supplementary Material Table 9). In contrast with the molecular
 481 complexes, the quintets are particularly poorly described by a localized metal spin, with a reduced Fe
 482 moment vs. the triplet state of around $2.4 \mu_B$ on Fe for $\text{FeN}_4\text{C}_{12}$ and a comparable one of $2.2 \mu_B$ on Fe
 483 for $\text{FeN}_4\text{C}_{10}$. Although spin contamination can be expected with increasing HF exchange fraction,
 484 comparison of these moments across 0-50% exchange does not ever produce a pure $4 \mu_B$ moment on
 485 Fe for the quintet $\text{FeN}_4\text{C}_{12}$ (Supplementary Material Table 9). This observation could be due to low-
 486 lying unoccupied states on graphene that are populated instead of the metal states, especially in these
 487 models and at this level of theory, as is known to occur in porphyrins as well(Fujii, 2002).

488 Beyond PBE0 (25%) results on the graphene SAC models, we considered properties over a
 489 range that spans from typical values in periodic catalysis modeling (i.e., 0%) to larger values (40%)
 490 motivated by our octahedral complex studies (see Sec. 3.1). Over this 0-40% range of exchange
 491 fractions, singlet and triplet states become destabilized with respect to high-spin quintet states (Figure
 492 7). The reduced dependence of spin state ordering observed here on exchange fraction in comparison
 493 to the octahedral complexes is due to differences in coordination number and rigidity of the SAC
 494 models. Intermediate Fe spin states were observed experimentally (Liu et al., 2017) for N-doped
 495 graphitic SACs using Mössbauer spectroscopy. Although high HF exchange fractions favoring
 496 quintet states for both SAC models would suggest inconsistencies with experiment, it is important to
 497 recall that the magnetic moments of the Fe metal are intermediate in both triplet and quintet states.
 498 Therefore, high HF exchange fractions are in fact stabilizing the simultaneous presence of spin on the
 499 graphene coupled to an intermediate Fe center (Supplementary Material Tables 8-9). In both $\text{FeN}_4\text{C}_{12}$
 500 at low exchange fractions and $\text{FeN}_4\text{C}_{10}$ over a larger range of 0-100% exchange, higher order than
 501 typically linear sensitivities are observed to % exchange (Supplementary Material Figure 3). For
 502 $\text{FeN}_4\text{C}_{12}$, the antiferromagnetically coupled metal spin on Fe varies significantly (i.e., $0.6 \mu_B$) and
 503 discontinuously, leading to less smooth energetic variations (Figure 7). For the $\text{FeN}_4\text{C}_{10}$ model
 504 where spin states are more well defined, the variations are instead linear over the expected range of
 505 HF exchange (Droghetti et al., 2012; Ioannidis and Kulik, 2015; Zhao and Kulik, 2018).

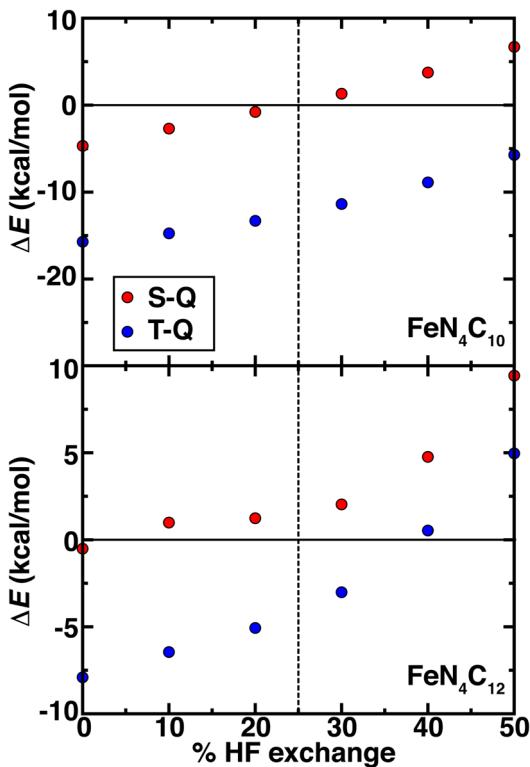
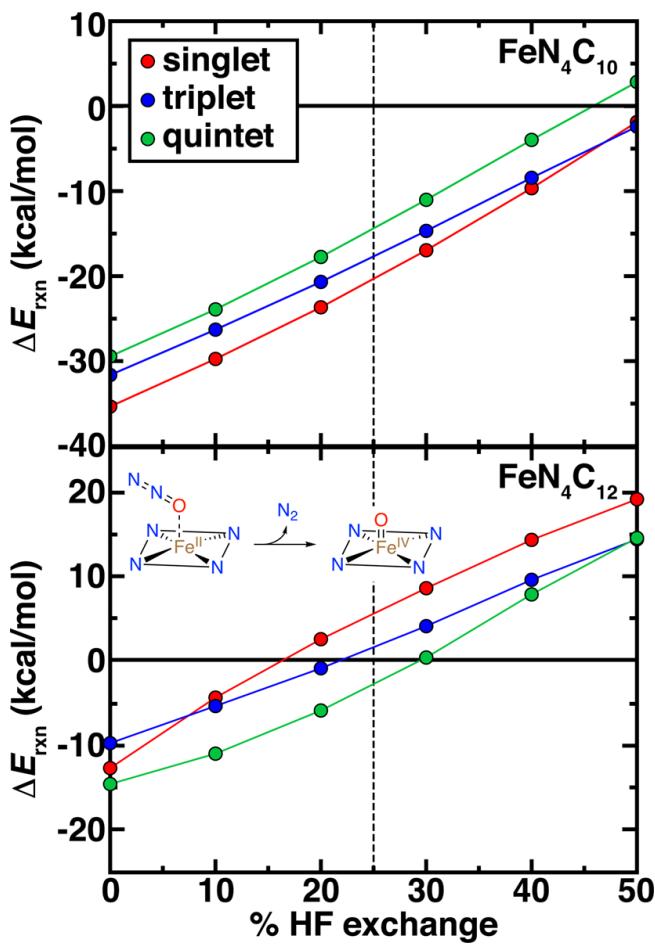
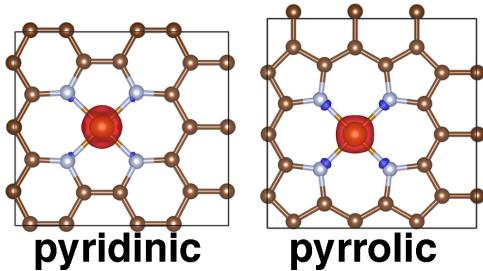



Figure 7. Spin-splitting energetics (in kcal/mol) for singlet-quintet (S-Q, red circles) or triplet-quintet (T-Q, blue circles) spin states vs. % HF exchange for pyridinic ($\text{FeN}_4\text{C}_{10}$, top) and pyrrolic ($\text{FeN}_4\text{C}_{12}$, bottom) SAC models. The 25% exchange in standard PBE0 is indicated as a vertical dashed line.

