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Abstract—This study investigates standard and novel centrality
models to identify the topological organization of cancer-related
genes in biological pathways. We examined the linear relationship
between the ratio of cancer-related genes and centrality rankings
from different models. We also compared the cumulative distri-
butions of centrality scores for cancer-related and non-cancer-
related genes. Difference between the mean centrality scores of
the two groups was tested in each pathway. The results show that
when accounting for the directions of pathways and the impor-
tance of the interacting genes, the centrality of a gene correlates
with the probability of cancer-relatedness. In particular, we show
that the centrality measures we propose, namely Source-Sink
PageRank and Source-Sink Katz, produce a distinction between
the distribution of the two gene groups. Source-Sink PageRank
shows the highest statistical power in differentiating between the
means centrality values of two groups. The presented analysis
provides a new perspective for understanding the topological
organization of cancer-related genes.

Index Terms—Biological Pathways, Graph Analysis, Network
Analysis, Systems Biology

I. INTRODUCTION

A main premise of systems biology is that the biological

functions can arise as emergent properties of interaction webs

of sub-cellular entities [1], [2]. Studies show that the topolog-

ical position of the entities in networks can determine certain

biological properties [1], [3], [4]. For example, Jeong et al.

[1] have shown that the number of interactions of a node in

the Protein-Protein Interaction (PPI) networks correlates with

the probability of its removal being lethal to the organism [1],

[4]. The topological properties of biological networks have

widespread applications, including in pathway discovery [5],

and enrichment analysis [6]–[10]. However, there is a gap

of knowledge for the topological properties of key pathway

regulators and the organization of genes in pathways.

This study investigates whether the network centrality mod-

els can differentiate between cancer-related genes and non-

cancer-related genes. Cancers are diseases of pathways, and

the dysfunction of cancer-related genes can result in dysfunc-

tion of their associated networks [11]. Here, we investigate

these questions: 1- Does the number of interactions of a gene

in associates with the probability of being cancer-related? 2-

Does the probability of a gene being cancer-related associates

with the topological importance of its interacting genes. 3-

Does the direction of interactions gives information about the

topological importance of cancer-related genes?

To answer these questions, we used three known standard

centrality models – Degree, Katz, and PageRank [12]. In

addition, we designed two novel centralities that address

the shortcoming of existing models in biological pathways,

namely, Source-Sink Katz and Source-Sink PageRank. These

two novel models are capable of assigning node importance

to both upstream and downstream ends of pathways, while

accounting for directions of the interactions.

We took three statistical approaches to evaluate our hy-

potheses. 1- We investigated the linear relationship of gene

rankings of each centrality with the probability of being

cancer-related. 2- Compared the cumulative distribution of

rankings for cancer-related genes versus non-cancer-related.

3- Compared the mean ranking of cancer-related versus non-

cancer-related genes for each pathway. The results show some

linear relationship between degree centrality and the probabil-

ity of being cancer-related. Our analyses show that the spectral

ranking of genes, particularly Source-Sink and undirected,

exhibit stronger linear relationship with the probability of

being cancer related. Pathway-by-pathway comparisons show

unique patterns for distinguishing between cancer-related and

non-cancer-related genes, with Source-Sink PageRank having

the highest statistical power. We conclude that the cancer-

related genes tend to have higher centrality when accounting

for directionality and importance in both upstream and down-

stream of pathways.

II. MATERIALS AND METHODS

A. Graph Modeling of Pathways

Let the graph, G = (V,E), represent a pathway. V (G) =
{v1, v2, . . . , vn} is the set of nodes. The set of edges is

E(G) = {e1, e2, . . . , em}, ek = (vi, vj), which are ordered

pairs denoting the directions. A graph is undirected if the edges

are unordered pairs. The neighborhood of a node, NG(vi), is

defined as NG(vi) = {vj |(vi, vj) ∈ E(G)}. The degree of

a node is the size of its neighborhood. For a directed graph,

this notion of degree is out-degree, Degout(v). Neighborhood

and degree can be defined based on in-coming edges, i.e. in-

degree, Degin(v) =
∣

∣{u | (u, v) ∈ E}
∣

∣. A graph, G(V,E)
can be represented as an adjacency matrix, AG. Formally:

[AG]ij =

{

1, (vi, vj) ∈ E

0, otherwise
(1)

Transpose of a graph (GT ) is defined as a graph with

reversed edges. Formally, V (GT ) = V (G) and E(GT ) =
{(u, v)|(v, u) ∈ E(G)}. For a transpose graph , AGT = AG

T .



