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Abstract—This study investigates standard and novel centrality
models to identify the topological organization of cancer-related
genes in biological pathways. We examined the linear relationship
between the ratio of cancer-related genes and centrality rankings
from different models. We also compared the cumulative distri-
butions of centrality scores for cancer-related and non-cancer-
related genes. Difference between the mean centrality scores of
the two groups was tested in each pathway. The results show that
when accounting for the directions of pathways and the impor-
tance of the interacting genes, the centrality of a gene correlates
with the probability of cancer-relatedness. In particular, we show
that the centrality measures we propose, namely Source-Sink
PageRank and Source-Sink Katz, produce a distinction between
the distribution of the two gene groups. Source-Sink PageRank
shows the highest statistical power in differentiating between the
means centrality values of two groups. The presented analysis
provides a new perspective for understanding the topological
organization of cancer-related genes.

Index Terms—Biological Pathways, Graph Analysis, Network
Analysis, Systems Biology

I. INTRODUCTION

A main premise of systems biology is that the biological
functions can arise as emergent properties of interaction webs
of sub-cellular entities [1], [2]. Studies show that the topolog-
ical position of the entities in networks can determine certain
biological properties [1], [3], [4]. For example, Jeong et al.
[1] have shown that the number of interactions of a node in
the Protein-Protein Interaction (PPI) networks correlates with
the probability of its removal being lethal to the organism [1],
[4]. The topological properties of biological networks have
widespread applications, including in pathway discovery [5],
and enrichment analysis [6]-[10]. However, there is a gap
of knowledge for the topological properties of key pathway
regulators and the organization of genes in pathways.

This study investigates whether the network centrality mod-
els can differentiate between cancer-related genes and non-
cancer-related genes. Cancers are diseases of pathways, and
the dysfunction of cancer-related genes can result in dysfunc-
tion of their associated networks [11]. Here, we investigate
these questions: 1- Does the number of interactions of a gene
in associates with the probability of being cancer-related? 2-
Does the probability of a gene being cancer-related associates
with the topological importance of its interacting genes. 3-
Does the direction of interactions gives information about the
topological importance of cancer-related genes?

To answer these questions, we used three known standard
centrality models — Degree, Katz, and PageRank [12]. In

addition, we designed two novel centralities that address
the shortcoming of existing models in biological pathways,
namely, Source-Sink Katz and Source-Sink PageRank. These
two novel models are capable of assigning node importance
to both upstream and downstream ends of pathways, while
accounting for directions of the interactions.

We took three statistical approaches to evaluate our hy-
potheses. 1- We investigated the linear relationship of gene
rankings of each centrality with the probability of being
cancer-related. 2- Compared the cumulative distribution of
rankings for cancer-related genes versus non-cancer-related.
3- Compared the mean ranking of cancer-related versus non-
cancer-related genes for each pathway. The results show some
linear relationship between degree centrality and the probabil-
ity of being cancer-related. Our analyses show that the spectral
ranking of genes, particularly Source-Sink and undirected,
exhibit stronger linear relationship with the probability of
being cancer related. Pathway-by-pathway comparisons show
unique patterns for distinguishing between cancer-related and
non-cancer-related genes, with Source-Sink PageRank having
the highest statistical power. We conclude that the cancer-
related genes tend to have higher centrality when accounting
for directionality and importance in both upstream and down-
stream of pathways.

II. MATERIALS AND METHODS
A. Graph Modeling of Pathways

Let the graph, G = (V, E), represent a pathway. V(G) =
{v1,v9,...,v,} is the set of nodes. The set of edges is
E(G) = {e1,e2,...,em}, e = (v;,v;), which are ordered
pairs denoting the directions. A graph is undirected if the edges
are unordered pairs. The neighborhood of a node, Ng(v;), is
defined as Ng(v;) = {v;|(vi,v;) € E(G)}. The degree of
a node is the size of its neighborhood. For a directed graph,
this notion of degree is out-degree, Deg,,:(v). Neighborhood
and degree can be defined based on in-coming edges, i.e. in-
degree, Degin(v) = |{u | (u,v) € E}|. A graph, G(V, E)
can be represented as an adjacency matrix, Ag. Formally:
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Transpose of a graph (G7) is defined as a graph with
reversed edges. Formally, V(GT) = V(G) and E(GT) =
{(u,v)|(v,u) € E(G)}. For a transpose graph , Agr = Ag”.