High-valent Fe(IV)=O intermediates are expected to be essential for catalytic transformations at N-doped graphitic SACs (Liu et al., 2017). Thus, we examined the spin-state-, model-, and exchange-fraction-dependence of reaction energetics for Fe(IV)=O formation. Here, we employed N_2O as a model oxidant, but results are comparable when assuming the oxygen atom comes from triplet O_2 (Figure 8 and Supplementary Material Figures 4-6). Overall, pyridinic SACs form more stable oxo species across the range of HF exchange and spin states than pyrrolic SACs (Figure 8). Although activation energies would be needed to make firmer statements about relative active site model reactivity, the endothermic reaction energies for the intermediate spin $\text{FeN}_4\text{C}_{12}$ above 20% exchange (ca. +10 kcal/mol at 40% exchange) suggest that the pyrrolic model could potentially be unreactive with N_2O oxidant (Figure 8). Regardless of spin state or model, increasing exchange fraction makes formation of oxo intermediates less favorable due to the penalty for delocalization (Gani and Kulik, 2017).

Figure 8. Reaction energetics (ΔE_{rxn} , in kcal/mol) for oxo formation from N_2O oxidant vs. % HF exchange for pyridinic ($\text{FeN}_4\text{C}_{10}$, top) and pyrrolic ($\text{FeN}_4\text{C}_{12}$, bottom) SAC models. The reaction is shown in inset. In each case, singlet (red circles), triplet (blue circles), and quintet (green circles) oxo formation energies are shown. The 25% exchange in standard PBE0 is indicated as a vertical dashed line.

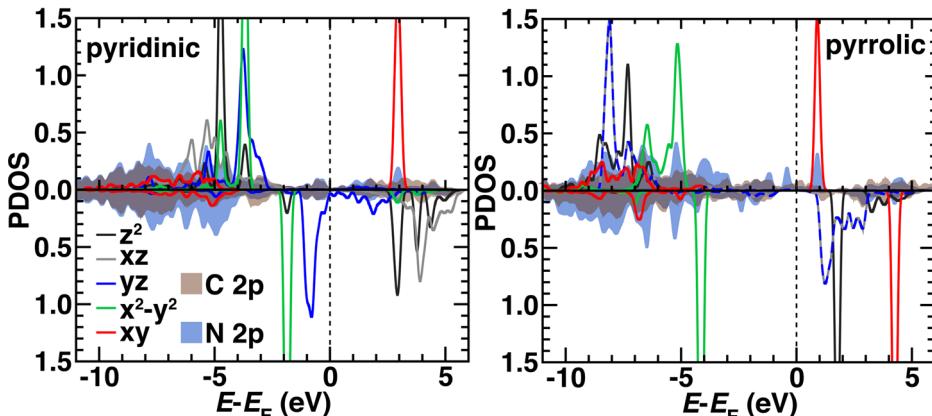

523
524
525
526
527
528
529

530 Determination of ground state spin from DFT of the pristine $\text{Fe}(\text{II})/\text{N}$ SAC model and the
531 $\text{Fe}(\text{IV})=\text{O}$ intermediate should be carried out with caution, noting that spin (ca. $0.5\text{--}1.0\ \mu_{\text{B}}$) arises on
532 the O atom in triplet and quintet states of both $\text{Fe}(\text{IV})=\text{O}$ SAC models but not in the singlet states
533 (Supplementary Material Tables 8-9). Although spin on the oxo species can be expected and even
534 linked to catalytic efficiency(Liu et al., 2009; Quesne et al., 2014), these states cannot readily be
535 described within a single Kohn-Sham determinant in DFT(Koch and Holthausen, 2015). Overall,
536 spin state ordering of the bare $\text{Fe}(\text{II})$ SAC is largely preserved in the $\text{Fe}(\text{IV})=\text{O}$ intermediate, with
537 singlet and triplet $\text{Fe}(\text{IV})=\text{O}$ states being weakly stabilized by around 3-5 kcal/mol with respect to the
538 bare $\text{Fe}(\text{II})$ case for the pyridinic SACs (Supplementary Material Figure 4). In the pyrrolic case, the
539 opposite occurs, potentially due to the loss of spin on the ring in triplet pyrrolic $\text{Fe}(\text{IV})=\text{O}$
540 (Supplementary Material Table 9 and Figure 4). Nevertheless, further investigation of kinetic barriers
541 is merited in future work, as close spin state ordering of both the $\text{Fe}(\text{IV})=\text{O}$ and pristine $\text{Fe}(\text{II})$
542 intermediates combined with comparable differences of around 5-10 kcal/mol between reaction
543 energetics in each spin state could give rise to spin-state dependent reactivity with distinct product
544 formation(Kamachi and Yoshizawa, 2003; Ji et al., 2015). Finally, it is noteworthy that at 0%
545 exchange (i.e., pure PBE), singlet $\text{FeN}_4\text{C}_{12}$ is predicted to produce a slightly more stable $\text{Fe}(\text{IV})=\text{O}$

546 than the triplet, the same ordering that is observed for $\text{FeN}_4\text{C}_{10}$ albeit at -10 to -15 kcal/mol in the
 547 former case vs. -30 to -35 kcal/mol in the latter case (Figure 8). At the 40% exchange motivated by
 548 our careful CASPT2 characterization of Fe-N bonds (see Sec. 3.1.3), or even at the 25% exchange
 549 fraction motivated in stronger ligand field cases(Ioannidis and Kulik, 2017), conclusions are
 550 different. Namely, at these higher exchange fractions: i) the triplet oxo is more stable for pyrrolic
 551 SACs than the singlet, whereas the ordering remains the same for the pyridinic case, and ii) neither
 552 form exothermically for the pyrrolic case at these exchange fractions.

