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1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [21] in the context of
canonical bases in Lie theory and total positivity. A cluster algebra 4 = A(Q) is a
subalgebra of a field of rational functions in n-variables whose generators, the cluster
variables, are constructed recursively from an initial seed of n-variables. This construc-
tion, and hence the cluster algebra, is determined by a quiver ) with n vertices. A strong
connection between cluster algebras and representation theory was realized via cluster
categories, which were introduced in [8,11]. The cluster character of [10,34] is a map
from the set of objects of the cluster category C to a ring of Laurent polynomials which
provides a direct formula for the cluster variables and gives a bijection between reachable
cluster-tilting objects in C and clusters in 4. Cluster categories have been generalized in
[1] using the theory of quivers with potential developed in [13].

In this paper, we study certain group actions on cluster algebras, cluster categories
and quivers with potential. We say that a group of automorphisms G is admissible if
it acts freely on a given cluster in A, or, equivalently, on a given cluster-tilting object
in C. On the level of quivers with potential this means that the group acts freely on the
vertices of the quiver.

We define and study the corresponding orbit spaces in each of these settings. On the
level of quivers with potential, we obtain a G-covering from the Jacobian algebras of the
quiver with potential to the Jacobian algebras of the orbit quiver, see Proposition 3.1 and
Corollary 3.11. On the level of cluster categories, we have a G-precovering from the cluster
category C of the quiver with potential to the cluster category Cg of G-orbits. Recall that
a covering functor is a precovering functor that is also dense. In particular, we show that
C is of finite type if and only if Cg is of finite type, and that in this case our functor is
a G-covering that preserves Auslander—Reiten triangles, see Propositions 7.13 and 7.14.

The orbit space of the cluster algebra can be defined in at least two ways. On the
one hand, we can take the quotient of the cluster algebra A by identifying the cluster
variables that lie in the same G-orbit. On the other hand, we can take the algebra Ag
generated by the images under the cluster character of all summands of cluster-tilting
objects obtained from the initial cluster by G-orbit mutations. We will see that there are
two natural ways to define a cluster character, however, one seems better behaved with
respect to the precovering functor. These two constructions yield the same algebra under
some mild conditions. In general, the algebra A¢ is not an honest cluster algebra but
rather a generalized cluster algebra. We point out that our generalized cluster structure
is not the same as the one constructed by Chekhov and Shapiro in [12] and also not the
one of Lam and Pylyavskyy in [30], see Remark 6.3.

We devote particular attention to group actions on cluster algebras from surfaces. In
this case, the initial cluster of A corresponds to a triangulation of a surface with marked
points, and the elements of G are elements of the mapping class group of the surface
that map the triangulation to itself. The admissibility condition translates to G acting
freely on the arcs of the triangulation.
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The orbit space of such a group action is an orbifold. In this situation, we give an
explicit list of the exchange polynomials of the orbit cluster algebra A¢g in terms of the
orbifold. We show that the algebra generated by all variables obtained by finite sequences
of generalized mutations with respect to these exchange polynomials is indeed equal to
the generalized cluster algebra Ag of orbits. Some of the exchange polynomials that we
get are similar to the exchange polynomials of the quasi-cluster algebras as defined in
[15]. In general, the quasi-cluster algebras are different from the orbit cluster algebras
Ag coming from the action of a group G on a surface; see Remark 6.5.

We also point out that our orbifolds are different from the orbifolds considered by
Felikson, Shapiro and Tumarkin [16].

The paper is organized as follows. In Section 2, we recall background on quivers
with potential and define admissible group actions. Our results on G-coverings follow in
Section 3. In Section 4, we study admissible actions on the level of triangulated surfaces
and introduce the orbifolds. Section 5 is devoted to the computation of the exchange
polynomials for the orbifolds. We use these computations in Section 6 in order to define
the generalized cluster algebra of an orbifold. We classify the four algebras of rank 1
and the six algebras of rank 2 in the Subsections 6.1 and 6.2, respectively. Finally, in
Section 7, we come back to the study of cluster categories. We show that, in the surface
case, the generalized cluster algebra of the orbifold is equal to the cluster algebra Ag,
and in the finite type case, the precovering of cluster categories is actually a covering. In
order to study the cluster algebra in case C is the cluster category of a Dynkin quiver,
we introduce a cluster character in Cgo that gives all cluster variables of Ag.

2. Preliminaries

In this paper, k denotes an algebraically closed field and G a finite group whose order
is not divisible by the characteristic of k. Also, Q@ = (Qo, Q1) denotes a finite quiver. We
compose paths like functions, that is, from right to left.

2.1. Quivers with potential and automorphisms

Let Q be a quiver. If p,p’ are two oriented cycles in @), we write p ~ p’ if one can
get p’ by cyclically rotating p. In other words, if p = «, ---agsaq, then there exists
1 <i < rsuch that p’ = ;1 -+ @10, - - - aj11a4. This relation is clearly an equivalence
relation and the class of a cycle p is denoted [p]. We define cyc(Q) to be the set of all
equivalence classes of cycles of Q. Recall that a potential for @ is a (possibly infinite)
linear combination of distinct elements in cyc(Q). In this paper, W always denotes a
potential for Q. The pair (Q, W) is called a quiver with potential [13].

An oriented cycle of length one is called a loop and an oriented cycle of length two is
called a 2-cycle. If a is a vertex of @ such that there are no loops and no 2-cycles at a,
then we can define the mutation 1, (Q, W) = (Q', W) of (Q, W) which is the mutation in
direction a of the quiver with potential (@, W); see [13]. In particular, @’ is a quiver with
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the same vertex set as the one for Q and W’ is a potential for ()'. In general, the quiver
@’ may have 2-cycles at a (but no loops at a). There is a notion of right-equivalence of
quivers with potentials and even if Q' has 2-cycles at a, it could be possible to find a
quiver with potential (Q"”, W) that is right-equivalent to (Q’, W’) so that Q" has no
2-cycles at a. Some authors are interested in the case where W is non-degenerate, which
means that the quivers obtained from (Q, W) by a finite sequence of mutations do not
have 2-cycles (up to right-equivalence). In particular, the original quiver @ has no loops
and no 2-cycles. Having no 2-cycles (and no loops) at a vertex a of a quiver @ is generally
needed to define mutation in direction a of Q. So in the non-degenerate setting, one can
iteratively perform mutations of (Q, W) in all possible directions, and at the quiver level,
this is the usual quiver mutation as defined by Fomin-Zelevinsky in [21].

Let ¢ be an automorphism of Q. Clearly, ¢ induces a permutation on cyc(Q). We say
that ¢ is an automorphism of (Q,W) provided that whenever Alp] is a summand of W,
with A € k, then Ap[p] is also a summand of W. Let G be a group of automorphisms of
(Q,W). We call G admissible if each ¢ € G acts freely on Qq, that is, if p(z) = = for
some r € Qy then ¢ has to be the identity automorphism. Note that the generators of a
group G of automorphisms of (Q, W) may act freely on Qo without G being admissible.

Since each element of G acts freely on the vertices of @, clearly, each element of G
also acts freely on the arrows of Q. For a € Q¢ U @1, we denote by Ga the G-orbit of a.
By the above observation, one has |Ga| = |G|. In particular, |G| divides both |Qol, |Q1]-
We define a quiver Q¢, called the orbit quiver of @, by

(Qe)o={Gz |z € Qp} and (Qg)1 ={Ga|a € @1}

For an illustration, see Example 2.3 below.
2.2. Jacobian algebras and automorphisms

Let (Q,W) be a quiver with potential. We recall the construction of the Jacobian
algebra of (Q,W). Given an arrow « in @, consider J, the partial differential operator
on k(@ such that if p = «,. - - - a1, then

.
Oa(p) = E Q1 Q10 - Q1000
i=1

where § stands for the Kronecker symbol. One can define 9, on an element [p] € cyc(Q)
by defining 9, [p] = 0. (p). Take I the ideal of kQ generated by all 0, (W) where a runs
through the set of arrows of Q. The Jacobian algebra of (Q, W), denoted J(Q, W), is
defined to be k/@ / T where EZ) is the completed path algebra of @) and T is the completion
of I in I;@ This algebra is not always finite dimensional. In case it is finite dimensional,
the pair (Q, W) is called Jacobi-finite.
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Now, let G be an admissible group of automorphisms of (Q, W). Given an element [p)
of cyc(Q), we denote by GJp] its G-orbit, which is a subset of cyc(Q). Let £ be the set
of all G-orbits in cyc(Q). We can decompose W as

W= ). )

eel [plee

Lemma 2.1. Any ¢ € G induces an automorphism of J(Q,W).

Proof. Let ¢ € G. Clearly, we can extend ¢ to a continuous automorphism of /;CTQ, still
denoted ¢. Observe that for all « € Q1 and [p] € cyc(Q), we have p(9a[p]) = Oy ([P])-
Therefore, equation (1) implies that (0o W) = Oy(a)W. This yields ¢(I) = I. Therefore,
I= <p/(T ) = o(I), since ¢ is continuous. Thus, we get an automorphism ¢ at the level of
the quotient l;@ / I. o

The next lemma guarantees that the equivalence classes of cycles in Q¢ coincide with
the G-orbits of equivalence classes of cycles in Q.

Lemma 2.2. Let [p],[q] € cyc(Q) with p = o,---0a1 and ¢ = Br---P1. If we have
(Gay -+ Gan] = [GB, -+ GBi], then Glp] = Glq].

Proof. We are given that
[Gay---Gaq] = [GBy - - GB].

By cyclically permuting ¢ if necessary, we may assume that, for each i, the arrows oy, 5;
lie in the same G-orbit. Let ¢ € G with gay = (1. Observe that the arrows gas, 52
both start at the same vertex of ) and lie in the same G-orbit. Therefore, since G is
admissible, we have gas = (5. By induction, we have ga; = §; for 1 < ¢ < r, that is,
gp=gq. O

Observe that we have a k-linear functor 7 : kQ — kQg of the corresponding
k-categories such that for a € Qo U @1, w(a) = Ga. Later, we will study this func-
tor in more details. Recall that since G is an admissible group of automorphisms of
(Q, W), we can decompose the potential W as

W= > ew| D

Glplecyc(Qa) [d]€GIp]

We define the following potential on the orbit quiver Q¢

Wa = Z (Aaw | Glpl|) Glp).
G[pl€cyc(Qe)
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Observe that
dca(GIp]) = Istab(G,[p)lr | D" daldl | -
[d]€Gp]
where stab(G, [p]) = {g € G | g[p] = [p]} is the stabilizer subgroup of [p]. Since

|stab(G, [PDI|GIpl| = |G,

we see that

OcgaWa = Z (Acp1|GlP)|) Oca(Glp])
Glpl€cyc(Qa)

= > QawlG@)r| D daldl

Glplecyc(Qa) [a€G[p]
= |G|7(0a(W)).
Define Ig to be the ideal of k'/Q\G generated by the elements dgo(We). Since the char-
acteristic of k does not divide |G|, we see that 7 sends the generator 9,(W) of I to a
scalar multiple of the generator g, (W¢) of Io. We define the Jacobian algebra of the
orbit as J(Qq, Wa) = kQa/Ic.
Example 2.3. Consider the following quiver @Q:

1

C1

«
N

ai
V

b1
i
N

as az

b2

N A N

b3 2

Consider the cyclic group G of order 3 with generator g such that g acts on Q¢ U Q1
by increasing by 1, modulo 3, the indices of the symbols. Clearly, G is admissible. Take
W = 30201 + Zle viBic;. Then G is an admissible group of automorphisms of (Q, W).
The quiver Q¢ is
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where 6 = Gd1, a0 = Gay, f = GB1,7v = Gy1,a = Gay, b = Gby and ¢ = Gey. Now,
We = 6% + 3vBa
The generators of Ig are 362,378, 3B«, 3ary. We have
J(Qa, Wa) = kQa/(0caWa | Ga € (Qa)1) = kQa/ (362,375, 3Ba, 3a).
2.3. Ginzburg DG-algebras

Now, let T'(Q, W) be the (completed) Ginzburg DG-algebra of (Q, W). Recall that
as a graded algebra, T'(Q, W) is generated in non-positive degrees and is the completed

g

graded quiver algebra kQ where @ is obtained from the quiver @ by adding the following
arrows: for each arrow o : ¢ — j in @, we add an arrow o : j — 4; and for each vertex
iin Q, we add a loop t; : i — 4. To make kQ a graded algebra, we need to define the
degree of the arrows of . The arrows from Q; as well as the trivial paths {e; | i € Qo}
are declared to be of degree zero. The arrows in {a* | @ € @1} are declared to be of
degree —1 and the loops {t; | i € Qo} are of degree —2. The DG-algebra I'(Q, W) is
equipped with a continuous differential 9 defined on a* and ¢; by

0™ = 0, (W)
and
0t =¢; Z (aa”™ —a*a) | e,
aEQq

and extended by the Leibniz rule to all of T'(Q, W). In particular, d vanishes on kQ. Given
an automorphism ¢ of (Q, W), we extend its action to a unique (graded) automorphism
of the graded algebra kQ as follows. We set ¢(a*) = (¢(a))* and @(t;) = t,(;). This

—

clearly extends to a continuous automorphism of kQ.
3. The cluster category of G-orbits

In this section we define the cluster category of G-orbits as the cluster category
of the quiver Q¢ with its corresponding potential. When G is an admissible group
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of automorphisms of (Q,W) such that (Q,W) is Jacobi-finite, we will see that we
have two Hom-finite 2-Calabi-Yau triangulated categories C(Q,W),C(Qg, W¢) asso-
ciated to the quivers with potentials (Q, W), (Q¢, W¢), respectively. These categories
will be called cluster categories and we will show that we have a G-precovering functor
F:C(Q,W)— C(Qg, Wg) (see Proposition 3.6) and this functor is compatible with mu-
tations (see Subsection 3.4). Precoverings of cluster categories together with mutations
are also studied in [33] with the purpose of mutating some quivers of endomorphism
algebras of 2-Calabi—Yau tilted algebras having loops or 2-cycles.

3.1. Coverings of k-categories

In this subsection, we introduce the notion of G-(pre)covering of algebras or categories.
A skeletal category is a category for which different objects are not isomorphic. Let A, B
be two skeletal k-categories and G be a group of automorphisms of 4. A k-linear functor
F: A— B is called a G-precovering if we have functorial isomorphisms

P Ala, gb) = B(Fa, Fb)

geG

and

@ A(ga,b) = B(Fa, Fb)

geG

induced by the sum of the images of F. If, moreover, the functor F' is surjective, then F’
is called a G-covering. We refer the reader to [5] or [6] for more details on G-coverings.

These definitions can be adapted to the differential graded cases. Assume now that
A, B are skeletal DG k-categories with differentials 9.4, 05, respectively. Let F': A — B
be a k-linear functor that is graded (that is, respect the grading of morphisms) and
commutes with the differentials. The functor F is called a G-precovering of DG-categories
if, for i € Z, we have functorial isomorphisms

P Ala, gb); = B(Fa, Fb);

geG

and

@ A(ga,b); =2 B(Fa, Fb);

geG

of degree ¢+ maps induced by F'. If, moreover, the functor F' is surjective, then F' is called
a G-covering.

Let A be a k-algebra having a complete set ey, . . ., e, of pairwise orthogonal primitive
idempotents. It will be convenient for us to think of A as a (skeletal) k-category, also
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denoted A. The objects of A are the idempotents of A and the morphisms from e; to e;
are given by the elements in ejAe;. This is a Hom-finite category if and only if A is finite
dimensional. If A is a DG algebra, then the corresponding category is a DG category.
Observe that if x € ejAe; and y € e Aey with k # j, then yx is not defined in the
category A while it is zero in the algebra A.

Let G be a group of admissible automorphisms of (Q,W). Recall that we have a
k-linear functor 7 : kQ — kQg of k-categories such that for a € Qo U @1, 7(a) = Ga.
This functor 7 is clearly a G-covering. Moreover, it extends to a k-linear continuous
functor 7 : I;C} — k/QZ, which is also a G-covering.

