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1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [21] in the context of 

canonical bases in Lie theory and total positivity. A cluster algebra A = A(Q) is a 

subalgebra of a field of rational functions in n-variables whose generators, the cluster 

variables, are constructed recursively from an initial seed of n-variables. This construc-

tion, and hence the cluster algebra, is determined by a quiver Q with n vertices. A strong 

connection between cluster algebras and representation theory was realized via cluster 

categories, which were introduced in [8,11]. The cluster character of [10,34] is a map 

from the set of objects of the cluster category C to a ring of Laurent polynomials which 

provides a direct formula for the cluster variables and gives a bijection between reachable 

cluster-tilting objects in C and clusters in A. Cluster categories have been generalized in 

[1] using the theory of quivers with potential developed in [13].

In this paper, we study certain group actions on cluster algebras, cluster categories 

and quivers with potential. We say that a group of automorphisms G is admissible if 

it acts freely on a given cluster in A, or, equivalently, on a given cluster-tilting object 

in C. On the level of quivers with potential this means that the group acts freely on the 

vertices of the quiver.

We define and study the corresponding orbit spaces in each of these settings. On the 

level of quivers with potential, we obtain a G-covering from the Jacobian algebras of the 

quiver with potential to the Jacobian algebras of the orbit quiver, see Proposition 3.1 and 

Corollary 3.11. On the level of cluster categories, we have a G-precovering from the cluster 

category C of the quiver with potential to the cluster category CG of G-orbits. Recall that 

a covering functor is a precovering functor that is also dense. In particular, we show that 

C is of finite type if and only if CG is of finite type, and that in this case our functor is 

a G-covering that preserves Auslander–Reiten triangles, see Propositions 7.13 and 7.14.

The orbit space of the cluster algebra can be defined in at least two ways. On the 

one hand, we can take the quotient of the cluster algebra A by identifying the cluster 

variables that lie in the same G-orbit. On the other hand, we can take the algebra AG

generated by the images under the cluster character of all summands of cluster-tilting 

objects obtained from the initial cluster by G-orbit mutations. We will see that there are 

two natural ways to define a cluster character, however, one seems better behaved with 

respect to the precovering functor. These two constructions yield the same algebra under 

some mild conditions. In general, the algebra AG is not an honest cluster algebra but 

rather a generalized cluster algebra. We point out that our generalized cluster structure 

is not the same as the one constructed by Chekhov and Shapiro in [12] and also not the 

one of Lam and Pylyavskyy in [30], see Remark 6.3.

We devote particular attention to group actions on cluster algebras from surfaces. In 

this case, the initial cluster of A corresponds to a triangulation of a surface with marked 

points, and the elements of G are elements of the mapping class group of the surface 

that map the triangulation to itself. The admissibility condition translates to G acting 

freely on the arcs of the triangulation.
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The orbit space of such a group action is an orbifold. In this situation, we give an 

explicit list of the exchange polynomials of the orbit cluster algebra AG in terms of the 

orbifold. We show that the algebra generated by all variables obtained by finite sequences 

of generalized mutations with respect to these exchange polynomials is indeed equal to 

the generalized cluster algebra AG of orbits. Some of the exchange polynomials that we 

get are similar to the exchange polynomials of the quasi-cluster algebras as defined in 

[15]. In general, the quasi-cluster algebras are different from the orbit cluster algebras 

AG coming from the action of a group G on a surface; see Remark 6.5.

We also point out that our orbifolds are different from the orbifolds considered by 

Felikson, Shapiro and Tumarkin [16].

The paper is organized as follows. In Section 2, we recall background on quivers 

with potential and define admissible group actions. Our results on G-coverings follow in 

Section 3. In Section 4, we study admissible actions on the level of triangulated surfaces 

and introduce the orbifolds. Section 5 is devoted to the computation of the exchange 

polynomials for the orbifolds. We use these computations in Section 6 in order to define 

the generalized cluster algebra of an orbifold. We classify the four algebras of rank 1 

and the six algebras of rank 2 in the Subsections 6.1 and 6.2, respectively. Finally, in 

Section 7, we come back to the study of cluster categories. We show that, in the surface 

case, the generalized cluster algebra of the orbifold is equal to the cluster algebra AG, 

and in the finite type case, the precovering of cluster categories is actually a covering. In 

order to study the cluster algebra in case C is the cluster category of a Dynkin quiver, 

we introduce a cluster character in CG that gives all cluster variables of AG.

2. Preliminaries

In this paper, k denotes an algebraically closed field and G a finite group whose order 

is not divisible by the characteristic of k. Also, Q = (Q0, Q1) denotes a finite quiver. We 

compose paths like functions, that is, from right to left.

2.1. Quivers with potential and automorphisms

Let Q be a quiver. If p, p′ are two oriented cycles in Q, we write p ∼ p′ if one can 

get p′ by cyclically rotating p. In other words, if p = αr · · · α2α1, then there exists 

1 ≤ i ≤ r such that p′ = αi−1 · · · α1αr · · · αi+1αi. This relation is clearly an equivalence 

relation and the class of a cycle p is denoted [p]. We define cyc(Q) to be the set of all 

equivalence classes of cycles of Q. Recall that a potential for Q is a (possibly infinite) 

linear combination of distinct elements in cyc(Q). In this paper, W always denotes a 

potential for Q. The pair (Q, W ) is called a quiver with potential [13].

An oriented cycle of length one is called a loop and an oriented cycle of length two is 

called a 2-cycle. If a is a vertex of Q such that there are no loops and no 2-cycles at a, 

then we can define the mutation μa(Q, W ) = (Q′, W ′) of (Q, W ) which is the mutation in 

direction a of the quiver with potential (Q, W ); see [13]. In particular, Q′ is a quiver with 
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the same vertex set as the one for Q and W ′ is a potential for Q′. In general, the quiver 

Q′ may have 2-cycles at a (but no loops at a). There is a notion of right-equivalence of 

quivers with potentials and even if Q′ has 2-cycles at a, it could be possible to find a 

quiver with potential (Q′′, W ′′) that is right-equivalent to (Q′, W ′) so that Q′′ has no 

2-cycles at a. Some authors are interested in the case where W is non-degenerate, which 

means that the quivers obtained from (Q, W ) by a finite sequence of mutations do not 

have 2-cycles (up to right-equivalence). In particular, the original quiver Q has no loops 

and no 2-cycles. Having no 2-cycles (and no loops) at a vertex a of a quiver Q is generally 

needed to define mutation in direction a of Q. So in the non-degenerate setting, one can 

iteratively perform mutations of (Q, W ) in all possible directions, and at the quiver level, 

this is the usual quiver mutation as defined by Fomin–Zelevinsky in [21].

Let ϕ be an automorphism of Q. Clearly, ϕ induces a permutation on cyc(Q). We say 

that ϕ is an automorphism of (Q, W ) provided that whenever λ[p] is a summand of W , 

with λ ∈ k, then λϕ[p] is also a summand of W . Let G be a group of automorphisms of 

(Q, W ). We call G admissible if each ϕ ∈ G acts freely on Q0, that is, if ϕ(x) = x for 

some x ∈ Q0 then ϕ has to be the identity automorphism. Note that the generators of a 

group G of automorphisms of (Q, W ) may act freely on Q0 without G being admissible.

Since each element of G acts freely on the vertices of Q, clearly, each element of G

also acts freely on the arrows of Q. For a ∈ Q0 ∪ Q1, we denote by Ga the G-orbit of a. 

By the above observation, one has |Ga| = |G|. In particular, |G| divides both |Q0|, |Q1|. 

We define a quiver QG, called the orbit quiver of Q, by

(QG)0 = {Gx | x ∈ Q0} and (QG)1 = {Gα | α ∈ Q1}.

For an illustration, see Example 2.3 below.

2.2. Jacobian algebras and automorphisms

Let (Q, W ) be a quiver with potential. We recall the construction of the Jacobian 

algebra of (Q, W ). Given an arrow α in Q, consider ∂α the partial differential operator 

on kQ such that if p = αr · · · α1, then

∂α(p) =

r∑

i=1

αi−1 · · · α1αr · · · αi+1δαi,α

where δ stands for the Kronecker symbol. One can define ∂α on an element [p] ∈ cyc(Q)

by defining ∂α[p] = ∂α(p). Take I the ideal of kQ generated by all ∂α(W ) where α runs 

through the set of arrows of Q. The Jacobian algebra of (Q, W ), denoted J(Q, W ), is 

defined to be k̂Q/Î where k̂Q is the completed path algebra of Q and Î is the completion 

of I in k̂Q. This algebra is not always finite dimensional. In case it is finite dimensional, 

the pair (Q, W ) is called Jacobi-finite.
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Now, let G be an admissible group of automorphisms of (Q, W ). Given an element [p]

of cyc(Q), we denote by G[p] its G-orbit, which is a subset of cyc(Q). Let E be the set 

of all G-orbits in cyc(Q). We can decompose W as

W =
∑

e∈E

λe

⎛
⎝ ∑

[p]∈e

[p]

⎞
⎠ . (1)

Lemma 2.1. Any ϕ ∈ G induces an automorphism of J(Q, W ).

Proof. Let ϕ ∈ G. Clearly, we can extend ϕ to a continuous automorphism of k̂Q, still 

denoted ϕ. Observe that for all α ∈ Q1 and [p] ∈ cyc(Q), we have ϕ(∂α[p]) = ∂ϕ(α)ϕ([p]). 

Therefore, equation (1) implies that ϕ(∂αW ) = ∂ϕ(α)W . This yields ϕ(I) = I. Therefore, 

Î = ϕ̂(I) = ϕ(Î), since ϕ is continuous. Thus, we get an automorphism ϕ at the level of 

the quotient k̂Q/Î. �

The next lemma guarantees that the equivalence classes of cycles in QG coincide with 

the G-orbits of equivalence classes of cycles in Q.

Lemma 2.2. Let [p], [q] ∈ cyc(Q) with p = αr · · · α1 and q = βr · · · β1. If we have 

[Gαr · · · Gα1] = [Gβr · · · Gβ1], then G[p] = G[q].

Proof. We are given that

[Gαr · · · Gα1] = [Gβr · · · Gβ1].

By cyclically permuting q if necessary, we may assume that, for each i, the arrows αi, βi

lie in the same G-orbit. Let g ∈ G with gα1 = β1. Observe that the arrows gα2, β2

both start at the same vertex of Q and lie in the same G-orbit. Therefore, since G is 

admissible, we have gα2 = β2. By induction, we have gαi = βi for 1 ≤ i ≤ r, that is, 

gp = q. �

Observe that we have a k-linear functor π : kQ → kQG of the corresponding 

k-categories such that for a ∈ Q0 ∪ Q1, π(a) = Ga. Later, we will study this func-

tor in more details. Recall that since G is an admissible group of automorphisms of 

(Q, W ), we can decompose the potential W as

W =
∑

G[p]∈cyc(QG)

λG[p]

⎛
⎝ ∑

[q]∈G[p]

[q]

⎞
⎠ .

We define the following potential on the orbit quiver QG

WG =
∑

G[p]∈cyc(QG)

(
λG[p]

∣∣G[p]
∣∣) G[p].
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Observe that

∂Gα(G[p]) = |stab(G, [p])|π

⎛
⎝ ∑

[q]∈G[p]

∂α[q]

⎞
⎠ ,

where stab(G, [p]) = {g ∈ G | g[p] = [p]} is the stabilizer subgroup of [p]. Since

|stab(G, [p])||G[p]| = |G|,

we see that

∂GαWG =
∑

G[p]∈cyc(QG)

(
λG[p]

∣∣G[p]
∣∣) ∂Gα(G[p])

=
∑

G[p]∈cyc(QG)

(
λG[p]

∣∣G
∣∣) π

⎛
⎝ ∑

[q]∈G[p]

∂α[q]

⎞
⎠

= |G|π(∂α(W )).

Define IG to be the ideal of k̂QG generated by the elements ∂Gα(WG). Since the char-

acteristic of k does not divide |G|, we see that π sends the generator ∂α(W ) of I to a 

scalar multiple of the generator ∂Gα(WG) of IG. We define the Jacobian algebra of the 

orbit as J(QQ, WG) = k̂QG/ÎG.

Example 2.3. Consider the following quiver Q:

b1

α1

c1

β1

a1

δ1

γ1

c3

β3

a3

δ3

γ3

a2

γ2

δ2

b2

α2

b3

α3

c2

β2

Consider the cyclic group G of order 3 with generator g such that g acts on Q0 ∪ Q1

by increasing by 1, modulo 3, the indices of the symbols. Clearly, G is admissible. Take 

W = δ3δ2δ1 +
∑3

i=1 γiβiαi. Then G is an admissible group of automorphisms of (Q, W ). 

The quiver QG is
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b
α

a

γ

δ c
β

where δ = Gδ1, α = Gα1, β = Gβ1, γ = Gγ1, a = Ga1, b = Gb1 and c = Gc1. Now,

WG = δ3 + 3γβα

The generators of IG are 3δ2, 3γβ, 3βα, 3αγ. We have

J(QG, WG) = kQG/〈∂GαWG | Gα ∈ (QG)1〉 = kQG/〈3δ2, 3γβ, 3βα, 3αγ〉.

2.3. Ginzburg DG-algebras

Now, let Γ(Q, W ) be the (completed) Ginzburg DG-algebra of (Q, W ). Recall that 

as a graded algebra, Γ(Q, W ) is generated in non-positive degrees and is the completed 

graded quiver algebra k̂Q where Q is obtained from the quiver Q by adding the following 

arrows: for each arrow α : i → j in Q, we add an arrow α∗ : j → i; and for each vertex 

i in Q, we add a loop ti : i → i. To make k̂Q a graded algebra, we need to define the 

degree of the arrows of Q. The arrows from Q1 as well as the trivial paths {ei | i ∈ Q0}

are declared to be of degree zero. The arrows in {α∗ | α ∈ Q1} are declared to be of 

degree −1 and the loops {ti | i ∈ Q0} are of degree −2. The DG-algebra Γ(Q, W ) is 

equipped with a continuous differential d defined on α∗ and ti by

dα∗ = ∂α(W )

and

dti = ei

⎛
⎝ ∑

α∈Q1

(αα∗ − α∗α)

⎞
⎠ ei,

and extended by the Leibniz rule to all of Γ(Q, W ). In particular, d vanishes on kQ. Given 

an automorphism ϕ of (Q, W ), we extend its action to a unique (graded) automorphism 

of the graded algebra kQ as follows. We set ϕ(α∗) = (ϕ(α))∗ and ϕ(ti) = tϕ(i). This 

clearly extends to a continuous automorphism of k̂Q.

