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ABSTRACT. We show how to compute the low Hochschild cohomology
groups of a partial relation extension algebra.

1. INTRODUCTION

Cluster-tilted algebras appeared as a gift from the theory of cluster alge-
bras to representation theory. These are finite-dimensional algebras which
are endomorphism algebras of tilting objects in the cluster category [11].
This class of algebras was much investigated, see for example [1, 2, 8, 9, 12,
13, 16, 17], Among the main results is that every cluster-tilted algebra can
be written as trivial extension of a tilted algebra by a bimodule called the re-
lation bimodule [1]. This explains why many features of tilted algebras are
retained by cluster-tilted algebras. In particular, complete slices of tilted
algebras embed as what is called local slices in cluster-tilted algebras [2].
However, unlike tilted algebras, cluster-tilted algebras are not characterized
by the existence of local slices. In an effort to find a larger class of algebras
having local slices, the authors of [3] introduced what are called partial re-
lation extensions which, because of the existence of local slices, share many
properties with cluster-tilted algebras.

On the other hand, the Hochschild cohomology groups are interesting
and subtle invariants of algebras (and their derived categories) and there is
a long-standing effort to find computational techniques for these groups; see
[14] for a survey. In particular, several attempts were made to compute the
Hochschild groups for split, and especially trivial, extensions in terms of the
original algebra, see [5]. In the case of cluster-tilted algebras, this resulted
in a series of papers [6, 7, 4, 5]. The present paper lies at the intersection of
these two research directions. Because partial relation extensions are natural
generalizations of cluster-tilted algebras, we study in this paper their low
Hochschild cohomology groups.

We now state our main theorem. Let C be a triangular algebra of
global dimension at most 2, and assume that the relation bimodule F =
ExtZ(DC,C) splits as a direct sum of two C-C-bimodules E = E' @ E".
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Then the trivial extension B = C x E’ is called a partial relation exten-
sion, while C' = C x E is called the relation extension of C. Further,
given an algebra A and an A-A-bimodule M, we denote by H'(A, M) the
i-th Hochschild cohomology group of A with coefficients in M and we set
Hi(A, A) = HH'(A). Finally, we denote by £(M, A) the set of all A-A-
bimodule morphisms f: M — A such that zf(y) + f(z)y = 0, for all
x,y € M. With this notation our main theorem reads as follows.

Theorem A. There exist short exact sequences of k-vector spaces

0

0 H'(B, E') HH°(B) —~~ HH(C) ——=0
1

0 H'(B,E') HH'(B) 2= HH'(C) ——=0
~ ~ 0

0 HO(C, E") HH’(C) —~> HH(B) —— 0

~ ~ 1
0 ——=HY(C,E")® E(E", B) — HH'(C) - HH'(B) — 0.

We recall that, if C' is tilted, then C is cluster-tilted and the partial
relation extension B is then a quotient (and a subalgebra) of a cluster-tilted
algebra.

The techniques we use are those of [7] and [5]. In fact several of our
proofs follow directly from results of [5], which suggests that the latter hold
in greater generality than originally considered.

As a consequence of this, we give another realization of the group HH'(B)
as the amalgamated sum of two morphisms.

The paper is organized as follows. After a preliminary section 2, we
prove our main theorem in section 3. Section 4 is devoted to corollaries and
examples.

2. PRELIMINARIES

Throughout this paper, k£ denotes an algebraically closed field, all algebras
are finite-dimensional over k and have an identity. Given an algebra C, we
denote by C¢ = C ® C° its enveloping algebra. If @ is a quiver, we
denote by kQ its path algebra. For a point ¢ of @), let e; be the primitive
idempotent of k(@) corresponding to the stationary path at i. We refer the
reader to [10, 15] for general notions and results of representation theory.