Proposition 3.1. We have a G-covering
™ J(Qa W) — J(QGa WG)
induced by the G-covering 7 : k’/@ — k@\g

Proof. For vertices a, b in @y, we have a functorial isomorphism

p: @D kQ(a. gb) = kQc(Ga, Gb)

geG

which, by the results in Subsection 2.2, restricts to an isomorphism

f: €D I(a, gb) = Ic(Ga, Gb).

geG

Now, consider the commutative diagram

~

00— @, e (a,gb) —= B,cqkQ(a, gb) — B,ec J(Q, W)(a, gb) — 0

| &

0 I(Ga, Gb) kQc(Ga, Gb)

J(Qg, Wg)(Ga, Gb) e O

There is an induced isomorphism

h: @ J(Q.W)(a, gb) = J(Qa, We)(Ga, Gb),

geG

which is functorial. Similarly, there is a functorial isomorphism

P J(Q.W)(ga,b) = J(Qc, We)(Ga,Gb). O
geqG
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Lemma 3.2. Let ¢ be an automorphism of (Q, W) and extend o to a graded automorphism

of kQ as previously. Then ¢ induces an automorphism of T'(Q, W), that is, ¢ commutes
with the differential 0.

Proof. It suffices to check the compatibility on the arrows of degree —1, —2. We have

0p(a”) = 0(p(a)*) = Op(a) (W) = Op(a) (p(W)) = ¢(0a(W)) = g0 (a”)

and
p(ti) = 0(ty(s))

= o) | D (aa” —a’a) | ey
aEQq

= eoi) | D (Pl@)p(a) —p(a) p(a) | epn)
aEQq

Now, consider the (completed) Ginzburg orbit DG-algebra I'(Qq, W¢) with differen-
tial 9¢. As seen in Lemma 3.2, we have 0p = 0 whenever ¢ € G. This means that the
differential 3¢ in I'(Qg, Wg) comes from the differential d of I'(Q, W). In order to con-
sider G-coverings of DG-algebras, we can naturally think of the Ginzburg DG-algebras
NQ,W),T(Qg, Ws) as DG-categories. We get a graded G-covering

m:T(Q,W) = T'(Qg, We),

of DG-categories, that is, for each ¢ < 0, we have natural isomorphisms

D *Q(a. gb); = kQai(Ga, Gb);

geG

and

B kQlga,b); = kQa(Ga, Gb);
geG

of degree i maps. Moreover, 7 commutes with the differentials 95 and 0.
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Remark 3.3. Observe that using the G-covering functor = : T'(Q, W) — I'(Qg, W¢) to-
gether with the fact that the Jacobian algebra is the zero-th cohomology of the Ginzburg
DG-algebra, we can recover Proposition 3.1.

3.2. Perfect derived categories

Let G be an admissible group of automorphisms of (@, W) and consider the graded
G-covering m : T'(Q, W) — T'(Qg, W¢) as obtained above. Given a DG k-algebra (or
category) A, we let H(A) denote the homotopy category of the category of DG A-modules
and we let perA denote the full subcategory of H(A) of the perfect DG A-modules: it
is the smallest full triangulated subcategory of H(A) containing A that is closed under
isomorphisms and direct summands. Finally, we let f.d.A denote the full subcategory
of H(A) of the DG-modules whose total homology is finite dimensional. When A is
a Ginzburg DG-algebra of a Jacobi-finite quiver with potential, the subcategory f.d.A
is a triangulated subcategory of perA, and consequently, the quotient perA/f.d.A is a
Hom-finite 2-Calabi-Yau triangulated k-category; see [1].

We want to define a functor

F :perl'(Q, W) — perl'(Qag, Wa)

at the level of the perfect derived categories of DG-modules. Let M*® = (M;);cz be a
DG-module in perl'(Q, W) with differential (d; : M; — M;t1);cz. Observe that each
M; is a k@Q-modules and each d; is a morphism of kQ-modules. Consider the G-covering
7 : kQ — kQ¢. There is an induced push-down functor 7 : Rep(Q) — Rep(Q¢). For
z € Qo, we have (m\M)(Gz) = BgeaM(gx) and for a € Q1, we have (ma\M)(Ga) =
BgeaM(ga). This functor my is a G-precovering. We define FM® to be the complex
(maM;);icz with differentials (m)d;);cz. We need to check that this is well defined. First
of all, since 7y is a functor, it is clear that (7wxd;);cz is a differential. Fix i € Z. We have

mM; = @ (TrAMi)eGI7
Gz€(Qa)o

where (mAM;)eq. = @yeGm Mie,. Assume that o : t — s, so that o* : s — t.
Then o* induces a linear map (M*®(a*)); : M;es — M;_q1e;. Therefore, for g € G,
we have a linear map (M*(ga*)); = (M°*((9a)*)); : Miegs — M;_1e4. As we have
(maM;)egs = @geg Miegs and (maM,;_1)eqt = @geG M;_1e4q, this induces a linear map
(maM;)eqs — (maM;—1)eg: that we define to be the action of Ga* on (FM?®); = m\M,.
Similarly, we can define the action of Gt; on (FM*®); = w)\M;. This makes FM* a graded
kQg-module. Since 7 sends the ideal generated by/tge arrows of @ to the ideal generated
by arrows of Q¢, we have that FM® is actually a kQg-module. One has to check that the
differential (mxd;);cz satisfies the Leibniz rule and one needs to define F' on morphisms.
For this purpose, let f* = (fi)icz : M®* — N*® be a morphism of DG-modules. We define



172 C. Paquette, R. Schiffler / Advances in Mathematics 345 (2019) 161-221

Ff to be the morphism (7 f;);cz. For a homogeneous element a in a DG-algebra, we
let |a| denote its degree.

Lemma 3.4. The differential (m\d;)icz defined above satisfies the Leibniz rule and if f* :
M® — N* is a morphism (of degree zero) of DG-modules, then F(f®) = (mafi)iez :
F(M®) — F(N°*) is a morphism of DG-modules.

Proof. Let a € T'(Qg,Wg) : Gz — Gy be an arrow of degree —2 < j < 0 and z =
(zg)gec € (M M)egy = EBgeG Mieg,. We may assume that a = Gb for some arrow
b:ax — yofdegree jinT'(Q,W). We have (m1d;)((24)gec) = (di(2zg))gec- Also, |gb| = |a]
for all g € G. Therefore,

madi+)((24(gb))gec)
ditj(24(gb)))gec
i(20)(90) + (—1)'* 2405 (gb)) e
i(29)90)gec + (1)1 (240 (b)) ge
=mdi(2)a + (—1)1"20¢ ;(a)

(madiyj)(za) =

(
= (
=(d
(d

which shows that the differential satisfies the Leibniz rule. Now, let f : M*®* — N*® be a
morphism of DG-modules. We have

7 firj(za) = 7 fir;((24(9D))gec)
= (fi+j(24(gb)))gec)
= (fi(zg)(9b))gec
= (fi(zg))geca
= (mrfi)(2)a,

which shows that (7 f;)icz induces a morphism Ff : FM® — FN*® of DG-modules. O

Observe finally that F is additive and F(I'(Q,W)) lies in the additive hull of
I'(Qa,Wg) so that F is a well-defined functor at the level of the perfect derived cate-
gories. Consider now the functor 7* : Rep(Q¢) — Rep(Q) which is right adjoint to 7y.
For M € Rep(Q), we have m*m\M = @®,eqgM. We first need to extend 7 to a functor
F :perl'(Qa, Wg) — perl'(Q, W). Let M® = (M;);cz be a DG-module in perT(Qg, Wg)
with differential (d;);cz. We define FM® to be the complex (7*M;);cz with differential
(7*d;)iez. One can check that this defines a DG-module in H(T'(Q, W)). One also needs
to define F on morphisms on the natural way: if f® = (fi)icz : M® — N*® is a morphism
of DG-module, then (7 f;);cz is a morphism of DG-I'(Q, W)-modules. One can check
that F defines a functor from perl'(Qg, Wg) to H(T'(Q, W)).
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Lemma 3.5. We have an adjoint pair (F, F). Moreover, for M*® € perT'(Q, W), we have
FFM® =~ D©gecgM?®. In particular, since G is finite, the functor F is from perT(Qa, W)
to perl'(Q, W).

Proof. This follows from the analogous properties for the functors 7y, 7*. O
3.8. Cluster categories

The cluster category C(Q, W) of the quiver with potential (Q, W) is defined in [1] as
follows.

C(Q, W) = parT(Q, W) /L.AT(Q, W)
In this short subsection, we will study the category

C(Qa,Wa) =pal(Qa, Wa)/f.dT(Qa, Wa).

Observe that £.d.T'(Q, W) is clearly sent to f.d.I'(Qg, W¢) by F. Therefore, the exact
functor F' induces a functor

F: C(Q, W) — C(Qg, Wg).

This is an exact functor of triangulated categories. In general, this functor is neither full
nor dense. We have the following.

Proposition 3.6. The functor F : per['(Q,W) — perl'(Qa, W¢) is a G-precovering. It
induces a G-precovering F : C(Q, W) — C(Qa, Wg).

Proof. The first part of the proof is an adaptation of Asashiba’s proof [3, Theorem 4.3
and 4.4]. Let M*, N°® € perI’(Q, W). Since G is finite, we have a functorial isomorphism

©gecHomperr(gw)(M*®, gN®) = Homperr(g,w) (M*, ©gecgN°®).
The latter is functorially isomorphic to
Hompe,r(g,w)(M*®, FFN*®)
which, by the adjunction property, is functorially isomorphic to
Homperr(qg,we) (FM®, FN*®).
Similarly, we have a functorial isomorphism
BgecHomper@w)(gM*, N®) = Hompor(qe,we) (FM*, FN*®).

This shows the first part of the lemma.
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For the second part, we only need to observe that the functorial isomorphism
SgecHomperr(Q,w) (M*®, gN*®) = Homperr (@, we) (FM®, FN*)
induces a functorial isomorphism
@gegHome(gw)(M*,gN*®) = Home (g, we) (FM®, FN®).
Similarly, we get a functorial isomorphism
SgegHome (g w)(gM*®, N®) = Home (g, we)(FM®, FN®). O

When (Q, W) is Jacobi-finite, since we have a G-covering J(Q,W) — J(Qa, Wa),
the pair (Qg, W¢) is also Jacobi-finite, so that by [1, Theorem 3.5] again, C(Qq, W¢)
is a 2-Calabi—Yau triangulated Hom-finite Krull-Schmidt k-category. The category
C(Qg,We) is then called the cluster category of (Qa,We). Note that Q¢ may have
loops and 2-cycles. As a consequence, the potential Ws need not be non-degenerate,
even when W is.

3.4. Cluster-tilting objects and mutations

In this subsection, we assume that (Q,W) is Jacobi-finite and we let G be an ad-
missible group of automorphisms of (Q,W). In particular, both C(Q,W),C(Qa, Wa)
are 2-Calabi—Yau triangulated Hom-finite Krull-Schmidt k-category. Let T be a ba-
sic cluster-tilting object in C(Q,W). Equivalently, Home g wy (T, T[1]) = 0 and T has
exactly n non-isomorphic direct summands, where n = |Qg|. We call such a T a G-cluster-
tilting object if gT" = T for all ¢ € G. Clearly, the projective module I'(Q, W) is
a G-cluster-tilting object. If U is an indecomposable direct summand of T and T is
G-cluster-tilting, then for g € G, we have that gU is isomorphic to a direct summand
of T. We will denote by U the direct sum of all the non-isomorphic such gU and by Ty,
the rigid object T'/U.

We recall some notions from Iyama—Yoshino; see [24]. Let D be an additive sub-
category of C(Q, W) which is closed under taking direct summands and such that for
Dy,D5 € D, we have Hom(D1, D5[1]) = 0. Assume also that D is functorially finite
in C(Q,W). Let X be an additive subcategory of C(Q, W) which is closed under tak-
ing direct summands, contains D, and is such that for D € D and X € X, we have
Hom(D, X[1]) = 0. Given an object X € X, take a left D-approximation X — D’ and
consider a triangle

x4 D ox - XN

Then Hom(Cx, s, D[1]) = 0 for all D € D and Cx ; is nonzero if X is not in D. Consider
the additive subcategory Y of C(Q, W) generated by all such Cx . Clearly, Y contains D
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(the approximations above are not necessarily minimal) and for Y € Y, D € D, we have
Hom(Y, D[1]) = 0. By Proposition 2.1(1) in [24], the category Y is closed under direct
summands. Following the terminology in [24], the pair (X,)) is called a D-mutation
pair. It follows from Proposition 5.1 in [24] that X is a cluster-tilting subcategory if and
only if so is V.

As an application, we consider the following. Let T be a G-cluster-tilting object in
C(Q,W) and U an indecomposable direct summand of 7. Let D be the additive subcat-
egory generated by the indecomposable direct summands of Ty and let X be the one
generated by the indecomposable direct summands of T'. Clearly, D, X’ are as above. Let
fu : U = Dy be a minimal left D-approximation of U in C(Q, W) and let Cy be the
cone of fy. Since each g € G can be seen as an automorphism of C(Q, W), the triangle

U Dy — Cy — U1
is sent to the triangle
gU %Y gDu — gCy — gU1]

as (gU)[1] =2 g(U[1]). Now, gU € X,gDy € D and g fy is a minimal left D-approximation
of gU, so gCy = Cyy. Now, let f : U — Dz be a minimal left D-approximation of U
in C(Q,W).

Lemma 3.7. We have C7 = Cyy, where Cy is the direct sum of the non-isomorphic objects
in {gCy | g € G}.

Proof. It is easy to check that the direct sum of the gfy for g € G forms a minimal left
D-approximation of U in C(Q, W). Therefore, we just need to check that gU = U if and
only if Cy =2 Cyy. The necessity follows from the left-approximation property. For the
sufficiency, we just need to observe that if we have a left D-approximation fy of U with
the corresponding triangle

U s py 8oy oy,
then f{; is a right D-approximation of Cyy. O

Now, we can set u(T,U) = (T/U)@® Cg and by construction, ) is the additive subcat-
egory generated by the indecomposable direct summands of u(7,U). In particular, ) is
a cluster-tilting subcategory, meaning that u(7,U) is a cluster-tilting object. It is clear
that u(T,U) is also G-cluster-tilting. We denote by D¢ the full additive subcategory in
C(Qg, W¢) generated by the indecomposable direct summands of F(Ty) and by D¢ the
basic object of F(Ty).
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Proposition 3.8. Assume that (Q,W) is Jacobi-finite. Let h : U — D be a minimal
left D-approzimation of U in C(Q,W). Then Fh is a left Dg-approzimation of FU in
C(Qc, Wa).

Proof. Since (Q, W) is Jacobi-finite, the cluster categories C(Q, W), C(Qa, W¢) are Hom-
finite. Let D’ € D be arbitrary, so that F'D’ is arbitrary in D¢. Since F is a G-precovering,
for each g € G, there exists a natural isomorphism ¢, : F'o g — F such that

(x): Pup : DgecHom(U, gD') — Hom(FU, FD")
is given by (fg)gec — 2 eq(@gD’) o F(fy). Let f : FU — FD' be any morphism.
Since (F, F) is an adjoint pair and since FFD’' 2 ®,ecgD’, there is a morphism f €
Home(g,w) (U, ®yeqgD’) corresponding to f through the adjunction isomorphism

HomC(Q,W)(U, @geggD/) = Homc(QG,WG) (FU, FD/)

Decompose f as f = (fg)gec- Since h is a left D-approximation of U, there is a morphism
n:D — @yeqgD’ such that f = nh. Now, we have (F f,),ec = FnFh. Now, the diagram

FD
2 s
(Ffq) (¢gD")
FU 9)9g€G @geGFgDI g 9€e@G FD/

yields

= (¢9D1)96G(ng)geG = ((¢9Dl>geGF77)Fh
which shows that Fh is a left Dg-approximation of FU in C(Qg, Wg). O

In the above setting, the process of replacing U in T by the cone Cy of a minimal
left D-approximation U — Dy is called the (Iyama—Yoshino) orbit mutation of U in T.
Note that gC = Cf for all g € G and hence Cr = Cy, that is, the indecomposable
direct summands of Cfr are precisely the non-isomorphic objects of {¢Cy | g € G}.

Corollary 3.9. Let T be a G-cluster-tilting object in C(Q,W). Let U be an indecomposable
direct summand of T'. The orbit mutation of U in T corresponds to the classical mutation
of FU inside the cluster-tilting object FT of C(Qa,Wa).