B. Graph Centrality Models and Definitions

This study uses three standard centrality models to investi-
gate its research hypothesis. In addition, this study investigates
two novel centrality approaches, namely Source-Sink PageR-
ank and Source-Sink Katz, which quantify the centrality of
a node as a sender and receiver of biological information.
The analysis was done using R packages sna and Igraph
[13]. A description of each model is provided in the next few
paragraphs.

Degree Centrality: In this model, centrality is the degree
of the nodes. Studies show that degree centrality of nodes
in PPI network of different organisms correlates with their
essentiality, i.e. the likelihood of a protein’s removal to be
lethal for the model organism [1], [4]. In this study, degree
centrality was calculated by combining in-degree and out-
degree:

Caeg(v) = Degin(v) + Degout(v) 2)

PageRank Centrality: is the probability distribution of a
uniform random walk being present at each node. PageRank
of a node is calculated based on the average centrality of its
neighbors. Formally:
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Where « and (3 are constant factors [12]. In this study, the
term PageRank refers to directed PageRank. This study uses
the factors @« = 0.9 and 5 = 0.1. PageRank is a spectral
centrality, i.e. the importance of a node is relative to that of its
neighbors. The spectral centralities have been used in pathway
discovery and pathway enrichment analysis [5], [6].

Katz-Bonacich Centrality: is an spectral centrality model
where the importance of a node is calculated relative to the
sum of centrality of its neighbors [14]. Formally:
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Where § and « are constant factors. If § = 1, then a <
1/A1 is a sufficient condition for convergence. \; is the largest
positive eigenvalue of the adjacency matrix. In this paper, Katz
centrality refers to the directed graph. The parameters were set
toa=0.1and g = 1.

Source-Sink PageRank: this novel model is defined as
measuring the centrality of graph nodes individually as sources
and sinks of information. Directed centrality measures only
give importance to upstream nodes and leave downstream ones
with lowest importance (often zero). The literature suggests
that some of the downstream nodes are critical components
of pathways. We previously showed the utility of Source-
Sink modeling in pathway enrichment analysis [Work not
published/Under-Review]. This model is defined as the addi-
tion of two components, Source Centrality and Sink Centrality.

Source component measures the importance of a node v
relative to the nodes that v sends information to. In the case
PageRank, the first component (Source), is:

Csre—pgr(v):= Cpgr(v) (%)

The second component, Sink Centrality, is:
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The second component is closely related to PageRank
except that it is defined on the transposed graph. Sink centrality
models the centrality of a node as a receiver of information.
After calculating Source and Sink Centrality values individu-
ally, the two components are summed as following:

OSS—pgr (U): CSrc—pgr(U) + ’YCSink—pgr(v) (N

Where, v is a parameter for the relative importance of
Source versus Sink. This studies uses v = 1, 8 = 3’ = 0.1,
and o = o’ = 0.9 for Source-Sink PageRank.

Source-Sink Katz: Similar to Source-Sink PageRank, the
Source component is the Katz centrality of the directed graph:

CSrcfktz (U):: Ckatz (U> (8)
The sink component is the Katz centrality of G7.
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Katz Source-Sink Centrality is then defined as:

Cssfktz(v): CSrcfktz(’U) + ’YCSinkfkrtz(’U) (10)

It can be shown that Source and Sink components have
the same convergence criteria [Not published/Under-Review].
This studies uses vy =1, =" =0.1,and a = o/ = 1.

C. Statistical Evaluations

The difference between centrality scores of cancer-related
genes and non-cancer related in each model were investigated
through three approaches. Since the subjects of study are
multiple pathways, normalization and ranking procedures were
used to create a unified framework.