B. Graph Centrality Models and Definitions

This study uses three standard centrality models to investi-

gate its research hypothesis. In addition, this study investigates

two novel centrality approaches, namely Source-Sink PageR-

ank and Source-Sink Katz, which quantify the centrality of

a node as a sender and receiver of biological information.

The analysis was done using R packages sna and Igraph

[13]. A description of each model is provided in the next few

paragraphs.

Degree Centrality: In this model, centrality is the degree

of the nodes. Studies show that degree centrality of nodes

in PPI network of different organisms correlates with their

essentiality, i.e. the likelihood of a protein’s removal to be

lethal for the model organism [1], [4]. In this study, degree

centrality was calculated by combining in-degree and out-

degree:

Cdeg(v) = Degin(v) +Degout(v) (2)

PageRank Centrality: is the probability distribution of a

uniform random walk being present at each node. PageRank

of a node is calculated based on the average centrality of its

neighbors. Formally:

Cpgr(v)= β + α
∑

u∈NG(v)

Cpgr(u)

|NG(v)|
(3)

Where α and β are constant factors [12]. In this study, the

term PageRank refers to directed PageRank. This study uses

the factors α = 0.9 and β = 0.1. PageRank is a spectral

centrality, i.e. the importance of a node is relative to that of its

neighbors. The spectral centralities have been used in pathway

discovery and pathway enrichment analysis [5], [6].

Katz-Bonacich Centrality: is an spectral centrality model

where the importance of a node is calculated relative to the

sum of centrality of its neighbors [14]. Formally:

Ckatz(v)= β + α
∑

u∈NG(v)

Ckatz(u) (4)

Where β and α are constant factors. If β = 1, then a ≤
1/λ1 is a sufficient condition for convergence. λ1 is the largest

positive eigenvalue of the adjacency matrix. In this paper, Katz

centrality refers to the directed graph. The parameters were set

to α = 0.1 and β = 1.

Source-Sink PageRank: this novel model is defined as

measuring the centrality of graph nodes individually as sources

and sinks of information. Directed centrality measures only

give importance to upstream nodes and leave downstream ones

with lowest importance (often zero). The literature suggests

that some of the downstream nodes are critical components

of pathways. We previously showed the utility of Source-

Sink modeling in pathway enrichment analysis [Work not

published/Under-Review]. This model is defined as the addi-

tion of two components, Source Centrality and Sink Centrality.

Source component measures the importance of a node v
relative to the nodes that v sends information to. In the case

PageRank, the first component (Source), is:

CSrc−pgr(v):= Cpgr(v) (5)

The second component, Sink Centrality, is:

CSink−pgr(v)= β′ + α′
∑

u∈N
GT (v)

CSink−pgr(u)

|NGT(v)|
(6)

The second component is closely related to PageRank

except that it is defined on the transposed graph. Sink centrality

models the centrality of a node as a receiver of information.

After calculating Source and Sink Centrality values individu-

ally, the two components are summed as following:

CSS−pgr(v)= CSrc−pgr(v) + γCSink−pgr(v) (7)

Where, γ is a parameter for the relative importance of

Source versus Sink. This studies uses γ = 1, β = β′ = 0.1,

and α = α′ = 0.9 for Source-Sink PageRank.

Source-Sink Katz: Similar to Source-Sink PageRank, the

Source component is the Katz centrality of the directed graph:

CSrc−ktz(v):= Ckatz(v) (8)

The sink component is the Katz centrality of GT .

CSink−ktz(v):= β′ + α′
∑

u∈N
GT (v)

CSink−ktz(u) (9)

Katz Source-Sink Centrality is then defined as:

CSS−ktz(v)= CSrc−ktz(v) + γCSink−ktz(v) (10)

It can be shown that Source and Sink components have

the same convergence criteria [Not published/Under-Review].

This studies uses γ = 1, β = β′ = 0.1, and α = α′ = 1.

