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Abstract

One of the main goals of studying melt inclusions (MI) is to constrain the pre-
eruptive physical and chemical processes that have occurred in a magma reservoir at the
micro-scale. Recently, several studies that focused on magmatic differentiation of
volcanic systems produced detailed interpretations based on data from MI trapped at
different times and locations in the plumbing system. Ideally, MI data should be collected
and tested following the melt inclusion assemblage (MIA) protocol that consists of
studying and analyzing groups of MI that were trapped at the same time, and, thus, at the
same chemical and physical conditions. However, the rarity of MIA in juvenile volcanic
phenocrysts precludes this methodology in many cases, leading to uncertainty concerning

the validity of the MI as recorders of pre-eruptive conditions.
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In this study, we focused on MI from the Campi Flegrei (CF) and Procida Island
(PI) volcanic systems in southern Italy, including data from this study and data from the
literature. The database included MI hosted in sanidine, clinopyroxene, plagioclase,
biotite and olivine, and, thus, represents melts trapped at various stages in the overall
differentiation process. We developed a protocol to select the most reliable MI from a
dataset associated with a single magmatic system. As a first step we compare MI data
with bulk rock data for the same magmatic system. This comparison reveals that most MI
show major element compositions that fall within or close to the range for bulk rocks —
these MI are considered to be “normal”. Some MI show anomalous compositions and are
not representative of the melt in equilibrium with the phenocryst host and were excluded
from the data set. In the second step we selected only bubble-free MI from the previously
identified “normal” MI to interpret the volatile evolution. In the third step we compare
compositions of the “normal” bubble-free MI to compositions predicted by rhyolite-
MELTS simulations, assuming a variety of initial conditions.

Comparison of data obtained from basaltic-trachybasaltic MI with rhyolite-
MELTS predictions indicates that one group of MI records the geochemical evolution of
a volatile-saturated magma differentiating by polybaric fractional crystallization from
>200 MPa (>7.5 km) to 30 MPa (~1 km). Another group of MI records recharge of the
magma chamber by a primitive basaltic magma that mixes with the preexisting primitive
trachybasaltic magma before eruption. Extensive isobaric crystallization of the
trachybasaltic magmas at ~ 7.5 km beneath CF may have generated trachytic-phonolitic
magmas, such as those associated with the Neapolitan Yellow Tuff (NYT) that is
characterized by a relatively high H,O content. These volatile-saturated trachytic-
phonolitic magmas likely trigger high-magnitude eruptions during their ascent to the

surface.

Keywords: melt inclusion, volatiles, Phlegrean Fields, degassing path, rhyolite-MELTS
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Introduction

Campi Flegrei (CF) and the Island of Procida (IP) are well known recently active
volcanic complexes in the Campanian Plain of southern Italy that represent a volcanic
hazard owing to their proximity to Naples and the towns surrounding Pozzuoli Bay (~1.5
million inhabitants). The area has been the site of volcanic activity for more than 60 ka
(De Vivo et al., 2010; Orsi et al., 1999; Pappalardo et al., 1999). The most catastrophic
eruption at CF is the Campanian Ignimbrite (e.g., Orsi et al., 1996), generating 300 km?
dense rock equivalent [DRE; (Fedele et al., 2007)], the source of which remains under
debate (De Vivo et al., 2010; De Vivo et al., 2001; Rolandi et al., 2003). The later
eruption of the Neapolitan Yellow Tuff (NYT) was extremely explosive and generated 40
km?3 DRE of eruptive products (Orsi et al., 1992; Wohletz et al., 1995). The most recent
eruption occurred in 1538 and formed the Monte Nuovo cinder cone volcano (Fig. 1).

The CF area has in recent decades attracted the interest of geoscientists owing to
activity that consists of episodic slow ground uplift, followed by more rapid deflation
(bradyseism). In recent years, the ground in the central part of the CF has been inflating,
highlighting the critical need for understanding whether this activity is a precursor of an
imminent eruption (e.g., Chiodini et al., 2015). Ground deformation and seismicity at CF
are also associated with intense fumarolic and hydrothermal activity, concentrated mostly
in the crater of Solfatara at Pozzuoli (Fig. 1). The relatively slow ground uplift may or
may not represent a precursor of a volcanic eruption, depending on the cause of the
inflation (Bodnar et al., 2007; Lima et al., 2009; Moretti et al., 2017). Though various
models have been proposed to explain bradyseism at CF, it is now becoming clear that
magmatic fluids released from deep and/or shallow magmas play an important role in
ground movement, and the occurrence of ground movement does not require that a new
batch of magma is intruding below CF (Lima et al., 2009; Lima et al., 2017).

The composition of exsolved magmatic fluids injected into the overlying
hydrothermal system is controlled by the chemical evolution of volatiles during magma
evolution (crystallization, mixing, and crustal assimilation). The compositions of MI
hosted in olivine from CF and IP suggest that trachybasaltic parental magmas are the
source of activity in both areas (Cannatelli et al., 2007; Mangiacapra et al., 2008;

Mormone et al., 2011; Esposito et al., 2011). However, the isotopic compositions of
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mafic bulk rocks suggest that the two areas experienced different magma evolution
histories (e.g., Cannatelli, 2012; D'Antonio et al., 2007; Peccerillo, 2017 and references
therein). While major and trace element trends in both localities are dominantly
controlled by fractional crystallization, the variability of some elements such as
potassium , the isotopic signature of the bulk rocks, and the composition and zoning of
juvenile mineral phases combined suggest that other open-system magmatic processes
also contributed to observed geochemical trends. The geochemical variability, evolution,
and the importance of open-system processes associated with the generation and the
differentiation of these magmas continue to be debated (Peccerillo, 2017 and references
therein).

The pre-eruptive volatile contents of magmas associated with CF and IP have
been studied by many workers by analyzing the glass of melt inclusions (MI) (Arienzo et
al., 2016; Arienzo et al., 2010; Cannatelli et al., 2007; Cecchetti et al., 2001; Cecchetti et
al., 2002-2003; Cipriani et al., 2008; Esposito et al., 2011; Fourmentraux et al., 2012;
Mangiacapra et al., 2008; Mormone et al., 2011; Roach, 2005; Stock et al., 2016). MI
provide information that is not easily obtained by studying bulk rocks or active
fumaroles. MI often preserve pre-eruptive volatile contents because host phenocrysts act
as an insulating capsule and MI are not affected by degassing of the surrounding magma
that likely occurs during ascent and crystallization (Metrich and Wallace, 2008).
However, interpretation of volatile data from MI, and thus the modeling of magma
dynamics, is based on the assumption that MI record the composition of the melt from
which the host minerals formed. However, MI may not preserve the original melt
composition if (1) the composition of the glass phase does not represent the composition
of the melt that was originally trapped owing to a variety of processes [e.g., post
entrapment crystallization, diffusion of elements, formation of a vapor bubble,
decrepitation (Cannatelli et al., 2016 and references therein)], (2) if boundary layer
processes during trapping modified the composition of the melt adjacent to the growing
crystal, such that the trapped melt does not represent the bulk (far-field) melt (e.g., Baker,
2008), or (3) the melt that was trapped was generated as a result of disequilibrium
processes (e.g., Danyushevsky et al., 2004). It is important to note that while

concentrations and ratios of elements that are compatible in the host will be modified by
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post entrapment crystallization (PEC), PEC does not affect ratios of incompatible
elements in the melt (now glass) (Danyushevsky et al., 2002a; Lima et al., 2003).

The most rigorous and dependable approach to confirm that the composition of a
MI is representative of the melt from which the host crystal grew is to study groups of MI
that were trapped at the same time, defined as a “melt inclusion assemblage” (MIA;
Bodnar and Student, 2006). All MI within an MIA would have been trapped at the same
temperature and pressure, and all would have trapped a melt of the same composition. As
such all of the MI within the MIA should show consistent phase behavior and chemistry
(Bodnar and Student, 2006). While studying MIAs can provide unarguable evidence that
the MI have trapped and preserved the original melt from which the host crystal was
growing, melt inclusion assemblages are uncommon in most samples, and workers have
rarely reported melt inclusion assemblages in studies of MI from CF and IP owing to
their scarcity (Esposito et al., 2014). Also, the few MIA identified by Esposito et al.
(2014) are comprised of small MI (<20 um), and therefore challenging or impossible to
analyze by secondary ion mass spectrometry (SIMS) and/or Fourier-transform infrared
(FTIR) spectroscopy.

As an alternative to the MIA approach to test that compositions of MI represent
the original melt that was present when the phenocryst was growing, the composition of
MI may be compared to the bulk rock compositions of samples from the same magmatic
system (Danyushevsky et al., 2000). This comparison can help identify MI compositions
that are anomalous relative to general geochemical trends defined by bulk rocks. While
both the MIA approach and comparison of MI compositions with bulk rock compositions
can be applied to determine if the volatile contents of MI represent the volatile content of
the original, pre-eruptive melt, we note that most previous studies of MI from CF and IP
have not reported or discussed methods to test whether the major elements and volatile
contents of MI record the original, unmodified composition. Here, we use the term
“representativeness” to identify a MI that traps and preserves a sample of the melt that
was in equilibrium with the host phenocryst at the time of trapping. In other words, MI
represent a “snapshot” of the liquid (melt) composition during magmatic differentiation,
representing melt that was in equilibrium with crystals + vapor. One of the main factors

that limits our ability to determine whether volatile contents of MI from CF and IP
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reported in the literature represent the original volatile content of the trapped melt is that
contributions of the vapor bubble in the MI to the total volatile content of the MI are not
discussed or considered, even though vapor bubbles are reported in the descriptions of MI
petrography. Recent studies confirm that analyzing only the glass phase of a bubble-
bearing MI and ignoring the CO, content of the bubble significantly underestimates the
total CO, (and other volatiles) content of the trapped melt (e.g., Aster et al., 2016;
Esposito et al., 2016; Moore et al., 2015). Because most of the CO; is contained in the
vapor bubble of a bubble-bearing MI, a more realistic and accurate estimate of the CO,
content of the trapped melt is obtained if only the bubble, rather than only the glass, is
analyzed. Concentrations of other volatiles, including H,O and S, will similarly be
underestimated if the volatile content of the bubbles is not considered (Esposito et al.,
2016).

Given these concerns, it is appropriate to re-evaluate MI data from CF and IP
because published reports often do not specify whether or not the MI that were studied
contain vapor bubbles. In addition, MI compositions are often not compared with bulk
rock compositions and geochemical trends are often not described. Moreover, if MI
compositions do not follow the main bulk rock trends, the significance of these
anomalous MI compositions is not considered. It is important to note that all, or most, of
the MI in the studies we cited (and in one case, conducted) may be representative of the
bulk melt during differentiation, but the representativeness has not been rigorously
evaluated. Thus, it remains unclear whether the variations in volatile contents observed in
MI represent variations in the composition of melts in equilibrium with the growing
crystal at the time of trapping, or instead are due to modifications after trapping.

In this study, we review published data for MI from the CF and IP volcanic areas
(Arienzo et al., 2016; Arienzo et al., 2010; Cannatelli et al., 2007; Cecchetti et al., 2002-
2003; Cipriani et al., 2008; Esposito et al., 2011; Fourmentraux et al., 2012; Mangiacapra
et al., 2008; Mormone et al., 2011; Roach, 2005; Stock et al., 2016), and we present new
geochemical data obtained from MI from the CF and IP volcanic fields. The new data are
from representative samples from the Neapolitan Yellow Tuff (NYT), Solchiaro, Bacoli,
Agnano-Monte Spina (AMS), Solfatara, and Fossa Lupara eruptions. These new data

supplement the database of MI compositions from the literature. We selected MI from the
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NYT, Bacoli, and Fossa Lupara eruptions because, to our knowledge, MI from these
eruptions have not yet been studied. Moreover, the selected samples represent a
significant range in time (~ 23.6 ka to 3.7 ka) and space within the CF and IP (Fig. 1). By
conducting new analyses within a rigorous analytical protocol, our goal was to develop a
better understanding of the reliability of MI as recorders of the pre-eruptive magma
history at CF and IP. We compared compositions of MI from this study with those of
bulk rocks and MI from the literature to better understand the correlation between MI and
bulk rock compositions (Appendix Table D). The compiled literature data, combined
with our new data, allow examination of possible correlations between the major element
and volatile contents of MI and the compositions of host phenocrysts (mainly olivine,
clinopyroxene, and sanidine). In addition, we compared compositions of experimentally
reheated MI with data from naturally quenched MI. The selected MI data for CF and IP
and mineral data were also compared with differentiation trends and mineral
compositions predicted using rhyolite-MELTS simulations to better understand if
crystallization occurred under volatile-saturated conditions (Ghiorso and Gualda, 2015).
Finally, we describe in detail a protocol to test the representativeness of MI in the
absence of melt inclusion assemblages. We demonstrate that re-evaluating MI data
following the method employed here reduces uncertainty and instills confidence that the

MI compositions are representative of the original pre-eruptive melt.

Geology and geochronology of Campi Flegrei and Procida

Island

Campi Flegrei (CF) and Procida Island (IP) are part of the Phlegrean Volcanic
District (PVD; Orsi et al., 1996). The PVD, along with the Somma-Vesuvius volcanic
district, is part of the Campanian Comagmatic Province, which in turn is part of the
circum-Tyrrhenian magmatic event that began in the Plio-Quaternary (Peccerillo, 1999
and references therein). Campanian magmatism is associated with NW-SE and NE-SW
trending normal faults that reflect the extensional/trans-tensional tectonic regime of the

Campanian margin (Milia, 2010 and references therein). The magmas generated in the



393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

210
211
212
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

CF and IP share a common origin dating back at least 40 ka (De Astis et al., 2004). The
oldest volcanic products in the entire Campanian Plain do not outcrop but, rather, were
collected from drill cores and give ages of 2.0 + 0.4 Ma (Barbieri et al., 1979), ~ 1 Ma
(Ippolito et al., 1975) and ~ 0.4 Ma (Brocchini et al., 2001).

Campi Flegrei

The Campi Flegrei (CF) volcanic field is located NW of Naples and is
characterized by the presence of several volcanic cones, rings, and caldera structures. The
volcanic framework at CF is interpreted by some researchers as representing a nested and
resurgent caldera that is partially submerged under the Bay of Pozzuoli (Orsi et al., 1995;
Orsi et al., 1992; Orsi et al., 1996; Perrotta et al., 2006) (Fig. 1). In this model, the outer
caldera rim was formed during eruption of the Campanian Ignimbrite (CI), the largest
eruption in the entire Campanian Plain, that occurred at ~39 ka (De Vivo et al., 2001;
Rolandi et al., 2003), and the inner caldera was formed later by the Neapolitan Yellow
Tuff (NYT) eruption at ~15 ka (Deino et al., 2004). While most workers agree that a
caldera at CF was formed during the NYT eruption, both the existence of an outer caldera
formed by the CI and the source of the CI are subjects to debate (Scandone et al., 2006).
Rosi and Sbrana (1987), Orsi et al. (1996), and Piochi et al. (2013) suggest that the CI
was erupted from a vent located in the center of the CF. In contrast, Scandone et al.
(1991) suggest that the CI originated from the Acerra depression northeast of Naples.
Another interpretation is that the CI was produced as the result of multiple fissure
eruptions that occurred along faults associated with the local extensional tectonic regime
(De Vivo et al., 2010; De Vivo et al., 2001; Rolandi et al., 2003). As summarized by De
Vivo et al. (2010), these eruptions fed by regional faults range in age from > 300 ka to 39
ka. Recent findings based on a new borehole at CF support this latter hypothesis that the
CI originated through fissure vents from outside of the CF (De Natale et al., 2016). In
particular, these researchers reported that the volume of the NYT is 2.5 larger than that of
the CI, and that the volume of the CI deposits contrasts with the hypothesis that the CI
formed a caldera structure larger than that associated with the NYT. In addition, we note
that there is some debate concerning the location of both the CI and the NYT caldera rims
(e.g., Orsi et al., 1996; Perrotta et al., 2006; Rosi and Sbrana, 1987; Vitale and Isaia,
2014). Regardless of the origin of the CI, we do not include data from MI from CI in this

8
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assessment because (1) no basaltic or trachybasaltic MI are reported from this eruption
(Marianelli et al., 2006; Signorelli et al., 1999; Webster et al., 2003) (2) it is generally not
possible to determine from the published studies which MI are bubble-bearing and which
are not, and (3) the origin of the CI and its possible genetic relationship to CF and PI are
still under debate for the reasons mentioned above.