2.1. Hochschild cohomology. Let C' be an algebra and F a C-C-bimodule
which is finite-dimensional over k. The Hochschild complex is the complex

1 2 . it+1 .
0— E 2 Homy(C,E) L - -+ = Homy (C®, E) L— Homy,(CEH) B) — ...
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where, for each i > 0, C®* denotes the i-fold tensor product of C with itself
over k. The map b1§ E — Homy(C, E) is defined by (b'x)(c) = cx — zc for
z € E, ceC, and bt is defined by

(bi+1f)(00®"'®ci) =cof(c1®---®¢) +Z(_1)jf(00®"'®cj—1cj ®--®c;)
j=1

+ (—1>i+1f(00 R ci_l)ci

for a k-linear map f : C® — E and elements cg,--- ,¢; in C.

The i-th cohomology group of this complex is called the i-th Hochschild
cohomology group of C with coefficients in E, and is denoted by H'(C, E).
If cEc = ¢Cc, then we write HHY(C') = HY(C, C).

The first Hochschild cohomology group has the following concrete descrip-
tion. Let Der(C, E) be the vector space of all derivations, that is, k-linear
maps d : C — E such that, for ¢, ¢ € C, we have

d(cc') = cd() + d(e)d.

A derivation d is inner if there exists x € E such that d = [z, —]. Letting
Inn(C, E) denote the subspace of all inner derivations, we have H'(C, E) =
Der(C, E)/Inn(C, E).

A derivation d : C — FE is called normalized if, for any primitive or-
thogonal idempotent e; in a complete set {e1,...,e,}, we have d(e;) = 0
for all i. Let Derg(C, E) be the subspace of Der(C, E) of the normalized
derivations, and Inng(C, E) = Dero(C, E) N Inn(C, E'). Then we also have
HY(C, F) = Dery(C, E) /Inng(C, E).

2.2. The Hochschild projection maps. Let C' be a finite-dimensional
algebra and F a finitely generated C-C-bimodule equipped with an associa-
tive C-C-bimodule morphism EQc E — E, e®e’ — ee’. The split extension
of C by F is the k-algebra B which has the additive structure of C'@ E and
whose product is defined by

(c,e)(c,€) = (cc,ce’ +ec +e€).

If E? =0, then B is the trivial extension of C' by E, which we denote by
B=CxEFE.

In the special case where C is a triangular algebra of global dimension
at most 2, and E is the relation bimodule E = Ext%(DC,C), the trivial
extension C' X E is called the relation extension of C. If E splits as a
direct sum of two C-C-bimodules £ = E' @ E”, then the trivial extension
B = C x FE' is called a partial relation extension of C.

Given a split extension B of C' by E, there is an exact sequence of vector
spaces
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where p: (¢,x) — cand i: e — (0,¢e). Then p is an algebra morphism which
has a section ¢ : ¢ — (¢, 0).

Given a k-linear morphism f: B®" — B, we have a k-linear morphism
pfq®": C®" — C. It is shown in [5, Corollary 2.2] that the assignment
[f] = [pfq®"] defines a k-linear map ¢™: HH"(B) — HH"(C), called the
n-th Hochschild projection morphism.

3. MAIN RESULT

This section is devoted to the proof of Theorem A.

3.1. We start with a criterion for the surjectivity of the first Hochschild
projection morphism.

Lemma 3.1. Let B be a trivial extension of C by E. The Hochschild pro-
jection morphism p': HHY(B) — HHY(C) is surjective if and only if, for
each derivation d of C, there exists a k-linear map o: E — E such that

zd(c) = oa(z)c—alze), (C1)
dic)x = coa(r)— alcx), (C2)

forx e E, ceC.

Proof. This is a reformulation of [5, Corollary 3.6 (b)] in case n = 1 taking
into account that the third condition in loc.cit. is void in this case. O

3.2. From now on, we assume that C is a triangular algebra of global di-
mension two.

Lemma 3.2. Let E = E' & E” be a decomposition of the C-C-bimodule
E = Ext}Z(DC,C) and B = C x E' be a partial relation evtension. Then
o' HHY(B) — HHY(O) is surjective.