1) Regression Analysis: For each pathway, the nodes were
ranked using all the centrality measures. The centrality ranks
of each pathway were placed in 100 quantiles. The 100th
quantile is most central genes and 1st quantile is the lowest
importance. Let RC, ;(v;) denote the centrality ranking of
a node v; in pathway j using model a. Define the quantile
ranking of a node i, @Q,;(v;) as:

100 x RCaJ (Ul)
@) [ v, ]
Where |V;| is the number of nodes in pathway j. The quantile

ranking allows comparing pathways with different number of
nodes. In addition, the proportion of cancer-related genes were



calculated on each quantile across all pathways. Let ;; denote
the set of genes belonging to i*" quantile in pathway j —
Qij = {v|veV;,Q;(v) =i} Let R denote the set of all
cancer-related genes. The ratio of cancer related genes for i
quantile, F;¢, is defined as:

S |wlve RNQy
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Here, each gene occurrence in a pathway was treated as an
unique gene. F;° was then tested against the quantile score (4)
for assessing the linear relationships. Formally:

an

F°=ay.1+ag (12)

Where a; and a are the coefficients of the linear regression.
For each centrality model, the adjusted r-squared (coefficient
of determination) was evaluated. In addition, Pearson corre-
lation of Q(v;) values between each centrality measure were
calculated.

2) Comparison of Cumulative Densities: To compare the
distribution of centrality values from a global perspective, the
centrality scores, C'(v;), were normalized within each pathway
as following:

Caj(vi) = pa,;

Oa,j

NSa,j(Ui): (13)

Where ji,,; and o, ; are the mean and standard deviation of
centrality scores of model a for pathway j. NS, ;(v;) is the
normalized centrality score of model a for node v; in pathway
j. The normalized score across all pathways were placed
in 100 quantiles. The distribution of quantile scores for the
”Cancer-related” and ”Non-cancer” groups were compared by
contrasting their cumulative distribution function (CDF) using
a Kolmogorov-Smirnov (KS) test. The analysis was limited
to the top performing models from regression analysis. The
alternative hypothesis was the CDF of the cancer-related lying
below that of the non-cancer.

3) Pathway-wise testing: Welch’s t-test was used to contrast
between the estimated means of centrality values for cancer
genes and normal genes, individually for each centrality model
and for each pathway. Here, the null hypothesis is two groups
having the same mean. The alternative hypothesis is cancer
genes having a higher mean. Also, non-parametric Wilcox test
was used as well with the same null and alternative hypotheses.

For each centrality model, the p-values from Welch and
Wilcox tests were calculated for each of the 155 pathways.
Benjamini-Hochberg False Discovery Rate was applied to all
calculated p-values for each centrality method to control type-I
errors (FFDR < 0.05) [15].

D. Biological Data Processing

Human pathways from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) were retrieved (n = 330, as of August
2018). Pathways with <20 nodes or 20 edges were neglected

from analysis (n = 85). Also, pathways with largest eigen-
values >10 (n = 15) were excluded to maintain consistent
centrality calculations. Pathways with a single unique value
for any of the centrality measures were excluded from the
analysis (n= 10). The pathways were parsed using R-packages
"KEGGGraph” and “’Pathview” [16], [17]. Pathways with 5 or
less cancer associated genes were excluded from analysis for
consistency of p-value calculations (n = 64). The final set of
pathways contained 156 entries.

Cancer-related genes were retrieved from MSigDB (n =
417 as of 06-06-18) [18]. The cancer-related gene included
were Oncogenes, Tumor Suppressors, and Translocated cancer
genes. Cancer Gene Census from Sanger Institute was used
as an additional reference (n= 719 as of 06-06-18) [19]. The
union of these two sets were used as the reference cancer
gene list (n = 733). A total of 19001 nodes were analyzed
after pathway preprocessing, having 4474 distinct genes. There
were 3798 cancer related nodes, associated with 397 unique
cancer genes in the dataset.