C. Statistical Evaluations

The difference between centrality scores of cancer-related

genes and non-cancer related in each model were investigated

through three approaches. Since the subjects of study are

multiple pathways, normalization and ranking procedures were

used to create a unified framework.

1) Regression Analysis: For each pathway, the nodes were

ranked using all the centrality measures. The centrality ranks

of each pathway were placed in 100 quantiles. The 100th

quantile is most central genes and 1st quantile is the lowest

importance. Let RCa,j(vi) denote the centrality ranking of

a node vi in pathway j using model a. Define the quantile

ranking of a node i, Qj(vi) as:

Qj(vi)=

[

100×RCa,j(vi)

|Vj |

]

Where |Vj | is the number of nodes in pathway j. The quantile

ranking allows comparing pathways with different number of

nodes. In addition, the proportion of cancer-related genes were



calculated on each quantile across all pathways. Let Qij denote

the set of genes belonging to ith quantile in pathway j —

Qij = {v | v ∈ Vj , Qj(v) = i}. Let R denote the set of all

cancer-related genes. The ratio of cancer related genes for ith

quantile, Fi
c, is defined as:

Fi
c =

∑

j

∣

∣

∣
{v | v ∈ R ∩Qij}

∣

∣

∣

∑

j

∣

∣

∣
{v | v ∈ Qij}

∣

∣

∣

(11)

Here, each gene occurrence in a pathway was treated as an

unique gene. Fi
c was then tested against the quantile score (i)

for assessing the linear relationships. Formally:

Fi
c = a1.i+ a0 (12)

Where a1 and a0 are the coefficients of the linear regression.

For each centrality model, the adjusted r-squared (coefficient

of determination) was evaluated. In addition, Pearson corre-

lation of Q(vi) values between each centrality measure were

calculated.

2) Comparison of Cumulative Densities: To compare the

distribution of centrality values from a global perspective, the

centrality scores, C(vi), were normalized within each pathway

as following:

NSa,j(vi)=
Ca,j(vi)− µa,j

σa,j

(13)

Where µa,j and σa,j are the mean and standard deviation of

centrality scores of model a for pathway j. NSa,j(vi) is the

normalized centrality score of model a for node vi in pathway

j. The normalized score across all pathways were placed

in 100 quantiles. The distribution of quantile scores for the

”Cancer-related” and ”Non-cancer” groups were compared by

contrasting their cumulative distribution function (CDF) using

a Kolmogorov-Smirnov (KS) test. The analysis was limited

to the top performing models from regression analysis. The

alternative hypothesis was the CDF of the cancer-related lying

below that of the non-cancer.

3) Pathway-wise testing: Welch’s t-test was used to contrast

between the estimated means of centrality values for cancer

genes and normal genes, individually for each centrality model

and for each pathway. Here, the null hypothesis is two groups

having the same mean. The alternative hypothesis is cancer

genes having a higher mean. Also, non-parametric Wilcox test

was used as well with the same null and alternative hypotheses.

For each centrality model, the p-values from Welch and

Wilcox tests were calculated for each of the 155 pathways.

Benjamini-Hochberg False Discovery Rate was applied to all

calculated p-values for each centrality method to control type-I

errors (FDR < 0.05) [15].

D. Biological Data Processing

Human pathways from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) were retrieved (n = 330, as of August

2018). Pathways with ≤20 nodes or 20 edges were neglected

from analysis (n = 85). Also, pathways with largest eigen-

values ≥10 (n = 15) were excluded to maintain consistent

centrality calculations. Pathways with a single unique value

for any of the centrality measures were excluded from the

analysis (n= 10). The pathways were parsed using R-packages

”KEGGGraph” and ”Pathview” [16], [17]. Pathways with 5 or

less cancer associated genes were excluded from analysis for

consistency of p-value calculations (n = 64). The final set of

pathways contained 156 entries.

Cancer-related genes were retrieved from MSigDB (n =

417 as of 06-06-18) [18]. The cancer-related gene included

were Oncogenes, Tumor Suppressors, and Translocated cancer

genes. Cancer Gene Census from Sanger Institute was used

as an additional reference (n= 719 as of 06-06-18) [19]. The

union of these two sets were used as the reference cancer

gene list (n = 733). A total of 19001 nodes were analyzed

after pathway preprocessing, having 4474 distinct genes. There

were 3798 cancer related nodes, associated with 397 unique

cancer genes in the dataset.