553 3.3 Periodic modeling of SACs

554 We validated our choice of finite SAC flakes by comparing to periodic models of both
 555 pyridinic and pyrrolic SAC active sites (Figure 9). We focused on the triplet intermediate spin state
 556 favored both in our finite models and in experiment(Liu et al., 2017). Shorter Fe-N 1.91 Å vs. 1.97 Å
 557 Fe-N bond lengths are observed for the pyridinic model than for the pyrrolic models, consistent with
 558 the finite models. It is more straightforward to localize the magnetic moment to the metal in these
 559 periodic systems than was observed for the molecular models (Supplementary Material Table 10 and
 560 Figure 7). For the triplet cases, spin density is nearly exclusively observed on the metal center
 561 (Figure 9). In both pyridinic and pyrrolic periodic models, use of the hybrid functional leads to less
 562 electron density on the Fe center than when a GGA is employed, consistent with prior
 563 observations(Gani and Kulik, 2016; Zhao and Kulik, 2018) (Supplementary Material Table 10).



564
 565 **Figure 9.** Periodic structures for pyridinic and pyrrolic periodic SAC models in the triplet state with
 566 spin density shown. Positive spin density is shown in red and negative spin density is shown in blue,
 567 with an isosurface value of 0.03 e . All structures are shown in ball and stick representation with
 568 carbon in brown, nitrogen in light blue, and iron in orange.

569

570 We compared the electronic structure of the pyridinic and pyrrolic SAC active site models by
 571 determining the projected density of states (PDOS) decomposed by N 2p, C 2p, and Fe 3d
 572 contributions with the HSE06 hybrid functional (Figure 10). Qualitatively, the occupied orbitals and
 573 symmetries confirm observations made on the finite graphene flake models with PBE0, which may
 574 be expected if short range effects dominate as HSE06 and PBE0 both incorporate 25% exchange in
 575 the short range mixed with pure PBE exchange. That is, the pyridinic system again has singly
 576 occupied d_{z^2} and d_{xz} orbitals and no occupation of the d_{xy} state. The pyrrolic system also differs from
 577 the pyridinic by having degenerate d_{xz} and d_{yz} states, consistent with the molecular flakes (Figure 10).
 578 Generally, agreement is more variable for other spin states, where convergence of the magnetic state
 579 is sensitive to starting conditions in the periodic calculation (Supplementary Material Figures 8-9). In
 580 the pyridinic case, d_{yz} states span the Fermi level, whereas the 3d states are well separated in the
 581 pyrrolic SAC (Figure 10). The pyrrolic 3d states also mix deeper in the C and N 2p bands, whereas in
 582 the pyridinic case, most 3d states sit at the top of the occupied C/N 2p bands (Figure 10). Overall,
 583 these observations support the use of finite models at higher levels of theory for consistent modeling,
 584 due to the unique challenges of modeling periodic systems with such methods(Janet et al., 2017).

585 More analysis in larger supercells with variable graphene defects will be necessary in future work to
 586 strengthen this conclusion.

587
 588 **Figure 10.** The HSE06 projected density of states (PDOS) for spin up (top) and down (bottom,
 589 reflected curves) triplet pyridinic (left) and pyrrolic (right) SAC models. The 3d Fe orbital PDOS are
 590 shown as indicated in inset legends as solid curves except for yz and xz in the pyrrolic case, which are
 591 shown as dashed lines due to their degeneracy. The average PDOS for a $2p$ orbital from C (brown) or
 592 N (dark blue) are shown as translucent shaded regions. All energy levels (in eV) are aligned to the
 593 Fermi level (E_F), which is shown as a vertical dashed line. Some d levels have been truncated by the
 594 y -axis range to be able to compare to the broader C $2p$ and N $2p$ features.

595

596 **4 Conclusions and Outlook**

597 We have presented an overview of the effect of computational model choice on the properties
 598 of octahedral transition metal complexes and emergent single atom catalyst (SAC) materials made
 599 from Fe centers in N-doped graphene. The octahedral transition metal complexes chosen mimic the
 600 ligand field environment observed in the SAC models but remain tractable for study with multi-
 601 reference wavefunction theory. Observations from the hexa-aqua and hexa-ammine complex studies
 602 revealed that spin state ordering of mid-row complexes could be sensitive both to the IPEA shift
 603 chosen and whether an extended active space was used, whereas late and early transition metals were
 604 far less sensitive. Then using these extended active space CASPT2 results as a benchmark, we
 605 observed that nearly all transition metal complexes benefitted from increased HF exchange. In fact,
 606 errors with respect to exchange fraction chosen monotonically decreased from 0% to 40% but with
 607 no improvement for higher exchange fractions. The 40% exchange hybrid results had comparable
 608 accuracy to the more computationally demanding double hybrid PBE0-DH.

609 The HF exchange tuning study confirmed the comparable behavior of Fe(II) complexes with
 610 ammonia, pyridine, and pyrrole ligands due to the overriding role of the metal, oxidation state, and
 611 ligand connecting atom in determining functional sensitivity. Comparison to CASPT2 results on the
 612 hexa-ammine system motivated us to propose higher exchange fractions (ca. 40% rather than 25% in
 613 PBE0) to be essential to counteract the low-spin bias in semi-local DFT. Using these established
 614 benchmarks, we then evaluated the effect of DFT functional tuning on finite graphitic SAC models
 615 with pyridine or pyrrole nitrogen atoms. In these square planar SAC geometries, rigid structures
 616 confined the Fe-N bond length, reducing exchange sensitivity of spin state ordering but otherwise
 617 confirming the observations in the octahedral complexes (i.e., favoring higher spin configurations
 618 and destabilizing singlet states). We observed that at the recommended higher exchange fractions, the

619 formation of an oxo intermediate from N_2O became unfavorable at the pyrrolic SAC active site. We
620 also observed changes in spin state ordering of the most stable oxo intermediates. Thus, incorporation
621 of exchange can alter predictions of reactivity at SAC active sites. Finally, we confirmed that these
622 observations were not sensitive to choice of a finite SAC model by comparing to periodic SAC
623 models where similar electron configurations were observed.