Proof. Let a: C — C be a derivation and p’, ¢ be respectively the canonical
projection and inclusion between E and E'. Applying Lemma 3.1 above to
C = C x F, there exists a k-linear map «: £ — E which satisfies conditions
(C1) and (C2) of the lemma. Let o/ = p’aq’: B/ — E'. This is a k-linear
morphism. Then for all z € £/, ¢ € C, we have

o (z) e — o (ze) = (p o' ¢')(z) e — (p' &' ¢')(2c).
Considering « and xc as elements of F, this expression can be written as
pa(z) c —pa(ze) = p'la(z) ¢ — a(zc)],

because p’ is a morphism of C-C-bimodules. Now, because of Lemma 3.1, we
have a(z) ¢ — a(xzc) = zd(c) inside E. Since z € E’ and d(c) € C, we have
xd(c) € E'. Hence p/(xd(c)) = xd(c). This shows that o/(z)c — o/ (xc) =
x d(c) as required. The second relation (C2) is proven in the same way. O
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3.3. We prove the exactness of the first sequence of our main theorem. Here
and in the sequel, we keep the notation of Lemma 3.2, that is, we have a
direct sum decomposition £ = E' & E” and B=C x F'.

Lemma 3.3. There exists a short exact sequence of vector spaces
0 —H°B,E') — HH°(B) —— HH’(C) — 0.

Proof. Because C is triangular, its center Z(C) is equal to k, and hence the
bimodule E’ is (trivially) symmetric over Z(C'), that is, for every ¢ € E’
and z € Z(C) we have ze¢/ = ¢’ 2. On the other hand, HH(B) = Z(B),
HH®(C) = Z(C) and ¢ is the restriction to Z(B) of the projection p: B —
C. Thus ¢° maps the identity of B to the identity of C, hence it is a
nonzero morphism. Because Z(C) = k, it is surjective, and its kernel is
the subspace of E’ consisting of all elements which are central in B. Thus
Ker o = E' N Z(B).

We claim that E' N Z(B) = Hompe (B, E’). Indeed, if f € Hompe(B, E’)
then f(1) € E' N Z(B) because f is a morphism of B-B-bimodules. On the
other hand, if z € E' N Z(B), then the map f,: B — E’ defined by 1 —
is a morphism of B-B-bimodules, because z is central. It is easily seen that
these two maps are inverses to each other. This establishes the claim which
implies that Ker ¢° = Homp. (B, F) = H(B, E’) as desired. O

3.4. The following statement is necessary for the proof of Lemma 3.5.
Lemma 3.4. £(E',C) = 0.

Proof. Let f € E(E',C) and define f: B — C by f(c,z) = f(x), for (c,z) €
= C@ FE'. Clearly, flc = 0. We claim that f is a derivation. Let
(¢,x), (d,2') € B. Then

(c,2) f(c,2") + fle,z)(dsa') = (c,x)f(a!) + f(a)(c, ")

= (cf(a) + f(z )’, zf(a') + f(z)2)
(cf(2') + f(z)c,0),
because f € E(E',C). On the other hand, f is a morphism of C-C-
bimodules, hence

(c.x)f(d,a') + fle,z)(dsa') = (f(ea’ +ac),0)
= fled,ca' +xd) = f((e,x)(c,2")).
This completes the proof that f is a derivation. Now let v: 2 — y be an

arrow in the quiver of B which does not belong to the quiver of C'. Then ~
is a generator of E’ as a C-C-bimodule. We have

fly) = ?(em’Yey) = er?(V)ey

because ez, e, € C imply f(e;) = 0 and f(e,) = 0. This shows that f maps
ezFey, to e,Cey. Moreover the existence of a new arrow v: x — y implies
that there exists a path from y to x inside C' (in fact a relation), see [3,
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Corollary 2.2.1]. But C is triangular, hence e;Ce, = 0. This shows that
f =0 and hence f = 0. O

3.5. We are now able to prove the exactness of the second sequence of our
main theorem.

Lemma 3.5. There exists a short exact sequence of vector spaces
1
0 ——=H'(B,F') — HH'(B) —/— HH'(C) — 0.