In the above corollary, the assumption that 7' is G-cluster-tilting is necessary. In
general, an indecomposable rigid object in C(Q, W) is not sent by F' to a rigid object in
C(Qg, Weg). In particular, a cluster-tilting object in C(Q, W) is not necessarily sent to a
cluster-tilting object in C(Qg, W¢) through F.
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Corollary 3.10. Let T be an object in C(Q, W) obtained by a sequence of orbit mutations
of the rigid object T'(Q, W) seen as an object in C(Q,W). Then FT is (not necessarily
basic) cluster-tilting in C(Qg, Wa).

Corollary 3.11. Let T be a G-cluster-tilting object in C(Q,W). Then there is a G-covering
Endc(QJ/[/)(T) — Endc(QG,WG)(FT).

4. Surfaces and orbifolds

Building on work of Fock and Goncharov [18,19], and of Gekhtman, Shapiro and
Vainshtein [23], Fomin, Shapiro and Thurston [20] associated a cluster algebra to any
bordered surface with marked points. Oriented Riemann orbifolds have been considered
in [16,12,25] in the context of cluster algebras. The triangulated orbifolds considered
in [16] is the geometric framework which allowed the same authors to complete the
classification of skew-symmetrizable cluster algebras of finite type, in [17]. In [12], the
authors have also studied orbifolds, defined in a similar way, in the context of Teichmiiller
theory. They have shown that the A-lengths relation for the arcs in an orbifold behave
like a three-term exchange relation of a generalized-cluster algebra, which is defined
there.

We fix the following notation.

o S is a connected oriented Riemann surface with (possibly empty) boundary 95.
e M C S is a finite set of marked points with at least one marked point on each
connected component of the boundary.

We will refer to the pair (S, M) simply as a surface. A surface is called closed if the bound-
ary is empty. A connected component of 9S is called a boundary component. Marked
points in the interior of S are called punctures.

An orbifold is a surface with additional data. Each puncture b comes with a positive
integer my attached to it, called its isotropy, and there is also a finite set of points O
on S\(90S U M) called orbifold points. More precisely, an orbifold is a triple (S, M, O)
together with a function m : M — Z>; such that my := m(b) = 1 whenever b € 0S.
A puncture b with isotropy m; will be called an my-puncture and a 1-puncture is often
called an ordinary puncture.

For technical reasons, when O is empty, we require that (S, M) is not a sphere with
1,2 or 3 punctures; a monogon with 0 or 1 puncture; or a bigon or triangle without
punctures.

An orbifold point is denoted by a cross x in the surface, a marked point with isotropy
one is denoted by a dot ® while a puncture with isotropy greater than one is denoted
by ®.
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4.1. Arcs and triangulations
An arc vy in (S, M) is a curve in S, considered up to isotopy, such that

(a) the endpoints of v are in M;
is disjoint from O and, except for the endpoints, v is disjoint from M and from 9.5}
b) + is disjoint f O and t for the endpoints, v is disjoint fi M and f oS
(c1) ~ does not cut out an unpunctured monogon, unless there is exactly one orbifold
point in the monogon;
(¢2) v does not cut out an unpunctured bigon;
(d) « does not cross itself, except that its endpoints may coincide.

If v is an arc with endpoints a, b, we will often indicate this by v:a —b or by v: b — a.
Curves that connect two marked points and lie entirely on the boundary of S without
passing through a third marked point are called boundary segments. By (cl) and (c2),
boundary segments are not arcs. A closed loop is a closed curve in S which is disjoint
from the boundary of S.

For any two arcs 7,7 in S, define

e(7,7') = min{number of crossings of & and o’ | @ ~v,a’ ~ '},

where o and o' range over all arcs isotopic to v and +/, respectively. We say that arcs v
and ' are compatible if e(vy,7') = 0.

An ideal triangulation is a maximal collection of pairwise compatible arcs (together
with all boundary segments). The arcs of a triangulation cut the surface into ideal trian-
gles. Triangles that have exactly two distinct sides are called self-folded triangles. Note
that a self-folded triangle consists of a loop /¢, together with an arc r to an enclosed
puncture which we call a radius. If m denotes the isotropy of the puncture inside the
self-folded triangle, then the triangle is called m-self-folded. A triangle that has only one
arc has to be a loop enclosing exactly one orbifold point. Such a triangle is called an
orbifold triangle. A triangle that is neither self-folded nor an orbifold triangle is called a
standard triangle. A triangle is called internal if no edge of the triangle is a boundary
segment. A self-folded or orbifold triangle is always internal. Examples of ideal triangu-
lations are given in Fig. 1.

The following is well known when O = ().

Lemma 4.1. The number of arcs in an ideal triangulation is exactly
n=6g+3b+3p+2x+c—6,
where g is the genus of S, b is the number of boundary components, p is the number of

punctures, x is the number of orbifold points and ¢ = |M| — p is the number of marked
points on the boundary of S. The number n is called the rank of (S, M).
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Fig. 1. An ideal triangulation of an annulus with one m-puncture and one orbifold point. The arc 6 is the
loop of an m-self-folded triangle whose radius is the arc 1. The arc 8 is the loop of an orbifold triangle.

Proof. Cousider the surface (S, M’) obtained by taking M’ = M U O. To get a triangu-
lation of the ordinary surface (S, M’), we only need to add an arc for each point in O.
Therefore, n+x = 6g+3b+ 3(p+x) +c— 6, which gives the wanted expression for n. O

Ideal triangulations are connected to each other by sequences of flips. Each flip replaces
a single arc v in T by a unique new arc ' # v such that

T'=(T\{vhHu{y}

is a triangulation.
4.2. Tagged arcs

Note that an arc v that lies inside a self-folded triangle in 7" cannot be flipped. In
order to rectify this problem, the authors of [20] were led to introduce the slightly more
general notion of tagged arcs. We adapt the notion for triangulations of orbifolds.

A tagged arc is obtained by taking an arc that does not cut out a once-punctured
monogon and marking (“tagging”) each of its ends in one of two ways, plain or notched,
so that the following conditions are satisfied:

« an endpoint lying on the boundary of S must be tagged plain
e both ends of a loop must be tagged in the same way.

Thus there are four ways to tag an arc between two distinct punctures and there are two
ways to tag a loop at a puncture; see Fig. 2. The notching is indicated by a bow tie.
One can represent an ordinary arc 8 by a tagged arc +(8) as follows. If 8 does not
cut out a once-punctured monogon, then () is simply 8 with both ends tagged plain.
Otherwise, S is a loop based at some marked point ¢ and cutting out a punctured
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plain notched at g plain doubly notched
doubly notched notched at p

Fig. 2. Four ways to tag an arc between two punctures (left); two ways to tag a loop at a puncture (right).

monogon with the sole puncture p inside it. Let a be the unique arc connecting p and ¢
and compatible with 8. Then «(/3) is obtained by tagging « plain at ¢ and notched at p.
Tagged arcs a and 3 are called compatible if and only if the following properties hold:

o the arcs a” and 8° obtained from « and 3 by forgetting the taggings are compatible;

o if a® = 9 then at least one end of o must be tagged in the same way as the
corresponding end of 3;

o if a® # B° but they share an endpoint a, then the ends of o and 3 connecting to a
must be tagged in the same way.

A maximal collection of pairwise compatible tagged arcs is called a tagged triangula-
tion. Assume that T is a tagged triangulation of (S, M). We define a triangulation 7(7")
without tags as follows. As a first case, assume that there is a puncture b having two
arcs «, 8 of T connected to b such that « is tagged plain at b while 3 is tagged notched
at b. Then o® = 8% : @ — b and «, B are tagged the same way at a. Moreover, there is
no other arcs having b as endpoint. In this case, let 7(a) be the arc a® and 7(3) be the
loop a — a enclosing the puncture b and tagged plain. If v is a tagged arc not as in the
latter case, we let 7(y) = °. It is easy to check that 7(T) := {7(vy) | v € T} is an ideal
triangulation of (S, M). Also, if T' is an ideal triangulation, then 7(¢«(T")) = T.

4.8. Quivers and cluster categories

In this subsection, (S, M) is an ordinary surface, that is, @ = (. Given an ideal
triangulation T' = {7, 72,...,Ts}, the associated quiver Qr introduced in [20] can be
defined as follows. The vertices of Q7 are in bijection with the arcs of T, and we denote
the vertex of Q1 corresponding to the arc 7; simply by . The arrows of Qr are defined
as follows. For any triangle A in T which is not self-folded, we add an arrow i — j
whenever

(a) 7; and 7; are sides of A with 7; following 7; in the clockwise order;

(b) 7; is a radius in a self-folded triangle enclosed by a loop 7, and 7; and 7, are sides
of A with 74 following 7; in the clockwise order;

(c) 7; is a radius in a self-folded triangle enclosed by a loop 7¢, and 7¢ and 7; are sides
of A with 7; following 7, in the clockwise order;

(d) 7, 7; are radii of self folded triangles with respective loops 7y, 7,,, where 14,7, are
sides of A with 7, following 7, in the clockwise order.
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Then we remove all 2-cycles. If T is tagged, then the quiver Q1 of T coincides with the
quiver Q,(r) of the ideal triangulation 7(T').

One can attach a cluster category, defined by a quiver with potential, to any triangu-
lation T of the ordinary surface (S, M); see [1]. Let us recall the main ingredients of this
construction. We let W denote a potential in k/Q\T An example of a potential is the
canonical potential (or Labardini potential) attached to T'; see [28]. In case where there
is no self-folded triangle in T', this potential Wr ., is a sum of cycles, where a given cycle
in Wy, is either a cycle of length 3 corresponding to an internal triangle of 1" or else
is a cycle corresponding to surrounding once a puncture. In particular, the number of
terms in Wy, is the number of internal triangles in 7" plus the number of punctures
in M. The Labardini potential can also be defined in the cases where T has self-folded
triangles (see [28]), but the definition is slightly more involved.

Recall from Section 3.3 that to the pair (Qr, Wr), one can attach the cluster category
C(Qr,Wr). In this category, one can perform mutations at any summand of a cluster-
tilting object, regardless of the local properties of the quiver of that cluster-tilting object.
Since we are mainly working with cluster categories, we will generally not assume that
the potential W7 is non-degenerate. Let us just mention the following fact.

Proposition 4.2 (/29]). Let S be a surface with non-empty boundary. Then W ¢, is non-
degenerate. Moreover, for every mutation fi,, the potential p,Wr o is right equivalent
to the potential W, (1) ca- In particular, there is an isomorphism of Jacobian algebras

J(pa(Qr; Wr ca)) = J(Qua(T)v I/‘/ILQ(T)7C3)'
4.4. Group actions on triangulations

Now, fix a tagged triangulation T of (S, M). For us, a homeomorphism of (S, M) is
always an orientation-preserving homeomorphism of S that maps M to M. Two homeo-
morphisms ¢1, o of (S, M) are isotopic if their actions on M coincide and if there is an
isotopy h : S x [0,1] — S such that h(—,0) = 1, h(—,1) = ¢ and for t € (0, 1), h(—,1)
has the same action on M as ;. Following [4], we consider MCG(S, M) the mapping
class group of (S, M). The elements of MCG(S, M) are the homeomorphisms of (S, M)
up to the above-defined isotopy relation. This is a group under composition. We define
MCG(S, M, T) to be the subgroup of MCG(S, M) of those elements g that map 7(T") to
7(T) and preserve the tagging of arcs in the following way. If a : a — b € T, we require
that the tagged arc ga : ga — gb is such that a, ga are tagged the same way at a, ga,
respectively; and «a, ga are tagged the same way at b, gb, respectively. Since T is finite,
the group MCG(S, M, T) is always finite. Indeed, any element of MCG(S, M, T) fixing
each arc of T" and each marked point of M has to be the identity element. An element
in MCG(S, M, T) is called a T-automorphism of (S, M).

An admissible group is a group G of T-automorphisms that acts freely on T, that
is, if g € G fixes an arc of T' (but not necessarily its endpoints), then g is the identity
automorphism. From now on, let G be an admissible group. Let b be a triangle from T,
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an arc of T, a boundary segment or a marked point of M. The subgroup G, of all g € G
that map the set b to itself will be called the isotropy group of b. We sometimes say that
b has trivial isotropy if Gy, is trivial, that is, if g(b) = b then g is the identity. Notice that
the isotropy group of an arc is always trivial, since G is admissible.

Lemma 4.3. Let G be a non-trivial admissible group of T-automorphisms of (S, M) and
b be a triangle, marked point or boundary segment with non-trivial isotropy group Gj.

(1) If b is a triangle, then b is not self-folded and Gy has order 3.
(2) Otherwise, b is a puncture and Gy, is a cyclic group whose order is a divisor of the
number of arcs incident to b, and of the number of loops incident to b.

Proof. We first claim that b cannot be a marked point on the boundary or a boundary
segment. Assume otherwise. Assume further that B is a boundary component of S with
b € B. Let g € G} be non-trivial. Then g maps B to B and hence g permutes the marked
points of B. Suppose first that b is a boundary segment in B. Then b is the bounding
curve of a unique standard triangle ¢ of T'. Since b is fixed by g, we see that ¢ is fixed
by g. Now, § has at least one internal arc. If it has exactly one, say a, then g fixes a,
a contradiction to G being admissible. If § has two internal arcs, then g permutes these
internal arcs. But then, g reverses the orientation of §, a contradiction. Suppose now
that b is a marked point of B. If b is the unique marked point of B, then we take ¢ to be
the unique boundary segment of B and the above argument applies. Otherwise, let c1, co
be the two boundary segments attached to b. If each ¢; is fixed by g, then the above
argument applies. Otherwise, g permutes c1, ce but then reverse the orientation on B,
a contradiction.

Suppose now that b is a puncture. If b lies inside a self-folded triangle, then clearly, the
loop of that self-folded triangle is fixed by Gj, a contradiction. Let cg,...,cn—1 be the
arcs of T incident to b in cyclic order around b. Any h € Gy, induces a permutation oy, of
€y, - -+, Cm—1. Since Gy preserves the orientation of S, every h is uniquely determined by
its action on cy: if h(cg) = ¢;, then h(c;) = ¢; 44, where the indices are taken modulo m.
Take go € Gy with go(co) = ¢; where ¢ > 0 is minimal. We claim that G} is the cyclic
group generated by go. Let h € Gy and assume that h(cy) = ¢; where j > 4. Then for
t € Z, the element go_th is such that go_th(co) = c¢j_¢;. There exists ¢t > 1 such that
0 < j—ti < i. By minimality of i, we have j = ti and g, "h fixes co, showing that h = g§.
This shows that Gy is cyclic. Since gi* = 1, we see that the order of G} divides m. Since
an element of G sends a loop of T to a loop of T and a non-loop of T' to a non-loop of T',
the second statement of the proposition follows.

The only case left is when b is a triangle from T'. As observed above, no arc of b is a
boundary segment. Also, b is not self-folded, as otherwise, its loop would be fixed by Gy,
which is impossible. Every non-identity element h in (G induces a rotation of order 3 of b.
Using the fact that G acts freely on T, we see that G} is generated by any non-identity
element h € Gy, and hence, Gy, has order three. O
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Since G is finite and admissible, it acts properly discontinuously on (S, M) and the
orbit space Sg := S/G is a Riemann surface. Moreover, since G consists only of orienta-
tion preserving homeomorphisms, S¢ is actually oriented (with the induced orientation
from S) with finitely many isolated singular points. We refer the reader to W. Thurston’s
notes [35, Chapter 13] for results in this direction and also for more details concerning
these orbit spaces.

One way to study the orbit space is through a fundamental domain. For each internal
and standard triangle having a non-trivial isotropy group, consider the unique point in
its interior which is a singular point. Let O denote the set of all of these points. Consider
the oriented Riemann surface (S, M’) where M’ = MUQ and let T be the triangulation
obtained from 7(T) by adding three arcs to each marked point of O C M'. It is clear
that G is an admissible group of T©-automorphisms of (S, M’) and where each triangle
from T© now has a trivial isotropy group. We construct a collection @ of triangles from
T© as follows. Start with a triangle d; of 7€ and set €; = {6, }. In general, suppose that
we have constructed €; for ¢ > 1. If for any given § € €, all triangles adjacent to § are
in the G-orbit of some triangle of €;, then we set € := €;. Otherwise, there is a triangle
d¢41 adjacent to a triangle from €, which is not in the G-orbit of any triangle of &;. We
set €41 := €;U{d;41}. Continuing this way, since 7° has finitely many triangles, we get
a final collection € := €, for some s of triangles from 7© having the property that for
any 0 € €, all triangles adjacent to d are in the G-orbit of some triangle of €. We denote
by § the union of all triangles from €. Observe that § is connected by construction. Note
also that § forms an oriented Riemann surface, and the arcs and boundary segments of
T© bounding a triangle of € induce a triangulation T of .