624 Overall, predictions of reactivity and spin state ordering are highly sensitive to the functional
625 employed. We have shown that this sensitivity is broadly transferable across different ligand
626 environments as long as the metal and direct ligating atom are kept constant. This observation can be
627 leveraged to obtain DFT functional performance on smaller models where correlated WFT is
628 tractable. Additionally, smaller flake models may be amenable to direct WFT calculation with
629 methods not covered in this work. Spin state exchange sensitivity can be expected to be depressed in
630 cases where the SAC is fully rigid and prevents expansion of the metal-ligand bond when the spin
631 state changes. The highly ordered, symmetric cases here are expected to be the limit in this rigidity
632 argument, and more disordered SAC models or more flexible active sites (e.g., graphitic carbon
633 nitride) are expected to be more sensitive. Still, some outstanding challenges remain in understanding
634 the extent to which spin arising on the graphene itself could be physical and also impart reactivity or
635 whether it arises due to increased static correlation error for hybrid DFT. Furthermore, in periodic
636 simulations with larger supercells than studied in this work it will become essential to employ range-
637 separated hybrids with HF exchange only in the short range, and the comparison to CASPT2 results
638 to range-separated hybrid tuning will be essential here. Overall, modeling in SACs will continue to
639 benefit from this multi-level approach in assessing method accuracy and sensitivity and how method
640 choice impacts predictions of active site geometry and reactivity.

641 **5 Conflict of Interest**

642 The authors declare that the research was conducted in the absence of any commercial or financial
643 relationships that could be construed as a potential conflict of interest.

644 **6 Author Contributions**

645 HK designed the research. FL, TY, JY, EX, and AB carried out the research. FL, TY, JY, and HK
646 wrote and revised the manuscript.

647 **7 Funding**

648 The authors acknowledge support by the Department of Energy under grant number DE-SC0018096
649 for the work on density functional theory and the support of F.L. and A.B. The authors also
650 acknowledge the National Science Foundation under grant number CBET-1704266 for the support of
651 T.Y. H.J.K. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.

652 **8 Conflict of Interest Statement**

653 The authors declare that the research was conducted in the absence of any commercial or financial
654 relationships that could be construed as a potential conflict of interest.

655 **9 Acknowledgments**

656 The authors thank Adam H. Steeves for providing a critical reading of the manuscript.

657 **10 Supplementary Material**

658 The Supplementary Material for this article can be found online at:

659 **11 References**660 *OpenMolcas* [Online]. Available: <https://gitlab.com/Molcas/OpenMolcas.git> [Accessed 11/06/2018
661 2018].662 Abram, S.-L., Monte-Pérez, I., Pfaff, F.F., Farquhar, E.R., and Ray, K. (2014). Evidence of two-state
663 reactivity in alkane hydroxylation by Lewis-acid bound copper–nitrene complexes. *Chemical
664 Communications* 50(69), 9852-9854.665 Adamo, C., and Barone, V. (1999). Toward reliable density functional methods without adjustable
666 parameters: The PBE0 model. *Journal of chemical physics* 110(13), 6158-6170.667 Andersson, K., Malmqvist, P.Å., and Roos, B.O. (1992). Second-order perturbation theory with a
668 complete active space self-consistent field reference function. *The Journal of chemical
669 physics* 96(2), 1218-1226.670 Andris, E., Jašík, J., Gómez, L., Costas, M., and Roithová, J. (2016). Spectroscopic characterization
671 and reactivity of triplet and quintet iron (IV) oxo complexes in the gas phase. *Angewandte
672 Chemie International Edition* 55(11), 3637-3641.673 Aquilante, F., Autschbach, J., Carlson, R.K., Chibotaru, L.F., Delcey, M.G., De Vico, L., et al.
674 (2016). Molcas 8: New capabilities for multiconfigurational quantum chemical calculations
675 across the periodic table. *Journal of computational chemistry* 37(5), 506-541.676 Autschbach, J., and Srebro, M. (2014). Delocalization Error and “Functional Tuning” in Kohn–Sham
677 Calculations of Molecular Properties. *Accounts of Chemical Research* 47(8), 2592-2602. doi:
678 10.1021/ar500171t.679 Back, S., Lim, J., Kim, N.-Y., Kim, Y.-H., and Jung, Y. (2017). Single-atom catalysts for CO 2
680 electroreduction with significant activity and selectivity improvements. *Chemical science*
681 8(2), 1090-1096.682 Baerends, E.J., Ellis, D.E., and Ros, P. (1973). Self-consistent molecular Hartree-Fock-Slater
683 calculations - I. The computational procedure. *Chemical Physics* 2(1), 41-51. doi: Doi
684 10.1016/0301-0104(73)80059-X.685 Banhart, F., Kotakoski, J., and Krasheninnikov, A.V. (2011). Structural Defects in Graphene. *ACS
686 Nano* 5(1), 26-41. doi: 10.1021/nn102598m.687 Bengtsson, L. (1999). Dipole correction for surface supercell calculations. *Physical Review B* 59(19),
688 12301-12304. doi: 10.1103/PhysRevB.59.12301.689 Bowman, D.N., and Jakubikova, E. (2012). Low-spin versus high-spin ground state in pseudo-
690 octahedral iron complexes. *Inorganic chemistry* 51(11), 6011-6019.691 Bruschi, M., De Gioia, L., Zampella, G., Reiher, M., Fantucci, P., and Stein, M. (2004). A theoretical
692 study of spin states in Ni-S4 complexes and models of the [NiFe] hydrogenase active site.
693 *Journal of Biological Inorganic Chemistry* 9(7), 873-884.694 Chen, Y., Ji, S., Wang, Y., Dong, J., Chen, W., Li, Z., et al. (2017). Isolated Single Iron Atoms
695 Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen
696 Reduction Reaction. *Angewandte Chemie* 129(24), 7041-7045.