Proof. Because of Lemma 3.2, the projection morphism ¢! is surjective.
Moreover, we have seen in the proof of Lemma 3.3 that E’ is symmetric over
Z(C). We apply [5, Theorem 4.4] taking into account that £(E’,C) = 0, by
Lemma 3.4. (]

Remark. Recall that, by [5, Proposition 4.8], we have
HY(B,FE') =HY(C,E') ® Endc-E.

3.6. We now continue the proof of our main theorem. Recall that E =
E'®FE" and C =C«x E.

Lemma 3.6. The morphism ¢*: HH'(C) — HHY(B) is surjective.

Proof. Because of [3, Lemma 2.1.1], the morphism ¢! is well-defined. Let
d: C'— C be a derivation and p”, ¢” be respectively the canonical projection
and inclusion morphisms between E and E”. Because of Lemma 3.1, there
exists «: E — FE which satisfies conditions (C1) and (C2). Consider the
k-linear map " = p”" aq¢”’: E” — E". Let 2/ € E” and c € C.
a//(x//) c— a//(x//c) — p// aq//(x//) c— p//aq//(x//0>
= p"a(0,2")c—p" a(0,2"c)
= 1[a(0.0") c— a(0,a")]
because p” is a morphism of bimodules. Now, in E” we have a(0,2")c —

a(0,2"¢) = (0,2")d(c) because « satisfies condition (C1l). On the other
hand, p”[(0,2")d(c)] = p”(0,2") d(c) = 2" d(c). We have thus proved that

a//(x//) c— Oé”(I”C) — :LJ/ d(c)‘
Hence o satisfies condition (C1). The proof of condition (C2) is similar. [

3.7. The next lemma is needed for the proof of exactness of the third and
the fourth sequence of our main theorem.

Lemma 3.7. E"Z(B) = Z(B)E" = 0. In particular, the bimodule E" is
symmetric over Z(B).

Proof. We must prove that, for each z € Z(B) and each e € E”, we have
ze = ez = 0. Now z € Z(B) is a linear combination of nonzero cycles in
B. Each one of these cycles contains exactly one arrow in the quiver of B
which is not in the quiver of C' (for, if it contains none, then it lies in C
which is triangular, and if it contains more than one, then it lies in E? = 0.)
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On the other hand, e € E” is a linear combination of nonzero paths, each
containing at least one generator of £, that is, an arrow of C which is not
in B. Therefore each path appearing in ze or ez contains at least two arrows
in C which are not in C. Then ze = ez = 0 because E2 = 0. O

3.8. Proof of the main theorem. We have proved the existence of the
first two exact sequences in lemmata 3.3 and 3.5. The sequence

~ ~ 0
0 ——=H%(C, E") —= HH’(C) —~> HH’(B) —> 0

is exact because of Lemma 3.7 and [5, Lemma 4.1] while the exactness of
the sequence

~ ~ 1
0——=H'(C,E")® &(E", B) — HH'(C) —~= HH'(B) —> 0
follows from lemmata 3.6 and 3.7 and [5, Theorem 4.4]. O

Remark. (a) In contrast to the second sequence, the term E(E”, B) in the
fourth sequence does not usually vanish. We refer to Example 4.2 below.
(b) Moreover, because of [5, Proposition 4.8], we have

HY(C,E") ~ H'(B,E") & Endp-E".

4. COROLLARIES AND EXAMPLES

In this last section, we deduce some consequences of our main result and
give a couple of examples.