3. The cluster category of G-orbits

In this section we define the cluster category of G-orbits as the cluster category 

of the quiver QG with its corresponding potential. When G is an admissible group 
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of automorphisms of (Q, W ) such that (Q, W ) is Jacobi-finite, we will see that we 

have two Hom-finite 2-Calabi–Yau triangulated categories C(Q, W ), C(QG, WG) asso-

ciated to the quivers with potentials (Q, W ), (QG, WG), respectively. These categories 

will be called cluster categories and we will show that we have a G-precovering functor 

F : C(Q, W ) → C(QG, WG) (see Proposition 3.6) and this functor is compatible with mu-

tations (see Subsection 3.4). Precoverings of cluster categories together with mutations 

are also studied in [33] with the purpose of mutating some quivers of endomorphism 

algebras of 2-Calabi–Yau tilted algebras having loops or 2-cycles.

3.1. Coverings of k-categories

In this subsection, we introduce the notion of G-(pre)covering of algebras or categories. 

A skeletal category is a category for which different objects are not isomorphic. Let A, B

be two skeletal k-categories and G be a group of automorphisms of A. A k-linear functor 

F : A → B is called a G-precovering if we have functorial isomorphisms

⊕

g∈G

A(a, gb) ∼= B(Fa, Fb)

and

⊕

g∈G

A(ga, b) ∼= B(Fa, Fb)

induced by the sum of the images of F . If, moreover, the functor F is surjective, then F

is called a G-covering. We refer the reader to [5] or [6] for more details on G-coverings.

These definitions can be adapted to the differential graded cases. Assume now that 

A, B are skeletal DG k-categories with differentials dA, dB, respectively. Let F : A → B

be a k-linear functor that is graded (that is, respect the grading of morphisms) and 

commutes with the differentials. The functor F is called a G-precovering of DG-categories 

if, for i ∈ Z, we have functorial isomorphisms

⊕

g∈G

A(a, gb)i
∼= B(Fa, Fb)i

and

⊕

g∈G

A(ga, b)i
∼= B(Fa, Fb)i

of degree i maps induced by F . If, moreover, the functor F is surjective, then F is called 

a G-covering.

Let A be a k-algebra having a complete set e1, . . . , en of pairwise orthogonal primitive 

idempotents. It will be convenient for us to think of A as a (skeletal) k-category, also 
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denoted A. The objects of A are the idempotents of A and the morphisms from ei to ej

are given by the elements in ejAei. This is a Hom-finite category if and only if A is finite 

dimensional. If A is a DG algebra, then the corresponding category is a DG category. 

Observe that if x ∈ ejAei and y ∈ elAek with k 	= j, then yx is not defined in the 

category A while it is zero in the algebra A.

Let G be a group of admissible automorphisms of (Q, W ). Recall that we have a 

k-linear functor π : kQ → kQG of k-categories such that for a ∈ Q0 ∪ Q1, π(a) = Ga. 

This functor π is clearly a G-covering. Moreover, it extends to a k-linear continuous 

functor π : k̂Q → k̂QG, which is also a G-covering.

Proposition 3.1. We have a G-covering

π : J(Q, W ) → J(QG, WG)

induced by the G-covering π : k̂Q → k̂QG.

Proof. For vertices a, b in Q0, we have a functorial isomorphism

p :
⊕

g∈G

k̂Q(a, gb) ∼= k̂QG(Ga, Gb)

which, by the results in Subsection 2.2, restricts to an isomorphism

f :
⊕

g∈G

Î(a, gb) ∼= ÎG(Ga, Gb).

Now, consider the commutative diagram

0
⊕

g∈G Î(a, gb)

f

⊕
g∈G k̂Q(a, gb)

p

⊕
g∈G J(Q, W )(a, gb) 0

0 ÎG(Ga, Gb) k̂QG(Ga, Gb) J(QG, WG)(Ga, Gb) 0

There is an induced isomorphism

h :
⊕

g∈G

J(Q, W )(a, gb) → J(QG, WG)(Ga, Gb),

which is functorial. Similarly, there is a functorial isomorphism

⊕

g∈G

J(Q, W )(ga, b) → J(QG, WG)(Ga, Gb). �
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Lemma 3.2. Let ϕ be an automorphism of (Q, W ) and extend ϕ to a graded automorphism 

of k̂Q as previously. Then ϕ induces an automorphism of Γ(Q, W ), that is, ϕ commutes 

with the differential d.

Proof. It suffices to check the compatibility on the arrows of degree −1, −2. We have

dϕ(α∗) = d(ϕ(α)∗) = ∂ϕ(α)(W ) = ∂ϕ(α)(ϕ(W )) = ϕ(∂α(W )) = ϕd(α∗)

and

dϕ(ti) = d(tϕ(i))

= eϕ(i)

⎛
⎝ ∑

α∈Q1

(αα∗ − α∗α)

⎞
⎠ eϕ(i)

= eϕ(i)

⎛
⎝ ∑

α∈Q1

(ϕ(α)ϕ(α)∗ − ϕ(α)∗ϕ(α))

⎞
⎠ eϕ(i)

= ϕ

⎛
⎝ei

⎛
⎝ ∑

α∈Q1

(αα∗ − α∗α)

⎞
⎠ ei

⎞
⎠

= ϕd(ti). �

Now, consider the (completed) Ginzburg orbit DG-algebra Γ(QG, WG) with differen-

tial dG. As seen in Lemma 3.2, we have dϕ = ϕd whenever ϕ ∈ G. This means that the 

differential dG in Γ(QG, WG) comes from the differential d of Γ(Q, W ). In order to con-

sider G-coverings of DG-algebras, we can naturally think of the Ginzburg DG-algebras 

Γ(Q, W ), Γ(QG, WG) as DG-categories. We get a graded G-covering

π : Γ(Q, W ) → Γ(QG, WG),

of DG-categories, that is, for each i ≤ 0, we have natural isomorphisms

⊕

g∈G

k̂Q(a, gb)i
∼= k̂QG(Ga, Gb)i

and

⊕

g∈G

k̂Q(ga, b)i
∼= k̂QG(Ga, Gb)i

of degree i maps. Moreover, π commutes with the differentials dG and d.
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Remark 3.3. Observe that using the G-covering functor π : Γ(Q, W ) → Γ(QG, WG) to-

gether with the fact that the Jacobian algebra is the zero-th cohomology of the Ginzburg 

DG-algebra, we can recover Proposition 3.1.

3.2. Perfect derived categories

Let G be an admissible group of automorphisms of (Q, W ) and consider the graded 

G-covering π : Γ(Q, W ) → Γ(QG, WG) as obtained above. Given a DG k-algebra (or 

category) Λ, we let H(Λ) denote the homotopy category of the category of DG Λ-modules 

and we let perΛ denote the full subcategory of H(Λ) of the perfect DG Λ-modules: it 

is the smallest full triangulated subcategory of H(Λ) containing Λ that is closed under 

isomorphisms and direct summands. Finally, we let f.d.Λ denote the full subcategory 

of H(Λ) of the DG-modules whose total homology is finite dimensional. When Λ is 

a Ginzburg DG-algebra of a Jacobi-finite quiver with potential, the subcategory f.d.Λ

is a triangulated subcategory of perΛ, and consequently, the quotient perΛ/f.d.Λ is a 

Hom-finite 2-Calabi–Yau triangulated k-category; see [1].

We want to define a functor

F : perΓ(Q, W ) → perΓ(QG, WG)

at the level of the perfect derived categories of DG-modules. Let M• = (Mi)i∈Z be a 

DG-module in perΓ(Q, W ) with differential (di : Mi → Mi+1)i∈Z. Observe that each 

Mi is a kQ-modules and each di is a morphism of kQ-modules. Consider the G-covering 

π : kQ → kQG. There is an induced push-down functor πλ : Rep(Q) → Rep(QG). For 

x ∈ Q0, we have (πλM)(Gx) = ⊕g∈GM(gx) and for α ∈ Q1, we have (πλM)(Gα) =

⊕g∈GM(gα). This functor πλ is a G-precovering. We define FM• to be the complex 

(πλMi)i∈Z with differentials (πλdi)i∈Z. We need to check that this is well defined. First 

of all, since πλ is a functor, it is clear that (πλdi)i∈Z is a differential. Fix i ∈ Z. We have

πλMi =
⊕

Gx∈(QG)0

(πλMi)eGx,

where (πλMi)eGx =
⊕

y∈Gx Miey. Assume that α : t → s, so that α∗ : s → t. 

Then α∗ induces a linear map (M•(α∗))i : Mies → Mi−1et. Therefore, for g ∈ G, 

we have a linear map (M•(gα∗))i = (M•((gα)∗))i : Miegs → Mi−1egt. As we have 

(πλMi)eGs =
⊕

g∈G Miegs and (πλMi−1)eGt =
⊕

g∈G Mi−1egt, this induces a linear map 

(πλMi)eGs → (πλMi−1)eGt that we define to be the action of Gα∗ on (FM•)i = πλMi. 

Similarly, we can define the action of Gti on (FM•)i = πλMi. This makes FM• a graded 

kQG-module. Since π sends the ideal generated by the arrows of Q̄ to the ideal generated 

by arrows of Q̄G, we have that FM• is actually a k̂QG-module. One has to check that the 

differential (πλdi)i∈Z satisfies the Leibniz rule and one needs to define F on morphisms. 

For this purpose, let f• = (fi)i∈Z : M• → N• be a morphism of DG-modules. We define 
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Ff to be the morphism (πλfi)i∈Z. For a homogeneous element a in a DG-algebra, we 

let |a| denote its degree.

Lemma 3.4. The differential (πλdi)i∈Z defined above satisfies the Leibniz rule and if f• :

M• → N• is a morphism (of degree zero) of DG-modules, then F (f•) = (πλfi)i∈Z :

F (M•) → F (N•) is a morphism of DG-modules.

Proof. Let a ∈ Γ(QG, WG) : Gx → Gy be an arrow of degree −2 ≤ j ≤ 0 and z =

(zg)g∈G ∈ (πλMi)eGx =
⊕

g∈G Miegx. We may assume that a = Gb for some arrow 

b : x → y of degree j in Γ(Q, W ). We have (πλdi)((zg)g∈G) = (di(zg))g∈G. Also, |gb| = |a|

for all g ∈ G. Therefore,

(πλdi+j)(za) = (πλdi+j)((zg(gb))g∈G)

= (di+j(zg(gb)))g∈G

= (di(zg)(gb) + (−1)|a|zgdj(gb))g∈G

= (di(zg)gb)g∈G + (−1)|a|(zgdj(gb))g∈G

= πλdi(z)a + (−1)|a|zdG,j(a)

which shows that the differential satisfies the Leibniz rule. Now, let f : M• → N• be a 

morphism of DG-modules. We have

πλfi+j(za) = πλfi+j((zg(gb))g∈G)

= (fi+j(zg(gb)))g∈G)

= (fi(zg)(gb))g∈G

= (fi(zg))g∈Ga

= (πλfi)(z)a,

which shows that (πλfi)i∈Z induces a morphism Ff : FM• → FN• of DG-modules. �

Observe finally that F is additive and F (Γ(Q, W )) lies in the additive hull of 

Γ(QG, WG) so that F is a well-defined functor at the level of the perfect derived cate-

gories. Consider now the functor πλ : Rep(QG) → Rep(Q) which is right adjoint to πλ. 

For M ∈ Rep(Q), we have πλπλM = ⊕g∈GgM . We first need to extend πλ to a functor 

F̄ : perΓ(QG, WG) → perΓ(Q, W ). Let M• = (Mi)i∈Z be a DG-module in perΓ(QG, WG)

with differential (di)i∈Z. We define F̄M• to be the complex (πλMi)i∈Z with differential 

(πλdi)i∈Z. One can check that this defines a DG-module in H(Γ(Q, W )). One also needs 

to define F̄ on morphisms on the natural way: if f• = (fi)i∈Z : M• → N• is a morphism 

of DG-module, then (πλfi)i∈Z is a morphism of DG-Γ(Q, W )-modules. One can check 

that F̄ defines a functor from perΓ(QG, WG) to H(Γ(Q, W )).
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Lemma 3.5. We have an adjoint pair (F, F̄ ). Moreover, for M• ∈ perΓ(Q, W ), we have 

F̄FM• ∼= ⊕g∈GgM•. In particular, since G is finite, the functor F̄ is from perΓ(QG, WG)

to perΓ(Q, W ).

Proof. This follows from the analogous properties for the functors πλ, πλ. �

3.3. Cluster categories

The cluster category C(Q, W ) of the quiver with potential (Q, W ) is defined in [1] as 

follows.

C(Q, W ) = perΓ(Q, W )/f.d.Γ(Q, W ).

In this short subsection, we will study the category

C(QG, WG) = perΓ(QG, WG)/f.d.Γ(QG, WG).

Observe that f.d.Γ(Q, W ) is clearly sent to f.d.Γ(QG, WG) by F . Therefore, the exact 

functor F induces a functor

F : C(Q, W ) → C(QG, WG).

This is an exact functor of triangulated categories. In general, this functor is neither full 

nor dense. We have the following.

Proposition 3.6. The functor F : perΓ(Q, W ) → perΓ(QG, WG) is a G-precovering. It 

induces a G-precovering F : C(Q, W ) → C(QG, WG).