The oldest outcropping volcanic products in the CF volcanic field, dated at 58+3
ka, are found only in escarpments in the northern part of CF (Pappalardo et al., 1999).
Activity occurring in the interval between these oldest recognized eruptions and the
eruption of the CI (~39 ka; De Vivo et al., 2001; Rolandi et al., 2003) is referred to as
pre-CI activity. Pre-CI activity includes the Punta di Marmolite and Cuma lava domes
(Gillot et al., 1982), two of the few lava domes at CF. Other mostly alkali-trachytic
explosive eruptions have been recognized during the pre-CI activity (Pappalardo et al.,
1999). A lithic breccia associated with an ignimbrite deposit and dated at ~39 ka (De
Vivo et al., 2001; Rolandi et al., 2003) formed after this period of relatively minor
volcanic activity. This lithic breccia, known as the Breccia Museo-Piperno formation,
outcrops at many localities around the CF and some authors suggest that it represents the
proximal phase of the CI (Orsi et al., 1996; Pappalardo et al., 1999; Perrotta et al., 2006).
Various estimates of the volume of material erupted during the CI range from 80 km?
(Thunell et al., 1979), to 150 km? (Civetta et al., 1997), to 200 km? (Rolandi et al., 2003),
to 300 km? (Fedele et al., 2007) DRE. The estimated volume is related to the ignimbrite
dated at ~39 ka by De Vivo et al. (2001).

Following the CI eruption, volcanic activity is characterized by several eruptions
referred to as “tufi biancastri” (whitish tuffs) that occur mainly in eastern CF (Di
Girolamo et al., 1984). These eruptions span a period from <39 ka to 15 ka, at which time
the NYT erupted. The age of the NYT is controversial because two different analytical
methods give significantly different ages. The NYT has been dated at 12 ka using the 4C
method (Alessio et al., 1971) and at ~15 ka using the 3°Ar/*°Ar method (Deino et al.,
2004). As mentioned above, the NYT is interpreted to be the eruption that formed the CF
caldera, and the NYT deposits cover an area of 1000 km? and consist of 40 km? DRE
(Orsi et al., 1992; Wohletz et al., 1995). Volcanic activity at CF that occurred after the

NYT eruption is referred to as “recent activity” by Di Girolamo et al. (1984). Di Vito et
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al. (1999) grouped post-NYT activity into three epochs of volcanic activity: epoch |
between ~15 and 10.6 ka; epoch II between ~9.6 and 9.1 ka; and epoch III between ~5.5
and 3.5 ka, based on a recalculated age reported by Smith et al. (2011). Di Vito et al.
(1999) recognized 64 volcanic units that were deposited after the eruption of the NYT.
The common characteristic of this recent activity is that eruptions were mostly explosive,
generated from monogenetic centers, and produced a small amount of material compared
to the NYT eruption. The eruptions of the first two epochs are located mainly near the
periphery of CF, while more recent eruptions occurred mostly in the interior of CF.
Recently, Lirer et al. (2011) recognized a new volcanic unit that they named Torretta. '*C
dating of samples from the Torretta unit revealed an age of 2.8 ka (Lirer et al., 2011). The
Monte Nuovo eruption in 1538 AD represents the only historical eruption at CF, and a
historical chronicle describes in detail the week-long eruption that formed a scoria cone

(Da Toledo, 1539).

Procida

The Island of Procida (IP) represents the products of volcanic activity from five
monogenetic volcanoes: Vivara, Terra Murata, Pozzo Vecchio, Fiumicello, and Solchiaro
(De Astis et al., 2004; Di Girolamo et al., 1984; Di Girolamo and Stanzione, 1973;
Pescatore and Rolandi, 1981; Rosi et al., 1988a; Rosi et al., 1988b). These volcanoes are
aligned along a NE-SW trending volcanic belt that extends from the Island of Ischia
southwest of IP to Monte di Procida to the northeast (Fig. 1). The importance of the NE-
SW transverse faults that are associated with the Appennine (NW-SE) normal fault in the
formation of the Procida Island volcanoes is noted in several studies (Acocella et al.,
1999; De Astis et al., 2004; Orsi et al., 1996). The IP volcanism has likely been active
over the last 80 ka, but no historical volcanic activity has been recorded (De Astis et al.,
2004 and references therein). Volcanic deposits resulting from the activity of the five
volcanoes are interlayered with deposits from higher magnitude eruptions sourced from
Ischia Island and CF. The most recent eruptive materials on Procida are associated with
the Solchiaro eruption. Paleosols at the base of the Solchiaro deposits have been dated at
17.3 ka and 19.6 ka, respectively by Lirer et al. (1991) and by Alessio et al. (1989). All of
the paleosol ages were based on radiocarbon (4C) measurements. Also, Alessio et al.

(1989) reported an age of 14.3 ka for a paleosol above the Solchiaro deposits. This

10
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suggests that the last volcanic activity at Procida occurred between 19.6 ka and 14.3 ka.
More recently, Morabito et al. (2014) recalibrated the 19.6 ka age reported by Alessio et
al. (1989) to obtain an age of 23.624 + 0.33 cal ka BP, moving the age of the Solchiaro

eruption to an earlier time.

Genesis and differentiation of magma at Campi Flegrei and Procida Island

The CF and IP magmatism is part of the Quaternary magmatism that is
characterized by high K,O contents in relatively primitive melts (Peccerillo, 2017). The
trend is defined by the potassic series starting from least evolved trachybasalts,
continuing through shoshinites and latites, and ending with trachytes and phonolites
(Suppl. Fig. 1a). There is no correlation between the age and compositional evolution of
rocks erupted in the Phlegrean area. The more primitive magmas of the last 23.6 ka
erupted along regional normal faults oriented NE-SW, along the NYT caldera border and
continuing through Procida and Ischia Islands (Acocella and Funiciello, 1999; De Astis et
al., 2004; Orsi et al., 1996). The volume of trachyte is much larger than the combined
volumes of trachybasalt, shoshonite and latite. In particular, the intermediate composition
rocks represent the smallest volume of erupted products.

Bulk rock major element compositions show trends mostly consistent with simple
fractional crystallization (D'Antonio, 2011 and references therein), in which olivine is the
predominant mineral phase in the least evolved members. Clinopyroxene is present
throughout the entire differentiation trend and predominates in the intermediate members,
and sanidine is more abundant in the more evolved stages. Plagioclase also crystallized
along the trend, with accessory phases chromite, Ti-magnetite, apatite and biotite
observed. Melluso et al. (2012) calculated that ~90% of fractional crystallization (alkali-
feldspar, plagioclase, clinopyroxene and olivine in order of abundance) is required to
generate the trachyte-phonolites from the latitic bulk composition of CF. However,
simple fractional crystallization models cannot explain either the variability of K for the
least evolved rocks, nor the K-enrichment of some of the more evolved rocks. Other
elements (e.g., Cl, Sb) show similar anomalous variability and enrichment (Villemant,
1988). The combination of isotopic and trace element data suggests that a mechanism of

percolation of fluids from the wall rock into the magma reservoir caused selective
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enrichment of K-Sb-Cl during fractional crystallization (Civetta et al., 1991; Villemant,
1988).

In several studies, the large variation of CO, and H,O concentrations of MI at CF
and IP is interpreted as the combination of continued degassing of volatile-saturated
magmas during ascent and multiple CO, fluxing events (Arienzo et al., 2016; Arienzo et
al., 2010; Mangiacapra et al., 2008; Mormone et al., 2011). In addition, Moretti et al.
(2013) studied major elements and volatiles in trachybasaltic and shoshonitic MI from
Ischia Island (West/South-West from CF and IP) and discussed the importance of CO,
fluxing for the geochemical evolution of magmas associated with Neapolitan volcanism.
It is important to note that studies advocating the importance of CO, fluxing corroborate
the hypothesis of selective enrichment of K, Sb, and Cl by percolation of fluids through
magmas at CF (Civetta et al., 1991; Villemant, 1988). However, D'Antonio and Di
Girolamo (1994) noted that the selective enrichment of K-Sb-Cl in mafic rocks from IP is
accompanied by the enrichment of other trace elements that are not compatible with
fluids (e.g., Nb). In addition, “shrinkage” bubbles in MI are reported in the MI from
studies advocating CO, fluxing, raising concerns about the reliability of the volatile data
recorded by MI (i.e., did the MI trap some CO, along with melt?). Alternatively,
D'Antonio and Di Girolamo (1994) invoked mixing between magma batches showing
different degrees of evolution (e.g., trachybasalt and latite) and having different Sr-
isotopic signatures to explain the observed trends.

There is a general agreement regarding the depth at which extensive
crystallization and possible CO, fluxing occurred (and is occurring) beneath the CF and
PI volcanic fields. Seismic reflection data suggest a partial melting zone ~1 km thick at
7.5 km beneath CF. In agreement with geophysical data, data from MI suggest that
extensive crystallization and CO, fluxing occurred at ~200 MPa (Arienzo et al., 2010;
Mangiacapra et al., 2008; Moretti et al., 2013).

Several hypotheses have been proposed for magma generation in the Phlegrean
area. Many researchers argue that magmatism originated from an intraplate-type mantle
source that was subsequently metasomatized by slab-derived fluids (Peccerillo, 2017 and
references therein). Trace element data for CF and IP mafic magmas are enriched in

LILE and LREE relative to MORB, and the trace element patterns are similar to those of

12



673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

intraplate basalts. In contrast, Ti, Y, and Yb are depleted relative to MORB and the HFSE
show lower degrees of enrichment relative to LILE and LREE, characteristics of an arc-
type signature (De Astis et al., 2004; Peccerillo, 1999 and references therein).

Volcanic rocks erupted from the CF volcanic field during the last 60 ka show
highly variable isotopic compositions. In particular, the 87Sr/36Sr ratio varies from
~0.7065 to 0.7086, 43Nd/*Nd varies from ~0.5124 to 0.5128, 206Pb/204Pb from ~18.90
to 19.25, 207Pb/?%Pb from ~15.65 to 15.77, and 2°8Pb/2%Pb from ~38.95 to 39.38 (see
Peccerillo 2017, Chapter 7 and references therein). The isotopic data document a general
increase in 37Sr/%¢Sr and decrease in '3Nd/'*Nd and 2°°Pb/2%Pb from older to younger
rocks. However, the same ¥7Sr/®0Sr increase and '3Nd/!#4Nd and 2°°Pb/2%Pb decrease is
noted with increasing MgO content (Suppl. Fig. 1b). The isotopic variability indicates
that simple fractional crystallization cannot be the only process responsible for the
geochemical trends defined by rocks of the CF volcanic field. Pappalardo et al. (2002)
interpret the correlation between #7Sr/86Sr and age to reflect crustal contamination. Thus,
the younger erupted magmas would have resided in the crust for a longer time, underwent
more extensive crustal contamination and, therefore, show higher 87Sr/36Sr. However, it is
important to note that the age - isotopic signature correlation is not observed if only the
NYT and post-NYT bulk rock data are examined (Di Renzo et al., 2011). It is also worth
noting that the NYT shows homogeneous Sr-isotope ratios, and based on this Gebauer et
al. (2014) suggest minimal wall rock contamination for NYT magmas. In contrast with
the interpretation of Pappalardo et al. (2002), Peccerillo (2017) argues that the correlation
between isotopic composition and MgO may suggest that hotter and less viscous mafic
magmas experience more contamination relative to more evolved, cooler and more
viscous magmas, as has been invoked for Alicudi volcano in the Aeolian arc (Peccerillo
et al. 2017 and references therein). According to this latter interpretation, the isotopic
variability is not necessarily controlled by residence time of magmas in the crust.

Although most of the major element trends at IP suggest simple fractional
crystallization, variability of incompatible elements and variability of isotopic
composition of bulk rocks suggest that open-system magma processes must have also
been involved. The most mafic rocks in the Campanian Province are found in the IP, with

few of the lithic lava clasts considered to be primitive (MgO up to ~11.5 wt% and Ni up
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to ~230 ppm; D'Antonio et al., 1999a). In addition, a juvenile sample from the Solchiaro I
deposits at [P indicates that lower Sr-isotopic ratios in the CF and IP (~0.7052) are not
restricted to lithic lava clasts (De Astis et al., 2004). The 87Sr/3Sr (0.7051 to 0.7065) of
IP bulk rocks is lower than that of CF rocks, and vice versa for *3Nd/'#*Nd. D'Antonio et
al. (2007) recognize two trends based on "B and 2°°Pb/2%Pb versus 37Sr/%0Sr systematics
of bulk rocks from CF, IP, and Ischia Island. They interpret one trend to represent
contamination of the mantle source by slab-derived fluids or sediment-derived melts. In
particular, the CF rocks are interpreted to have been generated by a transitional MORB-
type asthenospheric mantle contaminated by sediment-derived melts, while the IP rocks
were generated by the same mantle source contaminated by slab-derived fluid. The other
trend records crustal contamination during crystallization of volcanic rocks younger than
39 ka. In addition, D'Antonio et al. (2007) suggest that some rocks younger than 39 ka
were affected by mixing-mingling processes between chemically and isotopically distinct
magmas, based on disequilibria among mineral and groundmass. Mazzeo et al. (2014)
also studied lithic lava clasts from the Solchiaro deposits at IP and hypothesized that the
mantle wedge from which primary magmas at [P were sourced was contaminated by 2-
4% of slab-derived components represented by partial melts from shale and carbonates,
and aqueous fluids from the slab. It is important to note that the mafic rocks from CF are
not primitive. Consequently, Pappalardo et al. (2002) and Peccerillo (2017) emphasize
that an interpretation whereby the difference in isotopic composition between CF and IP

is related to different types of contamination of the source is speculative.

Sample description

Six new samples were collected to supplement existing data from the two
volcanic areas. Five are from CF and one is from the IP. The CF samples are
representative of five volcanic units erupted at different times in this volcanic field. The
six eruptions sampled are, from oldest to youngest: Fossa Lupara (also named Senga in
the literature), Solfatara, Agnano-Monte Spina, Bacoli, and Neapolitan Yellow Tuff for
CF, and Solchiaro from the IP (Table 1 and Appendix Table A).

The Fossa Lupara sample (RESE17: Fig. 1) consists of black, sharp-edged scoriae
<20 mm. The Fossa Lupara eruption has been dated at 3.82 ka by Di Vito et al. (1999),
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and Smith et al. (2011) recalculated the age to be 3.98-4.20 ka using a more recently
developed and more precise method to interpret the isotopic data. The scoriae were
selected from Fossa Lupara deposits ejected during the intermediate stages of the
eruption (Lirer et al., 2011). The scoriae are porphyritic with abundant phenocrysts of
clinopyroxene and subordinate sanidine and were sampled at the northeast sector of the
crater associated with this eruption.

One sample representative of the upper deposits of the Solfatara eruption was
collected close to the northwest crater rim of Solfatara (RESOS: Fig. 1), and consists of
centimeter-scale fragments of rounded pumice contained in pyroclastic brownish ash
layers. The pumices contain abundant sanidine and clinopyroxene. The age of the
Solfatara eruption was recalculated from earlier data to be 4.15-4.35 ka by Smith et al.
(2011) based on chronological data reported by Di Vito et al. (1999) and by Isaia et al.
(2009).

The Agnano-Monte Spina sample (REMS12: Fig. 1) was collected ~ 200 m
southwest from the top of Monte Spina. The sample consists of sharp-edged pinkish-grey
pumices representing a 30-cm thick layer. The pumices are well sorted, characteristic of a
fallout deposit. This layer of pumice also shows reverse grading suggesting that some
changes occurred during the deposition such us (1) progressive increase in initial gas
velocity, (2) change in vent morphology or, (3) increase in eruption column density (Self,
1976 and references therein). Abundant sanidine, clinopyroxene, rare biotite and olivine
were observed.

The Bacoli sample (REBAI: Fig. 1) was collected close to the northern rim of the
crater of the Bacoli volcanic formation in the western rim of CF caldera (12.8 ka, Di
Renzo et al., 2011; 8.58 ka, Fedele et al., 2011; 11.51-14.15 ka, Smith et al., 2011). The
sample consists of a yellow tuff containing abundant isolated euhedral sanidine and
clinopyroxene phenocrysts.

The Neapolitan Yellow Tuff sample (14.9 ka; Deino et al., 2004) was collected
from the eastern caldera rim (northwestern part of Naples urban area, Ponti Rossi;
REPRI11: Fig. 1). The sample consists of ash fall deposits with abundant sanidine and
clinopyroxene phenocrysts representing the unlithified facies of the NYT (this deposit is

referred to as Pozzolana, the material used for concrete production in Roman times). We
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selected only single phenocrysts showing euhedral habit and rim glass to avoid including
xenocrysts in our sample suite.