697 Cheng, Q., Yang, L., Zou, L., Zou, Z., Chen, C., Hu, Z., et al. (2017). Single Cobalt Atom and N
 698 Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction
 699 Reaction. *ACS Catalysis* 7(10), 6864-6871.

700 Chu, M., Liu, X., Sui, Y., Luo, J., and Meng, C. (2015). Unique Reactivity of Transition Metal
 701 Atoms Embedded in Graphene to CO, NO, O₂ and O Adsorption: A First-Principles
 702 Investigation. *Molecules* 20(10), 19540-19553.

703 Cohen, A.J., Mori-Sánchez, P., and Yang, W. (2011). Challenges for density functional theory.
 704 *Chemical Reviews* 112(1), 289-320.

705 Cui, X., Li, H., Wang, Y., Hu, Y., Hua, L., Li, H., et al. (2018). Room-Temperature Methane
 706 Conversion by Graphene-Confining Single Iron Atoms. *Chem In Press*,
 707 DOI:10.1016/j.chempr.2018.1005.1006. doi: <https://doi.org/10.1016/j.chempr.2018.05.006>.

708 Douglas, M., and Kroll, N.M. (1974). Quantum electrodynamical corrections to the fine structure of
 709 helium. *Annals of Physics* 82(1), 89-155.

710 Droghetti, A., Alfè, D., and Sanvito, S. (2012). Assessment of density functional theory for iron (II)
 711 molecules across the spin-crossover transition. *The Journal of chemical physics* 137(12),
 712 124303.

713 Dunlap, B.I., Connolly, J.W.D., and Sabin, J.R. (1979). Some Approximations in Applications of X-
 714 Alpha Theory. *Journal of Chemical Physics* 71(8), 3396-3402. doi: Doi 10.1063/1.438728.

715 Eichkorn, K., Treutler, O., Ohm, H., Haser, M., and Ahlrichs, R. (1995). Auxiliary Basis-Sets to
 716 Approximate Coulomb Potentials. *Chemical Physics Letters* 240(4), 283-289. doi: Doi
 717 10.1016/0009-2614(95)00621-A.

718 Eichkorn, K., Weigend, F., Treutler, O., and Ahlrichs, R. (1997). Auxiliary basis sets for main row
 719 atoms and transition metals and their use to approximate Coulomb potentials. *Theoretical
 720 Chemistry Accounts* 97(1-4), 119-124. doi: DOI 10.1007/s002140050244.

721 Fei, H., Dong, J., Arellano-Jiménez, M.J., Ye, G., Dong Kim, N., Samuel, E.L.G., et al. (2015).
 722 Atomic cobalt on nitrogen-doped graphene for hydrogen generation. *Nature Communications*
 723 6, 8668.

724 Fong, A., Vandervelden, C., Scott, S.L., and Peters, B. (2018). Computational Support for Phillips
 725 Catalyst Initiation via Cr-C Bond Homolysis in a Chromacyclopentane Site. *ACS Catalysis*
 726 8(3), 1728-1733.

727 Forsberg, N., and Malmqvist, P.-Å. (1997). Multiconfiguration perturbation theory with imaginary
 728 level shift. *Chemical Physics Letters* 274(1-3), 196-204.

729 Fujii, H. (2002). Electronic structure and reactivity of high-valent oxo iron porphyrins. *Coordination
 730 chemistry reviews* 226(1-2), 51-60.

731 Gani, T.Z.H., and Kulik, H.J. (2016). Where Does the Density Localize? Convergent Behavior for
 732 Global Hybrids, Range Separation, and DFT+U *Journal of Chemical Theory and
 733 Computation* 12, 5931-5945.

734 Gani, T.Z.H., and Kulik, H.J. (2017). Unifying Exchange Sensitivity in Transition Metal Spin-State
 735 Ordering and Catalysis Through Bond Valence Metrics *Journal of Chemical Theory and
 736 Computation* 13, 5443-5457.

737 Gani, T.Z.H., and Kulik, H.J. (2018). Understanding and Breaking Scaling Relations in Single-Site
 738 Catalysis: Methane-to-methanol Conversion by Fe(IV)=O. *ACS Catalysis* 8, 975-986.

739 Ganzenmüller, G., Berkaïne, N., Fouqueau, A., Casida, M.E., and Reiher, M. (2005). Comparison of
 740 density functionals for differences between the high- (T2g5) and low- (A1g1) spin states of
 741 iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)(‘NHS4’)]. *The Journal of*
 742 *Chemical Physics* 122(23), 234321. doi: doi:<http://dx.doi.org/10.1063/1.1927081>.

743 Gao, Z.-Y., Yang, W.-J., Ding, X.-L., Lv, G., and Yan, W.-P. (2018). Support effects on adsorption
 744 and catalytic activation of O₂ in single atom iron catalysts with graphene-based substrates.
 745 *Physical Chemistry Chemical Physics* 20(10), 7333-7341.

746 Ghigo, G., Roos, B.O., and Malmqvist, P.-Å. (2004). A modified definition of the zeroth-order
 747 Hamiltonian in multiconfigurational perturbation theory (CASPT2). *Chemical physics letters*
 748 396(1-3), 142-149.

749 Harvey, J.N. (2014). Spin-forbidden reactions: computational insight into mechanisms and kinetics.
 750 *Wiley Interdisciplinary Reviews: Computational Molecular Science* 4(1), 1-14.

751 Hellweg, A., Hattig, C., Hofener, S., and Klopper, W. (2007). Optimized accurate auxiliary basis sets
 752 for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. *Theoretical Chemistry Accounts*
 753 117(4), 587-597. doi: 10.1007/s00214-007-0250-5.

754 Hernández-Ortega, A., Quesne, M.G., Bui, S., Heyes, D.J., Steiner, R.A., Scrutton, N.S., et al.
 755 (2015). Catalytic mechanism of cofactor-free dioxygenases and how they circumvent spin-
 756 forbidden oxygenation of their substrates. *Journal of the American Chemical Society* 137(23),
 757 7474-7487.

758 Hess, B.A. (1986). Relativistic electronic-structure calculations employing a two-component no-pair
 759 formalism with external-field projection operators. *Physical Review A* 33(6), 3742.