4.1. In our first corollary, we give another description of the group HH!(B).
Because we shall deal at the same time with several bimodule projections
and inclusions, we introduce the following notation. Let XY be bimodules
overt the same algebra, then if there exists a natural inclusion from X to Y,
it will be denoted by gy x: X — Y and similarly, if there exists a natural
projection from Y to X, say, it will be denoted by pxy: Y — X.

We define a natural morphism n: H(C, E) — H'(B, E’). Recall that
H'(C,E) = Ext}.(C, E) while H'(B, E') = Extge (B, E'). Let the exact
sequence

e 0 E X C 0

represent an element of Ext};e(é , E), and consider the inclusion morphism
4zp: B — C and the projection ppp: E — E’. Then the exact sequence

represents an element of Ext}. (B, E'). We set n: [e] — [prg e a5gl-
Let also ¢: HH'(C, E) — HH'(C) denote the kernel of the Hochschild
projection morphism ¢!: HHY(C) — HH!(C).
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Corollary 4.1. (a) The morphism n is surjective and
Kern =H'(C,E") @ E(E", B).
(b) HHI(Q) is the amalgamated sum of the morphisms HH'(C,E) —
HH'(C) and n: HHY(C, E) — HY(B, E).

Proof. Because p.& = pcppgs and qz. = pagpBe, the right square of the
diagram below commutes.

~ ~ 1
0——H'(C,EF) Y ~HHY(C) >~ HH'(C) —0

Pk

0—H'(B,E) —*~HH(B) X~ HH'(C) — >0

where all ¢! are Hochschild projection morphisms, and the two rows are
exact because of [5, Theorem B| and our main theorem above. We claim
that the left square also commutes.

Let [¢] € Extye(C, E) = HY(C, E). Then, by definition we have 7([e]) =
[pe'E € qzg]- The morphism ( is induced from the long exact cohomology
sequence, hence (n([e]) = (([peE € 4zg]) = aBE PEE € q55]- On the other
side of the square, we have similarly p!vy([e]) = [Ppe G5p € dzp)- Tt thus
suffices to show that pp= g5, = e pEE, and this follows from the fact
that the image of pp~ ¢z E — C — Bis E'. This establishes our claim.

Applying the snake lemma and the surjectivity of ¢! : HH* (5) — HHY(B),
see our main theorem, we get that 7 is surjective and Kern = Ker! =
H'(C,E") & £(E", B). This proves (a), while (b) follows at once from the
commutative diagram with exact rows. ([

4.2. In the next corollary, we need the algebra structure of HH*(C) =
®n>oHH"(C). Let ¢ € HH*(C) and ¢ € HH!(C') be represented by cocycles
f € Hom(C®*,C) and g € Homy(C®!, C), then the cup product { — £ is
the cohomology class of the map f x g € Homy(C®+), ) defined by

(Fxg)e1®- - @cspt) = fl1® - @ cs)g(Csr @+ @ Copa)-

With this product, HH*(C') becomes a graded commutative and associative
ring called the Hochschild cohomology algebra. Tt is shown in [5, Theorem 1]
that if B is a split extension of C, then the Hochschild projection morphisms
" induce an algebra morphism ¢*: HH*(B) — HH*(C).

Corollary 4.2. Let C be a tilted algebra and B = C x E’ a partial relation
extension. Then the algebra morphism ¢*: HH*(B) — HH*(C) is surjective
and there exists an eract sequence

0 ——> K —> HH*(B) —— HH*(C) — 0,
where K = HY(B, E') ® HY(B, E') @ (©n>2 HH"(B)).
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Proof. Because C is tilted, we have HH*(C') = 0 for all n > 2, see [14]. We
apply the exact sequences of Lemmata 3.3 and 3.5. O

4.3. We recall that in [3, Remark 2.1.2] was defined a poset P of partial
relation extensions. Let C' be a triangular algebra of global dimension two,
and C = C x F its relation extension. Then a partial relation extension
By = C x Ej is said to be smaller than By = C x Ey if Fy is a direct
summand of Fo. This defines a partial order on the set of all partial relation
extensions of C, and we denote this poset by P. Note that this poset has a
unique minimal element C' and a unique maximal element C.