Proof. The first part of the proof is an adaptation of Asashiba’s proof [3, Theorem 4.3 

and 4.4]. Let M•, N• ∈ perΓ(Q, W ). Since G is finite, we have a functorial isomorphism

⊕g∈GHomperΓ(Q,W )(M
•, gN•) ∼= HomperΓ(Q,W )(M

•, ⊕g∈GgN•).

The latter is functorially isomorphic to

HomperΓ(Q,W )(M
•, F̄FN•)

which, by the adjunction property, is functorially isomorphic to

HomperΓ(QG,WG)(FM•, FN•).

Similarly, we have a functorial isomorphism

⊕g∈GHomperΓ(Q,W )(gM•, N•) ∼= HomperΓ(QG,WG)(FM•, FN•).

This shows the first part of the lemma.
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For the second part, we only need to observe that the functorial isomorphism

⊕g∈GHomperΓ(Q,W )(M
•, gN•) ∼= HomperΓ(QG,WG)(FM•, FN•)

induces a functorial isomorphism

⊕g∈GHomC(Q,W )(M
•, gN•) ∼= HomC(QG,WG)(FM•, FN•).

Similarly, we get a functorial isomorphism

⊕g∈GHomC(Q,W )(gM•, N•) ∼= HomC(QG,WG)(FM•, FN•). �

When (Q, W ) is Jacobi-finite, since we have a G-covering J(Q, W ) → J(QG, WG), 

the pair (QG, WG) is also Jacobi-finite, so that by [1, Theorem 3.5] again, C(QG, WG)

is a 2-Calabi–Yau triangulated Hom-finite Krull–Schmidt k-category. The category 

C(QG, WG) is then called the cluster category of (QG, WG). Note that QG may have 

loops and 2-cycles. As a consequence, the potential WG need not be non-degenerate, 

even when W is.

3.4. Cluster-tilting objects and mutations

In this subsection, we assume that (Q, W ) is Jacobi-finite and we let G be an ad-

missible group of automorphisms of (Q, W ). In particular, both C(Q, W ), C(QG, WG)

are 2-Calabi–Yau triangulated Hom-finite Krull–Schmidt k-category. Let T be a ba-

sic cluster-tilting object in C(Q, W ). Equivalently, HomC(Q,W )(T, T [1]) = 0 and T has 

exactly n non-isomorphic direct summands, where n = |Q0|. We call such a T a G-cluster-

tilting object if gT ∼= T for all g ∈ G. Clearly, the projective module Γ(Q, W ) is 

a G-cluster-tilting object. If U is an indecomposable direct summand of T and T is 

G-cluster-tilting, then for g ∈ G, we have that gU is isomorphic to a direct summand 

of T . We will denote by U the direct sum of all the non-isomorphic such gU and by TU

the rigid object T/U .

We recall some notions from Iyama–Yoshino; see [24]. Let D be an additive sub-

category of C(Q, W ) which is closed under taking direct summands and such that for 

D1, D2 ∈ D, we have Hom(D1, D2[1]) = 0. Assume also that D is functorially finite 

in C(Q, W ). Let X be an additive subcategory of C(Q, W ) which is closed under tak-

ing direct summands, contains D, and is such that for D ∈ D and X ∈ X , we have 

Hom(D, X[1]) = 0. Given an object X ∈ X , take a left D-approximation X → D′ and 

consider a triangle

X
f
→ D′ → CX,f → X[1].

Then Hom(CX,f , D[1]) = 0 for all D ∈ D and CX,f is nonzero if X is not in D. Consider 

the additive subcategory Y of C(Q, W ) generated by all such CX,f . Clearly, Y contains D
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(the approximations above are not necessarily minimal) and for Y ∈ Y, D ∈ D, we have 

Hom(Y, D[1]) = 0. By Proposition 2.1(1) in [24], the category Y is closed under direct 

summands. Following the terminology in [24], the pair (X , Y) is called a D-mutation 

pair. It follows from Proposition 5.1 in [24] that X is a cluster-tilting subcategory if and 

only if so is Y.

As an application, we consider the following. Let T be a G-cluster-tilting object in 

C(Q, W ) and U an indecomposable direct summand of T . Let D be the additive subcat-

egory generated by the indecomposable direct summands of TU and let X be the one 

generated by the indecomposable direct summands of T . Clearly, D, X are as above. Let 

fU : U → DU be a minimal left D-approximation of U in C(Q, W ) and let CU be the 

cone of fU . Since each g ∈ G can be seen as an automorphism of C(Q, W ), the triangle

U
fU
→ DU → CU → U [1]

is sent to the triangle

gU
gfU
→ gDU → gCU → gU [1]

as (gU)[1] ∼= g(U [1]). Now, gU ∈ X , gDU ∈ D and gfU is a minimal left D-approximation 

of gU , so gCU
∼= CgU . Now, let fU : U → DU be a minimal left D-approximation of U

in C(Q, W ).

Lemma 3.7. We have CU
∼= CU , where CU is the direct sum of the non-isomorphic objects 

in {gCU | g ∈ G}.

Proof. It is easy to check that the direct sum of the gfU for g ∈ G forms a minimal left 

D-approximation of U in C(Q, W ). Therefore, we just need to check that gU ∼= U if and 

only if CU
∼= CgU . The necessity follows from the left-approximation property. For the 

sufficiency, we just need to observe that if we have a left D-approximation fU of U with 

the corresponding triangle

U
fU
→ DU

f ′
U→ CU → U [1],

then f ′
U is a right D-approximation of CU . �

Now, we can set μ(T, U) = (T/U) ⊕CU and by construction, Y is the additive subcat-

egory generated by the indecomposable direct summands of μ(T, U). In particular, Y is 

a cluster-tilting subcategory, meaning that μ(T, U) is a cluster-tilting object. It is clear 

that μ(T, U) is also G-cluster-tilting. We denote by DG the full additive subcategory in 

C(QG, WG) generated by the indecomposable direct summands of F (TU) and by DG the 

basic object of F (TU ).
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Proposition 3.8. Assume that (Q, W ) is Jacobi-finite. Let h : U → D be a minimal 

left D-approximation of U in C(Q, W ). Then Fh is a left DG-approximation of FU in 

C(QG, WG).

Proof. Since (Q, W ) is Jacobi-finite, the cluster categories C(Q, W ), C(QG, WG) are Hom-

finite. Let D′ ∈ D be arbitrary, so that FD′ is arbitrary in DG. Since F is a G-precovering, 

for each g ∈ G, there exists a natural isomorphism φg : F ◦ g → F such that

(∗) : ΦU,D′ : ⊕g∈GHom(U, gD′) → Hom(FU, FD′)

is given by (fg)g∈G →
∑

g∈G(φgD′) ◦ F (fg). Let f : FU → FD′ be any morphism. 

Since (F, F̄ ) is an adjoint pair and since F̄FD′ ∼= ⊕g∈GgD′, there is a morphism f̄ ∈

HomC(Q,W )(U, ⊕g∈GgD′) corresponding to f through the adjunction isomorphism

HomC(Q,W )(U, ⊕g∈GgD′) ∼= HomC(QG,WG)(FU, FD′).

Decompose f̄ as f̄ = (fg)g∈G. Since h is a left D-approximation of U , there is a morphism 

η : D → ⊕g∈GgD′ such that f̄ = ηh. Now, we have (Ffg)g∈G = FηFh. Now, the diagram

FD
F η

FU

F h

(F fg)g∈G

⊕g∈GFgD′
(φgD′)g∈G

FD′

yields

f = (φgD′)g∈G(Ffg)g∈G = ((φgD′)g∈GFη)Fh

which shows that Fh is a left DG-approximation of FU in C(QG, WG). �

In the above setting, the process of replacing U in T by the cone CU of a minimal 

left D-approximation U → DU is called the (Iyama–Yoshino) orbit mutation of U in T . 

Note that gCU
∼= CU for all g ∈ G and hence CU

∼= CU , that is, the indecomposable 

direct summands of CU are precisely the non-isomorphic objects of {gCU | g ∈ G}.

Corollary 3.9. Let T be a G-cluster-tilting object in C(Q, W ). Let U be an indecomposable 

direct summand of T . The orbit mutation of U in T corresponds to the classical mutation 

of FU inside the cluster-tilting object FT of C(QG, WG).

In the above corollary, the assumption that T is G-cluster-tilting is necessary. In 

general, an indecomposable rigid object in C(Q, W ) is not sent by F to a rigid object in 

C(QG, WG). In particular, a cluster-tilting object in C(Q, W ) is not necessarily sent to a 

cluster-tilting object in C(QG, WG) through F .
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Corollary 3.10. Let T be an object in C(Q, W ) obtained by a sequence of orbit mutations 

of the rigid object Γ(Q, W ) seen as an object in C(Q, W ). Then FT is (not necessarily 

basic) cluster-tilting in C(QG, WG).

Corollary 3.11. Let T be a G-cluster-tilting object in C(Q, W ). Then there is a G-covering 

EndC(Q,W )(T ) → EndC(QG,WG)(FT ).

4. Surfaces and orbifolds

Building on work of Fock and Goncharov [18,19], and of Gekhtman, Shapiro and 

Vainshtein [23], Fomin, Shapiro and Thurston [20] associated a cluster algebra to any 

bordered surface with marked points. Oriented Riemann orbifolds have been considered 

in [16,12,25] in the context of cluster algebras. The triangulated orbifolds considered 

in [16] is the geometric framework which allowed the same authors to complete the 

classification of skew-symmetrizable cluster algebras of finite type, in [17]. In [12], the 

authors have also studied orbifolds, defined in a similar way, in the context of Teichmüller 

theory. They have shown that the λ-lengths relation for the arcs in an orbifold behave 

like a three-term exchange relation of a generalized-cluster algebra, which is defined 

there.

We fix the following notation.

• S is a connected oriented Riemann surface with (possibly empty) boundary ∂S.

• M ⊂ S is a finite set of marked points with at least one marked point on each 

connected component of the boundary.

We will refer to the pair (S, M) simply as a surface. A surface is called closed if the bound-

ary is empty. A connected component of ∂S is called a boundary component. Marked 

points in the interior of S are called punctures.

An orbifold is a surface with additional data. Each puncture b comes with a positive 

integer mb attached to it, called its isotropy, and there is also a finite set of points O

on S\(∂S ∪ M) called orbifold points. More precisely, an orbifold is a triple (S, M, O)

together with a function m : M → Z≥1 such that mb := m(b) = 1 whenever b ∈ ∂S. 

A puncture b with isotropy mb will be called an mb-puncture and a 1-puncture is often 

called an ordinary puncture.

For technical reasons, when O is empty, we require that (S, M) is not a sphere with 

1, 2 or 3 punctures; a monogon with 0 or 1 puncture; or a bigon or triangle without 

punctures.

An orbifold point is denoted by a cross × in the surface, a marked point with isotropy 

one is denoted by a dot • while a puncture with isotropy greater than one is denoted 

by ⊗.



178 C. Paquette, R. Schiffler / Advances in Mathematics 345 (2019) 161–221

4.1. Arcs and triangulations

An arc γ in (S, M) is a curve in S, considered up to isotopy, such that

(a) the endpoints of γ are in M ;

(b) γ is disjoint from O and, except for the endpoints, γ is disjoint from M and from ∂S;

(c1) γ does not cut out an unpunctured monogon, unless there is exactly one orbifold 

point in the monogon;

(c2) γ does not cut out an unpunctured bigon;

(d) γ does not cross itself, except that its endpoints may coincide.

If γ is an arc with endpoints a, b, we will often indicate this by γ : a − b or by γ : b − a. 

Curves that connect two marked points and lie entirely on the boundary of S without 

passing through a third marked point are called boundary segments. By (c1) and (c2), 

boundary segments are not arcs. A closed loop is a closed curve in S which is disjoint 

from the boundary of S.

For any two arcs γ, γ′ in S, define

e(γ, γ′) = min{number of crossings of α and α′ | α � γ, α′ � γ′},

where α and α′ range over all arcs isotopic to γ and γ′, respectively. We say that arcs γ

and γ′ are compatible if e(γ, γ′) = 0.

An ideal triangulation is a maximal collection of pairwise compatible arcs (together 

with all boundary segments). The arcs of a triangulation cut the surface into ideal trian-

gles. Triangles that have exactly two distinct sides are called self-folded triangles. Note 

that a self-folded triangle consists of a loop �, together with an arc r to an enclosed 

puncture which we call a radius. If m denotes the isotropy of the puncture inside the 

self-folded triangle, then the triangle is called m-self-folded. A triangle that has only one 

arc has to be a loop enclosing exactly one orbifold point. Such a triangle is called an 

orbifold triangle. A triangle that is neither self-folded nor an orbifold triangle is called a 

standard triangle. A triangle is called internal if no edge of the triangle is a boundary 

segment. A self-folded or orbifold triangle is always internal. Examples of ideal triangu-

lations are given in Fig. 1.

The following is well known when O = ∅.

Lemma 4.1. The number of arcs in an ideal triangulation is exactly

n = 6g + 3b + 3p + 2x + c − 6,

where g is the genus of S, b is the number of boundary components, p is the number of 

punctures, x is the number of orbifold points and c = |M | − p is the number of marked 

points on the boundary of S. The number n is called the rank of (S, M).
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Fig. 1. An ideal triangulation of an annulus with one m-puncture and one orbifold point. The arc 6 is the 
loop of an m-self-folded triangle whose radius is the arc 1. The arc 8 is the loop of an orbifold triangle.

Proof. Consider the surface (S, M ′) obtained by taking M ′ = M ∪ O. To get a triangu-

lation of the ordinary surface (S, M ′), we only need to add an arc for each point in O. 

Therefore, n +x = 6g +3b +3(p +x) +c −6, which gives the wanted expression for n. �

Ideal triangulations are connected to each other by sequences of flips. Each flip replaces 

a single arc γ in T by a unique new arc γ′ 	= γ such that

T ′ = (T \ {γ}) ∪ {γ′}

is a triangulation.