The Solchiaro sample (RESC2: Fig. 1) was collected on the northeastern coast of
IP and represents the distal unlithified facies of the Solchiaro deposits. The sample
consists of grey ash, brown lapilli, and isolated olivine, clinopyroxene, and sanidine

crystals [sample RESC2 in Esposito et al. (2011)].

Analytical methods

The samples selected for this study were gently crushed and individual phenocrysts were
hand-picked from the crushed material under a binocular microscope. Each phenocryst
was mounted on a 2.5 mm-diameter glass rod (Esposito et al., 2014; Thomas and Bodnar,
2002) using Crystalbond™ cement. Phenocrysts were polished on the top and bottom
surfaces and those crystals containing rounded to regular-shaped MI were selected for
study. After we selected 20-30 crystals (depending on size), the phenocrysts were pressed
into a one-inch diameter indium mount. Indium was used as the mounting medium to
prevent H-C contamination during secondary ion mass spectrometric (SIMS) analysis, as
occurs when epoxy mounts are used.

MI in the Fossa Lupara sample and one MI hosted in sanidine from the Agnano
Monte Spina sample were partially to completely crystallized as found. We performed
heating experiments on the crystallized MI using a Vernadsky heating stage (Sobolev et
al., 1980). The heating stage was calibrated according to the 1-atm melting temperatures
of silver (962 °C) and gold (1064 °C). During the heating experiment, a continuous flow
of He into the furnace of the heating stage prevented (or minimized) Fe-oxide formation
on the surface of Fe-rich phenocrysts. MI were heated until the 7" of homogenization (MI
containing only silicate melt) was reached. Following homogenization, the sample was
quenched rapidly to room temperature. The 7 uncertainty is ~ +5°C at 1064 °C. Heating
rates were varied during the run, depending on phase behavior of the MI (Esposito et al.,
2012).

The major element compositions of glasses and minerals were determined first
using a JEOL JXA 8900 electron microprobe (EMP) at the USGS (Reston, VA, USA).

The analyses were conducted using an accelerating voltage of 15 kV. The beam current
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was 10 nA and a defocused beam of 10 um diameter was used. For oxide concentrations
> 1 wt%, 1-sigma errors are < 2% relative, while for oxide concentrations < 1 wt%, 1
sigma errors are generally < 10% relative. Additional information relative to EMP
standards used for the analyses are included in Supplementary Table B.

Following EMP analyses, volatile elements (O, H, C, F, S, Cl) were measured by
SIMS (Cameca IMS 1280) at the Woods Hole Oceanographic Institution (Woods Hole,
MA, USA). We performed the analyses using '33Cs* as the ion source and the current
varied between 1.0 and 1.6 nA. For each spot analyzed, the surface of the sample was
pre-sputtered for 240 seconds to remove surface contamination. The size of the rastered
area was 30 pm x 30 um, and a 15 pm x 15 um spot in the center of the rastered area was
analyzed from 10 to 15 times in depth profile mode. We tuned the SIMS to count ions
related to masses '°0, 'H, 12C, 1°F, 32§, 3°Cl, and 3°Si. Ratios between ion counts per unit
time of each mass measured and ion counts per unit time of 3°Si were used to quantify the
volatile contents. Six basaltic to basaltic-andesitic glass standards were used for
calibration of the SIMS, and additional information on the glass standards is reported by
Helo et al. (2011). For the SIMS measurements, using glass standards with silicate
compositions that differ from MI compositions may introduce a matrix effect. However,
Hauri et al. (2002) showed that SIMS calibration curves for H,O, CO,, F, S, and CI
obtained using rhyolitic, andesitic, and basaltic glass standards do not show significant
differences below certain absolute concentrations — specifically, for H;O contents <2
wt% and CO, contents < 1000 ppm. Most of the volatile concentrations of the MI
reported in this study are below these upper limits. We used the calibration curves of
Esposito et al. (2011) to calculate volatile concentrations in MI. To avoid contamination
from the C-coating used for earlier EMP analysis, we adopted a specific protocol (see
also discussion by Esposito et al. 2014) to remove the C coating. In particular, ~5 pum of
sample was removed by polishing following EMP and before SIMS analysis, and the
SIMS analytical area was pre-sputtered for 290 s before data collection started. We
selected only flat depth profiles whereby the C counts did not vary significantly with
depth, and we continuously monitored the ion-count response image to confirm a

homogeneous carbon signal across the rastered area during analysis. Relative precision
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for CO,, H,0, F, Cl, and S by SIMS is <10% relative, based on repeated analysis of glass
standards (see Esposito et al, 2014; their Figure 14).

Results

Petrography of melt inclusions. Many (but not all) of the phenocrysts examined
contain MI and other mineral inclusions. Fluid inclusions are rare in the phenocrysts
studied. Various types of MI, based on phases present at room temperature, were
observed in all five samples as described below.

Sanidine, clinopyroxene, and plagioclase from Bacoli, Solfatara, Solchiaro, and
NYT samples contain MI filled with mostly glass. Most of these naturally glassy MI
contain one bubble in addition to the glass phase, and some contain glass plus bubble(s)
plus an associated mineral (most commonly apatite). In a few cases, naturally glassy MI
contain only glass (bubble-free MI). MI containing more than one bubble are found
mostly in sanidine phenocrysts. This is thought to represent bubble formation in the MI
after the melt has become sufficiently viscous to prevent the multiple bubbles from
coalescing into a single bubble. Bubble-bearing MI (glass plus one bubble) show similar
volume fractions of vapor (i.e., volumeyy,pe/volumeyy) in single phenocrysts selected for
our study, and the proportion of vapor never exceeds 5 volume %, suggesting that the
vapor bubble nucleated after trapping of a homogeneous silicate liquid (Moore et al.,
2015), i.e., vapor bubbles were not trapped along with the melt. It is important to note
that NYT MI show a larger proportion of bubble-free MI relative to MI from the other CF
and IP eruptions studied.

The phenocrysts selected from Agnano-Monte Spina and Fossa Lupara samples
contain partially to totally crystallized M1, in addition to naturally glassy MI as described
above. In particular, MI in sanidine from Agnano-Monte Spina are sometimes found
partially or totally crystallized, while partially crystallized MI are rarely found in
clinopyroxene. Most of the Fossa Lupara phenocrysts contain partially to totally
crystallized MI, but sometimes sanidine phenocrysts contain naturally glassy MI. Some
sanidine phenocrysts in the Fossa Lupara sample show decrepitation halos, suggesting
that the MI developed high fluid pressures after trapping and have lost some of their

volatiles via fracturing of the surrounding host (Cannatelli et al., 2016).
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In general, MI in all samples are ovoid or negative-crystal shape, but sometimes
slightly to highly irregular shapes were observed (Table 1). For this study, we selected
regularly shaped MI because irregularly-shaped MI are more likely to have leaked or
were in communication with the melt adjacent to the growing crystal for a prolonged
period of time, (Humphreys et al., 2008a; Humphreys et al., 2008b; Welsch et al., 2013)
or represent MI that have decrepitated (Maclennan, 2017). In addition, irregularly shaped
MI hosted in plagioclase may be the result of dissolution reactions and record a chemical
composition that is not representative of the melt in equilibrium with the host (Nakamura
and Shimakita, 1998). Size ranges from a few microns to ~300 um considering the
longest dimension, and we selected only MI > 20 um to assure that analytical spots for
EMP and SIMS would be contained entirely within the MI, thus avoiding contributions
from the surrounding host. Most of the MI are isolated in the cores of phenocrysts
without any geometrical correlation with their host (i.e., the MI are not obviously aligned
along crystal growth surfaces). Some phenocrysts contain more than one MI. Consistent
with the results of Esposito et al. (2014), MIA are rarely observed; where they are,
individual MI are < 20 pum, a size that is smaller than the optimal instrumental conditions
for analyzing major elements and volatiles.

Microthermometry. As mentioned above, most of the Fossa Lupara MI were
crystallized as found. For this reason, we performed heating experiments using a
Vernadsky heating stage to produce a homogenous glass before analysis. All MI-bearing
clinopyroxenes from Fossa Lupara show a homogeneous silicate melt phase upon heating
to ~ 1200°C and all were quenched at this temperature. Most MI contain only glass after
quenching from ~1200°C, but some MI developed a vapor bubble during quenching. MI
in sanidine phenocrysts from Fossa Lupara were quenched from ~1070°C and most MI
show only glass after quenching.

Major element compositions. Major element concentrations of MI are plotted on
Harker diagrams versus SiO; (Fig. 2). The major element compositions of MI from this
study (Table 2) overlap with published MI compositions (Arienzo et al., 2016; Arienzo et
al., 2010; Cannatelli et al., 2007; Cecchetti et al., 2002-2003; Cipriani et al., 2008;
Esposito et al., 2011; Fourmentraux et al., 2012; Mangiacapra et al., 2008; Mormone et
al., 2011; Roach, 2005; Stock et al., 2016) and with bulk rock compositions from the
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literature (Albini et al., 1977; Beccaluva et al., 1991; Brocchini et al., 2001; Cannatelli et
al., 2007; Capaldi et al., 1972; D'Antonio et al., 1999a; D' Antonio et al., 1999b; De Astis
et al., 2004; de Vita et al., 1999; Di Girolamo et al., 1984; Di Vito et al., 2011; Ghiara et
al., 1979; Mastrolorenzo and Pappalardo, 2006; Orsi et al., 1995; Orsi et al., 1992;
Pappalardo et al., 2002; Piochi et al., 2005; Piochi et al., 2008; Scarpati et al., 1993;
Tonarini et al., 2009; Tonarini et al., 2004; Turi et al., 1991; Villemant, 1988; Wohletz et
al., 1995) (Fig. 2).

Compositions of MI studied here define differentiation trends with higher degrees
of scatter relative to trends defined by bulk rock compositions — this is similar to trends
defined by data for MI from the literature. In particular, at the same SiO, concentration,
some major element concentrations (e.g., K,O and Na,0) span a wider range compared to
that for the bulk rocks (Fig. 2). This behavior is commonly observed in MI studies (Kent,
2008, and references therein). In general, the major element concentrations of MI plotted
as a function of SiO, show continuous differentiation trends (Fig. 2 a, b, d, and e). MI
compositions from this study mostly agree with differentiation trends for bulk rocks,
representing mainly fractional crystallization dominated by olivine plus clinopyroxene
crystallization for less evolved magmas, clinopyroxene for intermediate magmas, and
sanidine plus clinopyroxene for more evolved magmas.

Differentiation trends for TiO,, FeOyy, and P,Os (Fig. 2), as well as for AL,O;,
show poorer agreement compared to trends defined by bulk rock compositions from the
literature. This behavior is consistent with MI data reported in the literature for other
magmatic systems. For instance, TiO, contents of MI from this study show weak
correlations with crystallization indicators relative to bulk rock data from the literature
(Fig. 2d). For the least evolved MI compositions, TiO, concentrations span a wide range,
while for more evolved compositions TiO, concentrations are more restricted.

For the MI studied here, FeO,, behaves in a manner similar to TiO, (Fig. 2e). In
particular, less evolved MI show more scatter relative to the more evolved MI. Some MI
from the less evolved group (SiO, concentration ranging from ~47 to ~54 wt%) are FeO-
depleted relative to the bulk rocks. The Fe-poor MI are all hosted in clinopyroxene from
the Fossa Lupara sample. Some MI data from the literature for the Minopolil and Fondo

Riccio eruptions (Cannatelli et al., 2007) and for the Solchiaro eruption (Mormone et al.,
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2011) show the same behavior, and most of the MI are hosted in clinopyroxene (three MI
are hosted in olivine). In addition, a group of MI hosted in olivine and clinopyroxene
from the Minopoli2 and Fondo Riccio eruptions (Mangiacapra et al., 2008) show
extremely low FeOy, contents at intermediate SiO, contents. Also, some MI hosted in
clinopyroxene from the Astronil eruption (Stock et al., 2016) show a depletion in FeO,
relative to the bulk rock trend. The depletion of FeO may reflect Fe loss from the MI to
the Fe-Mg host via diffusion, as has been proposed and documented for other volcanic
systems (Danyushevsky et al., 2000). It is important to note that most of the Fe-poor and
less evolved MI from CF were heated experimentally. Some of the Fe-poor MI also show
slight depletion in Al,Os3, slightly higher CaO contents, lower Na,O contents, and slightly
higher K,O (Fig. 2).

Several evolved MI from this study show a slight depletion of Na,O relative to the
bulk rock geochemical trends, with the exception of MI from the Solfatara and Astroni
samples. Some of the bulk rock compositions show the same Na-depletion, and several
MI compositions reported in the literature show the same behavior. Na,O-poor MI are not
preferentially hosted in sanidine or clinopyroxene phenocrysts, and they include both
heated and naturally quenched MI. Na,O-poor MI can indicate that Na has been lost from
the MI by diffusion, and to test this hypothesis we calculated totals considering both
EMP and SIMS concentrations. Some of the Na-poor MI show ~ 100 wt% totals (Table
2), suggesting that Na loss is minimal. Also, there is no correlation between Na,O and
H,0 concentrations. In addition, the group of MI showing depletion of Na,O shows a
slight enrichment in K,O. Potassium should not increase as a result of Na loss by
diffusion (Morgan and London, 2005). It is also important to note that Na-loss should not
be significant at the conditions used to analyze major element concentrations (Hayward,
2012). The least evolved MI from this study, as well as those from the literature, show a
wide range of K,O concentrations. For instance, for MI with Si0, of ~50 wt%, K,O
varies by a factor of 6 (from ~1 to ~6 wt%) (Fig. 2b).

Among major and minor elements, P,Os shows the poorest correlation with SiO,
content. P,O5 concentrations of mafic and intermediate composition MI both from this

study and from the literature show considerable scatter (from ~45 to ~57 wt% SiO,, see
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Fig. 2 ), while evolved MI (from ~57 to ~66 wt% SiO,) show good correlations between
P,0s contents and crystallization indicators.

A group of MI hosted in plagioclase from the Bacoli eruption and one bulk rock
composition from the literature do not overlap with the general trends defined by MI
from the literature, or with bulk rock data for most of the major elements. The
compositions of plagioclase-hosted MI are Qz normative, an observation that is rare for
bulk rocks of CF and IP. These plagioclase-hosted MI show Na,O and K,O
concentrations consistent with CF and IP bulk rock differentiation trends, while Al,O;
and SiO, concentrations are slightly higher than the bulk rock differentiation trends (Fig.
2). Concentrations of TiO,, CaO, FeO, and P,Os are lower than those shown by the bulk
rock differentiation trends. The compositions of the MI hosted in plagioclase are not
representative of CF and [P magmatism, suggesting that plagioclase selected for the study
represent xenocrysts or that they formed under disequilibrium conditions.

Finally, we note that some of the individual bulk rock compositions project off the
main bulk-rock trend (Fig. 2), and these tend to lie along mixing lines that point toward
clinopyroxene or feldspar compositions. This suggests that some of the bulk rock
compositions represent mixtures of melt plus entrained crystals. These “anomalous” bulk
rock compositions represent a small fraction of the complete dataset.

Volatiles. Among all volatiles analyzed, Cl shows the best correlation with SiO,
concentration, especially for less-evolved melts, while S shows a weak correlation, and
H,0, CO,, and F show no correlation with SiO, (Fig. 3). Considering MI hosted in all
phases, we observed two important features: (1) volatile concentrations of the MI studied
here overlap with volatile concentrations of MI from CF and IP reported in the literature
and (2) volatile concentrations of MI from this study are higher relative to CF and IP bulk
rocks reported in the literature. This latter observation highlights the limitations of using
bulk rocks to determine volatile compositions of magmas, because these samples have
partially or totally degassed during ascent and eruption onto the surface. Conversely, MI
are more likely to retain the original pre-eruptive volatile content during ascent and
eruption.

Chlorine concentrations range from 913 to 7931 ppm. Chlorine behaves

incompatibly through most of the magmatic differentiation showing a good correlation
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with SiO, <60 wt% (0.85 r?), but for SiO, >60 wt% Cl shows a sub-vertical trend from
7710 to 1188 ppm (Fig. 3a). This vertical trend is observed for all MI hosted in sanidine.

Sulfur concentrations range from below detection limit (bdl) to 2884 ppm. Sulfur
generally decreases from less evolved MI to more evolved MI. The S contents of MI are
more scattered for less evolved MI, while S is more clustered for more evolved
compositions (Fig. 3b).

Concentrations of H,O in the MI studied here range from bdl to 2.54 wt%. In
contrast to Cl and S, H,O shows poor correlations with SiO,, but for MI with >60 wt%
Si0, a sub-vertical distribution is observed (Fig. 3d). It is important to recognize that the
H,0-Si0, trend for MI with <60 SiO, is defined by only five MI.