760 Heyd, J., Scuseria, G.E., and Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb
 761 potential. *The Journal of Chemical Physics* 118(18), 8207-8215. doi: 10.1063/1.1564060.

762 Heyd, J., Scuseria, G.E., and Ernzerhof, M. (2006). Erratum: “Hybrid functionals based on a
 763 screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. *The Journal of Chemical*
 764 *Physics* 124(21), 219906. doi: 10.1063/1.2204597.

765 Huang, B., Yu, J., and Wei, S.-H. (2011). Strain control of magnetism in graphene decorated by
 766 transition-metal atoms. *Physical Review B* 84(7), 075415.

767 Impeng, S., Khongpracha, P., Warakulwit, C., Jansang, B., Sirijaraensre, J., Ehara, M., et al. (2014).
 768 Direct oxidation of methane to methanol on Fe–O modified graphene. *RSC Advances* 4(24),
 769 12572-12578.

770 Ioannidis, E.I., Gani, T.Z., and Kulik, H.J. (2016). molSimplify: A toolkit for automating discovery
 771 in inorganic chemistry. *Journal of computational chemistry* 37(22), 2106-2117.

772 Ioannidis, E.I., and Kulik, H.J. (2015). Towards quantifying the role of exact exchange in predictions
 773 of transition metal complex properties. *The Journal of Chemical Physics* 143(3), 034104.

774 Ioannidis, E.I., and Kulik, H.J. (2017). Ligand-Field-Dependent Behavior of meta-GGA Exchange in
 775 Transition-Metal Complex Spin-State Ordering. *Journal of Physical Chemistry A* 121(4),
 776 874-884.

777 Janet, J.P., and Kulik, H.J. (2017). Predicting Electronic Structure Properties of Transition Metal
 778 Complexes with Neural Networks. *Chemical Science* 8, 5137-5152. doi:
 779 10.1039/C7SC01247K.

780 Janet, J.P., Zhao, Q., Ioannidis, E.I., and Kulik, H.J. (2017). Density functional theory for modelling
 781 large molecular adsorbate-surface interactions: a mini-review and worked example.
 782 *Molecular Simulation* 43(5-6), 327-345. doi: 10.1080/08927022.2016.1258465.

783 Ji, L., Faponle, A.S., Quesne, M.G., Sainna, M.A., Zhang, J., Franke, A., et al. (2015). Drug
 784 metabolism by cytochrome P450 enzymes: what distinguishes the pathways leading to
 785 substrate hydroxylation over desaturation? *Chemistry—A European Journal* 21(25), 9083-
 786 9092.

787 Jiang, K., Siahrostami, S., Zheng, T., Hu, Y., Hwang, S., Stavitski, E., et al. (2018). Isolated Ni
 788 single atoms in graphene nanosheets for high-performance CO₂ reduction. *Energy &*
 789 *Environmental Science* 11(4), 893-903. doi: 10.1039/C7EE03245E.

790 Kamachi, T., and Yoshizawa, K. (2003). A theoretical study on the mechanism of camphor
 791 hydroxylation by compound I of cytochrome P450. *Journal of the American Chemical
 792 Society* 125(15), 4652-4661.

793 Kendall, R.A., and Fruchtl, H.A. (1997). The impact of the resolution of the identity approximate
 794 integral method on modern ab initio algorithm development. *Theoretical Chemistry Accounts*
 795 97(1-4), 158-163. doi: DOI 10.1007/s002140050249.

796 Kepenekian, M., Robert, V., and Le Guennic, B. (2009). What zeroth-order Hamiltonian for CASPT2
 797 adiabatic energetics of Fe (II) N 6 architectures? *The Journal of chemical physics* 131(11),
 798 114702.

799 Koch, W., and Holthausen, M.C. (2015). *A chemist's guide to density functional theory*. John Wiley
 800 & Sons.

801 Kossmann, S., and Neese, F. (2009). Comparison of two efficient approximate Hartee-Fock
 802 approaches. *Chemical Physics Letters* 481(4-6), 240-243. doi: 10.1016/j.cplett.2009.09.073.

803 Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., and Nieminen, R.M. (2009).
 804 Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism.
 805 *Physical Review Letters* 102(12), 126807. doi: 10.1103/PhysRevLett.102.126807.

806 Kulik, H.J. (2015). Perspective: Treating electron over-delocalization with the DFT+U method. *The
 807 Journal of Chemical Physics* 142(24), 240901.

808 Kulik, H.J., Cococcioni, M., Scherlis, D.A., and Marzari, N. (2006). Density functional theory in
 809 transition-metal chemistry: A self-consistent Hubbard U approach. *Physical Review Letters*
 810 97(10), 103001.

811 Kümmel, S., and Kronik, L. (2008). Orbital-dependent density functionals: Theory and applications.
 812 *Reviews of Modern Physics* 80(1), 3-60.

813 Lawson Daku, L.v.M., Aquilante, F., Robinson, T.W., and Hauser, A. (2012). Accurate spin-state
 814 energetics of transition metal complexes. 1. CCSD (T), CASPT2, and DFT study of [M
 815 (NCH)₆] 2+(M= Fe, Co). *Journal of chemical theory and computation* 8(11), 4216-4231.

816 Li, J., Ghoshal, S., Liang, W., Sougrati, M.-T., Jaouen, F., Halevi, B., et al. (2016). Structural and
 817 mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. *Energy
 818 & Environmental Science* 9(7), 2418-2432. doi: 10.1039/C6EE01160H.

819 Liang, J.X., Wang, Y.G., Yang, X.F., Xing, D.H., Wang, A.Q., Zhang, T., et al. (2017). "Recent
 820 Advances in Single-Atom Catalysis," in *Encyclopedia of Inorganic and Bioinorganic
 821 Chemistry*, ed. R.A. Scott. Wiley).

822 Liang, S., Hao, C., and Shi, Y. (2015). The Power of Single-Atom Catalysis. *ChemCatChem* 7(17),
823 2559-2567.

824 Liu, H.N., Llano, J., and Gauld, J.W. (2009). A DFT Study of Nucleobase Dealkylation by the DNA
825 Repair Enzyme AlkB. *Journal of Physical Chemistry B* 113(14), 4887-4898. doi:
826 10.1021/jp810715t.