Lemma 4.4. The surface § is (the closure of) a fundamental domain for S under the
action of G.

Proof. We use the notations in the above paragraph. Let A = Aq be a triangle in 7°.
Since S is connected, there is a sequence of triangles Ag, Ay, ..., A,, of T® such that
A; shares an edge with A;4; for all 0 < i < m —1 and A,, lies in €. By the defining
property of €, A,,_1 is in the G-orbit of a triangle in €. By induction, we get that all A;
are in the G-orbit of a triangle in €. This, combined with the definition of €, ensures that
¢ contains exactly one triangle from each G-orbit of the triangles in 7€. This completes
the proof of the lemma. O

From this, it is easy to see that S = UgeGg&' and s|G| is the number of triangles
of T®. Now, the orbit space Sg can be thought of as § in which arcs in the same G-orbit
are being identified; see Fig. 3. We will always make this identification from now on.

It follows from Lemma 4.3 that the points in S with non-trivial isotropy are either
punctures or points inside standard internal triangles of 7(7T'), and the collection of
those latter points was denoted O. The orbits Mg := M /G of M then correspond to
marked points in Sg. Lemma 4.3 together with Lemma 4.5 below guarantees that the
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Fig. 3. Left: the hexagon (S, M) having a triangulation 7" with the group of order 3 acting by rotation.
Middle: an arc v in (S, M’) with triangulation T©. Right: a fundamental domain § with the corresponding
curve @(7).

b

punctures of Sg correspond to the orbits of the punctures of M; and the marked points
on the boundary of Sg correspond to the orbits of the marked points on 3S. For each
puncture b of S, let m; be the order of its isotropy group Gp. This defines a function
m : Mg — Z>; that associate to each puncture b the number m; and to each marked
point on the boundary of Sg the number 1. Note that the G-orbits O of the points in
O are disjoint from dSg, Mg. Therefore, (Sg, Mg, ©O) is an orbifold. An m-puncture in
Mg is called an ordinary puncture, if m = 1; and a G-puncture, if m > 1.

As noticed above, as surfaces (without taking into account the marked points), the
orbit space S¢ can be identified with §. On the one hand, S¢ is equipped with two disjoint
sets of points: the marked points Mg together with the orbifold points @. On the other
hand, § has no orbifold point but rather marked points, which are Mg := Mg U O.
Therefore, an arc in § is understood to be an arc of the marked surface (F, My).

The next lemma guarantees that the boundary components of Sg are in correspon-
dence with the orbits of the boundary components of S under the action of G. In
particular, there is no new boundary component in Sg. Of course, the fact that G
consists only of orientation-preserving homeomorphisms is crucial. For instance, if S is
the sphere with all punctures and arcs on the equator and G = Z, is the group gener-
ated by the reflection along the equator, then Sg is a disk and hence, a new boundary
component is created.

Lemma 4.5. The G-orbits of the boundary components of S correspond to the boundary
components of Sq.

Proof. We use the above notation and we identify S with §. It is not hard to check that
any boundary segment o which is an edge of a triangle of € is also a boundary segment
in the orbit space §. Let T be the collection of all arcs of 7€ that are edges of a triangle
of €. It is sufficient to prove that no element of ¥ is a boundary segment in the orbit
space §. Note that the arc d in the right picture of Fig. 3 is not a boundary segment of
§ because of the gluing. Let 8 € €. If 3 is the radius of a self-folded triangle, then the
interior of the corresponding self-folded triangle is entirely contained in §, and hence
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is not a boundary segment in §. Assume now that 8 € ¥ is not the radius of a self-folded
triangle. Let A1, Ay be the two triangles in 7€ adjacent to 3. We may assume that only
one of A1, Ag, say Ay, lies in €. By definition of €, there is 1 # ¢ in G such that gAs
lies in €. Since G acts freely on arcs, we have g5 # (. Therefore, in §, 5 and gf are
glued along two distinct triangles A; and gAs of €. Hence, 3 is not a boundary segment
ing. O

A tagged arc or curve of (S, M') is O-avoiding if it is not incident to a point in O. We
say that the G-orbit of an arc « in (S, M') consists of compatible arcs if for all g € G the
arcs gy and vy are compatible. For example the orbit of the arc « in the center of Fig. 3
does not consist of compatible arcs.

Proposition 4.6. There is a bijection between the G-orbits consisting of compatible tagged
arcs in (S, M) with the tagged arcs of (Sa, Mg, Q). Moreover, this bijection induces a
bijection between G-stable tagged triangulations of (S, M) and tagged triangulations of
(Sa, Mg, O).

Proof. We just prove the bijections for ordinary arcs and ordinary triangulations. The
cases where there is a tagging can be checked without difficulties, and using the fact that
G respects the tagging. We start with the first bijection and we use the above notation,
so we have a triangulation T© of (S, M’) which is G-stable and we identify the orbit
space with §. First, note that an arc « of (S, M’) can be thought of as a curve ¢(a)
of (§, Mz) between marked points in Mz = Mg U O. This is done by folding « along
the copies ¢F, g € G, of §; see Fig. 3. Alternatively, ¢(a) is obtained by restricting
the curves {ga | g € G} to §. It is clear that p(ga) = p(«a) for all g € G. If « is
O-avoiding, then ¢(a) is a curve of (F, Mz) between marked points in Mg. Observe
that if «, 8 are isotopic arcs of (S, M), then p(«), ¢(8) are isotopic in (F, Mz), since
when deforming two curves in (S, M'), we cannot cross a point in O, as the latter are all
included in M’. Conversely, take any curve ¢ in (§, Mz) between marked points of M.
Its fiber is a G-orbit of O-avoiding curves in (S, M’). Any deformation of ¢ in (F, Mg)
corresponds to deformations of the curves in the G-orbit. In particular, any curve without
self-intersection in (§, Mz) between marked points of Mg corresponds to a G-orbit of
compatible arcs. This shows that the correspondence {ga | ¢ € G} — () gives the
first bijection.

Now, consider a partial triangulation V' of (S, M) that is G-stable. In particular, all
arcs are O-avoiding. By the alternative description of ¢ above, it is clear that ¢ sends V'
to a partial triangulation of (§, Mz) between marked points in M¢. In other words, it is
a partial triangulation of (Sq, Mg, ©O). Now, a G-stable triangulation of (S, M) with n
arcs has to be sent to a partial triangulation of (S, Mg, O) with n/|G| arcs. This has to
be a triangulation of (Sg, Mg, O). Conversely, given any triangulation V' of (Sg, Mq, O)
with m = n/|G| arcs, its fiber will consist of |G|m = n curves between marked points
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Fig. 4. The octahedron of Example 4.8 on the left, and its orbifold, a sphere with one 2-puncture and two
orbifold points, on the right.

in M. As already argued, no two curves are isotopic and they are pairwise compatible.
Therefore, the fiber is indeed a triangulation of (S, M). O

Corollary 4.7. There exists a notion of mutation of any tagged arc in a tagged trian-
gulation of (Sa, Mg, O) and, under the above bijection, this corresponds to changing
a G-orbit A of tagged arcs of a G-stable tagged triangulation V of (S, M) to another
G-orbit B of tagged arcs where (V\A) U B is a G-stable tagged triangulation of (S, M).

Changing a G-orbit as in the previous corollary will be called an orbit mutation.

Example 4.8. Consider the regular octahedron, seen as the sphere S with |M| = 6 punc-
tures and the corresponding triangulation 7' (without self-folded triangles and all arcs
plain). This is a well known fact that there are 24 orientation-preserving symmetries of
the regular octahedron, so 24 possible T-automorphisms of (S, M). Among these symme-
tries, 6 are not admissible since they fix two arcs. Take the subgroup H of G generated
by rotations of order 2 around punctures and the rotations of order 3. Color the facets of
the octahedron in two colors, black or white, in such a way that if two triangles share an
arc, then they are colored in a different way, see the left picture in Fig. 4. The subgroup
H can be described as the orientation-preserving symmetries that preserve the colors of
the triangles. This subgroup does not contain the rotations of order 4 and is admissible.
It is clearly non-abelian and every element has order 1,2 or 3. Therefore, H is isomor-
phic to the alternating group Ay4. Observe that every triangle and every puncture has
non-trivial isotropy. Notice that there are two orbits of triangles for the action of H,
only one orbit of arcs, and only one orbit of punctures for H.

The orbifold is a sphere with one 2-puncture corresponding to the orbit of the punc-
tures of the octahedron, and two orbifold points corresponding to the points fixed by
H other than the punctures, see the right picture in Fig. 4. One of these points is the
center of a white triangle and the other the center of a black triangle. The white tri-
angles become the northern hemisphere while the black triangles become the southern
hemisphere. The two triangles of T are orbifold triangles. A mutation of the unique arc
in T would be a change of tagging at both ends of 7, while the corresponding orbit
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Fig. 5. The icosidodecahedron of Example 4.9 on the left and its orbifold on the right.

mutation of the unique orbit of arcs in 7' would be a simultaneous change of taggings at
all ends of arcs.

Example 4.9. Consider the modified icosidodecahedron illustrated in Fig. 5. There are 60
black triangles, 20 white triangles, 42 punctures and 120 arcs. Consider the orientation
preserving symmetries generated by rotations of order three at the center of the white
triangles and rotations of order five at the center of the black pentagons (build from five
black triangles). This generates the subgroup (of order 60) of all orientation-preserving
symmetries preserving the colors of the triangles. We get two orbits of triangles (black
and white), two orbits of punctures (a center of a black pentagon and a vertex of a white
triangle) and two orbits of arcs (a side of a white triangle denoted a and a common side
of two black triangles denoted b). Observe that the orbifold (S¢, Mg, O) has one orbifold
point, one 2-puncture and one 5-puncture, see the right picture in Fig. 5.

Observe that in the original triangulation 77 of .S, there is a unique way to change
the arcs in Gb to get another triangulation 75 such that the new arcs will form another
single G-orbit. The same observation holds for the arcs in Ga. This orbit mutation at
Gb just produces a change of tags at the punctures corresponding to the centers of the
black pentagons. The orbit mutation of Ga is illustrated in the left picture in Fig. 6. The
corresponding mutation in the orbifold is shown on the right of the figure.

The following will be useful and is well known in case O = ().

Proposition 4.10. Let (S, M, Q) be an orbifold with a tagged triangulation T. Let m
be the number of marked points, t the number of triangles of T(T') (including the self-
folded triangles and the orbifold triangles) and a the number of arcs. Then the number
X(S,M,0) = m +t — a does not depend on the triangulation and equals to 2 — 2g — b
where g is the genus of S and b is the number of boundary components in S.
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Fig. 6. The icosidodecahedron of Example 4.9 after mutation in the orbit Ga on the left and the corresponding
mutation on the orbifold producing the loop a’ on the right.

Proof. For each orbifold point = in S, there is a unique loop a, — a, enclosing z, where
a; denotes the base point of the loop. Take M’ = M U O and consider the triangulation
T© of (S, M’) obtained from T by adding, for each orbifold point z, the arc a, — .
Clearly, the number m + ¢t — a is the same for (S, M) and (S, M’). Since (S, M’) is an
ordinary surface, this common number is 2 —2¢g —b. 0O

The number x(S, M, O) of the proposition is called the Euler characteristic of the
orbifold (S, M, O).

5. The exchange polynomials for the orbit space

In this section, we determine the exchange polynomials for the generalized cluster
algebra structure on the orbit space.

Let T be a tagged triangulation of a surface (S, M), and let G be a non-trivial admis-
sible group of T-automorphisms. Denote by A the cluster algebra with trivial coefficients
associated to (S, M) with initial seed corresponding to the triangulation 7. Recall that
to each tagged arc 7 in (S, M), one can associate a Laurent polynomial, also denoted T,
in Z[x*!]. This polynomial may not be a cluster variable. It will be convenient to label
the arcs of T', and hence the initial cluster variables, according to the G-orbits as follows.
Let s be the number of orbits and let

T: {7‘11,...,TlT}U{Tgl,...,TQT}Ll"'U{Tsl,...,TST}

be the decomposition of T" into its G-orbits. Denoting by z;; the cluster variable of 7;;,
we obtain the following decomposition of the initial cluster

X = (1‘11,...,.7]‘17.,],‘21,...,33‘27»,....%‘81,.. .,.1357-).
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The cluster algebra A is a Z-subalgebra of the field F = Q(x) of rational functions in
the x;;.

For the orbifold (Sg, Mg, @), we have the tagged triangulation T = {71, 72,...,7s},
the cluster y = (y1,%2,-.-,¥s), and we will work in the field F¢ = Q(y), where the arc
7; and the variable y; represent the orbit of arcs 7;1,..., 7, respectively the orbit of
variables x;1, ..., x;.. In order to determine the (generalized) cluster algebra structure of
the orbifold, we must define mutations, which then will allow us to construct generators
(generalized cluster variables) starting from the initial seed y = (y1,¥2, ..., ¥ys). To this
end, we will construct exchange polynomials p,, € Z[y1, Y2, -, Ys|-

In the cluster algebra A, let ajgj denote the cluster variable obtained by mutation the
initial cluster in direction ij. Let p,,, € Z[x \ {z;;}] denote the exchange polynomial of
this mutation. Thus

A
xijxi_j = px”..

Let F: Z[x*!] — Z[y*'] be the ring homomorphism given by F(x;;) = y; and F(a) = a,
for a € Z. Thus F(p,,) is the polynomial in Z[y1, 2, ...,ys| obtained by replacing the
variables x;1,...,x; of each orbit by the variable y;.

Remark 5.1. Since G is an admissible group of T-automorphisms, we have, for all j, k €

{1,...,r},
F(pzij) = F(pqu)

Determining the exchange polynomials p,, for the orbifold is not straightforward in
general. In the simplest case, when p,,, does not involve any variable of the same orbit
Ti1, ..., Ti, we have p,, = F(pg,,;). However, if p,, does involve one of the variables
Zi1,- - -, T, the situation is more complex. In this case, it follows from Corollary 4.7 that
there is a unique other tagged triangulation 77 = (T'\ {71, ..., 7 ) U{7/], ..., 7/.} such
that G is also an admissible group of T'-automorphisms and {7/1,...,7/.} is a G-orbit.
We will see that these tagged arcs correspond to Laurent polynomials «f), ...,z in the
initial cluster x, such that F'(z}}) = F(x7)) for 1 < j, k < r. Therefore, it will make sense

to define

py, = Flaialy),

where j, k € {1,...,r} are arbitrary. We will see that p,, actually is a polynomial in
Zy1, Y2, - - ., ys|. However this polynomial is not always a binomial and it also may have
integer coefficients greater than 2. As a consequence, we do not obtain an honest cluster
algebra structure for the orbifold but a generalized cluster algebra structure.

Consider the ordinary triangulation 7(7"). We now fix v an arc of our tagged tri-
angulation T and denote its endpoints by a and b. For simplicity, we identify ~ with
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Fig. 7. The quadrilateral Q.

z1 and Gy with y1. If 7(v) is not a radius of a self-folded triangle, then 7(v) is a di-
agonal in a quadrilateral Q from 7(7T') formed by the edges 7(u) : @ — ¢, 7(v) : ¢ — b,
7(a) : a —d,7(8) : d — b, which could be arcs or boundary segments, and may possibly
be identified, see Fig. 7. We adopt the convention that whenever 7(7) is the loop of a
self-folded triangle, then g = v and 7(u) = 7(v) is the radius of this self-folded triangle
(and then a = b) and 7(«), 7() are the other arcs (or boundary segments) adjacent to
7(y) in 7(T).

The triangle formed by the arcs 7(v),7(u), 7(v) is denoted A; while the triangle
formed by arcs 7(v),7(«), 7(8) is denoted As. As noted, Ay, Ag are distinct triangles.
Note that if one of Ay, Ay is self-folded, then the other is not self-folded. Otherwise, the
surface S consists exactly of A1, Ay and therefore has to be the sphere with 3 punctures,
which is excluded.