Fluorine concentrations range from 81 to 3860 ppm. Fluorine concentrations of
MI show a behavior similar to CI, but the correlation is weaker. For MI >60 SiO, the
distribution is sub-vertical as observed for Cl and H,O. Since there are only five MI
showing Si0, <60 wt%, the apparent vertical trend may reflect the small sample size
(Fig. 3e).

Carbon dioxide concentrations range from below detection limit to 258 ppm with
one MI from the NYT sample showing 1046 ppm (Fig. 3¢). Carbon dioxide does not
correlate with SiO, even when a single eruption is considered (Fig. 3c), and H,0O-CO,
systematics do not define a trend (Fig. 4a). In contrast, MI from individual eruptions are
considered, the NYT MI show a positive trend (Fig. 4b). The correlation shown by NYT
MI should be viewed with caution because only three analyses are available.

In general, volatile abundances of MI do not correlate with each other, with the
exception of Cl vs F (Fig. 4c) which shows a strong positive correlation. This suggests
that Cl and F are retained in the melt during the initial and intermediate stages of
differentiation (trachybasalt-shoshonite-latite). During the last stages of crystallization, Cl
likely partitions strongly into the fluid phase while F is retained in the melt.

Host mineral compositions. MI from this study are hosted in clinopyroxene (cpx),
sanidine, and plagioclase. The ferrosilite component of cpx hosting MI ranges from 6 to
18 mol%, the wollastonite component from 46 to 49 mol%, and the enstatite component
ranges from 34 to 48 mol% (Suppl. Fig. 2 c¢). The MI compositions and host phase

compositions are both consistent with trapping of a melt that was in equilibrium with cpx
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during crystallization. For example, the SiO, concentration of MI correlates with the
ferrosilite component. Note that MI data show some significant scatter, and we will
discuss the reasons for this in the discussion section. MI and clinopyroxene host
compositions are consistent with data reported in the literature.

The sanidines containing MI analyzed in this study possess 54 to 86 mol%
orthoclase component, with most in the range 76-86 mol% (Suppl. Fig. 2 a and b). The
Or-poor sanidines are restricted to the Solchiaro sample and show up to 42 mol% albite
component. No correlation is observed between host composition and SiO, concentration
of MI (Suppl. Fig. 2 a). One possible explanation is that sanidine began to crystallize over
a restricted interval of SiO, concentrations (see discussion section for more details).
However, a good correlation is observed if the orthoclase component of the host is
plotted versus Si0,/CaO ratio of the MI (Suppl. Fig. 2 b). The SiO,/CaO ratio is likely a
better crystallization indicator at this differentiation stage, and, also, this ratio is not
affected by PEC or host dissolution (see the discussion section for more details). The
orthoclase component decreases and the albite component increases as crystallization
progresses. This behavior was reported and documented by Melluso et al. (2012) who
showed that the NaO content of the alkali feldspar increases in the more evolved bulk
rocks.

Only six MI from this study and from the literature combined are hosted in
plagioclase. The anorthite component ranges from 75 to 81 mol%, and the anorthite
component of the host correlates with the SiO, concentration of the MI. This observation,
based on only six MI, should be taken with caution.

Post entrapment crystallization or dissolution. In this study we did not attempt to
correct for changes in MI composition associated with post entrapment crystallization
(PEC) owing to the lack of a reliable model to implement the correction. We note that
Kress and Ghiorso (2004) report that an algorithm incorporated into the MELTS platform
could be used to estimate PEC based on the composition of the MI and the host for
various phenocrysts, including pyroxene and feldspar. We attempted to apply this method
to correct the MI of this study but the results indicated that ~ 90% PEC had to occur for
many MI. This value is not realistic and is not supported by petrographic examination of

the MI. As such, we consider bubble-free MI having compositions that overlap with bulk
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rock compositions to have experienced only minimal PEC, and have assumed that the

compositions of the MI reasonably approximate the original melt composition.

Discussion

Our interpretation of geochemical trends in MI from CF and IP is based on new data from
this study as well as published data for CF and IP. First, we focus on major element
concentrations of MI that do not follow the general trends defined by bulk rock
compositions. We test if the MI compositions are representative of the silicate melt in
equilibrium with the host mineral, based on major element compositions. We discuss the
significance of anomalous MI, and we exclude the non-representative anomalous MI
from the interpretation of volatile evolution at CF and IP. Second, we focus on volatile
and major element concentrations of normal MI that have trapped and preserved a
representative sample of the melt at the time of trapping. We discuss the significance of
volatile concentrations of all MI, and we select only the bubble-free MI to investigate

crystallization trends using the rhyolite-MELTS code (Ghiorso and Gualda, 2015).

Significance of Anomalous MI

Anomalous melt inclusions are those whose compositions cannot be reasonably inferred
to represent compositions of melts along a fractionation trend. Below we discuss the
anomalous MI that were identified and possible processes that may have produced the

anomalous compositions.

AL O3 and P,O5 anomalies of MI

Several processes can lead to anomalous Al,O5; and P,Os concentrations in MI. These
anomalous compositions can represent the trapping of a boundary layer associated with
rapid crystal growth rates (e.g., Baker, 2008), or could represent trapping of melt
produced as a result of dissolution-reaction-mixing (DRM) processes in the mush zone
(Danyushevsky et al., 2004). Alternatively, these anomalies can be artifacts generated as
a result of overheating during laboratory heating experiments. In this section, we discuss

which processes are likely responsible for the anomalous MI observed at CF and IP.
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As reported above, several MI are enriched in Al,O; relative to bulk rocks in
differentiation plots. Including MI from the literature, we observed that Al,O; is one of
the major components that shows large deviations from bulk rock geochemical trends. MI
hosted in clinopyroxene show the largest variations for Al,O; (Fig. 5a). At intermediate
CaO concentrations (between 5 and 8 wt%), some MI hosted in clinopyroxene show
AL Oj; contents that are elevated relative to bulk rocks. At high CaO concentrations, other
MI hosted in clinopyroxene shows anomalously low Al,O3 concentrations relative to the
bulk rocks. It is worth noting that a few MI hosted in olivine show a slight enrichment in
Al,O5 content. Experimental studies suggest that host-incompatible element
concentrations of MI could be affected by boundary layer process. In particular, Faure
and Schiano (2005) reported that MI trapped in fast growing olivine show a significant
enrichment in Al concentration. However, boundary layer effects alone cannot explain
the CaO vs. Al,Os deviations of MI from the bulk rock trends. Interestingly, the Al,Os-
poor MI were all reheated in the laboratory, while the most of the Al,O5-rich MI are
naturally quenched (Fig. 5b). These Al,O3-rich MI show low TiO,, FeOy, and MgO, and
this observation is consistent with high degrees of PEC or with a plagioclase component
added to the “normal” CF melt composition. However, it is important to note that most of
the Al,O3-rich MI also show elevated P,Os and some show high CI concentrations,
consistent either with trapping of apatite along with the melt or that some MI hosted in
clinopyroxene trapped a boundary layer melt that was enriched in P (Baker, 2008).

For most of the Al-rich MI, the P,Os enrichment cannot be attributed to PEC. If
we consider the Al-rich MI showing the highest P,Os concentration [1.38 wt%, “FRC2-
P7-M1” from Cannatelli et al. (2007), see database Appendix Table D] and the BR
showing the highest P,Os concentration (0.6 wt%, “s 97110PNA-S”), ~ 57% PEC would
be required to bring the MI composition into coincidence with the BR trend. With this
amount of PEC other phases in addition to the host would also be crystallizing in the MI.
Also, the Al-rich MI under consideration was reheated in the lab, and was quenched
when the MI homogenized, indicating only minor PEC if the quenching occurred from a
temperature that was lower than the trapping temperature. Also, at 57% PEC the AL,O;
concentration should have been ~11 wt%, a value that is much lower than the BR with

similar extent of differentiation. To explain the P,Os enrichment of FRC2-P7-M1 only
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requires ~2% apatite component, while the enrichment of Al,O; would require a ~23%
plagioclase component.

It is generally assumed that boundary layer processes would affect compositions
of smaller inclusions to a greater extent compared to larger inclusions being trapped at
the same crystal-melt interface. Esposito et al. (2011) found no correlation between the
MI size and the P,Os and K,O concentration, suggesting that boundary layer processes
alone cannot explain the Al,05-P,05 MI trends. Furthermore, an inverse correlation
between the size of MI and the concentration of slow diffusing elements should be
expected only if there is evidence that all the MI being considered trapped the same melt.
In other words, we cannot compare data for a group of MI if there is no evidence that
each MI was originally trapped from the same bulk melt. This fact underscores the
importance of studying MIA (Bodnar and Student, 2006) to test for correlations (if any)
between MI composition and size. With the assumption that all MI comprising the MIA
trapped the same melt, the correlation between size and concentration of slow diffusing
elements can be used to test whether boundary layer processes significantly affected the
composition of those MI, and corrections to determine the original trapped melt
composition can be proposed.

In this study, all MI hosted in sanidine show similar compositions and show no
correlation between size of the MI and the K,O concentration (Suppl. Fig. 4), suggesting
that boundary layer processes did not affect the composition of sanidine-hosted MI. The
selective enrichment of major and trace elements can be interpreted as the result of
dissolution-reaction-mixing (DRM) in a mush zone at the interface between a magma
body and wall rock (Danyushevsky et al., 2004; Esposito et al., 2011). Thus, the
enrichment of Al,O3 can be explained by DRM between plagioclase and melts at various
stages of evolution. Combined enrichment of Al,O3 and P,Os can represent DRM
between less evolved melt and mush zone material of more evolved magmas rich in
plagioclase and apatite beneath CF and IP. The DRM interpretation implies micro-scale
heterogeneity that results when a less evolved melt ascends and interacts with a
preexisting mush zone. In particular, the DRM interpretation corroborates the hypothesis

that basaltic and trachybasaltic magmas interacted with a mush zone consisting of
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cogenetic evolved latitic and trachytic-phonolitic magmas at CF and IP, as reported in
other studies (D'Antonio, 2011 and references therein).

As reported above, some of the heated and less evolved MI hosted in
clinopyroxene show enrichment in CaO and MgO, and depletion in Al,O3, TiO,, and
Na,O. These anomalies indicate that MI have likely been over-heated in the laboratory
and the resulting composition of MI shows dilution of clinopyroxene-incompatible
elements and enrichment in clinopyroxene-compatible elements (Fig 5b). We attempted
to correct compositions of reheated MI hosted in clinopyroxene by adjusting the CaO and
Al,Oj5 to the regression line of the bulk rock data or to the bulk rock data “cloud” in the
CaO vs. Al,Oj3 plot (Suppl. Fig. 3a). This correction suggests that 30 to 33% of host
dissolution would have occurred during heating. However, after this correction, FeO,
K,0 and P,0Os still show anomalous concentrations (Suppl. Fig. 3 b, ¢, and d). In fact, a
“correction” for 30-33% host dissolution tends to drive both K,O and P,O5 towards more
anomalous compositions. This suggests that a simple host dissolution correction cannot
be used to restore the original MI composition.

Heated and more evolved MI hosted in sanidine show higher K,O concentrations
relative to unheated and more evolved MI (Suppl. Fig. 4), similar to MI hosted in cpx. MI
showing anomalous compositions for some major elements may also show volatile
concentrations that are not representative of the silicate melt that was in equilibrium with
the host at the time of trapping. For instance, if the anomalous composition of a MI is the
result of DRM, the MI volatile budget could be modified, and the concentrations of
individual volatile components could be differentially affected. If the wallrocks involved
are dominantly composed of anhydrous phases, concentrations of all volatiles would be
lowered by simple dilution (Danyushevsky et al., 2004; Esposito et al., 2011).
Alternatively, if the wallrocks contain carbonates, as has been inferred for Vesuvius (Gilg
et al., 2001) and Merapi (Deegan et al., 2010), the concentration of CO; in the magma
could be increased by DRM processes. The eruptive products at CF lack carbonate-
bearing xenoliths or skarn materials (D'Antonio, 2011). This suggests that DRM at CF
should lower the volatile contents of the melts, and this is consistent with observations by
Esposito et al. (2011) who reported very low S, CO, and CI concentrations of some

anomalous MI and compositions plot towards the origin on S-CO,-Cl vs Zr binary
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diagrams. The low concentration of volatiles is expected for overheated MI. Even though
the lowering of the volatile concentration caused by dissolving excess host during the
heating experiment is likely insignificant, two additional issues are associated with
overheated MI. If MI are heated to a temperature above the “true” trapping temperature,
the total amount of time that the MI would have been exposed to “high” temperatures
will be longer, compared to heating to a lower temperature at the same rate. This, in turn,
translates into a greater likelihood to lose H" by diffusion (Bucholz et al., 2013; Mironov
and Portnyagin, 2011). Hydrogen can also be lost from the MI in nature (before
eruption), leading to an increase in the homogenization temperature of the MI and
requiring heating to higher temperatures to achieve homogenization during re-heating

experiments in the lab.

Fe exchange

Numerous studies have documented Fe loss from MI based on the negative
correlation between FeO,, of the MI and the composition (Fo mol%) of the host, as well
as the lower FeOy in the MI relative to bulk rocks and matrix glasses of the same
magmatic system at comparable degrees of differentiation (Danyushevsky et al., 2000;
Danyushevsky et al., 2002b; Esposito et al., 2011; Norman et al., 2002; Sobolev and
Danyushevsky, 1994; Yaxley et al., 2004). Six MI from this study show anomalously low
Fe concentrations relative to the main differentiation trend defined by bulk rocks (Fig. 2
e). Three MI are hosted in plagioclase from the Bacoli eruption, and the other three MI
are hosted in clinopyroxene from the Fossa Lupara eruption, and these were heated in the
laboratory to obtain a homogeneous glass. The Fe-poor MI hosted in plagioclase from
Bacoli are discussed in a later section because, in addition to anomalous FeOy;
concentrations, these MI show anomalous compositions for most of the other major
elements. The lower FeO concentrations (from 4.1 to 6.2 wt%) of Fossa Lupara MI are
consistent with overheating during experiments owing to the low FeO concentrations of
clinopyroxenes hosting these MI (3.7 to 4.5 wt%). These MI show elevated
concentrations of CaO and MgO and a general depletion of the other major elements
(Fig. 5 c and d). The effect of overheating can be observed in most of the MI hosted in

clinopyroxene from this study and in MI from the literature. In fact, most of the reheated
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MI (red triangles in Fig 5 d) that fall outside of the field defined by bulk rocks and can be
distinguished from the unheated MI (blue triangles in Fig. 5 d) based on their generally
lower FeOy, concentrations and slightly elevated CaO contents.

Roedder (1979) reported that homogenization temperatures obtained from MI
might be higher than the temperature of trapping owing mainly to three factors: (1)
inadequate time for re-equilibration (heating rates during experiment are too fast), (2)
loss of hydrogen or water from hydrous MI (which increases the liquidus temperature
relative to more H,O-rich compositions), and (3) thermal gradients in the stage. In
addition to these factors, heating beyond the original trapping temperature would be
required to homogenize the MI if it did not originally trap a single homogeneous silicate
melt phase (Klébesz et al., 2015; Student and Bodnar, 2004). Anomalously high
homogenization temperatures can also result if the MI original trapped a silicate melt plus
a mineral inclusion (see Figure 1-15 in Bodnar and Student, 2006). Small minerals
trapped along with melt might be easily misidentified as daughter crystals, although this
interpretation can be ruled out by comparing the final quenched glass compositions
because MI containing trapped solid(s) will be enriched in components that are major
constituents of the trapped mineral phase(s) (e.g., P,Os enrichment if the co-trapped
mineral inclusion is apatite). Finally, homogenization temperatures in excess of trapping
temperatures will result during re-heating if an MI has been affected by leakage after
trapping (see Figure 1-3, D and E in Bodnar and Student, 2006). This last possibility can
often be ruled out with careful petrographic analysis of the studied MI. Even though it is
important to understand which factors could have affected the MI analyzed here to
produce elevated homogenization temperatures, the overheating observation highlights
the importance of performing heating runs through kinetic experiments if the correct (or
approximate) temperature of trapping is required (Danyushevsky et al., 2002a). An
additional consideration is that heating stage experiments are performed at atmospheric
pressure. Because the phenocryst host precipitated at pressures higher than ambient (1
atm) pressure, the pressure in the MI at ambient laboratory pressure would necessarily be
lower than that at trapping owing to the lower confining pressure, thus requiring heating
to temperatures higher than the formation temperature to produce a single homogeneous

melt phase.
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In addition to overheating, post-entrapment loss of FeO from the MI could have
contributed to the observed depletion in FeO,y. In particular, a few MI, which were not
heated in the laboratory, show low FeO, concentrations relative to the differentiation
trend defined by bulk rocks, suggesting diffusive Fe loss. MI data from the literature also
suggest that diffusive Fe loss has affected some MI from CF and IP. Esposito et al.
(2011) studied samples representative of the Solchiaro eruption and reported a negative
correlation between FeO,,; concentrations of MI and the Fo content of the olivine host.
For this reason, Esposito et al. (2011) corrected MI compositions for diffusive Fe loss,
and here we use the corrected compositions. Similarly, Mangiacapra et al. (2008) studied
representative samples of Fondo Riccio and Minopoli2 eruptions and reported a group of
MI showing FeOy < 1 wt%, which suggests some MI were affected by Fe loss. It is
important to note that the Fe-poor MI reported by Mangiacapra et al. (2008) do not show
anomalous concentrations for the other major elements. In addition, MI data from the
literature show a wide range of FeO,, concentrations for SiO, <55 wt%, and more
evolved MI show FeO,,; concentrations that are consistent with the bulk rock FeO,
versus S10, trend, indicating that more evolved MI are less affected by Fe loss/gain.
Because MI examined here show evidence that the original MI composition has been
modified either by diffusive Fe loss or overheating, we question whether volatile contents
obtained from the MI are representative of CF and IP pre-eruptive melts. The three
overheated MI from the Fossa Lupara eruption studied here show the lowest volatile
contents among all the MI considered (including the MI data from the literature),
supporting the interpretation that Fe-poor MI and MI that were overheated in the
laboratory should be avoided when studying volatile evolution in magmatic systems.