4.2. Tagged arcs

Note that an arc γ that lies inside a self-folded triangle in T cannot be flipped. In 

order to rectify this problem, the authors of [20] were led to introduce the slightly more 

general notion of tagged arcs. We adapt the notion for triangulations of orbifolds.

A tagged arc is obtained by taking an arc that does not cut out a once-punctured 

monogon and marking (“tagging”) each of its ends in one of two ways, plain or notched, 

so that the following conditions are satisfied:

• an endpoint lying on the boundary of S must be tagged plain

• both ends of a loop must be tagged in the same way.

Thus there are four ways to tag an arc between two distinct punctures and there are two 

ways to tag a loop at a puncture; see Fig. 2. The notching is indicated by a bow tie.

One can represent an ordinary arc β by a tagged arc ι(β) as follows. If β does not 

cut out a once-punctured monogon, then ι(β) is simply β with both ends tagged plain. 

Otherwise, β is a loop based at some marked point q and cutting out a punctured 
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Fig. 2. Four ways to tag an arc between two punctures (left); two ways to tag a loop at a puncture (right).

monogon with the sole puncture p inside it. Let α be the unique arc connecting p and q

and compatible with β. Then ι(β) is obtained by tagging α plain at q and notched at p.

Tagged arcs α and β are called compatible if and only if the following properties hold:

• the arcs α0 and β0 obtained from α and β by forgetting the taggings are compatible;

• if α0 = β0 then at least one end of α must be tagged in the same way as the 

corresponding end of β;

• if α0 	= β0 but they share an endpoint a, then the ends of α and β connecting to a

must be tagged in the same way.

A maximal collection of pairwise compatible tagged arcs is called a tagged triangula-

tion. Assume that T is a tagged triangulation of (S, M). We define a triangulation τ(T )

without tags as follows. As a first case, assume that there is a puncture b having two 

arcs α, β of T connected to b such that α is tagged plain at b while β is tagged notched 

at b. Then α0 = β0 : a − b and α, β are tagged the same way at a. Moreover, there is 

no other arcs having b as endpoint. In this case, let τ(α) be the arc α0 and τ(β) be the 

loop a − a enclosing the puncture b and tagged plain. If γ is a tagged arc not as in the 

latter case, we let τ(γ) = γ0. It is easy to check that τ(T ) := {τ(γ) | γ ∈ T } is an ideal 

triangulation of (S, M). Also, if T is an ideal triangulation, then τ(ι(T )) = T .

4.3. Quivers and cluster categories

In this subsection, (S, M) is an ordinary surface, that is, O = ∅. Given an ideal 

triangulation T = {τ1, τ2, . . . , τn}, the associated quiver QT introduced in [20] can be 

defined as follows. The vertices of QT are in bijection with the arcs of T , and we denote 

the vertex of QT corresponding to the arc τi simply by i. The arrows of QT are defined 

as follows. For any triangle Δ in T which is not self-folded, we add an arrow i → j

whenever

(a) τi and τj are sides of Δ with τj following τi in the clockwise order;

(b) τj is a radius in a self-folded triangle enclosed by a loop τ
, and τi and τ
 are sides 

of Δ with τ
 following τi in the clockwise order;

(c) τi is a radius in a self-folded triangle enclosed by a loop τ
, and τ
 and τj are sides 

of Δ with τj following τ
 in the clockwise order;

(d) τi, τj are radii of self folded triangles with respective loops τ
, τm where τ
, τm are 

sides of Δ with τ
 following τm in the clockwise order.
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Then we remove all 2-cycles. If T is tagged, then the quiver QT of T coincides with the 

quiver Qτ(T ) of the ideal triangulation τ(T ).

One can attach a cluster category, defined by a quiver with potential, to any triangu-

lation T of the ordinary surface (S, M); see [1]. Let us recall the main ingredients of this 

construction. We let WT denote a potential in k̂QT . An example of a potential is the 

canonical potential (or Labardini potential) attached to T ; see [28]. In case where there 

is no self-folded triangle in T , this potential WT,ca is a sum of cycles, where a given cycle 

in WT,ca is either a cycle of length 3 corresponding to an internal triangle of T or else 

is a cycle corresponding to surrounding once a puncture. In particular, the number of 

terms in WT,ca is the number of internal triangles in T plus the number of punctures 

in M . The Labardini potential can also be defined in the cases where T has self-folded 

triangles (see [28]), but the definition is slightly more involved.

Recall from Section 3.3 that to the pair (QT , WT ), one can attach the cluster category 

C(QT , WT ). In this category, one can perform mutations at any summand of a cluster-

tilting object, regardless of the local properties of the quiver of that cluster-tilting object. 

Since we are mainly working with cluster categories, we will generally not assume that 

the potential WT is non-degenerate. Let us just mention the following fact.

Proposition 4.2 ([29]). Let S be a surface with non-empty boundary. Then WT,ca is non-

degenerate. Moreover, for every mutation μa, the potential μaWT,ca is right equivalent 

to the potential Wμa(T ),ca. In particular, there is an isomorphism of Jacobian algebras 

J(μa(QT , WT,ca)) ∼= J(Qμa(T ), Wμa(T ),ca).

4.4. Group actions on triangulations

Now, fix a tagged triangulation T of (S, M). For us, a homeomorphism of (S, M) is 

always an orientation-preserving homeomorphism of S that maps M to M . Two homeo-

morphisms ϕ1, ϕ2 of (S, M) are isotopic if their actions on M coincide and if there is an 

isotopy h : S × [0, 1] → S such that h(−, 0) = ϕ1, h(−, 1) = ϕ2 and for t ∈ (0, 1), h(−, t)

has the same action on M as ϕ1. Following [4], we consider MCG(S, M) the mapping 

class group of (S, M). The elements of MCG(S, M) are the homeomorphisms of (S, M)

up to the above-defined isotopy relation. This is a group under composition. We define 

MCG(S, M, T ) to be the subgroup of MCG(S, M) of those elements g that map τ(T ) to 

τ(T ) and preserve the tagging of arcs in the following way. If α : a − b ∈ T , we require 

that the tagged arc gα : ga − gb is such that α, gα are tagged the same way at a, ga, 

respectively; and α, gα are tagged the same way at b, gb, respectively. Since T is finite, 

the group MCG(S, M, T ) is always finite. Indeed, any element of MCG(S, M, T ) fixing 

each arc of T and each marked point of M has to be the identity element. An element 

in MCG(S, M, T ) is called a T -automorphism of (S, M).

An admissible group is a group G of T -automorphisms that acts freely on T , that 

is, if g ∈ G fixes an arc of T (but not necessarily its endpoints), then g is the identity 

automorphism. From now on, let G be an admissible group. Let b be a triangle from T , 
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an arc of T , a boundary segment or a marked point of M . The subgroup Gb of all g ∈ G

that map the set b to itself will be called the isotropy group of b. We sometimes say that 

b has trivial isotropy if Gb is trivial, that is, if g(b) = b then g is the identity. Notice that 

the isotropy group of an arc is always trivial, since G is admissible.

Lemma 4.3. Let G be a non-trivial admissible group of T -automorphisms of (S, M) and 

b be a triangle, marked point or boundary segment with non-trivial isotropy group Gb.

(1) If b is a triangle, then b is not self-folded and Gb has order 3.

(2) Otherwise, b is a puncture and Gb is a cyclic group whose order is a divisor of the 

number of arcs incident to b, and of the number of loops incident to b.

Proof. We first claim that b cannot be a marked point on the boundary or a boundary 

segment. Assume otherwise. Assume further that B is a boundary component of S with 

b ∈ B. Let g ∈ Gb be non-trivial. Then g maps B to B and hence g permutes the marked 

points of B. Suppose first that b is a boundary segment in B. Then b is the bounding 

curve of a unique standard triangle δ of T . Since b is fixed by g, we see that δ is fixed 

by g. Now, δ has at least one internal arc. If it has exactly one, say a, then g fixes a, 

a contradiction to G being admissible. If δ has two internal arcs, then g permutes these 

internal arcs. But then, g reverses the orientation of δ, a contradiction. Suppose now 

that b is a marked point of B. If b is the unique marked point of B, then we take c to be 

the unique boundary segment of B and the above argument applies. Otherwise, let c1, c2

be the two boundary segments attached to b. If each ci is fixed by g, then the above 

argument applies. Otherwise, g permutes c1, c2 but then reverse the orientation on B, 

a contradiction.

Suppose now that b is a puncture. If b lies inside a self-folded triangle, then clearly, the 

loop of that self-folded triangle is fixed by Gb, a contradiction. Let c0, . . . , cm−1 be the 

arcs of T incident to b in cyclic order around b. Any h ∈ Gb induces a permutation σh of 

c0, . . . , cm−1. Since Gb preserves the orientation of S, every h is uniquely determined by 

its action on c0: if h(c0) = ci, then h(cj) = cj+i, where the indices are taken modulo m. 

Take g0 ∈ Gb with g0(c0) = ci where i > 0 is minimal. We claim that Gb is the cyclic 

group generated by g0. Let h ∈ Gb and assume that h(c0) = cj where j ≥ i. Then for 

t ∈ Z, the element g−t
0 h is such that g−t

0 h(c0) = cj−ti. There exists t ≥ 1 such that 

0 ≤ j − ti < i. By minimality of i, we have j = ti and g−t
0 h fixes c0, showing that h = gt

0. 

This shows that Gb is cyclic. Since gm
0 = 1, we see that the order of Gb divides m. Since 

an element of G sends a loop of T to a loop of T and a non-loop of T to a non-loop of T , 

the second statement of the proposition follows.

The only case left is when b is a triangle from T . As observed above, no arc of b is a 

boundary segment. Also, b is not self-folded, as otherwise, its loop would be fixed by Gb, 

which is impossible. Every non-identity element h in Gb induces a rotation of order 3 of b. 

Using the fact that G acts freely on T , we see that Gb is generated by any non-identity 

element h ∈ Gb and hence, Gb has order three. �
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Since G is finite and admissible, it acts properly discontinuously on (S, M) and the 

orbit space SG := S/G is a Riemann surface. Moreover, since G consists only of orienta-

tion preserving homeomorphisms, SG is actually oriented (with the induced orientation 

from S) with finitely many isolated singular points. We refer the reader to W. Thurston’s 

notes [35, Chapter 13] for results in this direction and also for more details concerning 

these orbit spaces.

One way to study the orbit space is through a fundamental domain. For each internal 

and standard triangle having a non-trivial isotropy group, consider the unique point in 

its interior which is a singular point. Let O denote the set of all of these points. Consider 

the oriented Riemann surface (S, M ′) where M ′ = M ∪O and let T O be the triangulation 

obtained from τ(T ) by adding three arcs to each marked point of O ⊆ M ′. It is clear 

that G is an admissible group of T O-automorphisms of (S, M ′) and where each triangle 

from T O now has a trivial isotropy group. We construct a collection C of triangles from 

T O as follows. Start with a triangle δ1 of T O and set C1 = {δ1}. In general, suppose that 

we have constructed Ct for t ≥ 1. If for any given δ ∈ Ct, all triangles adjacent to δ are 

in the G-orbit of some triangle of Ct, then we set C := Ct. Otherwise, there is a triangle 

δt+1 adjacent to a triangle from Ct which is not in the G-orbit of any triangle of Ct. We 

set Ct+1 := Ct ∪{δt+1}. Continuing this way, since T O has finitely many triangles, we get 

a final collection C := Cs for some s of triangles from T O having the property that for 

any δ ∈ C, all triangles adjacent to δ are in the G-orbit of some triangle of C. We denote 

by F the union of all triangles from C. Observe that F is connected by construction. Note 

also that F forms an oriented Riemann surface, and the arcs and boundary segments of 

T O bounding a triangle of C induce a triangulation TF of F.

Lemma 4.4. The surface F is (the closure of) a fundamental domain for S under the 

action of G.

Proof. We use the notations in the above paragraph. Let Δ = Δ0 be a triangle in T O. 

Since S is connected, there is a sequence of triangles Δ0, Δ1, . . . , Δm of T O such that 

Δi shares an edge with Δi+1 for all 0 ≤ i ≤ m − 1 and Δm lies in C. By the defining 

property of C, Δm−1 is in the G-orbit of a triangle in C. By induction, we get that all Δi

are in the G-orbit of a triangle in C. This, combined with the definition of C, ensures that 

C contains exactly one triangle from each G-orbit of the triangles in T O. This completes 

the proof of the lemma. �

From this, it is easy to see that S =
⋃

g∈G gF and s|G| is the number of triangles 

of T O. Now, the orbit space SG can be thought of as F in which arcs in the same G-orbit 

are being identified; see Fig. 3. We will always make this identification from now on.

It follows from Lemma 4.3 that the points in S with non-trivial isotropy are either 

punctures or points inside standard internal triangles of τ(T ), and the collection of 

those latter points was denoted O. The orbits MG := M/G of M then correspond to 

marked points in SG. Lemma 4.3 together with Lemma 4.5 below guarantees that the 
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Fig. 3. Left: the hexagon (S, M) having a triangulation T with the group of order 3 acting by rotation. 
Middle: an arc γ in (S, M ′) with triangulation T O. Right: a fundamental domain F with the corresponding 
curve ϕ(γ).

punctures of SG correspond to the orbits of the punctures of M ; and the marked points 

on the boundary of SG correspond to the orbits of the marked points on ∂S. For each 

puncture b of S, let mb be the order of its isotropy group Gb. This defines a function 

m : MG → Z≥1 that associate to each puncture b the number mb and to each marked 

point on the boundary of SG the number 1. Note that the G-orbits O of the points in 

O are disjoint from ∂SG, MG. Therefore, (SG, MG, O) is an orbifold. An m-puncture in 

MG is called an ordinary puncture, if m = 1; and a G-puncture, if m > 1.