If € € T is such that 7(¢) is a loop (or radius, respectively) of a self-folded triangle
in 7(T), then we denote by € the arc in T with 7(€) the radius (or loop, respectively) of
that triangle. In particular €’ = €°. If 7(¢) is not a loop or radius of a self-folded triangle,
then we set € = 1, by convention. In case 7(7) is the radius of a self-folded triangle,
the quadrilateral Q does not make sense. We will rather consider the corresponding
quadrilateral for 7(¥) and still denote it by Q.

Any of {u,v,a, 8} that is a boundary segment is identified with 1 in A. For a marked
point e in M, we let m, denote its isotropy. By Lemma 4.3, we have m. = 1 unless e is
a puncture, in which case m, > 1. As before, we have an induced tagged triangulation
T in Sg and identify it with the set of G-orbits of tagged arcs of T in (S, M). As
seen previously, T¢ is a tagged triangulation of (Sg, Mg, ©). The triangulation 7(T¢)
corresponds to the G-orbits of arcs in 7(7T).

To simplify the notions, we identify 7(7') with 7" and 7(T) with T in the following
sense. Whenever we work in a geometric framework, we always refer to the geometric
version 7(T), 7(T¢) of T, Tc, respectively. Whenever we consider elements in F or in Fg,
we always mean the tagged triangulations T or Tz. Therefore, we drop the 7.

pifB+vvad

ccd (BB vrad) The denominator is

Lemma 5.2. The exchange polynomial p, for v is
non-trivial in the following cases.

(i) The arc 7y is a loop or a radius of a self-folded triangle in T.
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1 e have p =« an is a once-punctured bigon, that is, there are exactly two arcs
(i) We have u d Qi punctured bigon, that is, th tly t
of T at a and they are not loops.
11 e have v = an is a once-punctured bigon, that is, there are exactly two arcs
iit) We h dQi tured bi, that is, th tly t
of T at b and they are not loops.

Proof. First, v needs to be replaced by 7 if 7y is a radius of a self-folded triangle. Indeed,
it is well-known that the exchange polynomials for v or 7 are the same, hence, we may
assume already that if v is an arc of a self-folded triangle, then it is a loop. If the arc
~ is identified with one arc in {«, 3, 4, v}, then one of the triangles Ay, Ag, say Ay, is
self-folded. In that case, + is identified with one of {u,v}. By our convention, we have
an identification p = v. Therefore, we get v = p = v, which yields a triangle having only
one arc, a contradiction.

So v ¢ {a, B, u, v}. If the cardinality of {a, 3, u, v} is 4, then ged(pufB3, viaa) = 1
and pif + vaa is the usual Ptolemy relation taking radii of self-folded triangles into
account. So we may assume that the cardinality of {«, 8, u, v} is less than 4. If Ay, A,
are self-folded, then the surface (S, M) is the sphere with three punctures and this is
excluded. So assume, as a first case, that A; is self-folded but As is not, so that y =v
is the radius and = is the loop of Ay, and we are in case (i) of the Lemma. In particular,
a # B. Also, @« # p and 8 # p. Therefore, there is not other identification among
a, B, u, v. The expression %
polynomial for the loop 7 of a self-folded triangle. The case where Ay is self-folded is

becomes 33 + aa. This is the known exchange

similar.

Therefore, we may assume that none of A, As is self-folded. This means that o #£
and p # v, but not all four are distinct. As a first case, assume that o = p. Using the
orientability of S, the arcs «, p have to be identified in such a way that ¢ = d. Observe
that the triangles adjacent to p are Ay, As. Consider a small oriented cycle o having a
as center and starting on v and going clockwise. Observe that o first traverses Ay and
then, A;. With our identification of u with a;, we see that o only crosses two ends of arcs.
In particular, only «,~ have a as endpoint and none of these arcs are loops. Therefore,

the arcs (3, v enclose a once-punctured bigon, and we are in case (ii) of the lemma. In

piapB+vvad
ged(naBh viaa)
~ inside a once-punctured bigon. The case (iii), where 8 = v, is similar. We cannot have
both o = p and 8 = v, since this would mean that (S, M) is a sphere with 3 punctures,
which is excluded. If & = v or 8 = p then ged(ppB8, vvac) = 1 and ppff + voaa is
the usual Ptolemy relation taking radii of self-folded triangles into account. O

this case, becomes 33 4+ v which is the exchange polynomial for an arc

According to the preceding result, a special attention has to be given to self-folded
triangles and once-punctured bigons. A self-folded triangle in T around an m-puncture
is called an m-self-folded triangle.

Proposition 5.3. The orbits of the self-folded triangles in (S, M,T) corresponds bijectively
to the 1-self-folded triangles in (Sq, Mg, O,Tq).
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Fig. 8. A once-punctured bigon.

Proof. Let 01,05 be the arcs of a self-folded triangle in (S, M,T) with o1 : a — a the
loop and o3 : a — b the radius. Lemma 4.3 implies that this self-folded triangle, and
hence b, has a trivial isotropy group. Therefore, we see that Goi, Gos is a 1-self-folded
triangle of T in (Sg, Mg, ©). Conversely, assume that Gpy, Gps are the arcs in T of a
1-self-folded triangle in (S¢, Mg, O) with Gp; : Ga — Ga the loop and Gps : Ga — Gb
the radius. Since Gb is a 1-puncture in S, we see that b in S is a puncture with trivial
isotropy group. Because G is admissible, this implies that only one arc of T is incident
to b. This means that b lies inside a self-folded triangle in (S, M, T). This self-folded
triangle corresponds to the self-folded triangle of T; given by Gpi, Gps. O

A once-punctured bigon in Ty containing an m-puncture is called a once-punctured
m-bigon.

Proposition 5.4. The orbits of the once-punctured bigons in (S, M,T) correspond bijec-
tively to the 2-self-folded triangles and once-punctured 1-bigons in (Sq, Mg, O,T¢).

Proof. Consider a once-punctured bigon @ in (S, M,T) as shown in Fig. 8. Since the
puncture a is incident to precisely two arcs in T, its isotropy m, must be either 1 or 2.
If m, = 1 then the 4 arcs of the bigon lie in 4 different G-orbits. Moreover, the puncture
a does not lie in the orbit of b (or ¢), since there are at least 3 arcs incident to b (and ¢).
This shows that the orbit of ) is a bigon in Sg.

Assume now that m, = 2. Then there is 1 # g € G with ga = a. We must have
gy = a and gf = v. Hence, Gb = Gc¢ and as for the argument above, Ga # Gb. It follows
that the orbit of Q is a 2-self-folded triangle in Sg. The converse is clear. O

We now define the exchange polynomials for Sg. We shall use the notation pg - for
the exchange polynomial of the variable associated to the G-orbit of 7. We need to
distinguish several cases. In each case, we use the notation in Fig. 7.

5.1. Case where v lies in a self-folded triangle or a once-punctured bigon

Let v be the loop of the self-folded triangle, which we may assume to be A;. Then
{p = v,a,B,v} are four distinct arcs. Let g € G. Observe that a self-folded triangle is
sent to a self-folded triangle by g and g+ is a loop of a self-folded triangle. Since As is not
self-folded, none of Gu, Ga, GB is equal to Gy. Lemma 5.2 implies that p, = BB + aa,
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and since pg , = F(p,), we have
PGy = GBGB + GaGa.

This is either a sum of two distinct monomials or, if Ga = G, a single monomial with
coefficient 2. If v is the radius of a self-folded triangle, then the exchange polynomials
for v, are the same.

Assume now that Q is a once-punctured bigon, so we may assume o = p. The exchange
polynomial for ~ is 85 + vi. Observe that § # v as otherwise, S is a sphere with three
punctures. Also, since Aq, A are not self-folded, we get that {u = «,v, 8,7} forms 4
distinct arcs. If my, = 1, then all Gu, Gv, GB, G~y are distinct. Therefore, in this case,

pey = F(py) = GBGS + GvGp.

We get a sum of two distinct monomials. If m, = 2, then we are still in the case where
ey = F(py). Since Gv = Gf3, we get

Pa.y = 2GBGA.
5.2. Case where vy lies in the orbit of one of {a, B, p, v}

Because of Section 5.1, we may assume that Q is not a bigon and none of A, A, are
self-folded. By Lemma 5.2, the exchange polynomial for v is ui8 + vvaa. We need the
following lemma.

Lemma 5.5. If all arcs of Q lie in the same orbit, then all arcs in T lie in the same orbit

and 05 = (.

Proof. Assume that all arcs of Q lie in the same orbit. Assume to the contrary that
G~ # T. Then there is a triangle A3 adjacent to a triangle in GA; UGAs having an arc
€ not in Gy. We may assume that As is adjacent to A; or As. Let g € G with gy = p
and ¢’ € G with ¢’y = a.

As a first case, assume that ga = c and g’a = d. Then g’ Ay = Ay and gA; = Ay, since
G is orientation-preserving. By symmetry, we may assume that Ajs is adjacent to Aj.
However, each side of A; is a side of a triangle in GAy. Thus, Az € GA; U GA,. But
this mean that € € G, a contradiction.

As a second case, assume that ga = a and g’a = d. Then ¢’Ay = Ay and gAy = A;.
So again, we may assume that Ag is adjacent to A; and we get the same contradiction.
The case where ¢'a = a is similar. O

We will assume now that the arcs of T do not lie in a single orbit, when S = ). This

case is treated separately in Subsection 5.3
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Fig. 9. The triangulation of Lemma 5.7 on the left and the triangulation of Lemma 5.9, in the case where

m = 6, on the right.

Lemma 5.6. One and only one of the following situations occurs.

(1) There exists a non-trivial g € G such that gA1 = Ay. In this case, Gy # Ga and
Gv # GB.

(2) There exists a non-trivial g € G such that gAs = As. In this case Gy # Gu and
Gv # Gu.

(3) There exists g € G such that gu = v and gy = «. In this case, gv = 3 and Gy # Gj3
and Gy # Gu.

(4) There exists g € G such that g8 = v and gy = v. In this case, g = p and Gy # Ga
and Gy # Gpu.

Proof. Assume first that we are in case (1). Thus Gy = Gu = Gv. If there exists h € G
such that hy = « then either ha = d and then h?y = 3, or ha = a and then hv = B.
In both cases, we get that all arcs of Q lie in the same orbit, and by Lemma 5.5 this
contradicts our assumption. This shows that Gy # Ga. Similarly, Gy # Gf3. This proves
the statement in (1). The case (2) is proved by a similar argument.

Assume now we are in case (3). Then gA; = Ay and gv = . If there exists h € G
such that h3 = 7 then either hb = a and then hAy; = Ay, or hb = b and then h%3 = v.
In the former case, we are in case (2) which is impossible since Gy = Gpu. In the latter
case, all arcs of Q lie in the same orbit, and again Lemma 5.5 yields a contradiction to
our assumption. This proves that Gy # Gf. Similarly Gy # Gv. This proves (3), and
(4) follows by a similar argument.

Since « lies in one of the orbits of «, 8, i, v, the four cases of the lemma cover all
possible situations. Clearly, the cases are mutually exclusive. 0O

The next two lemmas explain how to find the polynomial pg .~ in the cases of
Lemma 5.6. Cases (1) and (2) are treated in Lemma 5.7 while cases (3) and (4) are
treated in Lemma 5.9.

Lemma 5.7. Let T contain an unpunctured hexagon formed by the arcs aq,...,qq,
Y1,7Y2,7Y3 as in the left picture in Fig. 9. Denote by A the triangle formed by v1,7v2,73-
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Suppose that there is a non-trivial g € G such that gA = A. Assume moreover that
a; ¢ Gy for alli and Goy; = Gy if i = j mod 2.

(1) If a1 = az or ag = ag, then pg ., = 3Goy.
(2) If GOél 7’5 GO[Q, then PGy = (Gach_Yl)Q + GOllGO_zlGOZQGO_éQ + (GO[QGO_éQ)Q.
(3) If Gay = Gay, then pg ., = 3(Ga1Gay)?.

Proof. Assume first that no arcs of {ai,...,ag} are identified. Let T = (T \
{71,72,73}) U {7, 74, ~4} be the triangulation obtained by mutating in v1,v2,v3 and
then at +{, where ~1 is the arc obtained by flipping 77 at the first mutation. We get the
following equations in the cluster algebra A.

V= 10130372 + Qe asys + aboatia71
1 — )

Y172
o606y + aaloaelsys + 1150571
’72 73 )
n_ QaQua0672 + 30350573 + Qg5 571
3 Y273

A straightforward check gives that F'(7]) = F(74) = F(v4) and F(7/7;) = (Ga1Gay )?+
Ga1Ga1GasGag + (GasGan)? for all 1 < 4,5 < 3. If Gag = Gas, then Ga; = Gay and
we get the last case. It is not hard to check that if some arcs of {a, ..., ag} are identified,
then we have two cases. Either vy = ao, a3 = a4, a5 = ag and the left picture in Fig. 9
contains three self-folded triangles. Otherwise, we have as = a3,y = a5,a6 = 1. In
both cases, (S, M) is the sphere with four punctures. These correspond to the cases in
(1) and are left to the reader, as the arguments are similar to the above arguments. O

Remark 5.8. In the situation of Lemma 5.7, note that the orbit mutation of the arcs
{g71 | g € G} corresponds to rotating all triangles gA, g € G, about their respective
centers by an angle of /3.

Lemma 5.9. Let T’ contain a punctured polygon formed by the arcs a1, ..., Qm, Y15+ -+ Ym
as in the right picture in Fig. 9. Let b denote the puncture and assume that the isotropy
group of b is cyclic of order m and Gy, # Gay.

(1) There exists a sequence of 2m — 2 mutations whose overall effect is a change of tag
at the puncture b.

(2) We have pg ., = mGaGa.

Proof. Observe that all 7; are in the same orbit and all «; are in the same orbit. These

two orbits are distinct. Let T/ = (T'\ {71, ..., ¥m}) U {7, ..., v} be the triangulation
obtained by mutating in y1,va, - - s Ym—1; Yms Yon—2s Vin—3s - - - » Yo, V1, where 7/ is the arc

obtained after mutation at ~;. In the cluster algebra A, we have the following identity
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a1 ax Olpy—1 Qi — A &
fyxb_l7m(11+22+'”+m1m1+mm)'
Y172 Y273 Ym—1Ym Tm71
Observe that F(y! _1v) = mGaGa for all 1 < 4,j < m. By similar computations, we
get arcs 77, . ..,7,, and one can check that for 1 <i,j < m, we have F(y/") = F(v]) and
F(’y}"yi) = mGaGa. The arcs vy, ...,~! clearly forms a G-orbit and G is an admissible

group of T” automorphisms. O

Remark 5.10. In the situation of Lemma 5.9, note that the orbit mutation of the arcs
{971 | g € G} corresponds to changing all tagging at gb, g € G.

5.8. Case of a single orbit

Let (S, M) be a surface with a tagged triangulation 7" and assume that G is an
admissible group of T-automorphisms of (S, M). In this section, we assume that all arcs
of T lie in the same orbit.

Lemma 5.11. If S # 0, then (S, M,T) is one of the following surfaces illustrated in
Fig. 9.

(a) The disk with 6 marked points on the boundary and one internal triangle, and G is
of order 3.
(b) The once punctured disk where all arcs are connected to the puncture.

Proof. Let C' be a boundary component of S and m be the number of marked points
on C. Let a1 :a1 —ag,...,Qm—1: Gm—1 — Am, Qm : Gy — a1 be the boundary segments.
Consider a triangle A having oy as a side. If A is self-folded, then, since all arcs lie in
the same orbit, we have m = 1 and S is the once-punctured disk with one marked point
on the boundary. So assume that A is not self-folded. Suppose first that the other two
sides of A are arcs and denote them by (£, and (5. Let b be the common vertex of (5
and B3. Then there is g € G with g1 = B2 and such a g sends a3 to a boundary segment
adjacent to a; on C, say as. Let B3 = gfs = ¢2$1. Thus the triangles A and gA share
one side 82 and have two adjacent sides aq, as on C. Moreover, all three edges 51, 52, 03
have a common vertex b. Repeating this argument, we obtain a sequence of triangles
A, gA, g?A, ..., g™ A each of which contains exactly one boundary segment of C and
each contains two arcs from the boundary to the point b. Therefore, these triangles cover
the entire surface and b is a puncture. Thus we get a once-punctured disk and all arcs
are connected to the puncture.