Considering data from this study and from the literature, not only do MI from CF
and IP show evidence for Fe loss, but also some MI show evidence that the Fe
concentration has increased. For instance, a group of MI hosted in olivine from the
Solchiaro eruption (Mormone et al., 2011) shows higher FeO,, concentrations relative to
the trend defined by bulk rock compositions (Fig. 5 b). These MI were not reheated in the
laboratory. It is important to note that the Fe-rich MI reported by Mormone et al. (2011)
are also depleted in MgO. In particular, the MgO concentrations of the MI reported by
Mormone et al. (2011) range from 4.2 to 6.5 wt%, with three MI showing MgO from 0.5

31



1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

to 1.7 wt% (see Table 1 by Mormone et al., 2011), values that are much lower than the
respective bulk rock compositions (8.58 wt%; sample Pro7/11 by De Astis et al., 2004).
Mormone et al. (2011) interpreted the MI based on EMP data, arguing that the correction
for PEC was not necessary. Moreover, Fe-rich and Mg-poor MI described by Mormone
et al. (2011) are difficult to reconcile based on PEC because, when olivine crystallizes on
the MI wall, both the MgO and the FeO,, contents of an MI should decrease because the
FeO content of the olivine host that crystallizes on the wall is generally higher than the
FeOq, content of the initially trapped melt.

Different processes can be proposed to explain the enrichment in FeOy, of a MI.
First, the Fe-rich MI can result from Fe diffusing into the MI from the olivine host during
re-equilibration due to natural overheating and melting of some olivine from the MI wall.
In fact, as more olivine component is added to the MI, the melt must decrease its Mg# to
be in equilibrium with its host (Danyushevsky and Plechov, 2011 and references therein).
For the same reason, Fe gain will be accompanied by Mg loss. Second, natural
overheating can cause dissolution of a pre-existing Fe-oxide. In their study of re-
homogenized MI hosted in olivine from scoria and basaltic lavas, Rowe et al. (2006)
reported that several MI show higher FeOy, contents relative to bulk rocks and suggested
two explanations (1) dissolution of olivine host and (2) dissolution of co-trapped mineral
inclusions such as chromite, sulfide, and magnetite. In the case of the Fe-rich MI from CF
and IP, the Fe gain can be explained by natural overheating of MI originally containing
co-trapped chromite. This natural overheating could be due to less evolved/hotter magma
mixing with the olivine-bearing magma or to olivine sinking to hotter levels of the
magma reservoir. These processes are consistent with reverse zoning of olivine as
reported in several studies (e.g., D'Antonio and Di Girolamo, 1994) and the presence of
chromite inclusions in olivine from Solchiaro (Esposito et al., 2011). The Fe-rich MI
from CF and IP show significantly lower SiO, compared to other MI from these
locations, and the SiO; vs Al,O; trend points towards chromite composition, supporting
an interpretation that melting of a co-trapped chromite is responsible for the elevated Fe
contents. It is also important to note that some of the Fe-rich MI were defined by

Mormone et al. (2011) as exhibiting "high" or "low" degrees of crystallization. An
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enrichment of FeOyy can result from measuring a heterogeneous (“high” or “low”

crystallized MI) material containing Fe-oxides.

TiO; variability of less evolved MI

In this study, MI show TiO, contents spanning a wide range, particularly for less
evolved MI that vary from ~0.5 to ~1.7 wt% TiO,. This behavior is consistent with the
wide range in TiO, concentrations of MI reported in other studies (Cannatelli et al., 2007;
Esposito et al., 2011; Mormone et al., 2011). In particular, Esposito et al. (2011) reported
Ti0,-rich MI containing up to ~2.4 wt% TiO, and TiO,-poor MI with concentrations as
low as 0.4 wt%, and interpreted these anomalies to be the result of diffusion-mixing
reaction in the mush zone. In contrast to MI, TiO, concentrations of less evolved bulk
rocks at CF show less variation for the same degree of differentiation (Fig. 2 d). It is
worth noting that TiO, and SiO, show positive trends for less evolved IP bulk rocks,
while the bulk rocks of CF show a quasi-horizontal TiO, vs. SiO, trend (see Fig. 2 d).
One interpretation is that this difference indicates that crystallization of Ti-magnetite

started earlier in the evolution of CF magmas compared to magmas associated with IP.

Anomalous plagioclase-hosted MI from the Bacoli eruption.

As reported in the results section, three MI hosted in plagioclase from the Bacoli
eruption do not adhere to most of the differentiation trends defined by bulk rock
compositions (Fig. 2 a to e). The MI are Qz-normative, which is rare for melts of CF and
IP. The origin of these MI may be interpreted in three ways: (1) the melt may have been
locally affected by dissolution-reaction-mixing (DRM) (Danyushevsky et al., 2004 and
references therein), (2) the plagioclase containing these MI may be xenocrystic and
formed in a different (temporal and/or spatial) part of the overall magmatic system, and
(3) the melt in plagioclase may be representative of the magma chamber/country rock
interface. It is important to note that these three MI show lower major oxide totals
relative to the other MI of this study (from 89.6 to 94.4 wt%). Unfortunately, we cannot

assess the origin of these anomalous MI at this time.

Summary of the major element anomalies observed in MI data
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In summary, the comparison between MI data and whole rock data indicates that
some MI show anomalous compositions that do not follow the bulk rock trend, and these
compositions cannot be explained by the main differentiation trend. The anomalous MI
compositions cannot be corrected by simply adding aliquots of mineral host back into the
melt (PEC correction) or by subtracting the host mineral composition from the melt
composition (host dissolution correction). MI showing anomalous compositions either
trapped a melt that was not in equilibrium with the host (DRM or boundary layer
processes), or the composition was modified by processes other than simple PEC or host
dissolution after trapping. For these reasons, we conclude that anomalous MI likely
record volatile contents that are not representative of the melt that was in equilibrium
with the growing phenocryst host. Moreover, most of the processes invoked to produce
anomalous MI can also affect the volatile concentrations of melt (glass) owing to the
dependence of volatile solubility on the major element composition of melts (Papale et
al., 2006; Shishkina et al., 2010). In addition, trapping of apatite inclusions within the MI
as a component of DRM can affect the Cl, F, and H,O concentration of the melt. We
recommend that MI showing anomalous major element concentrations should not be
selected for volatile analysis because the volatile concentrations of these MI are likely not
representative of the magmatic system. If the major element composition of the MI is not
known, one cannot know that the MI composition is anomalous, and, thus whether the
volatile content of that MI is representative. Therefore, it is fundamental that each MI is
analyzed to determine major element composition before it is analyzed for volatiles. Even
though this study is focused on CF and IP volcanic fields, anomalous MI are reported in
many other volcanic systems (Danyushevsky et al., 2004 and references therein), and
these same conclusions and recommendations apply to all such anomalous MI.

In the following sections, we interpret and discuss the volatile budgets of MI from
this study and from the literature. We do not consider MI showing anomalous major
element compositions in this assessment. Similarly, we exclude any MI from the
literature for which major element compositions are not reported. Additionally, MI
hosted in plagioclase were not included because the three MI hosted in plagioclase that
we analyzed all showed anomalous compositions relative to the bulk rocks. It is

important of note that our data filtering does not eliminate MI affected by PEC but only
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MI that could not be corrected by simply adding or subtracting the mineral host to the
anomalous MI. In the following discussion we use ratios of elements that are
incompatible with the host because these ratios should not be affected by PEC (e.g., Lima
et al., 2003). Also, as noted above, while it is possible to apply relatively robust PEC
corrections for MI hosted in olivine (Danyushevsky and Plechov, 2011), reliable models

are not available to correct for PEC for MI hosted in clinopyroxene and feldspar.

Evolution of volatile concentrations of MI

Several studies reported bubble-bearing MI in samples from CF and IP, but fewer
studies have identified which MI (bubble-bearing or bubble-free) correspond to a specific
volatile analysis. One exception is the work of Esposito et al. (2011), who identified each
MI as either bubble-bearing or bubble-free before exposing the MI at the surface of the
host for analysis. Based on recent studies (e.g., Aster et al., 2016; Moore et al., 2015), it
is not possible to determine if the reported volatile content of an MI represents the actual
volatile content of the trapped melt or represents only a portion of the total volatile
budget in the original melt if the type of MI (bubble-bearing versus bubble-free) is not
reported. Thus, the following discussion relies only on data from bubble-free MI that do
not show anomalous major element compositions.

By including only bubble-free MI data in this interpretation, it is not necessary to
account for any volatiles that might have been lost to the bubble after trapping of a single
homogeneous silicate melt phase. Even though bubble-free MI may have been affected
by H loss, we argue that extensive diffusive H loss would lead to the formation of a vapor
bubble (Steele-Maclnnis et al., 2017). Thus, the lack of a bubble supports the
interpretation that H loss was not significant for the bubble-free MI considered here.
Moreover, we do not observe any correlation between CO, and H,O as would be
expected if all MI started with the same volatile contents, and each MI experienced
different degrees of H loss (Bucholz et al., 2013). Also, If diffusive H loss is only
controlled by redox reactions of the MI-host system (Danyushevsky et al., 2002a), then it
is unlikely that a significant amount of H,O was lost from the MI because magnetite that

would be produced by this process it is not observed in the studied MI.
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Finally, it is important to note that filtering the MI data based on the presence or
absence of a bubble may mask the complete variability represented by all the MI. In fact,
it is more likely that a volatile-rich MI will form a bubble after trapping, compared to an
MI that is relatively volatile-poor. Considering only bubble-free MI may unintentionally
exclude some MI that trapped melts with higher volatile contents. We suggest that the
best practice would be to analyze the volatile contents of the MI bubble and correct the
original volatile content using methods described in the literature (e.g., Esposito et al.,
2011; Mironov et al., 2015; Moore et al., 2015). In the next section, we interpret the H,O-
CO, data of MI from CF and IP volcanic fields considering only bubble-free MI.

H,O0 and CO; degassing, crystallization and mixing of basaltic-trachybasaltic
magmas

The volatile content of the glass phase in MI can be used as a geobarometer
because CO, and H,O solubilities in silicate melts are highly pressure dependent (Blundy
and Cashman, 2008). A large range in CO, contents of MI, combined with a narrow
range of H,O concentrations, is often interpreted to reflect MI trapping along a degassing
(ascent) path because CO; is lost from the melt early and before significant H,O loss
occurs. In this scenario, MI are trapped during crystallization of phenocrysts at different
depths (pressures) as the magma ascends through the crust. Alternatively, different
phenocrysts might trap MI from essentially the same silicate melt at various depths
within a stagnant plumbing system. Thus, H,O-CO, systematics within a single eruptive
event can support or dismiss the hypothesis that crystallization in the plumbing system
occurred under volatile-saturated conditions, and if the crystallization occurs over a large
or narrow range of pressure (depths.)

For CF and IP, MI data from individual eruptions are often interpreted to
represent trapping during ascent as the magma degasses (Arienzo et al., 2016; Arienzo et
al., 2010; Cecchetti et al., 2001; Cipriani et al., 2008; Esposito et al., 2011; Esposito et
al., 2014; Mangiacapra et al., 2008; Moretti et al., 2013; Mormone et al., 2011) and that
crystallization occurred under volatile-saturated conditions, and over a large range of
pressures. As reported above, earlier studies interpreted the variability in H,O vs. CO,

systematics observed in MI as a combination of trapping at various depths along a
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degassing path, combined with episodic CO, fluxing events (Arienzo et al., 2016;
Arienzo et al., 2010; Mangiacapra et al., 2008; Moretti et al., 2013; Mormone et al.,
2011). However, we emphasize that “shrinkage” bubbles are often reported in MI from
studies advocating for CO, fluxing, and most workers do not distinguish between bubble-
free and bubble-bearing MI, nor do they account for volatiles contained in the bubble.
Because these studies do not discuss these issues, their interpretations concerning
degassing and CO, fluxing cannot be tested because the true, pre-eruptive volatile
contents of the melt are unknown. In fact, Esposito et al. (2011), Hartley et al. (2014),
Moore et al. (2015) and Esposito et al. (2016) all demonstrated that the bubble may
contain as much as 99% of the originally trapped CO,. For this reason, the discussion that
follows is based on data from bubble-free MI only.

When we consider bubble-free M1 of basaltic and trachybasaltic composition, the
distribution of H,O-CO, data shows less variability relative to data from all types of MI
(bubble-free and bubble-bearing). The maximum CO, content of bubble-free MI (1248
ppm) is lower than that of bubble-bearing MI (1706 ppm). Also, the H,O content of
bubble-free MI shows less variability relative to the bubble-bearing group. Thus, the
large variability in CO, contents combined with the narrow range of H,O contents of
bubble-free MI is more pronounced relative to bubble-bearing MI, suggesting that the
magma was volatile-saturated and that olivine crystallized at various depths. For this
discussion, we consider bubble-free MI as well as one bubble-bearing MI for which the
original CO, content was corrected based on Raman analysis of the vapor bubble (MI
RESC2-026-MI3; Esposito et al., 2011).

In order to test the hypothesis that trapping of MI occurs during fractional
crystallization under volatile-saturated conditions at various sub-volcanic depths, we
computed fractional crystallization paths using the rhyolite-MELTS code (Ghiorso and
Gualda, 2015). We considered MgO-rich bulk rocks from the IP and noted that the
ALO3/K,0 ratios of these rocks span a wide range (Figs. 6 and 7). We performed
fractional crystallization calculations using rhyolite-MELTS to test if the general trend in
AL O3/K,0 vs. MgO systematics of bulk rocks is consistent with trends predicted during
fractional crystallization. The first question we addressed was whether the previously

reported MgO-rich bulk rock compositions can be assumed to represent liquid
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compositions. D’Antonio and Di Girolamo (1994) and D'Antonio et al. (1999a) noted
that, for some of the bulk rocks, olivine phenocrysts may represent cumulus material and
would thus be considered xenocrysts. In the studies by D’ Antonio and Di Girolamo
(1994) and D'Antonio et al. (1999a), the olivine showing the highest forsterite content
was compared to the olivine composition predicted using various partition coefficients,
KDk mg, following the method of Rhodes (1981). These calculations indicated that
olivine compositions in some of the bulk rocks were sometimes significantly different
from the predicted olivine compositions, but the forsterite content of olivine never
exceeded the calculated values (Table 3). Using the same bulk rock data from the
literature, we compared the olivine composition calculated at the liquidus using rhyolite-
MELTS with the observed data, as reported in Table 3. We noted that the olivine
compositions of the bulk rocks are comparable to the olivine composition predicted by
rhyolite-MELTS, assuming 200 MPa, NNO, and H,0-CO, saturation (see discussion
below). In particular, bulk rock sample Apr22 shows Fop,, of 86.6. The rhyolite-MELTS
predictions showed that a liquid composition equivalent to Apr22 is in equilibrium with
Fog7 3 at its liquidus (Table 3). D’ Antonio and Di Girolamo (1994) reported that bulk rock
Apr22 contains 11 vol% phenocrysts (olivine plus clinopyroxene). In other samples
olivine ranges from 2.2 to 12.8 vol%, and clinopyroxene ranges from 2.5 to 7.6 vol%. We
used the rhyolite-MELTS predictions as a starting composition to evaluate the
consistency of predicted volume proportions of olivine and clinopyroxene and compared
these values to values reported in the literature. According to these calculations, the
magma should contain 12 vol% phenocrysts (olivine plus clinopyroxene) and 88 vol%
liquid after ~115°C cooling. At this stage, the magma contains ~4 vol% olivine and ~8
vol% clinopyroxene. The liquid would initially be in equilibrium with an Fog; olivine and
the final olivine to crystallize would be Fog4. These results are consistent with the
information reported in the literature and support the interpretation that trapping of MI
occurs during fractional crystallization.