III. RESULTS AND DISCUSSION

A. Linear relationship between topological rankings and the

ratio of cancer-related genes

Regression analysis provides insight regarding the linear

relationship of the quantile-scores of centrality models with the

ratio of cancer genes (Figure 1). The number of connections

(Degree) of a gene in a biological pathway is related to its

probability being cancer-related. Regression analysis finds a

statistically significant (Adjusted r-squared = 0.26, p-value =

5.56 × 10−8) evidence of linear relationship between ranks

of degree centrality and the ratio of cancer genes. This result

indicates that cancer-related genes tend to have higher degree

in the organization of biological pathways.

The results show that Source-Sink modeling has a stronger

evidence of linear relationship between the centrality scores

and the ratio of cancer-genes. For Katz centrality (as defined in

Formula 4), there is not enough evidence for linear relationship

between the quantile-score and ratio of cancer genes (Adjusted

r-squared = 0.009). When the importance is measured only

in upstream-to-downstream direction, many of the cancer

genes are given low importance (Figure 1). However, when

Katz centrality is measured and summed from both upstream

and downstream directions (Source-Sink Katz), the linear

relationship explains a statistically significant portion of the

variance (Adjusted r-squared 0.36, p-value = 4.32 × 10−11)

– more than that of Degree centrality. This improvement is

particularly because of assigning centrality values to nodes

that are terminal but topologically important as receivers of

information.

Similarly, Source-Sink PageRank produces a stronger lin-

ear relationship (Adjusted r-squared = 0.74) compared to

PageRank and Undirected PageRank, Adjusted r-squared of

0.21 and 0.65. These results show that spectral importance

determines the ratio of cancer genes, particularly, when consid-

ered in both upstream and downstream directions. The strong

descriptive power of Source-Sink is potentially because of



Fig. 1. Linear regression of quantile-scores versus the ratio of cancer-related
genes. X-axis represents the scores generated by Formula 11. Y-axis represents
the ratio of cancer-related genes (Formula 11). The blue line is the regression
fit (Formula 12). The gray band is the 95% confidence interval.

Fig. 2. Comparison of cumulative density between cancer-related genes and
normal genes. The data points represent the quantile-scores calculated based
on normalized centrality (Formula 13) across all pathways.

being sensitive to the organization of the original network in

terms of information flow and directions. Standard applications

either use undirected or a directed modeling which disregards

terminal nodes – e.g. [5], [6]. The presented results show that

using directions while giving importance to terminal nodes in

pathways may give higher explanatory power.

TABLE I
PATHWAYS WITH HIGHER CENTRALITY OF CANCER GENES BY T-TEST

SS-Katz Degree Katz Pgr SS-Pgr Und. Pgr

SS-Katz 5 4 2 0 0 1
Degree 5 2 0 0 2
Katz 2 0 0 0
Pgr 4 3 1

SS-Pgr 6 1
Und. Pgr 7

TABLE II
PATHWAYS WITH HIGHER CENTRALITY OF CANCER GENES BY WILCOX

TEST

SS-Katz Degree Katz Pgr SS-Pgr Und. Pgr

SS-Katz 14 10 5 4 5 12
Degree 10 4 2 4 10
Katz 8 3 3 7
Pgr 24 19 12

SS-Pgr 31 15
Und. Pgr 27

B. Difference between the centrality ranking distribution of

cancer-related and non-cancer-related genes

Analysis of cumulative density of quantile scores outlines

the differences between scoring of cancer-related and normal

genes for Source-Sink PageRank, Undirected PageRank, and

Source-Sink Katz (Figure 2). The CDF of cancer genes

lies below that of normal genes for all three models. This

observation is supported by Kolmogorov-Smirnov test, as

displayed in Figure 2. The null hypothesis of two groups

having the same distribution is rejected and the CDF of

cancer genes lying below that of normal genes – p-values of

4.93×10−150, 1.49×10−114, and 4.09×10−30. The difference

between the CDF shows that cancer-genes tend to have higher

centrality in all three models. For example in Source-Sink

PageRank, only ∼30% of cancer genes have a quantile score

below 50, compared to ∼55% normal genes for the same

cut-off. These results support the linear regression results

that a higher centrality value indicates higher probability of

being cancer-related. CDF analysis and regression analysis

show that Source-Sink PageRank best captures the topological

organization of cancer genes in biological pathways.