Assume now that two sides aq,as of A lie on the boundary and the third is an arc
v = 1. We claim that m is even, that there are m/2 arcs 7; : a; — a;42 for all odd ¢
(where indices are taken modulo m), and that these arcs are all arcs having an endpoint
on C. If there is an arc 7/ other than + having a3 as endpoint, then there is 1 # g € G
with gy = 7. Since a3 has isotropy one, 7' = 3 : ag — as. Since 7' is in the G-orbit of ~,
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we see that ', a3, aq form the triangle gA # A. In particular, in this case, m > 2,m # 3
and ~' is the only other arc adjacent to as. This yields the claim, by induction. Consider
a triangle A’ other than A having ~y; as a side. We have no choice that this triangle has
sides 3 and 7,;,—1. Thus, m = 6 and (S, M) is the disk with 6 marked points on the
boundary and one internal triangle. O

Lemma 5.12. Assume that S = 0 and that all arcs are in the same orbit. Then (S, M,T)
has exactly two orbits of triangles, one orbit of arcs and one orbit of punctures. In
particular, (Sg, Mg, Q) is the once-punctured sphere with two orbifold points.

Proof. Clearly, there is no self-folded triangle in (S, M, T). We claim that there are two
orbits of triangles in (S, M, T) for the action of G. Assume there is exactly one orbit of
triangles. Consider an arc  with its two adjacent triangles as follows.

Let ¢ € G sending the upper triangle to the lower triangle. Since G is admissible,
either gy = a or gy = B. With no loss of generality, assume the first case occurs. Since
g is orientation-preserving, we get ga = a and gu = . This implies that no non-trivial
element of G maps A to itself. Indeed, if ¢A = A, say g¢a = v,¢'y = 8 and ¢'f = a,
then the element (¢'g) fixes v. Note that ¢’g sends p to 8 and v to «. Since S is not the
once-punctured torus, this yields that ¢’g # 1, contradicting that G is admissible. Now,
since all triangles lie in one G-orbit and no non-trivial element of G maps a triangle to
itself, we see that there are exactly |G| triangles in (S, M, T'). But three times the number
of triangles should be twice the number of arcs, since T has no self-folded triangles and
0S5 = (). This is a contradiction.

Thus, the two triangles in the above figure lie in distinct orbits. Since all arcs of T" are
in the orbit of v, we have exactly two orbits of triangles in (S, M,T). Let ¢’ € G with
g’ 1t = . Since the upper triangle is not in the orbit of the lower triangle and since ¢’ is
orientation preserving, we see that ¢’ maps the upper triangle to itself. Similarly, there
is a non-identity element of G that maps the lower triangle to itself. In particular, we
have |O| = 2 and a, b lie in the same orbit, and thus, all punctures lie in the same orbit.
Since S has no boundary, so is Sg. The Euler characteristic of Sgis 2+ 1—1 =2, so
Sc has to be a sphere. O
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Fig. 10. A torus with 4 punctures.

Observe that in the situation of the above lemma, the Euler characteristic of S is

16l _ 1G]

Mg 37
where a is any puncture in M. So if S is a sphere, m, = 1,2. In the first case, |G| = 3,
and we have 3 arcs, 3 punctures and this is the sphere with three punctures and three

arcs on the equator. This is excluded. In the second case, |G| = 12, and we have 12 arcs,
8 triangles and 6 punctures. This is the octahedron with the regular triangulation.

Example 5.13. Consider the torus with four punctures in Fig. 10. Consider the group G
generated by all rotations of 27r/3 about the punctures and centers of the triangles. It is
not hard to check that G has order 12 and is admissible. All arcs are in the same orbit
and we are in the situation of the above lemma.

Remark 5.14. In the situation of Lemma 5.12, if (S, M) has at least two punctures, then
the orbit mutation corresponds to changing all taggings at all punctures. On the orbifold,
the mutation changes the taggings (which are necessarily the same) at both ends of the
unique tagged arc.

If (S, M) has exactly one puncture, then there is no way to go from a triangulation
T to the triangulation 7’ obtained from T by changing the tag at the puncture, using
only finitely many flips.

Lemma 5.15. Assume that S = 0 and all arcs of T lie in the same orbit. If S is not a
once-punctured surface, we have pc. = (2mg)?.

Proof. Assume that S is not a once-punctured surface. We claim that 7" cannot consist
of loops only. Indeed, assume it is the case. Consider a triangle from T'. Then this triangle
has a single vertex a. Take any arc « of this triangle. Then « is a side of another triangle,
which then is also a triangle having only vertex a. By continuing this process, we see that
all of the triangles from 7" have only vertex a. So S is once-punctured, a contradiction.
This proves our claim. Since all arcs are in the same orbit, there is no loop in T
Observe that there exists a sequence of mutations such that the overall effect is chang-
ing all tags at the punctures. We just need to apply Lemma 5.9 successively for each
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puncture. Fix an arc v : a—b in T'. Then there are exactly m := 2m, arcs of T having a as

endpoint. Let us denote these arcs by 71, ..., Vm, in clockwise orientation around a such
that v = ~,,. Let a; be such that 7;,7;1+1, «; is a triangle of T' (where 7,;,+1 means 7).
By applying a sequence of mutations at vy, 7, ..., vm—1, the arc ,,_1 becomes
@ @ QU — @
Yo ( 1 + 2 4t m—1 + m ) )
Y12 7273 Ym—1Tm  TmM

This gives the arc v* which is obtained from - by changing the tag at a. After identifying
all arcs in Gy to a single variable z, this arc 4% becomes m. Similarly, the arc v obtained
from 7 by changing the tag at b becomes 2m;, = 2m, = m after identifying all arcs of G~
by z. Now, using [32, Theorem 12.9], the arc 7% obtained from + by changing both tags
is such that y2%y = y24%, Therefore, after identifying all arcs of Gy to the variable x,

we get xz’ = (m)?. O
5.4. Remaining cases

We may assume that no triangle in Q is self-folded also that Q does not form a
once-punctured bigon. We know from Lemma 5.2 that the exchange polynomial p, is
BB + voaa. Also, we may assume that none of p, v, o, 8 lie in Gy. Since v is not an
arc of a self-folded triangle, none of fi, 7, &, 3 lie in G. Therefore, we have

pc~ = F(p,) = GuGuGpAGS + GvGrGaGa.
5.5. Ezchange polynomials and cluster algebra structure revisited

As promised at the beginning of this section, the results collected so far yield the
following.

Proposition 5.16. Let G be an admissible group of T-automorphisms of (S, M) where T
is a tagged triangulation. Let {r1,...,7.} be a G-orbit of tagged arcs and {7{,...,7.}
be the orbit mutation, where T = (T\{71,...,7}) U {r,...,7/}) is such that G is an

admissible group of T'-automorphisms. Then F(1]') = F(7}') and F(r;7}") € Z[y] for all

1 <4,j <r. The polynomial F(7;7]') = F(m1)F(1’) is the exchange polynomial Pg r, .

Remark 5.17. These exchange polynomials allow us to define generalized cluster variables
through mutations, and hence a generalized cluster algebra in F¢. A priori, this algebra
depends on (S, M,T) and on G, however, we will see in Section 7 that it only depends
on the orbifold (Sg, Mg, ©) with induced triangulation T .

6. Generalized cluster algebra of an orbifold

Let (S, M, Q) be an orbifold with a tagged triangulation T. Consider the function
m : M — Zx>q such that m;, := m(b) is one whenever b is not a puncture. Let {7, ..., 7}
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denote the set of arcs of T'. We also identify these arcs with indeterminates y1, . .., ¥,. The
boundary segments are identified with 1 and for each arc «, we have & € Z[yfl, o yEY,
which is 1 unless 7(a) is an arc of a 1-self-folded triangle in 7(7'). In the latter case, &
is the element corresponding to the unique arc of T, also denoted @, with a® = «a.
For 1 < ¢ < n, the mutation wu;(T) in direction ¢ of T is the tagged triangulation
{1, s\ {1 }) U{r/} of (S, M, O) where 7/ is not isotopic to 7;. Such an arc always
exists an is uniquely determined. Now, we explain how to perform the corresponding
mutation in Q(y1,...,¥s).

For each 7 € T, let p; (respectively pS) be the product of all a@ where « is an arc
of T\ {r} or a boundary segment such that «, 7 are sides of a triangle in T and « is
following 7 in the counter-clockwise (respectively clockwise) direction. Observe that p
and pI are not always relatively prime. For example, in the once-punctured bigon of
Fig. 8 we have p = aavv and pf = aafp.

Definition 6.1. For each 7 € T, define a polynomial p, in Z[y1,...,ys] as follows.

(a) If S is the sphere with one m-puncture with m > 1 and two orbifold points, then T
has only one arc 7 and

br = (2m)2'

(b) Let 7 : a — a enclose a monogon A with an orbifold point o, and assume we are not
in case (a). Let A’ be the other triangle adjacent to 7 (which cannot be an orbifold
triangle). Let av: @ — b, 8 : a — b be the other arcs of this triangle.

(1) If A is m-self-folded with m =mp =1 or my = 1, then o« = 8 =7 and S is a
sphere with two punctures, one orbifold point, and T has precisely two arcs T
and o. We have

pr = 3a.
(#4) Otherwise, we have
pr=0a’+aB+ 5
(¢) Let 7 be aloop at a of a 1-self-folded triangle such that 7 is not as in case (b). Then

_prtp7
T

T

(d) Let 7 be a radius of a 1-self-folded triangle with loop 7 at a. Then p, = pz, unless
S is the once-punctured monogon, in which case we set p, = 2.

(e) Let 7 : a — b be a radius of a once-punctured 1-bigon with radii 7: a —b,a: a—¢
where a # ¢,a # b. Then
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_pr+p7
aa

T

(f) Let 7:a— b be a radius of an m-self-folded triangle where m > 1 and with loop «.
Then

pr = maaq.

(9) Otherwise, we let p, = p; + p! (with the possibility that p;,p! have common
factors).

Definition 6.2. Let 7 be an arc in the triangulation 7" and let y € {y1,...,ys} be the
corresponding cluster variable. Let 7 be the arc obtained by flipping 7 and let 3/
denote the Laurent polynomial p,/y in Z[ylil, .., yF'. Tt is not hard to check that
{y1,---»us\{y}) U {y'} are again algebraically independent in Q(y1,...,ys). We call
Y1,-..,Ys the initial cluster variables. Any arc v lying in a triangulation that can be
obtained from 7" by a finite sequence of mutations gives rise to a Laurent polynomial ..
Such a y, is called a cluster variable. We define an algebra A(S, M,0) C Q(y1,...,Ys)
to be the Z-subalgebra of Q(y1, ..., ys) generated by all cluster variables. We call it the
generalized cluster algebra of the orbifold (S, M, O).

Some cases of the mutation rules are pictured in Fig. 11. The first column represents
a local configuration in the tagged triangulation of the orbifold. The configuration in the
second column is obtained by flipping the arc y; and the third column show the exchange
relation in the cluster algebra A(S, M, Q). In the last two cases, S is a sphere and the
picture represents the entire triangulation.

Remark 6.3. This computation shows that our notion of generalized cluster algebra is
different from the one of Chekhov—Shapiro [12] and Lam—Pylyavskyy [30]. Indeed in the
second row of Fig. 11, the two summands of the exchange polynomial have a non-trivial

common factor, which is not allowed in [12,30].

Now, let us classify the generalized cluster algebras of orbifolds with one or two arcs.
6.1. Rankn =1

By Lemma 4.1, we have 1 = 6(g — 1) + 3b+ 3p+ 2z + ¢. If g > 1 this equation has no
solution, because if b = 0 then ¢ = 0. Thus g = 0 and the equation becomes

7T=3b+3p+2x+c.

This equation has the following four solutions.
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® ’; vy = (y9)* + (22)% + (yy)(22)
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Yi y;
Yi Y;

Fig. 11. Some cases of the mutation rules.

6.1.1. The sphere with 1 puncture and 2 orbifold points
If b=0, then c =0 and p = 1,z = 2, and we have a sphere with one puncture and
two orbifold points. The two cluster variables are

y and 4m?/y

where m is the isotropy of the puncture.
If b =1 our equation becomes

4=3p+2x+c, withc>1,
which has three solutions.

6.1.2. The square

If p=0,2 =0 and ¢ = 4, we have the disk with 4 marked points on the boundary.
The generalized cluster algebra is the honest cluster algebra of rank 1 (type A;) with
cluster variables

y and 2/y.
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6.1.3. The bigon with 1 orbifold point
If p=0,2 =1 and ¢ = 2, we have the disk with 2 marked points on the boundary
and one orbifold point in the interior. The two cluster variables are

y and 3/y.

6.1.4. The once-punctured monogon

If p=1,2z = 0and c = 1, we have the disk with 1 puncture and 1 marked point on the
boundary. If the isotropy m of the puncture is one, we obtain the honest cluster algebra
of rank 1 again (case (d) of Definition 6.1). If m > 1, the two cluster variables are

y and m/y.

In rank 1 all 4 cases can be obtained from a triangulation 7" of a surface (S, M) and
an admissible group G of T-automorphisms. For case (1), one takes for (S, M,T) the
octahedron as in Example 4.8 (the isotropy of the puncture is then 2). The group G is
the alternating group A4. Case (2) is a surface. For case (3), one takes for (S, M,T') the
disk with six marked points on the boundary and a single internal triangle. The group G
is of order 3. Finally, case (4) is obtained from the once-punctured disk with m marked
points under the action of the group of order m given by rotations.

6.2. Rankn =2

Now Lemma 4.1 implies 2 = 6(g — 1) + 3b+ 3p + 2z + ¢. Again there is no solution if
g > 1. Thus g = 0 and the equation reads

8§=3b+3p+2z+c
This equation has the following 6 solutions.

6.2.1. The sphere with 2 punctures and 1 orbifold point

If b=0, then ¢ =0 and p = 2,z = 1, and we have a sphere with 2 punctures and 1
orbifold point. Let r, s be the isotropies of the punctures. When none of r, s is one, the
generalized cluster algebra has 8 cluster variables

Otherwise, when for instance s = 1, we get 6 cluster variables

3re 3r 3r rxy
L1, X2y — 5 5 Ty -
1 T1 T2 T2
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Fig. 12. The sphere with two punctures and one orbifold point as orbit space of a sphere with four punctures.

Fig. 13. The triangle with one orbifold point as orbit space of a disk with 9 marked points.

For r = 3 and s = 1 this orbifold is obtained from the triangulation of the sphere with 4
punctures and three self-folded triangles shown in Fig. 12 under the action of rotations
about 7/3 and 27/3 degrees centered at the common puncture.

If b =1 our equation becomes

5=3p+ 2z + ¢, withc>1,
which has four solutions.

6.2.2. The pentagon

If p=0,2 =0 and ¢ = 5, we have a disk with 5 marked points on the boundary. The
generalized cluster algebra is the honest cluster algebra of the pentagon (type As) and
has 5 cluster variables

To+1 z1+22+1 21+1
Z1,T2, T ) -

T1T2 ' T2

6.2.3. The triangle with 1 orbifold point
If p=0,z =1 and ¢ = 3, we have a disk with 3 marked points on the boundary and
one orbifold point in the interior. The generalized cluster algebra has 6 cluster variables

- x%—i—ml—i—l $%+JJ1+$2+1 $%+$§+$1I2+1‘1+2{L’2+1 To+1
1, T2 .
T 29 ’ 1T ’ ) B

This orbifold is obtained from the triangulation of the disk with 9 marked points shown
in Fig. 13 under the action of rotations about 7/3 and 27 /3 degrees.
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Fig. 14. The monogon with two orbifold points as orbit space of a sphere with 3 boundary components.

6.2.4. The monogon with 2 orbifold points

If p=0,2 =2 and ¢ = 1, we have a disk with one marked point on the boundary and
two orbifold points in the interior. The generalized cluster algebra has infinitely many
cluster variables

22+ 2+ 1 3+ao+1 (@3 +ai+a+ 12+ (@i a1 +a22+1)+1
[ —— Y R D) ) 2 yee e
i) I T1T2

This orbifold is obtained from the triangulation of the sphere with 3 boundary compo-
nents and 3 marked points shown in Fig. 14 with a group of order 3 acting by cyclically
shifting the boundary components. The north and south pole are fixed by this action
and give rise to the two orbifold points in orbit space.