We selected five starting compositions for rhyolite-MELTS calculations: three
bulk rock compositions, and two MI compositions that were corrected for PEC. Sample
Aprl8 (D’Antonio and Di Girolamo, 1994) was selected because this bulk rock
composition shows both the highest MgO content and highest Al,05/K,0 ratio. We also
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selected Apr22 (D’Antonio and Di Girolamo, 1994) because this rock showed the best
match between the maximum forsterite content of olivine and the composition of olivine
calculated to be in equilibrium with the rock composition on its liquidus (Table 3). In
addition, we selected an initial composition that was based on the MI exhibiting the
highest Al,05/K,0 ratio [RESC5-O5-MA; Esposito et al. (2011)]. It is important to note
that while bulk rock compositions can be affected by secondary processes (such as post
depositional water-rock interactions) or entrainment of xenocrysts, the compositions of
MI should not be affected by entrainment of xenocrysts into the surrounding liquid. As
described by Fowler et al. (2007), we started with the uncorrected composition of MI
RESC5-05-MA (Esposito et al., 2011) and added aliquots of olivine host until the MI
composition was in equilibrium with the host olivine measured adjacent to the MI. This
allowed us to correct the MI composition for the effects of PEC. The fourth composition
selected was bulk-rock sample Ps3 reported by Di Girolamo et al. (1984) because this
composition shows relatively high MgO and relatively low Al,03/K,0. Finally, we
selected the uncorrected composition of MI RESC3-09-MA described by Esposito et al.
(2011). This MI showed relatively low Al,O3/K,0O and the host olivine had a high
forsterite content. We applied the same correction for PEC that was applied to MI
RESCS5-05-MA.

Using these five initial compositions, we ran the models using specific starting
conditions. For the bulk rocks (Aprl8, Apr22 and Ps3), we calculated the liquid line of
descent using rhyolite-MELTS, assuming H,O (1.25 wt%) and CO, (1400 ppm) contents
based on the H,O-CO, systematics of bubble-free MI hosted in olivine. We assumed 200
MPa as the initial pressure, consistent with solubility experiments under volatile-
saturated conditions for a trachybasaltic melt at the H,O-CO, concentrations of our
models (Fanara et al., 2015). As shown in Fig. 8, isobaric crystallization in the absence of
volatile saturation produces trends that are inconsistent with the mafic MI data.
Specifically, during crystallization at volatile-undersaturated conditions, both H,O and
CO; concentrations increase simultaneously. Conversely, the calculated trends based on
bubble-free, basaltic-trachybasaltic MI data are consistent with polybaric crystallization
under volatile-saturated conditions. For the model using the MI composition as the

starting composition (PEC-corrected MIs RESC5-O5-MA and RESC3-09-MA), we
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normalized the measured volatile contents to 100%, resulting in 1.21 wt% H,0O and 954
ppm CO,; for RESC5-O5-MA, and 1.13 wt% H,0 and 479 ppm CO, for RESC3-09-MA,
respectively. The pressure at volatile saturation (thus, the initial pressure in the models)
was 160 MPa for RESC5-O5-MA and 90 MPa for RESC3-09-MA.

Effect of starting composition. The first step was to test if the three high-
ALO5/K,O0 starting compositions (Aprl8, Apr22, and RESC5-05-MA) could reproduce
the geochemical trends defined by bulk rocks, the phases that crystallized, and the
compositions of the phases. For this test, we assumed isobaric crystallization and a fixed
oxidation state. The results are shown in Figs. 6, 9-11. The three starting compositions do
not reproduce consistent geochemical trends for MgO and SiO,/CaO vs. Al,05/K,0 (Fig.
6a and d). The range of olivine compositions is consistent with the range from previous
studies (Fig. 12). However, the calculated trend in Fo mol% vs. Al,03/K,0 space does
not agree with data from the bubble-free MI (Fig. 12). The clinopyroxene compositions
predicted by rhyolite-MELTS show a good match with measured compositions (Fig. 9a),
but the calculated feldspar compositions do not reproduce the observed alkali-feldspar
composition (Fig. 10a). On the TAS diagram, only data from sample Apr22 produces a
trend that is consistent with the “normal” MI compositions from the literature and from
this study, but all three starting compositions reproduce the trachybasalt-shoshonite-
latite-phonolite/trachyte bulk rock trend (Fig. 11a). It is important to note that the MI data
plotted in the TAS diagram can be used to track the stage in the differentiation sequence
that the host phase for each MI crystallized, and we compared the relative timing of
olivine, clinopyroxene and sanidine formation predicted by rhyolite-MELTS with results
based on MI. For the Apr22 experiment, sanidine crystallization was predicted only
during the last stages of crystallization, which does not match with compositions of MI
hosted in sanidine. In addition, rhyolite-MELTS predicts that clinopyroxene
crystallization ended earlier than sanidine crystallization, and that these two phases did
not crystallize in equilibrium, in disagreement with petrographic analysis of more
evolved rocks (e.g., Di Girolamo et al. 1984). Trends predicted by rhyolite-MELTS for
MI and Aprl8 starting compositions do not reproduce the observed crystallization trend

of alkali-feldspar.
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We also examined if the low-Al,03/K,0 bulk rock composition and/or MI
compositions would produce a better match between rhyolite-MELTS predictions and
data from natural samples. For MgO and Si0,/CaO vs. Al,03/K,0, the predicted
fractional crystallization trends are consistent for the general bulk rock data for
ALO3/K,0 <7 (Fig. 13). As shown in Figs. 7a and d and 13a, the match applies not only
to bulk rock data, but also to MI data. What is even more striking is the match between
rhyolite-MELTS predictions and “normal” MI in the TAS diagram. Experiments
assuming Ps3 and RESC3-09-MA as the starting composition better predicted the
occurrence of sanidine crystallization, relative to calculations based on Apr22 and Aprl8
and RESC5-05-MA reported above. In addition, RESC3-09-MA experiments predicted
clinopyroxene crystallization throughout the fractionation trend and that clinopyroxene
coexisted with sanidine. The only mismatch for this run is that olivine crystallization
ended later in the differentiation sequence than is observed in the samples. However, as
shown in the supplementary material (Appendix Table C), the mass fraction of olivine
crystallizing as the path moves through the shoshonite field continuously decreases.
Thus, predictions based on Ps3 and RESC3-09-MA starting compositions are in better
agreement with observations, compared to Apr22, Aprl8, and RESC5-O5-MA for both
the TAS trend and mineral phase appearance (Fig. 11d). The same conclusion can be
drawn for the feldspar compositions (Fig. 10d). The plagioclase compositions predicted
by Ps3 and RESC3-09-MA starting compositions are more representative of plagioclase
compositions reported in the literature. In addition, the trends extend toward a higher
sanidine component and show better agreement with sanidine compositions from the
literature. The trend predicted for Fo mol% vs. Al,03/K,0, assuming Ps3 and RESC3-
09-MA starting compositions, is consistent with several of the MI compositions (Fig.
12).

Effect of pressure (depth) evolution during crystallization. In order to better
understand if crystallization occurred while the magma was ponded in the subsurface (at
a constant pressure) or occurred in the plumbing system as the magma ascended through
the crust, we ran rhyolite-MELTS experiments assuming both isobaric and polybaric
trends. We first selected sample Aprl8 and assumed isobaric crystallization under

volatile-saturated conditions at 200 MPa. In addition, we ran the same model under
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polybaric conditions with crystallization occurring as the pressure dropped from 200 to
14 MPa. The oxidation state was fixed by the NNO buffer in both examples. We note that
the polybaric model improves the fit for alkali feldspar compositions (Fig. 10b).
However, the TAS trend does not improve, and sanidine crystallization is predicted to
occur later than is suggested by MI hosted in sanidine (Fig. 11b). In addition, the
predicted SiO, concentration extends toward rhyolitic liquid. It is worth noting that for
polybaric conditions, rhyolite-MELTS does not predict the formation of Ca-Ti-rich
clinopyroxene.

We also considered Ps3 as the starting composition and compared the isobaric
trend at 200 MPa with two polybaric trends. The polybaric model conditions were
defined based on H,O vs. CO, systematics (Fig. 8). The first polybaric trend assumed a
0.5 °C/MPa path from 200 MPa to 5 MPa, at which point the CO, content of the melt was
2 ppm. After the pressure reached 5 MPa, continued fractional crystallization was
assumed to be isobaric. The second polybaric model assumed a 0.1 °C/MPa path from
200 MPa to 11 MPa, or until the CO, concentration in the melt was 9 ppm. Continued
crystallization was assumed to be isobaric at 11 MPa. As can be seen in the Si0,/CaO vs.
AL, O3/K,0 trends, the polybaric models provide a better fit to the bulk rock and MI data
(Fig. 7b and e). The difference between isobaric and polybaric conditions is not
significant for the TAS trends. However, differences are observed during the final
differentiation steps, and sanidine appearance occurs at the limit of the field defined by
MI hosted in sanidine. The polybaric model shows a better fit to the sanidine
compositions from the literature (Fig. 10e). Importantly, Ca-Ti-rich clinopyroxene is not
predicted in two of the polybaric crystallization models (Fig. 9¢).

Effect of oxidation state on predicted trends. The final test using rhyolite-MELTS
examined potential effects of oxidation state on the differentiation trends by varying
oxygen fugacity over the range from QFM-2 and QFM+2. We assumed isobaric
crystallization and Apr22 as the starting composition. We recognize that oxidation state is
expected to vary during extended periods of crystal fractionation (e.g., Moussallam et al.,
2014), but we have not conducted experiments that allow the oxygen fugacity to vary

during a crystallization sequence.
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Our results for Apr22 suggest that oxidation state does not significantly affect the
various geochemical trends predicted by rhyolite-MELTS that were tested here. Trends
for MgO and Si0,/CaO vs. Al,03/K,0 show similar patterns that do not match the bulk
rock trends (Fig. 6¢ and f). The various oxidation states tested did not reproduce TAS
trends during crystallization of clinopyroxene for the most evolved compositions (Fig.
11c and f), and feldspar compositions predicted by the models do not improve the match
with the real data (Fig. 10c).

We also selected sample Ps3 (low Al,03/K,0 ratio) as the starting composition
with a range of oxidation states from QFM-2 and QFM+2. The different oxidation states
have little effect on the liquid trend during the initial differentiation step (Fig. 7c and f).
The match between predicted feldspar compositions and feldspar compositions from the
literature does not improve (Fig. 10f). Varying the oxidation state did affect the trajectory
of the liquid on the TAS diagram and the trends for different oxidation states delimit a
field consistent with the MI data (Fig. 11f), an observation that is consistent with an
evolving oxidation state during fractional crystallization.

Summary of rhyolite-MELTS modeling results. Selecting initial compositions
based on bulk rocks and MI with high MgO concentrations and Al,03/K,0 ratios does
not yield trends consistent with the analytical data. In contrast, it is reasonable to infer
that samples Ps3 (bulk rock) and RESC3-09-MA (MI) represent mafic liquids that could
produce geochemical trends toward trachytic and phonolitic melts during fractional
crystallization. The consistency between bulk rock data, data from bubble-free MI, and
rhyolite-MELTS predictions supports this hypothesis. In addition, the phases predicted to
form during crystallization, and their compositions, are consistent with the literature data.
Furthermore, the TAS trends based on “normal” MI and the correlation between M1
composition and host mineral match with rhyolite-MELTS predictions. In particular, the
predicted order of appearance of mineral phases is in good agreement with the phase
fields defined by the MI compositions and the compositions of the MI hosts. The best
agreement between the model results and the analytical data is obtained when the
crystallization path is polybaric, especially for sanidine compositions and the predicted
absence of Ca-Ti-rich clinopyroxene. The oxidation state does not appear to significantly

influence the results.
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To compare bubble-free MI data with rhyolite-MELTS trends and bulk rock data,
we compared ratios of olivine-incompatible elements (e.g., Si0,/Ca0O and Al,05/K,0)
rather than using absolute concentrations of elements in MI (Fig. 13a and b). Comparing
olivine-incompatible element ratios minimizes the effect of PEC (Lima et al., 2003) and
these ratios are independent of methods used to correct the MI compositions (e.g.,
Danyushevsky et al., 2002a). As shown by the Si0,/CaO vs. Al,03/K,0 trends in Fig. 13,
the major element ratios suggest that bubble-free MI cannot be explained solely by a
single fractional crystallization trend starting from a single primitive melt. As for bulk
rocks, a group of MI (hereafter referred to as Mixed-MI) forms a trend consistent with a
mixing model (Fig. 14), and another group of bubble-free MI (hereafter referred to as
Melt-1 MI) is consistent with simple fractional crystallization from Melt-1. These groups
of bubble-free MI overlap with the same two groups of bulk rocks that can be identified
based on geochemistry (Fig. 13a). It is important to note that the overlap in bulk rock
composition and compositions of several MI indicates that the examined bulk rocks can
be assumed to be representative liquids of magmas associated with volcanism at CF and
PI. Consequentially, SiO,/CaO or MgO vs. Al,03/K,0 trends of bulk rocks cannot be the
result of plagioclase crystal assimilation. Some of the trace element ratios of bubble-free
MI show the same behavior as ratios of major elements, showing two distinct trends that
cannot be produced by simple crystallization from a single starting composition
represented by either Melt-1 or Mixed-MI and bulk rocks showing high-Al,03/K,0. For
instance, Rb, Pb, Ba, U, Th, Nb, Ce, La, Pr, and Ta show the same trend as K,O in the
Si0,/Ca0 vs. AL,03/K,0 diagram. The Mixed-MI form a different trend relative to Melt-
1 MI (Fig. 14a). The same behavior is observed when trace element ratios are plotted
against each other (e.g., Ba/Sr vs. Yb/Rb and Eu/Rb Fig. 14 b and ¢). We used a simple
binary mixing model based on Albarede (1996) assuming MI compositions RESC5-0O5-
MA (for Mixed-MI) and RESC3-09-MA (for Melt-1) as end members.

Spider diagrams also highlight the difference between Mixed-MI and Melt-1 MI
(Fig. 15). For instance, the Primitive Mantle-normalized spider diagram (Sun, 1980)
shows that the normalized LILE are generally lower for Mixed-MI, but that the same
Mixed-MI show generally higher normalized HFSE (Fig. 15 ¢). Comparing the less
evolved Melt-1 MI (RESC3-09-MA) with the mixed MI that shows the strongest
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evidence of mixing (RESC5-05-MA) highlights the difference in trace element contents,
such as for Rb, P, Eu, and YD (Fig. 15¢). These two MI are hosted in olivine with similar
forsterite content and, therefore, crystal fractionation cannot be invoked to explain the
difference in the trace element patterns. Similar observations are suggested from the REE
spider diagrams (Sun and McDonough, 1989), whereby Mixed-MI show lower
normalized LREE but generally higher normalized HREE, relative to Melt-1 MI (Fig.
15b). It is important to note that for intermediate REE, the two groups of MI overlap,
with more erratic behavior shown by Mixed-MI. These observations indicate that the
difference between these two groups cannot be explained by simple fractional
crystallization but, rather, are explained by mixing of two different primitive melts. This
is in agreement with D’ Antonio et al. (2007), who suggested that primitive magmas of
differing composition can be generated by contamination of the mantle source by various
proportions of slab-derived fluids or by sediment-derived melts.

The systematics of Cl and S are also consistent with the mixing model proposed
in this study. Here again, the Mixed-MI form well-defined trends and diverge from the
general trend determined by Melt-1 MI (Fig. 16). This behavior can be observed in the
Cl/YDb vs. Al,03/K,0 plots, where the Mixed-MI show lower Cl/Yb and higher
AlLO5/K;,0 compared to Melt 1 MI (Fig. 16a). This suggests that, not only is Mixed-MI
different from Melt-1 in terms of major and trace element trends, but also differs in terms
of volatile contents.