III. RESULTS AND DISCUSSION

A. Linear relationship between topological rankings and the
ratio of cancer-related genes

Regression analysis provides insight regarding the linear
relationship of the quantile-scores of centrality models with the
ratio of cancer genes (Figure 1). The number of connections
(Degree) of a gene in a biological pathway is related to its
probability being cancer-related. Regression analysis finds a
statistically significant (Adjusted r-squared = 0.26, p-value =
5.56 x 10~8) evidence of linear relationship between ranks
of degree centrality and the ratio of cancer genes. This result
indicates that cancer-related genes tend to have higher degree
in the organization of biological pathways.

The results show that Source-Sink modeling has a stronger
evidence of linear relationship between the centrality scores
and the ratio of cancer-genes. For Katz centrality (as defined in
Formula 4), there is not enough evidence for linear relationship
between the quantile-score and ratio of cancer genes (Adjusted
r-squared = 0.009). When the importance is measured only
in upstream-to-downstream direction, many of the cancer
genes are given low importance (Figure 1). However, when
Katz centrality is measured and summed from both upstream
and downstream directions (Source-Sink Katz), the linear
relationship explains a statistically significant portion of the
variance (Adjusted r-squared 0.36, p-value = 4.32 x 10~11)
— more than that of Degree centrality. This improvement is
particularly because of assigning centrality values to nodes
that are terminal but topologically important as receivers of
information.

Similarly, Source-Sink PageRank produces a stronger lin-
ear relationship (Adjusted r-squared = 0.74) compared to
PageRank and Undirected PageRank, Adjusted r-squared of
0.21 and 0.65. These results show that spectral importance
determines the ratio of cancer genes, particularly, when consid-
ered in both upstream and downstream directions. The strong
descriptive power of Source-Sink is potentially because of
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Fig. 1. Linear regression of quantile-scores versus the ratio of cancer-related
genes. X-axis represents the scores generated by Formula 11. Y-axis represents
the ratio of cancer-related genes (Formula 11). The blue line is the regression
fit (Formula 12). The gray band is the 95% confidence interval.
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Fig. 2. Comparison of cumulative density between cancer-related genes and
normal genes. The data points represent the quantile-scores calculated based
on normalized centrality (Formula 13) across all pathways.

being sensitive to the organization of the original network in
terms of information flow and directions. Standard applications
either use undirected or a directed modeling which disregards
terminal nodes — e.g. [5], [6]. The presented results show that
using directions while giving importance to terminal nodes in
pathways may give higher explanatory power.

TABLE I
PATHWAYS WITH HIGHER CENTRALITY OF CANCER GENES BY T-TEST

SS-Katz  Degree  Katz Pgr  SS-Pgr  Und. Pgr
SS-Katz 5 4 2 0 0 1
Degree 5 2 0 0 2
Katz 2 0 0 0
Pgr 4 3 1
SS-Pgr 6 1
Und. Pgr 7

TABLE 11
PATHWAYS WITH HIGHER CENTRALITY OF CANCER GENES BY WILCOX
TEST

SS-Katz  Degree Katz Pgr  SS-Pgr  Und. Pgr
SS-Katz 14 10 5 4 5 12
Degree 10 4 2 4 10
Katz 8 3 3 7
Pgr 24 19 12
SS-Pgr 31 15
Und. Pgr 27

B. Difference between the centrality ranking distribution of
cancer-related and non-cancer-related genes

Analysis of cumulative density of quantile scores outlines
the differences between scoring of cancer-related and normal
genes for Source-Sink PageRank, Undirected PageRank, and
Source-Sink Katz (Figure 2). The CDF of cancer genes
lies below that of normal genes for all three models. This
observation is supported by Kolmogorov-Smirnov test, as
displayed in Figure 2. The null hypothesis of two groups
having the same distribution is rejected and the CDF of
cancer genes lying below that of normal genes — p-values of
4.93%x107190,1.49x 10~ 114, and 4.09 x 10~3°. The difference
between the CDF shows that cancer-genes tend to have higher
centrality in all three models. For example in Source-Sink
PageRank, only ~30% of cancer genes have a quantile score
below 50, compared to ~55% normal genes for the same
cut-off. These results support the linear regression results
that a higher centrality value indicates higher probability of
being cancer-related. CDF analysis and regression analysis
show that Source-Sink PageRank best captures the topological
organization of cancer genes in biological pathways.