827 Liu, W., Zhang, L., Liu, X., Liu, X., Yang, X., Miao, S., et al. (2017). Discriminating Catalytically
828 Active FeNx Species of Atomically Dispersed Fe–N–C Catalyst for Selective Oxidation of
829 the C–H Bond. *Journal of the American Chemical Society* 139(31), 10790-10798. doi:
830 10.1021/jacs.7b05130.

831 Ma, D.W., Wang, Q., Yan, X., Zhang, X., He, C., Zhou, D., et al. (2016). 3d transition metal
832 embedded C2N monolayers as promising single-atom catalysts: A first-principles study.
833 *Carbon* 105, 463-473. doi: <https://doi.org/10.1016/j.carbon.2016.04.059>.

834 Momma, K., and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal,
835 volumetric and morphology data. *Journal of Applied Crystallography* 44, 1272-1276. doi:
836 10.1107/S0021889811038970.

837 Mortensen, S.R., and Kepp, K.P. (2015). Spin Propensities of Octahedral Complexes From Density
838 Functional Theory. *The Journal of Physical Chemistry A* 119(17), 4041-4050.

839 Neese, F. (2018). Software update: the ORCA program system, version 4.0. *Wiley Interdisciplinary
840 Reviews-Computational Molecular Science* 8(1). doi: ARTN e1327

841 10.1002/wcms.1327.

842 Neese, F., Wennmohs, F., and Hansen, A. (2009). Efficient and accurate local approximations to
843 coupled-electron pair approaches: An attempt to revive the pair natural orbital method.
844 *Journal of Chemical Physics* 130(11). doi: Artn 114108

845 10.1063/1.3086717.

846 O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R.
847 (2011). Open Babel: An open chemical toolbox. *Journal of cheminformatics* 3(1), 33.

848 Paolo, G., Stefano, B., Nicola, B., Matteo, C., Roberto, C., Carlo, C., et al. (2009). QUANTUM
849 ESPRESSO: a modular and open-source software project for quantum simulations of
850 materials. *Journal of Physics: Condensed Matter* 21(39), 395502.

851 Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple.
852 *Physical review letters* 77(18), 3865.

853 Phan, H., Hrudka, J.J., Igimbayeva, D., Lawson Daku, L.v.M., and Shatruk, M. (2017). A simple
854 approach for predicting the spin state of homoleptic Fe (II) tris-diimine complexes. *Journal of
855 the American Chemical Society* 139(18), 6437-6447.

856 Pierloot, K. (2003). The CASPT2 method in inorganic electronic spectroscopy: from ionic transition
857 metal to covalent actinide complexes*. *Molecular physics* 101(13), 2083-2094.

858 Pierloot, K., Phung, Q.M., and Domingo, A. (2017). Spin state energetics in first-row transition metal
859 complexes: Contribution of (3s3p) correlation and its description by second-order
860 perturbation theory. *Journal of chemical theory and computation* 13(2), 537-553.

861 Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., et al. (2011). Single-atom catalysis of
862 CO oxidation using Pt 1/FeO x. *Nature chemistry* 3(8), 634.

863 Qiu, H.J., Ito, Y., Cong, W., Tan, Y., Liu, P., Hirata, A., et al. (2015). Nanoporous Graphene with
 864 Single-Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen
 865 Production. *Angewandte Chemie International Edition* 54(47), 14031-14035.

866 Quesne, M.G., Latifi, R., Gonzalez-Ovalle, L.E., Kumar, D., and de Visser, S.P. (2014). Quantum
 867 Mechanics/Molecular Mechanics Study on the Oxygen Binding and Substrate Hydroxylation
 868 Step in AlkB Repair Enzymes. *Chemistry-a European Journal* 20(2), 435-446. doi:
 869 10.1002/chem.201303282.

870 Rappé, A.K., Casewit, C.J., Colwell, K., Goddard III, W.A., and Skiff, W. (1992). UFF, a full
 871 periodic table force field for molecular mechanics and molecular dynamics simulations.
 872 *Journal of the American chemical society* 114(25), 10024-10035.

873 Rappe, A.M., Rabe, K.M., Kaxiras, E., and Joannopoulos, J.D. (1990). Optimized pseudopotentials.
 874 *Physical Review B* 41(2), 1227-1230. doi: 10.1103/PhysRevB.41.1227.

875 Roos, B.O., Lindh, R., Malmqvist, P.-Å., Veryazov, V., and Widmark, P.-O. (2004). Main group
 876 atoms and dimers studied with a new relativistic ANO basis set. *The Journal of Physical
 877 Chemistry A* 108(15), 2851-2858.

878 Roos, B.O., Lindh, R., Malmqvist, P.-Å., Veryazov, V., and Widmark, P.-O. (2005). New relativistic
 879 ANO basis sets for transition metal atoms. *The Journal of Physical Chemistry A* 109(29),
 880 6575-6579.

881 Sahoo, D., Quesne, M.G., de Visser, S.P., and Rath, S.P. (2015). Hydrogen-Bonding Interactions
 882 Trigger a Spin-Flip in Iron (III) Porphyrin Complexes. *Angewandte Chemie International
 883 Edition* 54(16), 4796-4800.

884 Saunders, V.R., and Hillier, I.H. (1973). A 'Level-Shifting' method for converging closed shell
 885 Hartree-Fock wave functions. *International Journal of Quantum Chemistry* 7(4), 699-705.
 886 doi: [papers2://publication/doi/10.1002/qua.560070407](https://doi.org/10.1002/qua.560070407).

887 Schröder, D., Shaik, S., and Schwarz, H. (2000). Two-state reactivity as a new concept in
 888 organometallic chemistry. *Accounts of Chemical Research* 33(3), 139-145.

889 Schwarz, H. (2017). Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational
 890 chemistry. *Catalysis Science & Technology* 7(19), 4302-4314.

891 Shaik, S., Danovich, D., Fiedler, A., Schröder, D., and Schwarz, H. (1995). Two-State Reactivity in
 892 Organometallic Gas-Phase Ion Chemistry. *Helvetica chimica acta* 78(6), 1393-1407.