To further test the hypothesis that mafic magmas beneath IP crystallize under
volatile-saturated conditions and over a range of pressures, we first compared the volatile
ratios (e.g., H,O/CO,) of bubble-free MI with the composition of the olivine hosts (Fig.
17a). It is important to note that the composition of the host was measured ~40 um away
from the MI/host interface (Esposito et al., 2011). No correlation is observed between
H,0/CO, ratio and the mol% Fo of the host.

The H,O/CO, versus mol% Fo systematics could be explained by assuming
different pressure-temperature evolution paths (Fig. 17a). A possible explanation of the
different pressure-temperature paths is that feeding conduits of different geometries (e.g.,
thickness) could transport magmas of different temperatures to the same depth (Spera,

1980). Thus, cogenetic magmas of slightly different temperatures may occur at the same
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depth below a volcano. This scenario is consistent with the “mush column” model
proposed by Marsh (1996). As summarized by Putirka (2017; see his Fig.1a and ¢) and
by Cashman et al. (2017), the plumbing system beneath a volcano represents a mosaic of
scattered bodies which may or may not be connected to each other. The most likely result
is that co-genetic magma pools in a plumbing system may follow different pressure-
temperature paths, consistent with the variability of volatiles found in MI hosted in
olivine that show the same forsterite contents (Fig. 17a). This scenario is also consistent
with the presence of anomalous MI in olivine as discussed by Danyushevsky et al.
(2004).

Volatile ratios were plotted versus Al,03/K,O to test for consistency between
volatile content of MI and major element compositions of MI. The distribution of bubble-
free MI data in the H,O/CO, versus Al,03/K,0 diagram is plotted along the same
polybaric crystallization trends. As was observed for major, trace and other volatile
element ratios, H,O/CO, ratios of Melt-1 MI are consistent with polybaric crystallization
trends of Melt-1 and Mixed-MI, which define a mixing trend (Fig. 17b).

We further investigated the chronology of the magmatic processes to assess
whether crystal fractionation starting from Melt-1 occurred before or after mixing by
examining textural and petrographic relationships of olivine and MI. First, we note that
reverse zoning of olivine phenocrysts that were erupted in the IP is reported by many
researchers (e.g., D'Antonio and Di Girolamo, 1994). Secondly, we re-evaluated data
reported by Esposito et al. (2011) to search for correlations between type of zonation of
the host olivine crystals of the bubble-free MI reported in their Table 3 and the type of
MI defined here. Also, we investigated the correlation between the position of the
bubble-free MI within the host and the type of MI (Mixed-MI and Melt-1 MI) as defined
here. This effort showed that 73% of the Mixed-MI are hosted in zoned olivine crystals
and half of the Melt-1 MI are hosted in unzoned olivine phenocrysts. No Mixed-MI are
hosted in the cores of olivine phenocrysts while the majority of Melt-1 MI are, indeed,
hosted in olivine cores (Table 4). This textural and petrographic information suggests that
fractional crystallization of Melt-1 began in the various magma pools below the volcano

before the mixing event associated with the later Solchiaro eruption.
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In conclusion, taken together, the volatile, major and trace element compositions
of bubble-free MI, host-mineral compositions, bulk rocks, and trends predicted by
rhyolite-MELTS models all suggest that crystallization of melt beneath Solchiaro first
occurred by simple fractional crystallization under volatile-saturated conditions at depths
between ~1 and 5 km (Fig. 18a). This interpretation is consistent with other MI studies
that suggest that differentiation of magmas at shallow depths beneath CF and IP, as well
as in the nearby Ischia Islands, is characterized by H,O-CO, volatile saturation (Arienzo
et al., 2016; Arienzo et al., 2010; Cannatelli et al., 2007; Cecchetti et al., 2002-2003;
Cipriani et al., 2008; Esposito et al., 2011; Fourmentraux et al., 2012; Mangiacapra et al.,
2008; Mormone et al., 2011; Roach, 2005). Crystallization continued under polybaric
conditions during magma ascent to shallower crustal levels. Well-constrained MI indicate
that magmas in shallower reservoirs were slightly more evolved than those in deeper
reservoirs, as predicted by Cashman et al. (2017). After this first stage dominated by
magma ascent and crystallization, recharging by a second high-Al,05/K,0 basaltic melt
occurred at depths between ~1 to ~6 km (Fig. 18b). During this pre-eruptive stage, Melt-1
that had undergone varying degrees of crystallization mixed with various proportions of
high-Al,03/K,0 basaltic melt. Although mixing has been suggested previously based on
the isotopic composition of bulk rocks from different localities and different degrees of
differentiation (e.g., D’ Antonio et al., 2007; D’ Antonio and Di Girolamo 1994), our
interpretation of mixing is based on MI and is representative of a single eruption (single
location), with mixing between two near-primitive magmas showing similar degrees of
differentiation. Most importantly, well-constrained bubble-free MI that record evidence
of crystallization and mixing provide a chronological sequence of the magmatic
processes occurring beneath Solchiaro. The recharging magma did not undergo extensive
crystallization. In addition, well-constrained MI show no evidence for CO, fluxing as
reported in other MI studies (e.g., Moretti et al., 2013). In fact, normal and bubble-free
basaltic and trachybasaltic MI show that the H,O contents remained essentially constant
(within analytical error). In other words, well-constrained mafic MI show no evidence
that H,O/CO, decreases systematically with crystallization indicators (Fig. 17). Our
results cannot disprove the CO,; fluxing interpretation, but neither do the MI data support

such an interpretation.
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H,O0 and CO; degassing during crystallization of trachytic magmas

After considering bubble-free MI from basaltic and trachybasaltic magmas, we
investigated the bubble-free MI of more evolved magmas that likely originated from the
differentiation of the same trachybasaltic melt. Ten bubble-free MI were analyzed in this
study, nine of them are representative of the NYT magma and the other is from the
Solfatara eruption. Seven bubble-free MI are hosted in sanidine and the three are hosted
in clinopyroxene. The low number of bubble-free MI analyzed is because bubble-free MI
large enough for SIMS analysis are rare in the studied phenocrysts. The bubble-free MI
from the NYT and Solfatara samples were likely trapped during isobaric crystallization at
a relatively high pressure, ca. 200 MPa, followed by polybaric crystallization during
ascent (Fig. 17¢c). This interpretation is consistent with the trend predicted by rhyolite-
MELTS, starting from Melt-1 composition as reported above. Isobaric crystallization of a
trachybasaltic magma at ~200 MPa under volatile-saturated conditions assumed here is
consistent with results of other studies (e.g., Arienzo et al., 2010). A melt zone at ~200
MPa is also suggested by geophysical data (e.g., Zollo et al. (2008), not only for CF and
IP but for all of the Neapolitan volcanic area (see Moretti et al., 2013 and references
therein). While our interpretation is based on only a few well-constrained MI, we
demonstrated that melts with high H,O contents can be generated during fractional
crystallization, starting from trachybasaltic melts. The elevated H,O contents have
obvious and important implications for generating high-magnitude (explosive) eruptions.

The composition of the trachytic bubble-free MI can be obtained after ~66% to
85% of isobaric crystallization under volatile-saturated conditions (Fig. 13b) (see also
Appendix Table C). The mineral assemblage predicted by rhyolite-MELTS is consistent
with the mineral assemblage of selected rock samples that are mainly composed of
clinopyroxene and feldspar + biotite and Ti-magnetite (see Appendix Table C). We
discriminated between trachytic bubble-free MI by host using ratios of elements
incompatible or slightly compatible with the host (Fig. 13c and d). For instance, bubble-
free M1 hosted in sanidine show good agreement with rhyolite-MELTS predictions and
bulk rock trends for Si0,/CaO vs. MgO/Ti0, (Fig. 13c). Consistently, bubble-free MI

hosted in clinopyroxene show agreement with rhyolite-MELTS predictions and bulk rock
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trends for Si0,/ TiO, vs. Al,O3/K,0 (Fig. 13d). It is important to note that trachytic
bubble-free MI show good agreement even when ratios such as SiO,/CaO (CaO highly
compatible with clinopyroxene) and Al,03/K,0 (K,0 and Al,O3 compatible with
sanidine) are considered (Fig. 13b). These trends suggest that PEC or other modifications
after trapping and before eruption were not extensive and did not significantly affect the
composition of the trapped melt. The inferred low degree of PEC is also consistent with
agreement between compositions of MI and the bulk rocks, and with the occurrence of
bubble-free MI (Steele-Maclnnis et al., 2011). CO, and H,O contents are available for
two bubble-free, trachytic MI from the NYT eruption. One bubble-free MI is hosted in
clinopyroxene and the other in sanidine. The isobaric crystallization model is consistent
with the volatile contents of bubble-free MI hosted in clinopyroxene, but not with the
bubble-free MI hosted in sanidine (Fig. 16¢). In order to evolve a melt with the volatile
content recorded by the bubble-free MI hosted in sanidine, the system must crystallize at
a lower pressure (shallower depth). Thus, our interpretation is that the last stage of
crystallization for the NYT eruption occurs at shallower levels, compared to the earlier
stages of crystallization. Under volatile-saturated conditions, the H,O content of the melt
can only increase if the magma evolves from trachybasalt to trachyte isobarically. With
this scenario, the CO, content of the melt decreases and the melt becomes enriched in
H,0 and the fluid exsolving from the melt becomes progressively enriched in H,O (red
dashed line in Fig. 8). The higher the pressure of isobaric crystallization, the higher the
H,0 content of the evolved melts, as suggested by H,O-CO;-silicate melt solubility
models. The higher the H,O content of more evolved melts the greater the likelihood of a
highly explosive eruption (e.g., NYT eruption), especially if crystallization occurs at
relatively shallow depths where the difference between the partial molar volume of H,O
dissolved in the melt and the molar volume of H,O-rich magmatic fluid is large (Bodnar
et al., 2007). In conclusion, some of the trachybasaltic magmas must undergo extensive
isobaric crystallization (from 66% to 85%) to produce the relatively H,O-rich NYT-like
magmas. These magmas can migrate to a shallower level, triggering further exsolution of
fluids and crystallization of sanidine. In agreement with our data and modeling, the NYT
is the most explosive eruption (VEI 6) to occur in this area in the last 23.6 ka. This

interpretation is consistent with Mastrolorenzo and Pappalardo (2006), who showed that
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explosivity of eruptions at CF is mostly controlled by initial conditions in the magma
chamber, including the volatile content, temperature and pressure. If the magnitude of the
eruption is mainly driven by the pre-eruptive H,O content of melts (Edmonds and
Wallace, 2017; Webster et al., 2001), then extensive crystallization of a trachybasaltic
magma occurring at relatively high pressure (relatively great depth) sets the stage for a
later possible highly explosive eruption, because it will generate a more evolved, H,O-

rich melt.

Concluding remarks

Major element compositions of MI trapped in the most abundant crystal phases (olivine,
clinopyroxene, sanidine and plagioclase) precipitating from CF and I[P magmas younger
than 23.6 ka, both from this study and from the literature, show compositional trends that
to a large extent overlap with bulk rock compositions. Some MI show anomalous
compositions, especially for Al,Os, P,Os, FeO, MgO, CaO and TiO,. These anomalous
MI can be explained through various processes, including grain scale dissolution—
reaction—mixing (Danyushevsky et al., 2004), Fe loss and/or gain, and boundary layer
processes. Anomalous MI exhibit volatile concentrations that likely deviate significantly
from actual melt compositions. For these reasons, we suggest that all MI analyzed for
volatile concentrations must also be analyzed for major elements to test for the
representativeness of the trapped melt. In this study, all anomalous MI data were filtered
from the dataset before interpreting volatile concentrations recorded by MI.

Another potential concern associated with determining the pre-eruptive volatile
content of the original trapped melt based on MI analysis is the presence of a vapor
bubble. Only a portion of the total volatile budget in the original trapped melt will be
accounted for if the volatile content of the bubble is not considered (Esposito et al., 2016
and references therein), and interpretation of volatile contents based only on analysis of
the glass phase of bubble-bearing MI may lead to erroneous conclusions. Thus, volatile
concentrations of “normal” and bubble-free MI are shown to be more reliable monitors of
volatile evolution during differentiation from trachybasaltic to trachyte magmas younger
than 23.6 ka associated with the CF and IP eruptions. Major and trace element

systematics, volatile contents, and petrological modeling based on “normal” and bubble-

50



2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556

free MI suggest that trachybasaltic magmas ascended through the crust from depths of at
least ~7.5 km (~200 MPa). This depth is consistent with geophysical data reported by
Zollo et al. (2008), who suggest a 1-2 km thick layer of partially molten rocks at a depth
of 8 km. At> 7.5 km depth, trachybasalts can ascend through the crust to shallower
levels while undergoing minimal crystallization under volatile saturation and pond to
feed eruptions associated with relatively less-differentiated magmas, as in the case of the
Solchiaro eruption (23.6 ka ago). At 7.5 km depth, the same poorly differentiated
magmas undergo extensive isobaric crystallization to form trachytic-phonolitic magmas
feeding eruptions such as the NYT (15 ka ago; Deino et al., 2004). During extensive
isobaric crystallization, the magma could also assimilate 1%-2% crustal material

(D’ Antonio et al., 2007). Isobaric crystallization at ~7 km depth of the parental melt of
the Fondo Riccio eruption at CF was also suggested by Cannatelli (2012) based on MI
data and MELTS simulations. Extensive crystallization under volatile-saturated
conditions increases the H,O content of the magma and, in turn, increases the likelihood
of generating a high magnitude (explosive) eruption, as occurred for the NYT eruption
(40 km3 DRE). In another case, the trachybasaltic magmas may evolve to trachytic-
phonolitic magmas at shallower levels and H,O enrichment of the magma during isobaric
crystallization would be limited.

Bubble-free MI representative of magmas associated with the Solchiaro eruption
suggest that mixing between trachybasaltic magmas and basaltic magmas occurred
beneath the IP. One group of bubble-free MI is associated with simple polybaric
crystallization from a trachybasaltic primitive melt, while another group of MI define a
trend consistent with mixing between the trachybasaltic primitive magma and another
basaltic primitive magma. The primitive basaltic magma shows a more moderate
enrichment of elements compatible with a slab-derived fluid. The mixing occurred at
depths of at least ~6 km after simple crystallization of the trachybasaltic magma and
likely did not affect the shallowest levels of the plumbing system.

Finally, even though interpretations based on volatile concentrations from MI
may be sometimes problematic, they provide the only direct means to investigate

magmatic processes such as degassing during magma ascent and crystallization. In this
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study, we show that MI provide more reliable information concerning the pre-eruptive

volatile contents of magmas if the following steps are taken:

1-

MI showing anomalous major element compositions relative to the bulk rock
trends are omitted from the interpretation.

A detailed petrographic description of MI (e.g., size, shape, distance from the
host edge, presence of the bubble, presence of magnetite dust etc.) should be
performed to rule out processes affecting the reliability of MI such as
boundary layer effects, and diffusive loss or gain of volatiles after trapping.
Bubbles of bubble-bearing MI should be analyzed to check for the presence of
volatiles. Recent studies show that up to 90% of the total original CO, content
of an MI could be stored in the vapor bubble (Aster et al., 2016; Hartley et al.,
2014; Moore et al., 2015). For certain conditions, significant amounts of H,O
and S could also be lost into the bubble of MI (Esposito et al., 2016).
Temporal relationships between MI studied and host phase should be assessed
to test various interpretations defined by volatile trends. When available,
groups of MI trapped at the same time (Melt Inclusion Assemblages) should
be examined to test the reliability of the data recorded by MI.
Cathodoluminescence mapping of quartz phenocrysts (Peppard et al., 2001) or
phosphorous maps in olivine (Esposito et al., 2015) can be used to assess
relative time of MI formation. Time constraints on MI formation can be used

to support or rule out interpretations on volatile trends recorded by MI.
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Figure captions

Figure 1. Simplified geological map of Campi Flegrei and Procida, modified after D1
Vito et al. (1985) by Scandone (1997). Locations of the caldera rims are based on Vitale
and Isaia (2014), though we attribute the source of the CI to outside CF (De Vivo et al,
2001; Rolandi et al., 2003; De Natale et al, 2016). White circles with red outlines are
locations of samples analyzed in this study (sample names indicated). NYT = Neapolitan

Yellow Tuff; AMS = Agnano-Monte Spina; CI = Campanian Ignimbrite

Figure 2. Major-element compositions of MI. The six panels represent plots of SiO,
concentration versus (a) CaO, (b) K;O, (c¢) Na,O, (d) TiO,, (¢) FeO and (f) P,Os. Large
symbols represent MI analyzed in this study (triangles = MI hosted in clinopyroxene;
squares = MI hosted in sanidine; asterisks = MI hosted in plagioclase). Small symbols
represent data from the literature (triangles = MI hosted in clinopyroxene; squares = MI
hosted in sanidine; diamonds = MI hosted in olivine; circles = MI hosted in biotite). Bulk
rock data from the literature are shown as stars (red stars = CF; black stars = IP) and
xenoliths of CF are shown as x’s. The red-dashed line encircles the range in compositions
of MI from CF, and the black-dashed line encircles the range in compositions of MI from
IP. Estimated uncertainties for the data from the present study are shown as error bars in
the lower-right of each panel. See text for sources for the bulk rock and MI data from the

literature.