C. Pathways with higher mean of centrality values for cancer-
related genes

Pathway by pathway analysis outlines the statistical power
of each centrality method for distinguishing between Cancer-
related (Cancer) genes and non-cancer-related (Normal) genes.
In Tables I and II, the diagonal elements indicate the number of
pathways with higher mean centrality of cancer-related genes
(rejected hypothesis) for each model. The non-diagonal entries
indicate the number of rejected hypothesis by both respective
models in row and column index.

Using Welch’s test (Table I), Source-Sink Katz and Degree
identify 5 pathways each. These methods have no overlap
with PageRank or Source-Sink PageRank. On the other hand,
Katz centrality only identifies two pathways, both identified by
degree and Source-Sink Katz. Using Wilcox test increases the



TABLE III
CORRELATION BETWEEN CENTRALITY VALUES

Deg SS-Katz  Pgr  SS-Pgr  Und. Pgr
Deg 1 0.95 0.5 0.67 0.91
SS-Katz 1 0.53 0.74 0.86
Pgr 1 0.66 0.57
SS-Pgr 1 0.74
Und. Pgr 1

statistical power (F'DR < 0.05). Source-Sink Katz, Degree,
and Katz detect 14, 10, and 8 pathways with higher mean
values of ranks for cancer genes. In this case, the pathways
that are detected by Degree centrality are also detected by
Source-Sink Katz. This shows that Source-Sink Katz has a
higher power compared to Degree, and is more informative.

Using Welch’s test, Source-Sink PageRank and Undirected
PageRank identify 6 and 7 pathways, with only 1 pathway
in common. By using Wilcox test, PageRank, Source-Sink
PageRank, and Undirected PageRank detect 24, 31, and 27
pathways each. Source-Sink PageRank and PageRank have
an overlap of 19 pathways, indicating that most of detections
from PageRank are also detected by Source-Sink PageRank.
The overlap between Undirected and Source-Sink PageRank
is limited to 15 pathways, showing that two methods produce
a considerable number of different pathways. These differ-
ences indicate the uniqueness of each centrality model for
distinguishing cancer genes from non-cancer. Non-parametric
tests have higher statistical power because the distribution
of the centrality scores is non-normal. Further analysis of
the distributions may reveal useful insight for finding more
descriptive transformations and tests.

The correlation analysis between the ranking produced by
each centrality model provides insight regarding the relation-
ship between their procedures (Table II). Degree central-
ity, Source-Sink Katz, and Undirected PageRank are highly
correlated. The correlation of Source-Sink PageRank with
other models is not as high in comparison, this indicates
the difference between the ranking procedures of Source-
Sink PageRank and other models. For example, the correlation
coefficient of Source-Sink PageRank and undirected PageRank
is 0.74 (Table II). In addition, PageRank produces lower
correlations with the other models. This is because terminal
nodes in PageRank are all assigned with lowest possible
centrality values and a considerable number of nodes have
PageRank centrality of zero.

IV. CONCLUSIONS

This study compared the explanatory power of different
centrality models with respect to cancer-related genes. The
analysis showed the differences between topological position
of cancer-related and non-cancer-related (normal) genes. Our
findings assert three topological properties of cancer-related
genes in human biological pathways.

We have concluded that cancer genes tend to have higher
degree and their organization follows a spectral pattern. We
have also concluded that the direction of interactions creates

a better description for topological importance of cancer
genes in biological pathways, particularly when the topological
importance is measured as both receiver and sender of infor-
mation. The results have also shown that the presented novel
methodology, the Source-Sink PageRank, is highly descriptive
of the topological organization of cancer genes in biological
networks. The presented evidence suggest that network-based
pathway analysis methods should consider the topological
importance of genes in a directed format in both downstream
and upstream ends of pathways.
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The R codes of this study is shared for reproducibility at:
https://github.com/pouryany/OncoCentrality
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