As noticed above, as surfaces (without taking into account the marked points), the 

orbit space SG can be identified with F. On the one hand, SG is equipped with two disjoint 

sets of points: the marked points MG together with the orbifold points O. On the other 

hand, F has no orbifold point but rather marked points, which are MF := MG ∪ O. 

Therefore, an arc in F is understood to be an arc of the marked surface (F, MF).

The next lemma guarantees that the boundary components of SG are in correspon-

dence with the orbits of the boundary components of S under the action of G. In 

particular, there is no new boundary component in SG. Of course, the fact that G

consists only of orientation-preserving homeomorphisms is crucial. For instance, if S is 

the sphere with all punctures and arcs on the equator and G = Z2 is the group gener-

ated by the reflection along the equator, then SG is a disk and hence, a new boundary 

component is created.

Lemma 4.5. The G-orbits of the boundary components of S correspond to the boundary 

components of SG.

Proof. We use the above notation and we identify SG with F. It is not hard to check that 

any boundary segment α which is an edge of a triangle of C is also a boundary segment 

in the orbit space F. Let T be the collection of all arcs of T O that are edges of a triangle 

of C. It is sufficient to prove that no element of T is a boundary segment in the orbit 

space F. Note that the arc d in the right picture of Fig. 3 is not a boundary segment of 

F because of the gluing. Let β ∈ T. If β is the radius of a self-folded triangle, then the 

interior of the corresponding self-folded triangle is entirely contained in F, and hence β
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is not a boundary segment in F. Assume now that β ∈ T is not the radius of a self-folded 

triangle. Let Δ1, Δ2 be the two triangles in T O adjacent to β. We may assume that only 

one of Δ1, Δ2, say Δ1, lies in C. By definition of C, there is 1 	= g in G such that gΔ2

lies in C. Since G acts freely on arcs, we have gβ 	= β. Therefore, in F, β and gβ are 

glued along two distinct triangles Δ1 and gΔ2 of C. Hence, β is not a boundary segment 

in F. �

A tagged arc or curve of (S, M ′) is O-avoiding if it is not incident to a point in O. We 

say that the G-orbit of an arc γ in (S, M ′) consists of compatible arcs if for all g ∈ G the 

arcs gγ and γ are compatible. For example the orbit of the arc γ in the center of Fig. 3

does not consist of compatible arcs.

Proposition 4.6. There is a bijection between the G-orbits consisting of compatible tagged 

arcs in (S, M) with the tagged arcs of (SG, MG, O). Moreover, this bijection induces a 

bijection between G-stable tagged triangulations of (S, M) and tagged triangulations of 

(SG, MG, O).

Proof. We just prove the bijections for ordinary arcs and ordinary triangulations. The 

cases where there is a tagging can be checked without difficulties, and using the fact that 

G respects the tagging. We start with the first bijection and we use the above notation, 

so we have a triangulation T O of (S, M ′) which is G-stable and we identify the orbit 

space with F. First, note that an arc α of (S, M ′) can be thought of as a curve ϕ(α)

of (F, MF) between marked points in MF = MG ∪ O. This is done by folding α along 

the copies gF, g ∈ G, of F; see Fig. 3. Alternatively, ϕ(α) is obtained by restricting 

the curves {gα | g ∈ G} to F. It is clear that ϕ(gα) = ϕ(α) for all g ∈ G. If α is 

O-avoiding, then ϕ(α) is a curve of (F, MF) between marked points in MG. Observe 

that if α, β are isotopic arcs of (S, M ′), then ϕ(α), ϕ(β) are isotopic in (F, MF), since 

when deforming two curves in (S, M ′), we cannot cross a point in O, as the latter are all 

included in M ′. Conversely, take any curve c in (F, MF) between marked points of MG. 

Its fiber is a G-orbit of O-avoiding curves in (S, M ′). Any deformation of c in (F, MF)

corresponds to deformations of the curves in the G-orbit. In particular, any curve without 

self-intersection in (F, MF) between marked points of MG corresponds to a G-orbit of 

compatible arcs. This shows that the correspondence {gα | g ∈ G} �→ ϕ(α) gives the 

first bijection.

Now, consider a partial triangulation V of (S, M) that is G-stable. In particular, all 

arcs are O-avoiding. By the alternative description of ϕ above, it is clear that ϕ sends V

to a partial triangulation of (F, MF) between marked points in MG. In other words, it is 

a partial triangulation of (SG, MG, O). Now, a G-stable triangulation of (S, M) with n

arcs has to be sent to a partial triangulation of (SG, MG, O) with n/|G| arcs. This has to 

be a triangulation of (SG, MG, O). Conversely, given any triangulation V ′ of (SG, MG, O)

with m = n/|G| arcs, its fiber will consist of |G|m = n curves between marked points 
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Fig. 4. The octahedron of Example 4.8 on the left, and its orbifold, a sphere with one 2-puncture and two 
orbifold points, on the right.

in M . As already argued, no two curves are isotopic and they are pairwise compatible. 

Therefore, the fiber is indeed a triangulation of (S, M). �

Corollary 4.7. There exists a notion of mutation of any tagged arc in a tagged trian-

gulation of (SG, MG, O) and, under the above bijection, this corresponds to changing 

a G-orbit A of tagged arcs of a G-stable tagged triangulation V of (S, M) to another 

G-orbit B of tagged arcs where (V \A) ∪ B is a G-stable tagged triangulation of (S, M).

Changing a G-orbit as in the previous corollary will be called an orbit mutation.

Example 4.8. Consider the regular octahedron, seen as the sphere S with |M | = 6 punc-

tures and the corresponding triangulation T (without self-folded triangles and all arcs 

plain). This is a well known fact that there are 24 orientation-preserving symmetries of 

the regular octahedron, so 24 possible T -automorphisms of (S, M). Among these symme-

tries, 6 are not admissible since they fix two arcs. Take the subgroup H of G generated 

by rotations of order 2 around punctures and the rotations of order 3. Color the facets of 

the octahedron in two colors, black or white, in such a way that if two triangles share an 

arc, then they are colored in a different way, see the left picture in Fig. 4. The subgroup 

H can be described as the orientation-preserving symmetries that preserve the colors of 

the triangles. This subgroup does not contain the rotations of order 4 and is admissible. 

It is clearly non-abelian and every element has order 1, 2 or 3. Therefore, H is isomor-

phic to the alternating group A4. Observe that every triangle and every puncture has 

non-trivial isotropy. Notice that there are two orbits of triangles for the action of H, 

only one orbit of arcs, and only one orbit of punctures for H.

The orbifold is a sphere with one 2-puncture corresponding to the orbit of the punc-

tures of the octahedron, and two orbifold points corresponding to the points fixed by 

H other than the punctures, see the right picture in Fig. 4. One of these points is the 

center of a white triangle and the other the center of a black triangle. The white tri-

angles become the northern hemisphere while the black triangles become the southern 

hemisphere. The two triangles of TG are orbifold triangles. A mutation of the unique arc 

in TG would be a change of tagging at both ends of γ, while the corresponding orbit 
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Fig. 5. The icosidodecahedron of Example 4.9 on the left and its orbifold on the right.

mutation of the unique orbit of arcs in T would be a simultaneous change of taggings at 

all ends of arcs.

Example 4.9. Consider the modified icosidodecahedron illustrated in Fig. 5. There are 60

black triangles, 20 white triangles, 42 punctures and 120 arcs. Consider the orientation 

preserving symmetries generated by rotations of order three at the center of the white 

triangles and rotations of order five at the center of the black pentagons (build from five 

black triangles). This generates the subgroup (of order 60) of all orientation-preserving 

symmetries preserving the colors of the triangles. We get two orbits of triangles (black 

and white), two orbits of punctures (a center of a black pentagon and a vertex of a white 

triangle) and two orbits of arcs (a side of a white triangle denoted a and a common side 

of two black triangles denoted b). Observe that the orbifold (SG, MG, O) has one orbifold 

point, one 2-puncture and one 5-puncture, see the right picture in Fig. 5.

Observe that in the original triangulation T1 of S, there is a unique way to change 

the arcs in Gb to get another triangulation T2 such that the new arcs will form another 

single G-orbit. The same observation holds for the arcs in Ga. This orbit mutation at 

Gb just produces a change of tags at the punctures corresponding to the centers of the 

black pentagons. The orbit mutation of Ga is illustrated in the left picture in Fig. 6. The 

corresponding mutation in the orbifold is shown on the right of the figure.

The following will be useful and is well known in case O = ∅.

Proposition 4.10. Let (S, M, O) be an orbifold with a tagged triangulation T . Let m

be the number of marked points, t the number of triangles of τ(T ) (including the self-

folded triangles and the orbifold triangles) and a the number of arcs. Then the number 

χ(S, M, O) = m + t − a does not depend on the triangulation and equals to 2 − 2g − b

where g is the genus of S and b is the number of boundary components in S.
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Fig. 6. The icosidodecahedron of Example 4.9 after mutation in the orbit Ga on the left and the corresponding 
mutation on the orbifold producing the loop a′ on the right.

Proof. For each orbifold point x in S, there is a unique loop ax − ax enclosing x, where 

ax denotes the base point of the loop. Take M ′ = M ∪ O and consider the triangulation 

T O of (S, M ′) obtained from T by adding, for each orbifold point x, the arc ax − x. 

Clearly, the number m + t − a is the same for (S, M) and (S, M ′). Since (S, M ′) is an 

ordinary surface, this common number is 2 − 2g − b. �

The number χ(S, M, O) of the proposition is called the Euler characteristic of the 

orbifold (S, M, O).

5. The exchange polynomials for the orbit space

In this section, we determine the exchange polynomials for the generalized cluster 

algebra structure on the orbit space.

Let T be a tagged triangulation of a surface (S, M), and let G be a non-trivial admis-

sible group of T -automorphisms. Denote by A the cluster algebra with trivial coefficients 

associated to (S, M) with initial seed corresponding to the triangulation T . Recall that 

to each tagged arc τ in (S, M), one can associate a Laurent polynomial, also denoted τ , 

in Z[x±1]. This polynomial may not be a cluster variable. It will be convenient to label 

the arcs of T , and hence the initial cluster variables, according to the G-orbits as follows. 

Let s be the number of orbits and let

T = {τ11, . . . , τ1r} � {τ21, . . . , τ2r} � · · · � {τs1, . . . , τsr}

be the decomposition of T into its G-orbits. Denoting by xij the cluster variable of τij , 

we obtain the following decomposition of the initial cluster

x = (x11, . . . , x1r, x21, . . . , x2r, . . . xs1, . . . , xsr).
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The cluster algebra A is a Z-subalgebra of the field F = Q(x) of rational functions in 

the xij .

For the orbifold (SG, MG, O), we have the tagged triangulation TG = {τ1, τ2, . . . , τs}, 

the cluster y = (y1, y2, . . . , ys), and we will work in the field FG = Q(y), where the arc 

τi and the variable yi represent the orbit of arcs τi1, . . . , τiri
, respectively the orbit of 

variables xi1, . . . , xir. In order to determine the (generalized) cluster algebra structure of 

the orbifold, we must define mutations, which then will allow us to construct generators 

(generalized cluster variables) starting from the initial seed y = (y1, y2, . . . , ys). To this 

end, we will construct exchange polynomials pyi
∈ Z[y1, y2, . . . , ys].

In the cluster algebra A, let x′
ij denote the cluster variable obtained by mutation the 

initial cluster in direction ij. Let pxij
∈ Z[x \ {xij}] denote the exchange polynomial of 

this mutation. Thus

xijx′
ij = pxij

.

Let F : Z[x±1] → Z[y±1] be the ring homomorphism given by F (xij) = yi and F (a) = a, 

for a ∈ Z. Thus F (pxij
) is the polynomial in Z[y1, y2, . . . , ys] obtained by replacing the 

variables xi1, . . . , xir of each orbit by the variable yi.

Remark 5.1. Since G is an admissible group of T -automorphisms, we have, for all j, k ∈

{1, . . . , r},

F (pxij
) = F (pxik

).

Determining the exchange polynomials pyi
for the orbifold is not straightforward in 

general. In the simplest case, when pxij
does not involve any variable of the same orbit 

xi1, . . . , xir, we have pyi
= F (pxij

). However, if pxij
does involve one of the variables 

xi1, . . . , xir, the situation is more complex. In this case, it follows from Corollary 4.7 that 

there is a unique other tagged triangulation T ′ = (T \ {τi1, . . . , τir}) ∪ {τ ′′
i1, . . . , τ ′′

ir} such 

that G is also an admissible group of T ′-automorphisms and {τ ′′
i1, . . . , τ ′′

ir} is a G-orbit. 

We will see that these tagged arcs correspond to Laurent polynomials x′′
i1, . . . , x′′

ir in the 

initial cluster x, such that F (x′′
ij) = F (x′′

ik) for 1 ≤ j, k ≤ r. Therefore, it will make sense 

to define

pyi
= F (xijx′′

ik),

where j, k ∈ {1, . . . , r} are arbitrary. We will see that pyi
actually is a polynomial in 

Z[y1, y2, . . . , ys]. However this polynomial is not always a binomial and it also may have 

integer coefficients greater than 2. As a consequence, we do not obtain an honest cluster 

algebra structure for the orbifold but a generalized cluster algebra structure.

Consider the ordinary triangulation τ(T ). We now fix γ an arc of our tagged tri-

angulation T and denote its endpoints by a and b. For simplicity, we identify γ with 
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Fig. 7. The quadrilateral Q.

x1 and Gγ with y1. If τ(γ) is not a radius of a self-folded triangle, then τ(γ) is a di-

agonal in a quadrilateral Q from τ(T ) formed by the edges τ(μ) : a − c, τ(ν) : c − b, 

τ(α) : a − d, τ(β) : d − b, which could be arcs or boundary segments, and may possibly 

be identified, see Fig. 7. We adopt the convention that whenever τ(γ) is the loop of a 

self-folded triangle, then μ = ν and τ(μ) = τ(ν) is the radius of this self-folded triangle 

(and then a = b) and τ(α), τ(β) are the other arcs (or boundary segments) adjacent to 

τ(γ) in τ(T ).