C. Pathways with higher mean of centrality values for cancer-

related genes

Pathway by pathway analysis outlines the statistical power

of each centrality method for distinguishing between Cancer-

related (Cancer) genes and non-cancer-related (Normal) genes.

In Tables I and II, the diagonal elements indicate the number of

pathways with higher mean centrality of cancer-related genes

(rejected hypothesis) for each model. The non-diagonal entries

indicate the number of rejected hypothesis by both respective

models in row and column index.

Using Welch’s test (Table I), Source-Sink Katz and Degree

identify 5 pathways each. These methods have no overlap

with PageRank or Source-Sink PageRank. On the other hand,

Katz centrality only identifies two pathways, both identified by

degree and Source-Sink Katz. Using Wilcox test increases the



TABLE III
CORRELATION BETWEEN CENTRALITY VALUES

Deg SS-Katz Pgr SS-Pgr Und. Pgr

Deg 1 0.95 0.5 0.67 0.91
SS-Katz 1 0.53 0.74 0.86

Pgr 1 0.66 0.57
SS-Pgr 1 0.74

Und. Pgr 1

statistical power (FDR < 0.05). Source-Sink Katz, Degree,

and Katz detect 14, 10, and 8 pathways with higher mean

values of ranks for cancer genes. In this case, the pathways

that are detected by Degree centrality are also detected by

Source-Sink Katz. This shows that Source-Sink Katz has a

higher power compared to Degree, and is more informative.

Using Welch’s test, Source-Sink PageRank and Undirected

PageRank identify 6 and 7 pathways, with only 1 pathway

in common. By using Wilcox test, PageRank, Source-Sink

PageRank, and Undirected PageRank detect 24, 31, and 27

pathways each. Source-Sink PageRank and PageRank have

an overlap of 19 pathways, indicating that most of detections

from PageRank are also detected by Source-Sink PageRank.

The overlap between Undirected and Source-Sink PageRank

is limited to 15 pathways, showing that two methods produce

a considerable number of different pathways. These differ-

ences indicate the uniqueness of each centrality model for

distinguishing cancer genes from non-cancer. Non-parametric

tests have higher statistical power because the distribution

of the centrality scores is non-normal. Further analysis of

the distributions may reveal useful insight for finding more

descriptive transformations and tests.

The correlation analysis between the ranking produced by

each centrality model provides insight regarding the relation-

ship between their procedures (Table III). Degree central-

ity, Source-Sink Katz, and Undirected PageRank are highly

correlated. The correlation of Source-Sink PageRank with

other models is not as high in comparison, this indicates

the difference between the ranking procedures of Source-

Sink PageRank and other models. For example, the correlation

coefficient of Source-Sink PageRank and undirected PageRank

is 0.74 (Table III). In addition, PageRank produces lower

correlations with the other models. This is because terminal

nodes in PageRank are all assigned with lowest possible

centrality values and a considerable number of nodes have

PageRank centrality of zero.

IV. CONCLUSIONS

This study compared the explanatory power of different

centrality models with respect to cancer-related genes. The

analysis showed the differences between topological position

of cancer-related and non-cancer-related (normal) genes. Our

findings assert three topological properties of cancer-related

genes in human biological pathways.

We have concluded that cancer genes tend to have higher

degree and their organization follows a spectral pattern. We

have also concluded that the direction of interactions creates

a better description for topological importance of cancer

genes in biological pathways, particularly when the topological

importance is measured as both receiver and sender of infor-

mation. The results have also shown that the presented novel

methodology, the Source-Sink PageRank, is highly descriptive

of the topological organization of cancer genes in biological

networks. The presented evidence suggest that network-based

pathway analysis methods should consider the topological

importance of genes in a directed format in both downstream

and upstream ends of pathways.
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The R codes of this study is shared for reproducibility at:
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