Figure 3. Volatile concentrations of MI versus SiO, concentration for (a) CI, (b) S, (c)
CO,, (d) H,O and (e) F. Symbols and fields are the same as in Figure 2, with the addition
that bubble-free MI are differentiated using dark-blue symbols. Note that bulk rock data
show only low contents of CI, S and F, whereas bulk rock data for H,O are absent.
Estimated uncertainties for the data from the present study are shown as error bars in

each panel.

Figure 4. Volatile concentrations of MI. a) H,O versus CO, showing full range of

reported CO, concentrations; b) HO versus CO, showing MI with up to 1200 ppm CO,
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(red field encircles MI from the Neapolitan Yellow Tuff); ¢) F versus CI. Note the
positive correlation suggesting that F and CI have similar behavior during the
differentiation of magmas associated with CF and IP. Symbols and fields are the same as
in Figures 2 and 3. Estimated uncertainties for the data from the present study are shown

as error bars in each panel.

Figure 5. Major-element compositions of MI from this study and from the literature
compared to bulk rock compositions. a) CaO vs. Al,O3 of MI discriminated by host phase
(symbols the same as in Figure 2); arrows point to plagioclase and clinopyroxene
compositions of PVD. Note some less evolved MI showing high CaO and low AL,O;
contents. MI plotting off of the main bulk rock trend are hosted in clinopyroxene. b) CaO
vs. FeOy; of MI discriminated based on host phase (symbols same as in Figure 2); note
that several MI hosted in clinopyroxene and olivine plot outside the trend defined by the
bulk rock data. The red star represents the composition of clinopyroxene host associated
with the overheated MI (RESE17-AD12-M2, from this study). The white filled circle
represents the hypothetical original trapped composition. Dashed lines represent trends
associated with host dissolution, PEC, or Fe-loss by diffusion. ¢) CaO vs. Al,O3 of MI
discriminated as either naturally glassy (unheated) MI or MI reheated in the lab. It is
important to note that the Ca-rich and Al-poor inclusions were all reheated in the lab. d)
CaO vs. FeOy, of MI hosted in clinopyroxene, discriminated as either naturally glassy
(unheated) MI or MI reheated in the lab. It is important to note that heated MI are
generally distributed to the right (higher CaO) side of the bulk rock trend.

Figure 6. Major element compositions of mafic bulk rocks from Procida and
crystallization trends predicted by Rhyolite-MELTS using starting compositions based on
bulk rocks or MI showing high Al,0;/K,0. a), b) and c¢): MgO vs. AL,03/K,0; d), e) and
f): Si0,/Ca0 vs. Al,05/K,0. Symbols are for bulk rock compositions from Procida from
the literature: red-filled stars = Solchiaro eruption (De Astis et al., 2004; Di Girolamo et
al., 1984); red-open stars = Vivara or Solchiaro eruptions (D'Antonio et al., 1999a);
yellow crosses = Fiumicello eruption; purple cross = Pozzo Vecchio eruption (Di

Girolamo et al., 1984). Trends were calculated using rhyolite-MELTS (Gualda and
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Ghiorso, 2015) with three initial compositions: Apr22, Aprl8 (bulk rocks; D’ Antonio et
al., 1999), or RESC5-0O5-MA (MI; Esposito et al., 2011). Panels a) and d) show results
obtained using the three initial compositions at constant pressure of 200 MPa and at NNO
oxidation state. Panels b) and e) show results obtained using Aprl8 as the starting
composition, the NNO redox buffer, and comparing isobaric versus polybaric
crystallization paths (see text for details). Panels c) and f) show results obtained using
Apr22 as the initial composition, constant pressure of 200 MPa, and assuming oxidation
states of NNO, QFM+2 and QFM-2. The trends were calculated assuming the melt is
saturated with respect to H;O-CO,. The calculated trends show a poor fit to the bulk rock
data, suggesting that initial melts equivalent to the high Al,03/K,0 bulk rocks and MI

cannot generate the observed geochemical trends by crystal fractionation alone.

Figure 7. Major element compositions of mafic bulk rocks from Procida and calculated
crystallization trends using bulk rocks and MI showing low Al,O3/K;0. a), b) and c):
MgO vs. Al,05/K;0. d), e) and f): SiO,/CaO vs. Al,O3/K,0. Symbols are the same as in
Figure 6. Trends were calculated using rhyolite-MELTS (Gualda and Ghiorso, 2015)
with two initial compositions: Ps3 (bulk rock; Di Girolamo et al., 1984) and RESC3-0O9-
MA (MI; Esposito et al., 2011). Panels a) and d) show results obtained using the two
initial compositions, a constant pressure of 200 MPa and at oxidation state equal to NNO.
Panels b) and e) show results obtained using Ps3 as the starting composition, the NNO
buffer, and compare isobaric versus polybaric crystallization paths (see text for details).
Panels c¢) and f) show results obtained using Ps3 as the initial composition, constant
pressure of 200 MPa, and oxidation states of NNO, QFM+2 and QFM-2. The trends were
calculated assuming that the melt is saturated with respect to H;O-CO,. Note that trends
show a good fit with the bulk rock data at low Al,03/K,0 ratios, suggesting that the low
ALO3/K,0 rocks and MI are compatible with trends predicted based on crystal

fractionation.
Figure 8. H,O-CO, systematics of bubble-free MI, with calculated crystallization trends

predicted by rhyolite-MELTS (Gualda and Ghiorso, 2015). Note that the bubble-free MI

shown exclude any MI deemed anomalous based on major-element compositions (see
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text for details). Symbols are the same as those in Figure 3, and uncertainties on each data
point are the same as in Figure 4. Fractional crystallization trends are labelled as H,O-
CO, saturated isobaric versus polybaric, as well as HyO-CO, undersaturated. Note that
the H,O-CO, systematics of MI hosted in olivine are consistent with polybaric

crystallization under H,O-CO, saturated conditions.

Figure 9. Compositions of clinopyroxene hosting MI from this study and clinopyroxene
compositions predicted by rhyolite-MELTS (Gualda and Ghiorso, 2015). Panels a), b)
and ¢) compare measured clinopyroxene compositions with those predicted by the
models using high-Al,03/K,0 bulk rocks and MI (Apr22, Apr18 and RESC5-05-MA; as
in Figure 6). Crosses are clinopyroxene analyses, and line styles are the same as in Figure
6. Panels d), e) and f) compare measured clinopyroxene compositions with those
predicted by the models using low-Al,03/K,0 bulk rocks and MI (Ps3 and RESC3-09-
MA; as in Figure 7). Line styles are the same as in Figure 7. Note that trends calculated
using Ps3 as starting composition and polybaric fractional crystallization (panel €) show

the best fit.

Figure 10. Compositions of feldspars hosting MI analyzed in this study (cross symbols)
and from the literature (encircled fields), compared to feldspar compositions predicted by
rhyolite-MELTS (trend lines; Gualda and Ghiorso, 2015). Panels a), b) and ¢) compare
measured feldspar compositions and those predicted by the models using high-Al,05/K,0
bulk rocks and MI (Apr22, Aprl18 and RESC5-05-MA; as in Figure 6). Trend line styles
are the same as in Figure 6. Panels d), e) and f) compare measured feldspar compositions
and those predicted by the models using low-Al,03/K,0 bulk rocks and MI (Ps3 and
RESC3-09-MA; as in Figure 7). Line styles are the same as in Figure 7. Note that the best

fit is calculated using Ps3 as starting composition (see panels d), €) and f)).

Figure 11. TAS diagram comparing MI from CF and IP and liquid compositions

predicted by Rhyolite-MELTS. Panels a), b) and ¢) compare MI compositions and liquid
compositions predicted by the models using high-Al,03/K,0 bulk rocks and MI (Apr22,
Aprl8 and RESC5-05-MA; as in Figure 6). Trend line styles are the same as in Figure 6.
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Panels d), e) and f) compare MI compositions and liquid composition predicted by the
models using low-Al,03/K,0 bulk rocks and MI (Ps3 and RESC3-09-MA; as in Figure
7). Line styles are the same as in Figure 7. In all panels, the appearance and
disappearance of olivine, clinopyroxene, and sanidine predicted by rhyolite-MELTS are
highlighted. Note the good fit between the phase field defined by the MI and their hosts
and rhyolite-MELTS predictions, relative to the appearance and disappearance of olivine,
clinopyroxene, and sanidine, especially for panels d), e) and f). Data references for MI

are as in the main text.

Figure 12. Fo mol% of host olivine versus the respective Al,0;3/K,0 ratios of olivine-
hosted MI, compared with rhyolite-MELTS calculations assuming 200 MPa isobaric
conditions. Symbols are as in Figure 3, while trend line styles are as in Figures 6 and 7.
Note that for all calculations Al,03/K,0 of liquids does not change significantly during

crystallization, whereas the bubble-free MI show a large variation

Figure 13. Ratios of oxide concentrations (wt%), comparing bubble-free MI, bulk rock
compositions and rhyolite-MELTS modeling results. The MI data exclude MI deemed
anomalous based on major-element concentrations (see text for details). Symbols are the
same as in Figures 2 and 3, and trend line styles are the same as in Figures 6 and 7. a)
Si0,/Ca0 vs. Al,03/K,0 of basaltic and trachybasaltic bubble-free MI hosted in olivine.
b) Si0,/CaO vs. Al,05/K,0 including trachytic bubble-free MI (symbols indicate host
mineral). ¢) Si0,/CaO vs. MgO/TiO, of bubble-free MI hosted in sanidine. d) Si0,/TiO,
vs. Al,03/K,0 of bubble-free MI hosted in clinopyroxene.

Figure 14. Trace element compositions of bubble-free MI hosted in olivine. Symbols are
the same as in Figures 2 and 3. a) Si0,/CaO vs. AL,O3/ Rb, b) Ba/Sr vs. Yb/Rb, and c)
Ba/Sr vs. Eu/Rb. Note that for trace elements, fewer bulk rock data are available
compared to major element data. The green arrow on each panel indicates the expected
trend for polybaric crystallization. The red line on each panel represents a calculated
mixing trend based on the same MI end members for all three panels. Mixing calculations

were based on a simple binary mixing (Albaréde, 1996)
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Figure 15. Spider diagrams of the MI and bulk rocks. Symbols in a) and b) are the same
as in Figures 2 and 3. a) Incompatible trace element spider diagram with normalization to
primitive mantle as in (Sun, 1980), and b) Rare Earth elements spider diagram with
normalization to chondrite as in Sun and McDonough (1989). c¢) Incompatible trace
element spider diagram of two MI: RESC3-09-MA and RESC5-05-MA. These two MI
are hosted in olivine showing similar Fo-rich compositions, but these MI show very
different Al,O3/K,O ratios. Note that RESC3-09-MA was selected as the low-Al,03/K,O
starting composition for rhyolite melts simulations, whereas RESC5-05-MA was selected
as the high-Al,03/K,0 starting composition for these simulations, shown in Figures 6 to

13.

Figure 16. Ratios of volatile, trace and major element compositions for bubble-free MI.
Symbols the same as in Figure 3. a) CI/Yb vs. AL,03/K,0; b) TiO,/S vs. Al,O3/Rb. Note
that including CI and S in these element ratio diagrams still differentiates the trends
formed by the two different groups of MI as seen in Figure 14. The arrows indicate trends

predicted for polybaric fractional crystallization versus mixing.

Figure 17. Volatile compositions of bubble-free MI compared to a) host compositions,
and b) and c¢) major element compositions of the MI. Symbols the same as in Figure 3,
whereas trend line styles are the same as in Figures 6 and 7. a) mol% Fo vs. H,O/CO»; b)
ALO3/K,0 vs. H,O/CO, for mafic bubble-free MI; c) AL,03/K,0 vs. H,O/CO, trachytic
and mafic bubble-free MI.

Figure 18. Simplified temporal evolution model for the Solchiaro eruption based on
bubble-free MI hosted in olivine. The results are based on the column-mush model of
Marsh (1996), in which the plumbing system is represented by numerous sill-like pools
of magma variably connected by dikes. The different thicknesses of these sills and dikes
can result in different P-T histories for the same type of melt. This is consistent with MI
data that show no correlation between Fo mol% of the host and the extrapolated depths of

formation. Calculated pressures of formation of MI and interpreted depths were reported
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by Esposito et al. (2011) based on the solubility model of Papale et al. (2006). (t;) the

magma evolves mainly by fractional crystallization of magmas in separate pools. (t,)

recharge of new magma that mixes with the pre-existing magmas leading to the Solchiaro

eruption.
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Figure captions for supplementary figures

Supplementary Figure 1. Bulk rock compositions from CF and IP.

(a) TAS diagram (LeBas et al., 1986) showing the CF and IP bulk rock (Na,0+K,0)
versus SI10; relationships. (b) Concentration of MgO (wt%) versus strontium isotopic
composition (¥7Sr/3¢Sr) of CF and IP bulk rocks. (¢) The ratio of Al,03/K,0 versus
strontium isotopic composition (3’Sr/%¢Sr) of CF and IP bulk rocks. Symbols are the same
as defined in Figure 2 of the main text. Sources of bulk rock literature data are: (Albini et
al., 1977; Beccaluva et al., 1991; Brocchini et al., 2001; Cannatelli et al., 2007; Capaldi et
al., 1972; D'Antonio et al., 1999a; D'Antonio et al., 1999b; De Astis et al., 2004; de Vita
et al., 1999; Di Girolamo et al., 1984; Di Vito et al., 2011; Ghiara et al., 1979;
Mastrolorenzo and Pappalardo, 2006; Orsi et al., 1995; Orsi et al., 1992; Pappalardo et
al., 2002; Piochi et al., 2005; Piochi et al., 2008; Scarpati et al., 1993; Tonarini et al.,
2009; Tonarini et al., 2004; Turi et al., 1991; Villemant, 1988; Wohletz et al., 1995).

Supplementary Figure 2. Comparison MI and host mineral compositions.

The plots show mineral compositions (Y-axis) versus the Si0O, concentrations of MI (X-
axis). (a) Concentration of SiO, in MI versus orthoclase contents of feldspar hosts. (b)
Ratio of Si0,/CaO of MI versus orthoclase contents of sanidine hosts. The negative
correlation of these two variables is consistent with crystallization of late stages of
crystallization (Melluso et al., 2012). (¢) Concentration of SiO, in MI versus ferrosilite
contents of clinopyroxene hosts. Note the positive correlation between the two variables
is consistent with trapping of MI during fractional crystallization. Large symbols are MI
and host data from this study and small symbols are MI and host data from the literature.

Supplementary Figure 3. Summary of various methods tested to correct compositions of
anomalous MI.

(a) Concentrations of CaO vs. Al,Os for anomalous MI (red circle symbols). Trajectories
in CaO vs. Al,Oj; space that result if compositions of anomalous MI hosted in
clinopyroxene are corrected by incorporating (dissolving) host material into the MI to
account for overheating of the MI are shown by red solid and dashed lines. Trajectories to
correct the compositions for PEC are shown by blue solid and dashed lines. The
correction was based on regression (black line) of bulk rock data (small symbols). (b)
Concentrations of SiO, versus K,O showing the trajectory in SiO, versus K,O space of
corrected MI. Note that the correction for host dissolution results in a significant offset of
these MI away from the bulk rock trends. (c) Concentrations of SiO, versus FeOy
resulting from dissolution and PEC corrections. Note that MI corrected for PEC still do
not align to the bulk rock trend. (d) Concentrations of SiO, versus P,Os resulting from
dissolution and PEC corrections. Note that the correction predicts trends in the opposite
direction from the bulk rock trend, especially for anomalous MI corrected for host
dissolution (overheated MI).

Supplementary Figure 4. Concentration of K,O in MI versus size of MI hosted in
sanidine.

Note that in general the most K,O-rich MI are MI that were reheated in the lab,
suggesting that the MI were heated to a temperature greater than the trapping



temperature. Also, no apparent correlation between these two variables is noted for the
unheated M1, i.e., MI that contained only glass as found.
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