The triangle formed by the arcs τ(γ), τ(μ), τ(ν) is denoted Δ1 while the triangle 

formed by arcs τ(γ), τ(α), τ(β) is denoted Δ2. As noted, Δ1, Δ2 are distinct triangles. 

Note that if one of Δ1, Δ2 is self-folded, then the other is not self-folded. Otherwise, the 

surface S consists exactly of Δ1, Δ2 and therefore has to be the sphere with 3 punctures, 

which is excluded.

If ε ∈ T is such that τ(ε) is a loop (or radius, respectively) of a self-folded triangle 

in τ(T ), then we denote by ε̄ the arc in T with τ(ε̄) the radius (or loop, respectively) of 

that triangle. In particular ε0 = ε̄0. If τ(ε) is not a loop or radius of a self-folded triangle, 

then we set ε̄ = 1, by convention. In case τ(γ) is the radius of a self-folded triangle, 

the quadrilateral Q does not make sense. We will rather consider the corresponding 

quadrilateral for τ(γ̄) and still denote it by Q.

Any of {μ, ν, α, β} that is a boundary segment is identified with 1 in A. For a marked 

point e in M , we let me denote its isotropy. By Lemma 4.3, we have me = 1 unless e is 

a puncture, in which case me ≥ 1. As before, we have an induced tagged triangulation 

TG in SG and identify it with the set of G-orbits of tagged arcs of T in (S, M). As 

seen previously, TG is a tagged triangulation of (SG, MG, O). The triangulation τ(TG)

corresponds to the G-orbits of arcs in τ(T ).

To simplify the notions, we identify τ(T ) with T and τ(TG) with TG in the following 

sense. Whenever we work in a geometric framework, we always refer to the geometric 

version τ(T ), τ(TG) of T, TG, respectively. Whenever we consider elements in F or in FG, 

we always mean the tagged triangulations T or TG. Therefore, we drop the τ .

Lemma 5.2. The exchange polynomial pγ for γ is μμ̄ββ̄+νν̄αᾱ

gcd(μμ̄ββ̄,νν̄αᾱ)
. The denominator is 

non-trivial in the following cases.

(i) The arc γ is a loop or a radius of a self-folded triangle in T .
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(ii) We have μ = α and Q is a once-punctured bigon, that is, there are exactly two arcs 

of T at a and they are not loops.

(iii) We have ν = β and Q is a once-punctured bigon, that is, there are exactly two arcs 

of T at b and they are not loops.

Proof. First, γ needs to be replaced by γ̄ if γ is a radius of a self-folded triangle. Indeed, 

it is well-known that the exchange polynomials for γ or γ̄ are the same, hence, we may 

assume already that if γ is an arc of a self-folded triangle, then it is a loop. If the arc 

γ is identified with one arc in {α, β, μ, ν}, then one of the triangles Δ1, Δ2, say Δ1, is 

self-folded. In that case, γ is identified with one of {μ, ν}. By our convention, we have 

an identification μ = ν. Therefore, we get γ = μ = ν, which yields a triangle having only 

one arc, a contradiction.

So γ /∈ {α, β, μ, ν}. If the cardinality of {α, β, μ, ν} is 4, then gcd(μμ̄ββ̄, νν̄αᾱ) = 1

and μμ̄ββ̄ + νν̄αᾱ is the usual Ptolemy relation taking radii of self-folded triangles into 

account. So we may assume that the cardinality of {α, β, μ, ν} is less than 4. If Δ1, Δ2

are self-folded, then the surface (S, M) is the sphere with three punctures and this is 

excluded. So assume, as a first case, that Δ1 is self-folded but Δ2 is not, so that μ = ν

is the radius and γ is the loop of Δ1, and we are in case (i) of the Lemma. In particular, 

α 	= β. Also, α 	= μ and β 	= μ. Therefore, there is not other identification among 

α, β, μ, ν. The expression μμ̄ββ̄+νν̄αᾱ

gcd(μμ̄ββ̄,νν̄αᾱ)
becomes ββ̄ + αᾱ. This is the known exchange 

polynomial for the loop γ of a self-folded triangle. The case where Δ2 is self-folded is 

similar.

Therefore, we may assume that none of Δ1, Δ2 is self-folded. This means that α 	= β

and μ 	= ν, but not all four are distinct. As a first case, assume that α = μ. Using the 

orientability of S, the arcs α, μ have to be identified in such a way that c = d. Observe 

that the triangles adjacent to μ are Δ1, Δ2. Consider a small oriented cycle σ having a

as center and starting on γ and going clockwise. Observe that σ first traverses Δ2 and 

then, Δ1. With our identification of μ with α, we see that σ only crosses two ends of arcs. 

In particular, only α, γ have a as endpoint and none of these arcs are loops. Therefore, 

the arcs β, ν enclose a once-punctured bigon, and we are in case (ii) of the lemma. In 

this case, μμ̄ββ̄+νν̄αᾱ

gcd(μμ̄ββ̄,νν̄αᾱ)
becomes ββ̄ + νν̄ which is the exchange polynomial for an arc 

γ inside a once-punctured bigon. The case (iii), where β = ν, is similar. We cannot have 

both α = μ and β = ν, since this would mean that (S, M) is a sphere with 3 punctures, 

which is excluded. If α = ν or β = μ then gcd(μμ̄ββ̄, νν̄αᾱ) = 1 and μμ̄ββ̄ + νν̄αᾱ is 

the usual Ptolemy relation taking radii of self-folded triangles into account. �

According to the preceding result, a special attention has to be given to self-folded 

triangles and once-punctured bigons. A self-folded triangle in TG around an m-puncture 

is called an m-self-folded triangle.

Proposition 5.3. The orbits of the self-folded triangles in (S, M, T ) corresponds bijectively 

to the 1-self-folded triangles in (SG, MG, O, TG).
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Fig. 8. A once-punctured bigon.

Proof. Let σ1, σ2 be the arcs of a self-folded triangle in (S, M, T ) with σ1 : a − a the 

loop and σ2 : a − b the radius. Lemma 4.3 implies that this self-folded triangle, and 

hence b, has a trivial isotropy group. Therefore, we see that Gσ1, Gσ2 is a 1-self-folded 

triangle of TG in (SG, MG, O). Conversely, assume that Gρ1, Gρ2 are the arcs in TG of a 

1-self-folded triangle in (SG, MG, O) with Gρ1 : Ga → Ga the loop and Gρ2 : Ga → Gb

the radius. Since Gb is a 1-puncture in SG, we see that b in S is a puncture with trivial 

isotropy group. Because G is admissible, this implies that only one arc of T is incident 

to b. This means that b lies inside a self-folded triangle in (S, M, T ). This self-folded 

triangle corresponds to the self-folded triangle of TG given by Gρ1, Gρ2. �

A once-punctured bigon in TG containing an m-puncture is called a once-punctured 

m-bigon.

Proposition 5.4. The orbits of the once-punctured bigons in (S, M, T ) correspond bijec-

tively to the 2-self-folded triangles and once-punctured 1-bigons in (SG, MG, O, TG).

Proof. Consider a once-punctured bigon Q in (S, M, T ) as shown in Fig. 8. Since the 

puncture a is incident to precisely two arcs in T , its isotropy ma must be either 1 or 2. 

If ma = 1 then the 4 arcs of the bigon lie in 4 different G-orbits. Moreover, the puncture 

a does not lie in the orbit of b (or c), since there are at least 3 arcs incident to b (and c). 

This shows that the orbit of Q is a bigon in SG.

Assume now that ma = 2. Then there is 1 	= g ∈ G with ga = a. We must have 

gγ = α and gβ = ν. Hence, Gb = Gc and as for the argument above, Ga 	= Gb. It follows 

that the orbit of Q is a 2-self-folded triangle in SG. The converse is clear. �

We now define the exchange polynomials for SG. We shall use the notation pG,γ for 

the exchange polynomial of the variable associated to the G-orbit of γ. We need to 

distinguish several cases. In each case, we use the notation in Fig. 7.

5.1. Case where γ lies in a self-folded triangle or a once-punctured bigon

Let γ be the loop of the self-folded triangle, which we may assume to be Δ1. Then 

{μ = ν, α, β, γ} are four distinct arcs. Let g ∈ G. Observe that a self-folded triangle is 

sent to a self-folded triangle by g and gγ is a loop of a self-folded triangle. Since Δ2 is not 

self-folded, none of Gμ, Gα, Gβ is equal to Gγ. Lemma 5.2 implies that pγ = ββ̄ + αᾱ, 
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and since pG,γ = F (pγ), we have

pG,γ = GβGβ̄ + GαGᾱ.

This is either a sum of two distinct monomials or, if Gα = Gβ, a single monomial with 

coefficient 2. If γ is the radius of a self-folded triangle, then the exchange polynomials 

for γ, ̄γ are the same.

Assume now that Q is a once-punctured bigon, so we may assume α = μ. The exchange 

polynomial for γ is ββ̄ + νν̄. Observe that β 	= ν as otherwise, S is a sphere with three 

punctures. Also, since Δ1, Δ2 are not self-folded, we get that {μ = α, ν, β, γ} forms 4

distinct arcs. If ma = 1, then all Gμ, Gν, Gβ, Gγ are distinct. Therefore, in this case,

pG,γ = F (pγ) = GβGβ̄ + GνGν̄.

We get a sum of two distinct monomials. If ma = 2, then we are still in the case where 

pG,γ = F (pγ). Since Gν = Gβ, we get

pG,γ = 2GβGβ̄.

5.2. Case where γ lies in the orbit of one of {α, β, μ, ν}

Because of Section 5.1, we may assume that Q is not a bigon and none of Δ1, Δ2 are 

self-folded. By Lemma 5.2, the exchange polynomial for γ is μμ̄ββ̄ + νν̄αᾱ. We need the 

following lemma.

Lemma 5.5. If all arcs of Q lie in the same orbit, then all arcs in T lie in the same orbit 

and ∂S = ∅.

Proof. Assume that all arcs of Q lie in the same orbit. Assume to the contrary that 

Gγ 	= T . Then there is a triangle Δ3 adjacent to a triangle in GΔ1 ∪ GΔ2 having an arc 

ε not in Gγ. We may assume that Δ3 is adjacent to Δ1 or Δ2. Let g ∈ G with gγ = μ

and g′ ∈ G with g′γ = α.

As a first case, assume that ga = c and g′a = d. Then g′Δ2 = Δ2 and gΔ1 = Δ1, since 

G is orientation-preserving. By symmetry, we may assume that Δ3 is adjacent to Δ1. 

However, each side of Δ1 is a side of a triangle in GΔ2. Thus, Δ3 ∈ GΔ1 ∪ GΔ2. But 

this mean that ε ∈ Gγ, a contradiction.

As a second case, assume that ga = a and g′a = d. Then g′Δ2 = Δ2 and gΔ2 = Δ1. 

So again, we may assume that Δ3 is adjacent to Δ1 and we get the same contradiction. 

The case where g′a = a is similar. �

We will assume now that the arcs of T do not lie in a single orbit, when ∂S = ∅. This 

case is treated separately in Subsection 5.3.
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Fig. 9. The triangulation of Lemma 5.7 on the left and the triangulation of Lemma 5.9, in the case where 
m = 6, on the right.

Lemma 5.6. One and only one of the following situations occurs.

(1) There exists a non-trivial g ∈ G such that gΔ1 = Δ1. In this case, Gγ 	= Gα and 

Gγ 	= Gβ.

(2) There exists a non-trivial g ∈ G such that gΔ2 = Δ2. In this case Gγ 	= Gμ and 

Gγ 	= Gν.

(3) There exists g ∈ G such that gμ = γ and gγ = α. In this case, gν = β and Gγ 	= Gβ

and Gγ 	= Gν.

(4) There exists g ∈ G such that gβ = γ and gγ = ν. In this case, gα = μ and Gγ 	= Gα

and Gγ 	= Gμ.

Proof. Assume first that we are in case (1). Thus Gγ = Gμ = Gν. If there exists h ∈ G

such that hγ = α then either ha = d and then h2γ = β, or ha = a and then hν = β. 

In both cases, we get that all arcs of Q lie in the same orbit, and by Lemma 5.5 this 

contradicts our assumption. This shows that Gγ 	= Gα. Similarly, Gγ 	= Gβ. This proves 

the statement in (1). The case (2) is proved by a similar argument.

Assume now we are in case (3). Then gΔ1 = Δ2 and gν = β. If there exists h ∈ G

such that hβ = γ then either hb = a and then hΔ2 = Δ2, or hb = b and then h2β = ν. 

In the former case, we are in case (2) which is impossible since Gγ = Gμ. In the latter 

case, all arcs of Q lie in the same orbit, and again Lemma 5.5 yields a contradiction to 

our assumption. This proves that Gγ 	= Gβ. Similarly Gγ 	= Gν. This proves (3), and 

(4) follows by a similar argument.

Since γ lies in one of the orbits of α, β, μ, ν, the four cases of the lemma cover all 

possible situations. Clearly, the cases are mutually exclusive. �

The next two lemmas explain how to find the polynomial pG,γ in the cases of 

Lemma 5.6. Cases (1) and (2) are treated in Lemma 5.7 while cases (3) and (4) are 

treated in Lemma 5.9.

Lemma 5.7. Let T contain an unpunctured hexagon formed by the arcs α1, . . . , α6, 

γ1, γ2, γ3 as in the left picture in Fig. 9. Denote by Δ the triangle formed by γ1, γ2, γ3. 
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Suppose that there is a non-trivial g ∈ G such that gΔ = Δ. Assume moreover that 

αi /∈ Gγ1 for all i and Gαi = Gαj if i ≡ j mod 2.

(1) If α1 = α2 or α2 = α3, then pG,γ1
= 3Gα1.