6.2.5. The once-punctured bigon
If p=1,2 =0 and ¢ = 2, we have a disk with one puncture and two marked points on
the boundary. If the isotropy m of the puncture is one, the generalized cluster algebra
is the honest cluster algebra of type A; x Ay, with 4 cluster variables
2 2

L1, X2y —5 — -
1 T2

If m > 1, the generalized cluster algebra has 6 cluster variables

2rx9 2m 2m 21,
L1, L2y — 5~ 5 -
ry Ty T2 T2
The clusters and triangulations are shown in Fig. 15.
Finally, if b = 2, our equation becomes

2=3p+ 2z + ¢, with ¢ > 2,
which has one solution.

6.2.6. The annulus with 2 marked points

If p =0,z = 0 and ¢ = 2, we have the annulus with one marked point on each
boundary component. The generalized cluster algebra is the honest cluster algebra of
type &1,1 (Kronecker) with infinitely many cluster variables
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Fig. 15. The exchange graph of the once-punctured m-bigon.

Fig. 16. A torus with 15 vertices and its orbit space, a sphere with two 3-punctures and one orbifold point.

2 +1 r3+1 23 +222 +23 +1
. y L1, L2, ) 2
X9 I T1T2

Example 6.4. Consider the torus in the left picture in Fig. 16 with 15 vertices, 30 triangles
and 45 arcs. We consider the group generated by the rotations at the center of the
triangles s;, and the rotation around the punctures p; and ¢;. It is not hard to check that
all triangles s; are in the same orbit, all triangles r; are in the same orbit, all triangles
adjacent to a p; are in the same orbit, and all triangles adjacent to a ¢; are in the same
orbit. There are exactly four orbits of triangles. There are 5 orbits of arcs (arcs having
an p; as an endpoint, arcs having an ¢; as an endpoint, arcs adjacent to a triangle s;, the
others). Therefore, the group G has order 9. Observe also that the only triangles that are
mapped to themselves by a non-trivial element of G are the triangles s1, so, s3. Finally,
observe that there are three orbits of punctures, the orbit of the p;, the orbit of the ¢;
and the orbit of the other punctures. The orbifold has two 3-punctures, one 1-puncture,
four triangles and 5 arcs. By computing the Euler characteristic, we get 3 +4 — 5 = 2.
Since S has no boundary, so does Sg. Therefore, Si is the sphere shown in the right
picture in Fig. 16. It has one orbifold point and two 3-punctures.

Remark 6.5. Observe that in the rank two case, there are two situations where we have
exactly 6 cluster variables. In these cases, all the cluster variables are Laurent monomials,
and this, no matter what seed we use to express them. Consider now the quasi-cluster
algebra as defined in [15, Section 6.1] obtained by taking the quasi-triangulations of the
Mobius strip with two marked points on the boundary. There are exactly 6 quasi-cluster
variables and they are not all Laurent monomials in the two initial quasi-cluster variables.
Thus, this quasi-cluster algebra cannot be obtained as a generalized cluster algebra of an
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orbifold. On the other hand, a quasi-cluster algebra of rank two arising from a connected
non-orientable surface has to the Mobius strip with two marked points; see [15, Prop. 3.7].
Therefore, our generalized cluster algebras are not quasi-cluster algebras, and vice versa.

Remark 6.6. Not every orbifold is of the form (Sg, Mg, O). The orbifolds of the form
(Sa, Mg, O) are called good orbifolds, following W. Thurston’s terminology. For instance,
the sphere with one orbifold point and with all punctures of isotropy one is not a good
orbifold. Proposition 4.6 guarantees that if our orbifold is of the form (Sg, Mg, O) for a
surface (S, M) and an admissible group G of T-automorphisms for some tagged triangu-
lation 7', then any tagged triangulation of the orbifold comes from a (G-stable) tagged
triangulation of the surface (S, M).

7. Relationship between the cluster algebras

Let (Q,W) be a Jacobi-finite quiver with potential. Denote by C = C(Q,W) the
cluster category and by B = J(Q,W) the Jacobian algebra. Let A = A(Q) be the
cluster algebra (without coefficients), and denote by U = T'(Q, W) the cluster-tilting
object in C corresponding to the initial seed.

Let G be an admissible group of automorphisms of (Q,W) and denote by Cq =
C(Qa,Wg), Ba = J(Qg, W) the cluster category and the Jacobian algebra determined
by the action of G, respectively. We denote by Ug the basic cluster-tilting object in Cg
corresponding to I'(Qa, Wa).

We decompose U according to its G-orbits as follows

U=U,®---0Us,

where U; = @g4ec gU; with U] indecomposable. The initial cluster variables of A are
denoted accordingly by z;;, 1 <4 <s, 1 < j < |G|, where the variables x;1,...,2; g
correspond to the indecomposable summands of U;.

As before, we let Fg := Q(y1, - - ., ys). Let F: Z[x*!] — Z[y*!] be the homomorphism
such that F(z; ;) = yi.

We let G denote the exchange graph of all cluster-tilting objects of C. By definition,
the vertices of G are the cluster-tilting objects of C and the edges are given by mutations.
Note that G does not need to be connected. Let G(U) be the connected component of G
containing U. We denote by X the reachable indecomposable rigid objects of C. In other
words, X' corresponds to the indecomposable direct summands of the objects from G(U).
If C is of acyclic type or is the Amiot cluster category of a surface without punctures,
then X is the set of all indecomposable rigid objects in C.

Following [7], we say that C has a cluster structure if one of the following equivalent
conditions hold.
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(i) Whenever two cluster-tilting objects T, 7" in G(U) are related by a mutation 77 =
1;(T) then the quivers Qr, Qs of the endomorphism algebras End¢(T'), Ende(T7)
are related by the Fomin—Zelevinsky mutation, Q7 = p;(Qr).

(ii) The quiver of any cluster-tilting object in G(U) has no loop and no 2-cycle.

(iii) The potential W is non-degenerate.

It follows from Proposition 7.7 and the multiplication formula from [34] that if C has
a cluster structure then the cluster character X commutes with mutations in G(U) and
mutations in 4. In particular, the X; for M € X are exactly the cluster variables of A.
Moreover, G(U) is isomorphic to the exchange graph of A.

Let Gg be the graph whose vertices are the G-stable cluster-tilting object of C that
can be obtained from U by a sequence of Iyama—Yoshino mutations of G-orbits, and
whose edges are the Iyama—Yoshino mutations. Note that Gg is connected. We let X
denote the set of indecomposable direct summands of the vertices of G. In general, X
does not need to be a subset of X.

In terms of the cluster algebra, when W is non-degenerate and Xg C X, the set X is
the set of all cluster variables of A and Xg is the subset of those cluster variables that
lie in the G-stable clusters obtained from the initial cluster by G-orbit mutations.

7.1. The G-mutation connected case

Definition 7.1. The cluster category C is called G-mutation connected if any finite se-
quence of mutations from Ug in Cg is given by a finite sequence of mutations from U
in C.

Remarks 7.2. (1) This definition is equivalent to the following. Any vertex of Gg can be
obtained from U by a finite sequence of mutations in C.
(2) If C is G-mutation connected, then X is a subset of X.

Let C be G-mutation connected. For each cluster variable x in A, we have that

F(z) € Fg. We define the cluster algebra of orbits Ag associated to Cg to be the
Z-subalgebra of F generated by the set of all F/(z) with x a cluster variable of Xg.

Proposition 7.3. Let C be G-mutation connected and let A" denote the Z-subalgebra of

A generated by the cluster variables in Xg. Then we have a commutative diagram of
algebras and their generating sets

A A Xa

] ]

Ag —— Af(xij — xij) F(Xg) — F(X)
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where the horizontal maps are inclusions and the vertical maps are surjective and induced
by F.

Proof. First note that A/(x;; — x; /) is generated by F'(X). This follows from the fact
that Xg is a subset of X, thanks to C being G-mutation connected. Also note that
A/(x; j — xi ) is well-defined since A C Z[x*!]. O

Recall that every cluster variable in A is a Laurent polynomial in the variables of any
given cluster. This is the Laurent phenomenon and was proven for cluster algebras by
Fomin and Zelevinsky in [21]. It follows from this that the generalized cluster variables in
Ag also satisfy the Laurent phenomenon, in the G-mutation connected case. Therefore,
we can define the upper-cluster algebra U(Ag) to be

U(Ac) = ) ZIF(x)*] = N zly*"
x€Ga y cluster in Ag
where for a set S = {ay,...,a,} of rational functions, we write ST for {alil7 oo aft).

Now, the Laurent phenomenon guarantees that Ag C U(Ag).

Proposition 7.4. Let C be G-mutation connected. Assume that Aqc = U(Ag). Then Ag =
Af@i g — @)

Proof. Take any cluster variable = in A. Since C is G-mutation connected and by the
Laurent phenomenon, we see that F'(x) is a Laurent polynomial in each cluster of Ag.
By assumption, F(z) € U(Ag) = Ag. This implies the equalities of algebras of the
statement. O

7.2. The surface type

We let (S, M) be a surface with an admissible group G of T-automorphisms of (.S, M)
where T is a given tagged triangulation of (S,M). As usual, we exclude the sphere
with 1, 2, or 3 punctures and the once-punctured torus. We will also exclude the case of
a once-punctured closed surface such that all arcs belong to the same G-orbit. Indeed, in
this case, an orbit mutation corresponds to changing the taggings at the unique puncture.
However, there does not exist a sequence of standard mutations that will have this overall
effect.

Proposition 7.5. Let (S, M) be a surface with triangulation T and assume that (Q, W)
is Jacobi-finite, where W is the Labardini potential. Let G be an admissible group of
T-automorphisms of (S, M). Assume that if (S, M) is a once-punctured closed surface,
then there are at least two orbits of tagged arcs. Then the category C is G-mutation
connected.
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Proof. Let T denote the set of tagged arcs of (S, M) that can be obtained from T by a
finite sequence of standard mutations. For instance, if 9S # 0, then 7 contains all tagged
arcs. First, recall from [2, Section 3.4] that since W is non-degenerate, there is a bijection
¥ : X — 7 that commutes with the standard mutations. Moreover, for indecomposable
objects X,Y € X, we have that Ext5(X,Y) = 0 if and only if ¥(X), ¥(Y) are com-
patible tagged arcs. Let X be an indecomposable summand of the initial cluster-tilting
object U. Then, clearly, U(gX) = g¥(X) for all g € G. It follows from the results of Sec-
tion 3.4 that if Y = ux (U) is the indecomposable rigid object obtained by mutating U in
direction X, then for g € G, we have gY = gux (U) = pgx (9U) = pgx (U). Since ¥ and
p commute, we get W(gY) = V(ugx(U)) = pogx)(¥(U)) = pwgx)(T). On the other
hand, we have g¥(Y) = g¥(ux (U)) = gpw(x)(T) = prgw(x)(9T) = pro(yx)(T) = ¥(gY).
Now, let U’ be a reachable cluster-tilting object, X’ and indecomposable summand
of U' and U'/X’' & Y’ the cluster-tilting object obtained by mutation in X’. Let
Y’ = ux/(U"). Assume we know that U(gX’) = g¥(X’) for all ¢ € G. Then, we have
gY' = gux:(U") = pgx/(gU’). Thus in terms of the corresponding arcs in (S, M) we
have W(gY") = W(ugx/(gU")) = pw(gx)(¥(gU’)). On the other hand, we have g¥(Y”') =
9 (ux:(U") = giwxn (Y (U") = pgux) (98 (U") = pogxn(¥(gU")) = ¥(gY”’). This
shows, by induction, that ¥ commutes with the action of G. Therefore, the G-stable
cluster-tilting objects from & correspond to the G-stable tagged triangulation under W.

Let H in C be a G-stable cluster-tilting object, and let H; be an indecomposable
direct summand of H. We let GHy = ®geqgHy. Let F' : C — Cg be the G-precovering
functor. Recall that F/(H) is a (non-basic) cluster-tilting object of Cq and F(GH;) =
F(H,)¢! where F(H,) is indecomposable. It follows from [24] that there is a unique
indecomposable rigid object Z in Cg with Z 2 F(H;) such that F(H/GH,) ® Z is
cluster-tilting. Therefore, if V, V' are G-stable having each |G| indecomposable direct
summands, with both (H/GH;) @V and (H/GH;) ® V' cluster-tilting, then each of
F(V),F(V') is isomorphic to F(H;)I! or ZI€I. Assume that F(V)) = F(H;)IEl. Applying
the adjoint functor F and using Lemma 3.5, we get VIGI =~ DgecgV = FE(V) =
F(F(H,)I¢ =2 (GH,)I¢l, so GH, = V. Therefore, if V % GH, and V' 2 GH;, then
F(V) = F(V'). Thus, (V)I¢l & @,cqgV = FF(V) = FF(V') = (V)G This yields
V = V’. This shows that orbit mutation in C is unique up to isomorphism. As we have
seen in Section 5, T is closed under orbit mutation of tagged arcs. This means that the
tagged arcs in W(GH;) can be replaced by a G-orbit Z of tagged arcs in T such that
U(H/GH,)U Z is a G-stable tagged triangulation. Lifting through W, this corresponds
to a G-stable cluster-tilting object and has to coincide with (H/GH;) @V by uniqueness
of orbit mutation in C. O

Theorem 7.6. Assume that (S, M) is as above. The algebra Ag generated by F(Xg)
coincides with the generalized cluster algebra A(Sq, Ma,O).

Proof. Let x(T') = {z;; | 1 <1 <s,1 <j <|G|} be the initial cluster corresponding to
the tagged triangulation T" of (S, M) and consider {211, ..., } corresponding to the
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G-orbit of the arc 17 in T'. Recall that y; = F(x;;) for all 1 < j < |G|. We have seen that
there is a finite sequence of flips going from T to another tagged triangulation T such that
G is an admissible group of T'-automorphisms of (S, M). The corresponding cluster is
given by x(T") = x(T)\{z11, ..., 21, g} U{zy, . .. ’xll,IGl}’ and F'(x1;27;) € Zly1, -, s
is independent of the chosen 4, j. It follows from the results of Section 5 that F'(z1;71;)
is the polynomial py, of Definition 6.1. This implies the statement. O

The above theorem allows one to perform mutations in Ag directly using the exchange
relations listed in Definition 6.1. For a general G-mutation connected category C, we do
not know how to mutate the cluster variables in Ag.

7.3. Cluster characters

Recall from [34] that we have a cluster character X in C, that is, a function X :
C — Z[zE', ..., zF'] such that Xyen = XuXn, Xy = Xap if M 2 M) and if

Homc¢ (M, N[1]) is one dimensional, then X, Xy = Xp + Xp where B, B are the two
middle terms of the two non-split distinguished triangles with end-terms M, N.

Proposition 7.7. Suppose (Q, W) is non-degenerate and let T be a basic cluster-tilting
object of C obtained by a finite sequence of mutations from U. Let Y be an indecompos-
able direct summand of T and let Y™ be indecomposable non-isomorphic to Y such that
(T/)Y) @Y™ is cluster-tilting. Then Home(Y,Y*[1]) is one dimensional.

Proof. Since k is algebraically closed, the endomorphism algebra of Y, modulo its radical,
is isomorphic to k. Since (Q, W) is non-degenerate, the quiver of End¢(7") has no loop
and no 2-cycle. Now, the result follows from the argument of the proof of Proposition 6.14
in[8. O

Now, let CL be the set of all objects of Cg having all its direct summands in the
image of F: C — Cg. Let M € C be such that F(M) = M and define a function
XC: ¢l = zlyit, ...,y by X§ = F(X 7).

Proposition 7.8. The function X is well-defined and constant within each isomorphism
class.