We give another realization of the poset P. Assume By < By in P,
where By = C x E; and By = C x Ey. There exists a C-C-bimodule Ej
such that Fs = E; @ E}. Using the same proof as in [3, Lemma 2.1.1], we
get that By = By x Ej. This implies the existence of a Hochschild pro-
jection morphism ¢': HH'(By) — HH!(B;). We are now able to define
the poset HH'. Its elements are the first Hochschild cohomology groups
HH!(B) with B a partial relation extension of C. We say that HH!(B) is
smaller than HH'(By) whenever there exists a Hochschild projection mor-
phism o': HHY(By) — HH(By).

Corollary 4.3. (a) The posets P and HH' are isomorphic.
(b) The map dimHH(—): P — N is a morphism of posets.

Proof. Statement (a) is clear from the respective definitions of our posets.
In order to prove (b), we assume that By = C x E; and By = C X E»
are partial relation extensions, with B; smaller than By. We must prove
that dim HHI(Bl) < dim HHl(BQ). Consider the diagram of Hochschild
projection morphisms.

HH'(C) HH'(B,)

HHY(B))

Because the maps ¢! are induced by the inclusions and projections, this
diagram is commutative. It follows from our main theorem that the mor-
phisms HH!(C)) — HH'(B,) and HH'(C) — HH' (B ) are surjective. There-
fore the morphism HH!(By) — HH!(B) is surjective and dim HH!(B;) <
dim HH!(By) as required. O

4.4. We end the paper with a couple of examples. In both examples, C' is
a tilted algebra, so that C is cluster-tilted.
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Example 4.1. Let C be given by the quiver

—
[N)

2\

W

|

o o o
o

5

.

ot

bound by the relations aff = 76 = 0. Then HH*(C) = 0. Let B be
the partial relation extension of C given by the quiver

€

—_
[\)

v
/A

B
ot

bound by the relations o = fe = e = 0 and v§ = 0. Then HH'(B) = k.
Finally, the relation extension C' is given by the quiver

€

v
/A

6/

bound by the relations aff = fe = ea = 0 and 7§ = d¢’ = €'y = 0. Clearly,
HHY(C) = k2.

Example 4.2. Let C be given by the quiver
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A

w

W

A/

bound by a8 = 0 and 74 = 0. Let B be the partial relation extension given
by

[\)

—_

/s

w

o

A\

bound by aff = 0 and vd = de = ey = 0. The relation extension Cis given
by

\V)

~

e

U\
W

w



HOCHSCHILD COHOMOLOGY OF PARTIAL RELATION EXTENSIONS 11

bound by aff = B¢’ = €a = 0 and 76 = de = ey = 0. Then HH(C) = k
and HH'(C) = k. In order to compute HH'(B), observe first that cE( has
a simple top (the arrow €) hence is indecomposable and so EndceE' = k.
We claim that H'(C, E’) = 0. It suffices to prove that Derg(C, E’) = 0.
Let £ be an arrow from z to y in C, and d: C — E’ a derivation. Then
d(§) = d(ez€ey) = exd(§)ey, thus corresponds to a path from z to y in B
passing through € and parallel to the arrow £ € {«, 3,7,0}. There is no such
nonzero path. Therefore H(C, E’) = 0 and so H'(B,E') = k. Tt follows
that HH!(B) = k2.

In this example we have £(E”,B) # 0. Indeed £ = F' ® B =< ¢ >
® <€ >. Let f: E” — B be the morphism defined by f(€¢’) = ¢. Then, for
each z € E” we have xe = 0 = ex because z¢,ex € E? = (. In particular
xf(e')+ f(z)¢ = 0 and thus f is a nonzero element of £(E”, B).
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