893 Sirijaraensre, J., and Limtrakul, J. (2018). Theoretical investigation on reaction pathways for ethylene
 894 epoxidation on Ti-decorated graphene. *Structural Chemistry* 29(1), 159-170.

895 Smith, D.M., Dupuis, M., and Straatsma, T. (2005). Multiplet splittings and other properties from
 896 density functional theory: an assessment in iron-porphyrin systems. *Molecular Physics*
 897 103(2-3), 273-278.

898 Trucano, P., and Chen, R. (1975). Structure of graphite by neutron diffraction. *Nature* 258, 136. doi:
 899 10.1038/258136a0.

900 Tsuchida, R. (1938). Absorption spectra of co-ordination compounds. I. *Bulletin of the Chemical
 901 Society of Japan* 13(5), 388-400.

902 Vela, S., Fumanal, M., Ribas-Ariño, J., and Robert, V. (2016). On the zeroth-order hamiltonian for
 903 CASPT 2 calculations of spin crossover compounds. *Journal of computational chemistry*
 904 37(10), 947-953.

905 Verma, P., Varga, Z., Klein, J.E., Cramer, C.J., Que, L., and Truhlar, D.G. (2017). Assessment of
 906 electronic structure methods for the determination of the ground spin states of Fe (II), Fe (III)
 907 and Fe (IV) complexes. *Physical Chemistry Chemical Physics* 19(20), 13049-13069.

908 Veryazov, V., Malmqvist, P.Å., and Roos, B.O. (2011). How to select active space for
 909 multiconfigurational quantum chemistry? *International Journal of Quantum Chemistry*
 910 111(13), 3329-3338.

911 Wang, A., and Zhang, T. (2016). Water splitting: Taking cobalt in isolation. *Nature Energy* 1(1),
 912 15019.

913 Wang, J., Zhang, H., Wang, C., Zhang, Y., Wang, J., Zhao, H., et al. (2018). Co-synthesis of atomic
 914 Fe and few-layer graphene towards superior ORR electrocatalyst. *Energy Storage Materials*
 915 12, 1-7.

916 Weigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. *Physical Chemistry Chemical
 917 Physics* 8(9), 1057-1065. doi: 10.1039/b515623h.

918 Weigend, F., and Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and
 919 quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Physical
 920 Chemistry Chemical Physics* 7(18), 3297-3305.

921 Whitten, J.L. (1973). Coulombic Potential-Energy Integrals and Approximations. *Journal of
 922 Chemical Physics* 58(10), 4496-4501. doi: Doi 10.1063/1.1679012.

923 Wilbraham, L., Adamo, C., and Ciofini, I. (2018). Communication: Evaluating non-empirical double
 924 hybrid functionals for spin-state energetics in transition-metal complexes. *The Journal of
 925 chemical physics* 148(4), 041103.

926 Wilbraham, L., Verma, P., Truhlar, D.G., Gagliardi, L., and Ciofini, I. (2017). Multiconfiguration
 927 Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the
 928 Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a
 929 Significantly Reduced Computational Cost. *The Journal of Physical Chemistry Letters* 8(9),
 930 2026-2030.

931 Xu, H., Cheng, D., Cao, D., and Zeng, X.C. (2018). A universal principle for a rational design of
 932 single-atom electrocatalysts. *Nature Catalysis* 1(5), 339-348. doi: 10.1038/s41929-018-0063-
 933 z.

934 Yang, L., Cheng, D., Xu, H., Zeng, X., Wan, X., Shui, J., et al. (2018). Unveiling the high-activity
 935 origin of single-atom iron catalysts for oxygen reduction reaction. *Proceedings of the
 936 National Academy of Sciences* 115(26), 6626.

937 Yang, T., Quesne, M.G., Neu, H.M., Cantú Reinhart, F.n.G., Goldberg, D.P., and de Visser, S.P.
 938 (2016). Singlet versus triplet reactivity in an mn (v)-oxo species: testing theoretical
 939 predictions against experimental evidence. *Journal of the American Chemical Society*
 940 138(38), 12375-12386.

941 Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., and Zhang, T. (2013). Single-atom catalysts: a new
 942 frontier in heterogeneous catalysis. *Accounts of chemical research* 46(8), 1740-1748.

943 Zhang, C., Sha, J., Fei, H., Liu, M., Yazdi, S., Zhang, J., et al. (2017a). Single-Atomic Ruthenium
 944 Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic
 945 Medium. *ACS Nano* 11(7), 6930-6941. doi: 10.1021/acsnano.7b02148.

946 Zhang, L., Jia, Y., Gao, G., Yan, X., Chen, N., Chen, J., et al. (2018). Graphene Defects Trap Atomic
947 Ni Species for Hydrogen and Oxygen Evolution Reactions. *Chem* 4(2), 285-297. doi:
948 <https://doi.org/10.1016/j.chempr.2017.12.005>.

949 Zhang, Z., Gao, X., Dou, M., Ji, J., and Wang, F. (2017b). Biomass Derived N-Doped Porous Carbon
950 Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. *Small* 13(22),
951 1604290.

952 Zhao, Q., and Kulik, H.J. (2018). Where Does the Density Localize in the Solid State? Divergent
953 Behavior for Hybrids and DFT+U. *Journal of Chemical Theory and Computation* 14, 670-
954 683.

955 Zhu, B., Guan, W., Yan, L.-K., and Su, Z.-M. (2016). Two-state reactivity mechanism of benzene C-
956 C activation by trinuclear titanium hydride. *Journal of the American Chemical Society*
957 138(35), 11069-11072.

958 Zhu, C., Fu, S., Shi, Q., Du, D., and Lin, Y. (2017). Single-Atom Electrocatalysts. *Angewandte
959 Chemie International Edition* 56, 13944.

960 Zitolo, A., Goellner, V., Armel, V., Sougrati, M.-T., Mineva, T., Stievano, L., et al. (2015).
961 Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene
962 materials. *Nature materials* 14(9), 937.

963 Zitolo, A., Ranjbar-Sahraie, N., Mineva, T., Li, J., Jia, Q., Stamatin, S., et al. (2017). Identification of
964 catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. *Nature
965 Communications* 8(1), 957. doi: 10.1038/s41467-017-01100-7.

966