(2) If Gα1 	= Gα2, then pG,γ1
= (Gα1Gᾱ1)2 + Gα1Gᾱ1Gα2Gᾱ2 + (Gα2Gᾱ2)2.

(3) If Gα1 = Gα2, then pG,γ1
= 3(Gα1Gᾱ1)2.

Proof. Assume first that no arcs of {α1, . . . , α6} are identified. Let T ′ = (T \

{γ1, γ2, γ3}) ∪ {γ′′
1 , γ′′

2 , γ′′
3 } be the triangulation obtained by mutating in γ1, γ2, γ3 and 

then at γ′
1, where γ′

1 is the arc obtained by flipping γ1 at the first mutation. We get the 

following equations in the cluster algebra A.

γ′′
1 =

α1ᾱ1α3ᾱ3γ2 + α2ᾱ2α3ᾱ3γ3 + α2ᾱ2α4ᾱ4γ1

γ1γ2
,

γ′′
2 =

α1ᾱ1α6ᾱ6γ2 + α2ᾱ2α6ᾱ6γ3 + α1ᾱ1α5ᾱ5γ1

γ1γ3
,

γ′′
3 =

α4ᾱ4α6ᾱ6γ2 + α3ᾱ3α5ᾱ5γ3 + α4ᾱ4α5ᾱ5γ1

γ2γ3
·

A straightforward check gives that F (γ′′
1 ) = F (γ′′

2 ) = F (γ′′
3 ) and F (γ′′

i γj) = (Gα1Gᾱ1)2+

Gα1Gᾱ1Gα2Gᾱ2 + (Gα2Gᾱ2)2 for all 1 ≤ i, j ≤ 3. If Gα1 = Gα2, then Gᾱ1 = Gᾱ2 and 

we get the last case. It is not hard to check that if some arcs of {α1, . . . , α6} are identified, 

then we have two cases. Either α1 = α2, α3 = α4, α5 = α6 and the left picture in Fig. 9

contains three self-folded triangles. Otherwise, we have α2 = α3, α4 = α5, α6 = α1. In 

both cases, (S, M) is the sphere with four punctures. These correspond to the cases in 

(1) and are left to the reader, as the arguments are similar to the above arguments. �

Remark 5.8. In the situation of Lemma 5.7, note that the orbit mutation of the arcs 

{gγ1 | g ∈ G} corresponds to rotating all triangles gΔ, g ∈ G, about their respective 

centers by an angle of π/3.

Lemma 5.9. Let T contain a punctured polygon formed by the arcs α1, . . . , αm, γ1, . . . , γm

as in the right picture in Fig. 9. Let b denote the puncture and assume that the isotropy 

group of b is cyclic of order m and Gγ1 	= Gα1.

(1) There exists a sequence of 2m − 2 mutations whose overall effect is a change of tag 

at the puncture b.

(2) We have pG,γ1
= mGαGᾱ.

Proof. Observe that all γi are in the same orbit and all αi are in the same orbit. These 

two orbits are distinct. Let T ′ = (T \ {γ1, . . . , γm}) ∪ {γ′′
1 , . . . , γ′′

m} be the triangulation 

obtained by mutating in γ1, γ2, . . . , γm−1, γm, γ′
m−2, γ′

m−3, . . . , γ′
2, γ′

1, where γ′
i is the arc 

obtained after mutation at γi. In the cluster algebra A, we have the following identity



196 C. Paquette, R. Schiffler / Advances in Mathematics 345 (2019) 161–221

γ′′
m−1 = γm

(
α1ᾱ1

γ1γ2
+

α2ᾱ2

γ2γ3
+ · · · +

αm−1ᾱm−1

γm−1γm

+
αmᾱm

γmγ1

)
.

Observe that F (γ′′
m−1γi) = mGαGᾱ for all 1 ≤ i, j ≤ m. By similar computations, we 

get arcs γ′′
1 , . . . , γ′′

m and one can check that for 1 ≤ i, j ≤ m, we have F (γ′′
i ) = F (γ′′

j ) and 

F (γ′′
j γi) = mGαGᾱ. The arcs γ′′

1 , . . . , γ′′
m clearly forms a G-orbit and G is an admissible 

group of T ′ automorphisms. �

Remark 5.10. In the situation of Lemma 5.9, note that the orbit mutation of the arcs 

{gγ1 | g ∈ G} corresponds to changing all tagging at gb, g ∈ G.

5.3. Case of a single orbit

Let (S, M) be a surface with a tagged triangulation T and assume that G is an 

admissible group of T -automorphisms of (S, M). In this section, we assume that all arcs 

of T lie in the same orbit.

Lemma 5.11. If ∂S 	= ∅, then (S, M, T ) is one of the following surfaces illustrated in 

Fig. 9.

(a) The disk with 6 marked points on the boundary and one internal triangle, and G is 

of order 3.

(b) The once punctured disk where all arcs are connected to the puncture.

Proof. Let C be a boundary component of S and m be the number of marked points 

on C. Let α1 : a1 − a2, . . . , αm−1 : am−1 − am, αm : am − a1 be the boundary segments. 

Consider a triangle Δ having α1 as a side. If Δ is self-folded, then, since all arcs lie in 

the same orbit, we have m = 1 and S is the once-punctured disk with one marked point 

on the boundary. So assume that Δ is not self-folded. Suppose first that the other two 

sides of Δ are arcs and denote them by β1 and β2. Let b be the common vertex of β1

and β2. Then there is g ∈ G with gβ1 = β2 and such a g sends α1 to a boundary segment 

adjacent to α1 on C, say α2. Let β3 = gβ2 = g2β1. Thus the triangles Δ and gΔ share 

one side β2 and have two adjacent sides α1, α2 on C. Moreover, all three edges β1, β2, β3

have a common vertex b. Repeating this argument, we obtain a sequence of triangles 

Δ, gΔ, g2Δ, . . . , gm−1Δ each of which contains exactly one boundary segment of C and 

each contains two arcs from the boundary to the point b. Therefore, these triangles cover 

the entire surface and b is a puncture. Thus we get a once-punctured disk and all arcs 

are connected to the puncture.

Assume now that two sides α1, α2 of Δ lie on the boundary and the third is an arc 

γ = γ1. We claim that m is even, that there are m/2 arcs γi : ai − ai+2 for all odd i

(where indices are taken modulo m), and that these arcs are all arcs having an endpoint 

on C. If there is an arc γ′ other than γ having a3 as endpoint, then there is 1 	= g ∈ G

with gγ = γ′. Since a3 has isotropy one, γ′ = γ3 : a3 − a5. Since γ′ is in the G-orbit of γ, 
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we see that γ′, α3, α4 form the triangle gΔ 	= Δ. In particular, in this case, m > 2, m 	= 3

and γ′ is the only other arc adjacent to a3. This yields the claim, by induction. Consider 

a triangle Δ′ other than Δ having γ1 as a side. We have no choice that this triangle has 

sides γ3 and γm−1. Thus, m = 6 and (S, M) is the disk with 6 marked points on the 

boundary and one internal triangle. �

Lemma 5.12. Assume that ∂S = ∅ and that all arcs are in the same orbit. Then (S, M, T )

has exactly two orbits of triangles, one orbit of arcs and one orbit of punctures. In 

particular, (SG, MG, O) is the once-punctured sphere with two orbifold points.

Proof. Clearly, there is no self-folded triangle in (S, M, T ). We claim that there are two 

orbits of triangles in (S, M, T ) for the action of G. Assume there is exactly one orbit of 

triangles. Consider an arc γ with its two adjacent triangles as follows.

γ

μ

α

ν

β

a b

c

d

•

•

• •

Let g ∈ G sending the upper triangle to the lower triangle. Since G is admissible, 

either gγ = α or gγ = β. With no loss of generality, assume the first case occurs. Since 

g is orientation-preserving, we get ga = a and gμ = γ. This implies that no non-trivial 

element of G maps Δ to itself. Indeed, if g′Δ = Δ, say g′α = γ, g′γ = β and g′β = α, 

then the element (g′g) fixes γ. Note that g′g sends μ to β and ν to α. Since S is not the 

once-punctured torus, this yields that g′g 	= 1, contradicting that G is admissible. Now, 

since all triangles lie in one G-orbit and no non-trivial element of G maps a triangle to 

itself, we see that there are exactly |G| triangles in (S, M, T ). But three times the number 

of triangles should be twice the number of arcs, since T has no self-folded triangles and 

∂S = ∅. This is a contradiction.

Thus, the two triangles in the above figure lie in distinct orbits. Since all arcs of T are 

in the orbit of γ, we have exactly two orbits of triangles in (S, M, T ). Let g′ ∈ G with 

g′μ = γ. Since the upper triangle is not in the orbit of the lower triangle and since g′ is 

orientation preserving, we see that g′ maps the upper triangle to itself. Similarly, there 

is a non-identity element of G that maps the lower triangle to itself. In particular, we 

have |O| = 2 and a, b lie in the same orbit, and thus, all punctures lie in the same orbit. 

Since S has no boundary, so is SG. The Euler characteristic of SG is 2 + 1 − 1 = 2, so 

SG has to be a sphere. �
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Fig. 10. A torus with 4 punctures.

Observe that in the situation of the above lemma, the Euler characteristic of S is

|G|

ma

−
|G|

3
,

where a is any puncture in M . So if S is a sphere, ma = 1, 2. In the first case, |G| = 3, 

and we have 3 arcs, 3 punctures and this is the sphere with three punctures and three 

arcs on the equator. This is excluded. In the second case, |G| = 12, and we have 12 arcs, 

8 triangles and 6 punctures. This is the octahedron with the regular triangulation.

Example 5.13. Consider the torus with four punctures in Fig. 10. Consider the group G

generated by all rotations of 2π/3 about the punctures and centers of the triangles. It is 

not hard to check that G has order 12 and is admissible. All arcs are in the same orbit 

and we are in the situation of the above lemma.

Remark 5.14. In the situation of Lemma 5.12, if (S, M) has at least two punctures, then 

the orbit mutation corresponds to changing all taggings at all punctures. On the orbifold, 

the mutation changes the taggings (which are necessarily the same) at both ends of the 

unique tagged arc.

If (S, M) has exactly one puncture, then there is no way to go from a triangulation 

T to the triangulation T ′ obtained from T by changing the tag at the puncture, using 

only finitely many flips.

Lemma 5.15. Assume that ∂S = ∅ and all arcs of T lie in the same orbit. If S is not a 

once-punctured surface, we have pG,γ = (2ma)2.

Proof. Assume that S is not a once-punctured surface. We claim that T cannot consist 

of loops only. Indeed, assume it is the case. Consider a triangle from T . Then this triangle 

has a single vertex a. Take any arc α of this triangle. Then α is a side of another triangle, 

which then is also a triangle having only vertex a. By continuing this process, we see that 

all of the triangles from T have only vertex a. So S is once-punctured, a contradiction. 

This proves our claim. Since all arcs are in the same orbit, there is no loop in T .

Observe that there exists a sequence of mutations such that the overall effect is chang-

ing all tags at the punctures. We just need to apply Lemma 5.9 successively for each 
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puncture. Fix an arc γ : a −b in T . Then there are exactly m := 2ma arcs of T having a as 

endpoint. Let us denote these arcs by γ1, . . . , γm, in clockwise orientation around a such 

that γ = γm. Let αi be such that γi, γi+1, αi is a triangle of T (where γm+1 means γ1). 

By applying a sequence of mutations at γ1, γ2, . . . , γm−1, the arc γm−1 becomes

γm

(
α1

γ1γ2
+

α2

γ2γ3
+ · · · +

αm−1

γm−1γm

+
αm

γmγ1

)
.

This gives the arc γa which is obtained from γ by changing the tag at a. After identifying 

all arcs in Gγ to a single variable x, this arc γa becomes m. Similarly, the arc γb obtained 

from γ by changing the tag at b becomes 2mb = 2ma = m after identifying all arcs of Gγ

by x. Now, using [32, Theorem 12.9], the arc γab obtained from γ by changing both tags 

is such that γabγ = γaγb. Therefore, after identifying all arcs of Gγ to the variable x, 

we get xx′ = (m)2. �

5.4. Remaining cases

We may assume that no triangle in Q is self-folded also that Q does not form a 

once-punctured bigon. We know from Lemma 5.2 that the exchange polynomial pγ is 

μμ̄ββ̄ + νν̄αᾱ. Also, we may assume that none of μ, ν, α, β lie in Gγ. Since γ is not an 

arc of a self-folded triangle, none of μ̄, ̄ν, ᾱ, β̄ lie in Gγ. Therefore, we have

pG,γ = F (pγ) = GμGμ̄GβGβ̄ + GνGν̄GαGᾱ.

5.5. Exchange polynomials and cluster algebra structure revisited

As promised at the beginning of this section, the results collected so far yield the 

following.

Proposition 5.16. Let G be an admissible group of T -automorphisms of (S, M) where T

is a tagged triangulation. Let {τ1, . . . , τr} be a G-orbit of tagged arcs and {τ ′
1, . . . , τ ′

r}

be the orbit mutation, where T ′ = (T \{τ1, . . . , τr}) ∪ ({τ ′′
1 , . . . , τ ′′

r }) is such that G is an 

admissible group of T ′-automorphisms. Then F (τ ′′
i ) = F (τ ′′

j ) and F (τiτ
′′
j ) ∈ Z[y] for all 

1 ≤ i, j ≤ r. The polynomial F (τiτ
′′
j ) = F (τ1)F (τ ′′

1 ) is the exchange polynomial PG,τ1
.

Remark 5.17. These exchange polynomials allow us to define generalized cluster variables 

through mutations, and hence a generalized cluster algebra in FG. A priori, this algebra 

depends on (S, M, T ) and on G, however, we will see in Section 7 that it only depends 

on the orbifold (SG, MG, O) with induced triangulation TG.