Proof. Let X = X1 ®---® X, where all X; are indecomposable. Let Y7, Y5 € C such that
F(Y1) 2 F(Y3) = X. By using the Krull-Remak—Schmidt property in Cg and the right
adjoint F : Cq — C, it is not hard to show that indecomposability is preserved by F.
It follows, for ¢ = 1,2, that ¥; = Y;1 & --- @Y}, such that F(Y;;) = X,;. Now, for each
1 <75 <r, we have

BgeagVr; = FF(Yy;) 2 FF(Ya;) = ®yeagYa;.
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By the Krull-Remak-Schmidt property in C, we get that Yi; = g;Y5; for some g; € G.
Observe that if Y,Y’ are indecomposable with Y = Y’ in C, then Xy = Xy, hence
F(Xy) = F(Xy/). Therefore, we need to prove that for ¢ € G and Y an indecom-
posable object in C, we have F(Xy) = F(X,yv). Consider the cluster-tilting object
U =T(Q,W) in C and let A = End¢(U). Now, g induces an auto-equivalence of
C and of modA. Let KiF(modA) denote the split Grothendieck group of modA. Let
(—,—) denote the bilinear form K;’(modA) — Z such that for M, N € modA, we have
(M,N) = dimHome(M, N) — dimExt;(M, N) and (—, —), the antisymmetric bilinear
form such that (M, N), = (M, N) — (N, M). It follows from a result of Palu [34] that
(—,—)q descends to the usual Grothendieck group Ky(modA). For M, N € modA, we
have

(M,N) = dimHome (M, N) — dimExt; (M, N)

= dimHom¢(gM, gN) — dimExte(gM, gN)

= (gM,gN).
In a similar way, we have (dimM,dimN), = (dimgM,dimgN),. Let U = @®;c;U; be a
decomposition of U into indecomposable direct summands. Observe that each g induces
a permutation I — I with no fixed point. For each U;, let S; be the simple top of
the projective A-module Home (U, U;). Let also x; denote the initial cluster variable
associated to U;. Observe that gU; = Uy, gS; = Sg and F(x;) = F(xg). Let Z =
Home (U,Y) and gZ = Home (gU, gY') = Home (U, gY'), where the last isomorphism is an
isomorphism of A-modules. Assume first that Z is non-zero, so that Y is not isomorphic

to a shift of an indecomposable object in U. Observe that g induces an isomorphism of
projective varieties

g:Gre(Z) ={L C Z | L submodule of Z,dimL = e}
— Grge(9Z) ={L C gZ | L submodule of ¢Z,dimL = ge}

and hence, x(Gre(Z)) = x(Grge(9Z)). Now, we have

Xy =Y X(Gre(2)) [J atmsrere= 502

i

= 3" M(Grge(g2) [[ aftimsreaere = (Sona2)

ge [

imS;,e)qa—(S:,
= ZX(Gre(gZ))Hx;d,li Jo={851.92)
e

%

as one can identify the dimension vectors of the submodules of ¢gZ as the ge where e
runs through the dimension vectors of the submodules of Z. Now,

dimS;,e)q—(Si,9Z
Xgy = Y X(Gro(g2)) [[ wftims)e=(Suo?)

%
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and since F(x;) = F(x,-1;) for all g € G, it follows that F(Xy) = F(X,y). Finally, if
Y = U;[1] is a shift of an indecomposable direct summand of U, then Xy = z; while
Xgy = gz;. Clearly, F(Xy) = F(Xyy) in this case as well. O

Remark 7.9. One can also define a cluster character X' : Co — Z[y?, ..., yF'] directly.
However, we have X, = X§; only if, for F(M) = M, we have

Z X(Gre (Home (U, M))) = X(Gre(Home,, (FU, M))), (2)
F(e')=e

for all e; but this is not always true. Indeed, the module Home,, (F(U), M) may have a
submodule of dimension vector e such that M has no submodule of dimension vector €’
with F'(e’) = e. Even when F is dense, that is, when F is a G-covering, we do not know
whether the above equality on the Euler characteristics of Grassmannians always holds.

Example 7.10. Let () be the quiver

a 2 ’
| \51/
\2“{

B /

with group G = Z/2Z acting by rotation. Then the quiver Q¢ is the Kronecker quiver

1 === 2 . Here both potentials W, W are zero. Let M be the representation
B
1k _ 1
kT Tk
and let M¢ denote its image under F'. Then

10
Me = kZQ;kQ,

01
[2 0]
which is isomorphic to the direct sum

1 1
Mg = k?k D kﬁlk

In particular, M has two subrepresentations of dimension vector e = (1,1). On the
other hand, M has no subrepresentation with a dimension vector e’ such that F(e’) = e.
Thus for e = (1,1), the left hand side of equation (2) is zero, while the right hand side
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is not. Therefore the cluster characters X’ and the function X are not equal in this
example. Moreover, F is not dense.

The following yields a third way to get the generalized cluster algebra structure on
an orbifold (Sg, Mg, O), using Proposition 7.5.

Proposition 7.11. Let C be G-mutation connected and let W be non-degenerate. Then the
Z-subalgebra of Fg generated by all X§, where N is an indecomposable direct summand
of a cluster-tilting object obtained from Ug by a finite sequence of standard mutations,
coincides with Ag.

Proof. Since C is G-mutation connected, one can identify the indecomposable direct
summands of the cluster-tilting objects obtained from Ug by a finite sequence of standard
mutations by the F(N) where N € Xg. Now, Xg(N) = F(Xy), and F(Xg) is the set of
generalized cluster variables for Ag. O

Let 7 denote the Auslander—Reiten translation in C. When k = C, the cluster character
X :C— Z|zEY, ..zt is such that if

M1 — M2 — Mg — Ml[l]

is an Auslander-Reiten triangle in C, then Xy, Xy, = 14 Xag,; see [14]. When F is
dense, we get a function X : Cq — Z[yfl, ...,yF!] as defined in the previous section.
A natural question arises here. Is it a cluster character? The next result answers the
latter question affirmatively.

Proposition 7.12. Assume that F' is dense. Then the function X¢ : Cq — Z[ylil, ooy
is a cluster character. If k = C and L - M — N — L[1] is an Auslander—Reiten triangle
in Cg, then XEXG = X§ + 1.

Proof. Notice now that since F is dense, the construction of X¢ extends to any object
of Cq. Tt is clear that X© is constant within an isomorphism class. Let M, My € Cg.
Then M; = F(N;) for Ny, Ny € C. Therefore, Xﬁl@]\@ = F(Xnon,) = F(Xn, XnN,) =
F(Xn,)F(XnN,) = X]\C;}l Xf/jz. Assume now that Home,, (M7, M2[1]) one dimensional. We
have

©gecgHome (N1, gN2[1]) = Home,, (My, Ma[1]).

Therefore, there is exactly one g € G with Home (N7, gN2[1]) one dimensional. By the
2-Calabi-Yau property of C, we have that Hom¢(gN3, N1[1]) is one dimensional and
Home¢ (g’ Na, N1[1]) = 0 if ¢’ # g. Consider the non-split exact triangles

gNs = B — Nj — gN[1]

N1 — B’ — gN2 — Nl[l]
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in C. We know that Xy, X¢gn, = Xp + Xp/. Since F' is exact, we get exact triangles

ne: F(N1) — F(B') — F(gN2) — F(Np)[1]

where F(gN3) = F(N3) = My and F(N;) = M;. Therefore

Since 11,72 are clearly non-split, we get that X is a cluster character.
The second part of the proposition about Auslander—Reiten triangles follows from
Proposition 7.14 and the remark above this proposition. O

7.4. The finite representation type

We assume that G is an admissible group of automorphisms of (@, W) where (Q, W)
is Jacobi-finite. We have seen that we have an induced functor F' : C — Cg which is a
G-precovering. We call a Hom-finite Krull-Schmidt k-category B of finite type if B has
finitely many indecomposable objects, up to isomorphism.

Proposition 7.13. The category C is of finite type if and only if the category Cg is of finite
type.

Proof. By [27, Cor. 4.4] and [9], the category modB of finite dimensional representa-
tions of B is equivalent to C/U|[1] where U is the cluster-tilting object corresponding to
T'(Q,W). Hence, B is of finite type if and only if C is of finite type. Similarly, Bg is of
finite type if and only if Cg is of finite type. Now, by Corollary 3.11 we have a G-covering
B — Bg. Since the characteristic of k does not divide |G|, it follows from a result of
Gabriel [22, Lemma 3.4] that if B is of finite type, then B is of finite type. Finally, by
[22, Lemma 3.3], if B¢ is of finite type, then the algebra B is of finite type. O

Proposition 7.14. Assume that one of C,Cq is of finite type. Then F : C — Cq is a
G-covering that preserves indecomposability and Auslander—Reiten triangles. In particu-
lar, F induces a G-covering of Auslander—Reiten quivers of C and Cg.
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Proof. By Proposition 7.13, we know that C is of finite type. As seen in the proof of
Proposition 7.13, this implies that both B, B are of finite type. Let U be the cluster-
tilting object of C corresponding to I'(Q, W). Let Z be the ideal of C of the morphisms
which factorize through U[1] and J be the ideal of Cg of the morphisms which factorize
through FU[1]. One can check that for any M, N € C, we have isomorphisms

Hom 7 (FM,FN) — @&4ecHomz (M, gN)
and
Homy(FM,FN) — ®&4ecHomz(gM, N).

Thus, according to the definition in Section 3.1 and the fact that mod B = C/Z and
mod Bg = Cg/J, we see that F' induces a G-precovering F : modB — modBg. By The-
orem 4 in [31], the functor F sends indecomposable objects to indecomposable objects.
Consequently, if M is an indecomposable object in C \ add U[1] then F'M is indecompos-
able in Cg. On the other hand, if M is an indecomposable summand of U[1] then F'M
is an indecomposable summand of F'(U)[1]. This shows that all indecomposable objects
of Cq are isomorphic to an object in the image of F'. Thus the G-precovering F' is dense
and hence a G-covering.
Now assume that

n: L35 M3N— L[]

is an Auslander—Reiten triangle in C. The exact functor F' sends this distinguished tri-
angle to the distinguished triangle

F(n): FLBFMZFN > FL[1).

We know that F'L, FN are indecomposable from what was shown above. Let Z be any
indecomposable object in Cg and Z be such that F(Z) = Z. Let f : Z — FN be a
non-isomorphism. By the adjunction property of Lemma 3.5, we get an isomorphism

Home, (Z, FN) = @4ccHome(Z, gN).

Therefore, there exists (fg)geq with f = 37 o F(fg). Now, recall that the gN for
g € G are pairwise non-isomorphic since G acts freely on the indecomposable objects
of C. Therefore, there is at most one f, that is an isomorphism. Since F' is exact and
FX is non-zero whenever X is non-zero, we see that a non-isomorphism is sent to
a non-isomorphism through F. Now if one f; is an isomorphism, then the morphism
> 9eG F(fy) = f is the sum of an isomorphism and a nilpotent endomorphism, thus f
is an isomorphism, a contradiction. Therefore, no f, is an isomorphism. Since for g € G,
we have that f; : Z — gN is a non-isomorphism between indecomposable objects and gn
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is an Auslander—Reiten triangle, we get that f, factors through gv, meaning that F(f,)
factors through F'(gv) = F(v). Since each F(f,) factors through F(v), we see that f
factors through F'(v). This proves that F'(n) is an Auslander—Reiten triangle. Therefore,
F sends Auslander-Reiten triangles to Auslander—Reiten triangles and the second part
of the statement follows. 0O

Proposition 7.15. Let C be of finite type and let V € Cq be cluster-tilting. Then there
exists a cluster-tilting object Z € C such that FZ =V

Proof. Since F is dense, there exists V € C such that FV = V. We need to prove
that Z = @yeqgV is cluster-tilting. We have Home, (V,V[1]) = 0. This means
®gegHome(V, gV[1]) = 0. Similarly, we get

@®gecHome(g'V, gV[1]) = 0

for any ¢’ € G. In particular, Z is rigid. Let ¥ € C be indecomposable with
Home(Z,Y[1]) = 0. Thus, @gegHomc(gV,Y[l]) = 0. Then Home,, (FV,FY[l]) = 0.
Hence, we get Home, (V, FY[1]) = 0. Since V is cluster-tilting, we know that FY is a
summand of V. By applying the adjoint F' : C¢ — C to F, we get that FFY = DgeagY is
a direct summand of F'V = FFV = GBgeggV = Z. In particular, Y is a direct summand
of Z. This proves that Z is cluster-tilting. O

In what follows, we call C of acyclic type if there is a cluster-tilting object M of C
such that the quiver of Ende(M) has no oriented cycles. By [26], this means that C is
equivalent to the (classical) cluster category of a finite quiver without oriented cycles.
Observe also that if (Q, W) is non-degenerate and C is of finite type, then C is just the
(classical) cluster category of a quiver of Dynkin type.

Proposition 7.16. Assume that C is of acyclic and of finite type. Then the indecomposable
rigid objects in Cq are precisely the { F(V;) | i € I}, where the {V; | i € I} form a complete
set of the representatives of the G-orbits of those indecomposable rigid objects V' in C
with Home (V, gV'[1]) = 0 for all g € G. Therefore, the generalized cluster variables in
Acg can be obtained by the following methods.

(1) The F(Xy,) forie 1.
(2) The X§ where Y is rigid in Cg.

Proof. Since C is of acyclic type, every indecomposable rigid object in C is a summand of a
cluster-tilting object that can be obtained from U by finitely many mutations. Therefore,
C is G-mutation connected. It follows from the argument of the proof of Proposition 7.15
that for X indecomposable in C, F(X) is rigid in Cg if and only if Home (X, gX|[1]) =0
for all g € G. Moreover, all indecomposable rigid objects of Cs can be obtained this way.
Clearly, for X7, X5 rigid in C, we have F(X;) & F(X3) if and only if X7, Xo lie in the
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same G-orbit, up to isomorphism. This yields the main part of the proposition. This also
shows that (1) and (2) give the same elements. Now, part (1) gives the description of the
generalized cluster variables in Ag by definition, since it is well known in this case that
the cluster variables of A are given by the Xy where V' is indecomposable rigid in C. O

We present two examples for illustration.

Example 7.17. Let S be the disk with 6 marked points on the boundary represented by a
regular hexagon. Let T be a triangulation of (S, M) such that a rotation of 27/3 fixes T
see Fig. 9. Let G = Z3 be the cyclic group of order 3 generated by a rotation of 27w /3. We
let x1,x2, 3 be the initial cluster variables corresponding to the arcs of T'. The quiver )
is an oriented cycle of length 3 and the potential is this cycle. In the following picture,
we put the Auslander—Reiten quiver of C where each indecomposable M of C is replaced
by its cluster variable Xy,.

Ti+zotx3
/ \ rirs . 7
:z:1+ac3 Totx3 T1+T2
T1 T3 7
T1tzatxs T1t+xotx3
1T T2x3

We know that the set X of cluster variables of A consists of the X,; where M is any
indecomposable object of C. On the other hand, the set Xz contains only the 6 cluster
variables of the top row and the bottom row. Setting x1, 9,23 equal to y; and mak-
ing the appropriate identifications in the quiver, we obtain the following picture of the
Auslander—Reiten quiver of Ci where each indecomposable Y of C¢ is replaced by X? .

//\\

3/y1

The set of cluster variables F(X¢) is {y1,3/y1} while the set F(X) is {y1,3/y1,2}.
Note that both sets generate the same algebra, thus Ag = A/(x;; — i ;7).

If V denotes the indecomposable object of Ce labeled by a 2 and V is a lift of it, then
GBQeGgV is not rigid in C. So the object with character 2 is not rigid, even though it comes
from a rigid object in C. Observe that an Auslander—Reiten triangle L — M — N — L[1]
of Cg satisfies XEX§ = X + 1.

Example 7.18. Let S be the once-punctured disk with 4 marked points on the boundary.
Let T be the triangulation of (S, M) such that a rotation of 7/4 fixes T. Let G = Z4
be the cyclic group of order 4 generated by a rotation of w/4. We let x1,x9,x3, x4 be
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the initial cluster variables corresponding to the arcs of T'. The quiver @ is an oriented
cycle of length 4 with arrows «, 3,7, and the potential is W = a~4. In the following
picture, we put the Auslander—Reiten quiver of C where each indecomposable M of C is

IS SN

/\ /\ /\ /“4

replaced by Xj;.

T1+x3 TotT4 z1+x3 TatTo T1+x3
T2 T3 T4 1 T2
where
f T4T1 + T1X2 + T2T3 + T3y .
i= i
L1X2X3T4
and

T4T1 + T1X2 + T2X3 + T3T4 — TiTit1

;=
TiTit1

and where indices are taken modulo 4. We know that the set X’ of cluster variables of A
consists of the 16 variables X, where M is any indecomposable object of C. On the other
hand, the set Xg contains only the 8 cluster variables x;, f;. Again setting x1, 2, x3, T4
equal to y; and making the appropriate identifications in the quiver, we obtain the
following picture of the Auslander—Reiten quiver of Cg where each indecomposable Y of
Cg is replaced by X&.

The set of cluster variables F'(Xg) is {y1,4/y1} whereas the set F(X) is {y1,4/v1,2,3}.
Again both sets generate the same algebra, thus Ag = A/(z; ; — z; /).
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