6. Generalized cluster algebra of an orbifold

Let (S, M, O) be an orbifold with a tagged triangulation T . Consider the function 

m : M → Z≥1 such that mb := m(b) is one whenever b is not a puncture. Let {τ1, . . . , τs}
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denote the set of arcs of T . We also identify these arcs with indeterminates y1, . . . , yn. The 

boundary segments are identified with 1 and for each arc α, we have ᾱ ∈ Z[y±1
1 , . . . , y±1

s ], 

which is 1 unless τ(α) is an arc of a 1-self-folded triangle in τ(T ). In the latter case, ᾱ

is the element corresponding to the unique arc of T , also denoted ᾱ, with ᾱ0 = α. 

For 1 ≤ i ≤ n, the mutation μi(T ) in direction i of T is the tagged triangulation 

({τ1, . . . , τn}\{τi}) ∪ {τ ′
i} of (S, M, O) where τ ′

i is not isotopic to τi. Such an arc always 

exists an is uniquely determined. Now, we explain how to perform the corresponding 

mutation in Q(y1, . . . , ys).

For each τ ∈ T , let p−
τ (respectively p+

τ ) be the product of all αᾱ where α is an arc 

of T \ {τ} or a boundary segment such that α, τ are sides of a triangle in T and α is 

following τ in the counter-clockwise (respectively clockwise) direction. Observe that p−
τ

and p+
τ are not always relatively prime. For example, in the once-punctured bigon of 

Fig. 8 we have p−
γ = αᾱνν̄ and p+

γ = αᾱββ̄.

Definition 6.1. For each τ ∈ T , define a polynomial pτ in Z[y1, . . . , ys] as follows.

(a) If S is the sphere with one m-puncture with m ≥ 1 and two orbifold points, then T

has only one arc τ and

pτ = (2m)2.

(b) Let τ : a − a enclose a monogon Δ with an orbifold point o, and assume we are not 

in case (a). Let Δ′ be the other triangle adjacent to τ (which cannot be an orbifold 

triangle). Let α : a − b, β : a − b be the other arcs of this triangle.

(i) If Δ is m-self-folded with m = mb = 1 or ma = 1, then α = β = τ̄ and S is a 

sphere with two punctures, one orbifold point, and T has precisely two arcs τ

and α. We have

pτ = 3α.

(ii) Otherwise, we have

pτ = α2 + αβ + β2.

(c) Let τ be a loop at a of a 1-self-folded triangle such that τ is not as in case (b). Then

pτ =
p−

τ + p+
τ

τ τ̄
.

(d) Let τ be a radius of a 1-self-folded triangle with loop τ̄ at a. Then pτ = pτ̄ , unless 

S is the once-punctured monogon, in which case we set pτ = 2.

(e) Let τ : a − b be a radius of a once-punctured 1-bigon with radii τ : a − b, α : a − c

where a 	= c, a 	= b. Then
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pτ =
p−

τ + p+
τ

αᾱ
.

(f) Let τ : a − b be a radius of an m-self-folded triangle where m > 1 and with loop α. 

Then

pτ = mαᾱ.

(g) Otherwise, we let pτ = p−
τ + p+

τ (with the possibility that p−
τ , p+

τ have common 

factors).

Definition 6.2. Let τ be an arc in the triangulation T and let y ∈ {y1, . . . , ys} be the 

corresponding cluster variable. Let τ ′ be the arc obtained by flipping τ and let y′

denote the Laurent polynomial pτ /y in Z[y±1
1 , . . . , y±1

s ]. It is not hard to check that 

({y1, . . . , ys}\{y}) ∪ {y′} are again algebraically independent in Q(y1, . . . , ys). We call 

y1, . . . , ys the initial cluster variables. Any arc γ lying in a triangulation that can be 

obtained from T by a finite sequence of mutations gives rise to a Laurent polynomial yγ . 

Such a yγ is called a cluster variable. We define an algebra A(S, M, O) ⊆ Q(y1, . . . , ys)

to be the Z-subalgebra of Q(y1, . . . , ys) generated by all cluster variables. We call it the 

generalized cluster algebra of the orbifold (S, M, O).

Some cases of the mutation rules are pictured in Fig. 11. The first column represents 

a local configuration in the tagged triangulation of the orbifold. The configuration in the 

second column is obtained by flipping the arc yi and the third column show the exchange 

relation in the cluster algebra A(S, M, O). In the last two cases, S is a sphere and the 

picture represents the entire triangulation.

Remark 6.3. This computation shows that our notion of generalized cluster algebra is 

different from the one of Chekhov–Shapiro [12] and Lam–Pylyavskyy [30]. Indeed in the 

second row of Fig. 11, the two summands of the exchange polynomial have a non-trivial 

common factor, which is not allowed in [12,30].

Now, let us classify the generalized cluster algebras of orbifolds with one or two arcs.

6.1. Rank n = 1

By Lemma 4.1, we have 1 = 6(g − 1) + 3b + 3p + 2x + c. If g ≥ 1 this equation has no 

solution, because if b = 0 then c = 0. Thus g = 0 and the equation becomes

7 = 3b + 3p + 2x + c.

This equation has the following four solutions.
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Fig. 11. Some cases of the mutation rules.

6.1.1. The sphere with 1 puncture and 2 orbifold points

If b = 0, then c = 0 and p = 1, x = 2, and we have a sphere with one puncture and 

two orbifold points. The two cluster variables are

y and 4m2/y

where m is the isotropy of the puncture.

If b = 1 our equation becomes

4 = 3p + 2x + c, with c ≥ 1,

which has three solutions.

6.1.2. The square

If p = 0, x = 0 and c = 4, we have the disk with 4 marked points on the boundary. 

The generalized cluster algebra is the honest cluster algebra of rank 1 (type A1) with 

cluster variables

y and 2/y.
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6.1.3. The bigon with 1 orbifold point

If p = 0, x = 1 and c = 2, we have the disk with 2 marked points on the boundary 

and one orbifold point in the interior. The two cluster variables are

y and 3/y.

6.1.4. The once-punctured monogon

If p = 1, x = 0 and c = 1, we have the disk with 1 puncture and 1 marked point on the 

boundary. If the isotropy m of the puncture is one, we obtain the honest cluster algebra 

of rank 1 again (case (d) of Definition 6.1). If m > 1, the two cluster variables are

y and m/y.

In rank 1 all 4 cases can be obtained from a triangulation T of a surface (S, M) and 

an admissible group G of T -automorphisms. For case (1), one takes for (S, M, T ) the 

octahedron as in Example 4.8 (the isotropy of the puncture is then 2). The group G is 

the alternating group A4. Case (2) is a surface. For case (3), one takes for (S, M, T ) the 

disk with six marked points on the boundary and a single internal triangle. The group G

is of order 3. Finally, case (4) is obtained from the once-punctured disk with m marked 

points under the action of the group of order m given by rotations.

6.2. Rank n = 2

Now Lemma 4.1 implies 2 = 6(g − 1) + 3b + 3p + 2x + c. Again there is no solution if 

g ≥ 1. Thus g = 0 and the equation reads

8 = 3b + 3p + 2x + c.

This equation has the following 6 solutions.

6.2.1. The sphere with 2 punctures and 1 orbifold point

If b = 0, then c = 0 and p = 2, x = 1, and we have a sphere with 2 punctures and 1 

orbifold point. Let r, s be the isotropies of the punctures. When none of r, s is one, the 

generalized cluster algebra has 8 cluster variables

x1, x2,
3x2

2

x1
,

3sx2

x1
,

9s2

x1
,

3rs

x2
,

3r2x1

x2
2

,
rx1

x2
.

Otherwise, when for instance s = 1, we get 6 cluster variables

x1, x2,
3x2

x1
,

3r

x1
,

3r

x2
,

rx1

x2
.
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Fig. 12. The sphere with two punctures and one orbifold point as orbit space of a sphere with four punctures.

Fig. 13. The triangle with one orbifold point as orbit space of a disk with 9 marked points.

For r = 3 and s = 1 this orbifold is obtained from the triangulation of the sphere with 4

punctures and three self-folded triangles shown in Fig. 12 under the action of rotations 

about π/3 and 2π/3 degrees centered at the common puncture.

If b = 1 our equation becomes

5 = 3p + 2x + c, with c ≥ 1,

which has four solutions.

6.2.2. The pentagon

If p = 0, x = 0 and c = 5, we have a disk with 5 marked points on the boundary. The 

generalized cluster algebra is the honest cluster algebra of the pentagon (type A2) and 

has 5 cluster variables

x1, x2,
x2 + 1

x1
,

x1 + x2 + 1

x1x2
,

x1 + 1

x2
.

6.2.3. The triangle with 1 orbifold point

If p = 0, x = 1 and c = 3, we have a disk with 3 marked points on the boundary and 

one orbifold point in the interior. The generalized cluster algebra has 6 cluster variables

x1, x2,
x2

1 + x1 + 1

x2
,

x2
1 + x1 + x2 + 1

x1x2
,

x2
1 + x2

2 + x1x2 + x1 + 2x2 + 1

x2
1x2

,
x2 + 1

x1
.

This orbifold is obtained from the triangulation of the disk with 9 marked points shown 

in Fig. 13 under the action of rotations about π/3 and 2π/3 degrees.
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Fig. 14. The monogon with two orbifold points as orbit space of a sphere with 3 boundary components.

6.2.4. The monogon with 2 orbifold points

If p = 0, x = 2 and c = 1, we have a disk with one marked point on the boundary and 

two orbifold points in the interior. The generalized cluster algebra has infinitely many 

cluster variables

· · · ,
x2

1 + x1 + 1

x2
, x1, x2,

x2
2 + x2 + 1

x1
,

(x2
1 + x1 + x2 + 1)2 + (x2

1 + x1 + x2 + 1) + 1

x2
1x2

, . . .

This orbifold is obtained from the triangulation of the sphere with 3 boundary compo-

nents and 3 marked points shown in Fig. 14 with a group of order 3 acting by cyclically 

shifting the boundary components. The north and south pole are fixed by this action 

and give rise to the two orbifold points in orbit space.

6.2.5. The once-punctured bigon

If p = 1, x = 0 and c = 2, we have a disk with one puncture and two marked points on 

the boundary. If the isotropy m of the puncture is one, the generalized cluster algebra 

is the honest cluster algebra of type A1 × A1, with 4 cluster variables

x1, x2,
2

x1
,

2

x2
.

If m > 1, the generalized cluster algebra has 6 cluster variables

x1, x2,
2x2

x1
,

2m

x1
,

2m

x2
,

2x1

x2
.

The clusters and triangulations are shown in Fig. 15.

Finally, if b = 2, our equation becomes

2 = 3p + 2x + c, with c ≥ 2,

which has one solution.

6.2.6. The annulus with 2 marked points

If p = 0, x = 0 and c = 2, we have the annulus with one marked point on each 

boundary component. The generalized cluster algebra is the honest cluster algebra of 

type Ã1,1 (Kronecker) with infinitely many cluster variables
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Fig. 15. The exchange graph of the once-punctured m-bigon.

Fig. 16. A torus with 15 vertices and its orbit space, a sphere with two 3-punctures and one orbifold point.

. . .
x2

1 + 1

x2
, x1, x2,

x2
2 + 1

x1
,

x4
2 + 2x2

2 + x2
1 + 1

x2
1x2

. . .

Example 6.4. Consider the torus in the left picture in Fig. 16 with 15 vertices, 30 triangles 

and 45 arcs. We consider the group generated by the rotations at the center of the 

triangles si, and the rotation around the punctures pi and qi. It is not hard to check that 

all triangles si are in the same orbit, all triangles ri are in the same orbit, all triangles 

adjacent to a pi are in the same orbit, and all triangles adjacent to a qi are in the same 

orbit. There are exactly four orbits of triangles. There are 5 orbits of arcs (arcs having 

an pi as an endpoint, arcs having an qi as an endpoint, arcs adjacent to a triangle si, the 

others). Therefore, the group G has order 9. Observe also that the only triangles that are 

mapped to themselves by a non-trivial element of G are the triangles s1, s2, s3. Finally, 

observe that there are three orbits of punctures, the orbit of the pi, the orbit of the qi

and the orbit of the other punctures. The orbifold has two 3-punctures, one 1-puncture, 

four triangles and 5 arcs. By computing the Euler characteristic, we get 3 + 4 − 5 = 2. 

Since S has no boundary, so does SG. Therefore, SG is the sphere shown in the right 

picture in Fig. 16. It has one orbifold point and two 3-punctures.

Remark 6.5. Observe that in the rank two case, there are two situations where we have 

exactly 6 cluster variables. In these cases, all the cluster variables are Laurent monomials, 

and this, no matter what seed we use to express them. Consider now the quasi-cluster 

algebra as defined in [15, Section 6.1] obtained by taking the quasi-triangulations of the 

Möbius strip with two marked points on the boundary. There are exactly 6 quasi-cluster 

variables and they are not all Laurent monomials in the two initial quasi-cluster variables. 

Thus, this quasi-cluster algebra cannot be obtained as a generalized cluster algebra of an 
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orbifold. On the other hand, a quasi-cluster algebra of rank two arising from a connected 

non-orientable surface has to the Möbius strip with two marked points; see [15, Prop. 3.7]. 

Therefore, our generalized cluster algebras are not quasi-cluster algebras, and vice versa.

Remark 6.6. Not every orbifold is of the form (SG, MG, O). The orbifolds of the form 

(SG, MG, O) are called good orbifolds, following W. Thurston’s terminology. For instance, 

the sphere with one orbifold point and with all punctures of isotropy one is not a good 

orbifold. Proposition 4.6 guarantees that if our orbifold is of the form (SG, MG, O) for a 

surface (S, M) and an admissible group G of T -automorphisms for some tagged triangu-

lation T , then any tagged triangulation of the orbifold comes from a (G-stable) tagged 

triangulation of the surface (S, M).

7. Relationship between the cluster algebras

Let (Q, W ) be a Jacobi-finite quiver with potential. Denote by C = C(Q, W ) the 

cluster category and by B = J(Q, W ) the Jacobian algebra. Let A = A(Q) be the 

cluster algebra (without coefficients), and denote by U = Γ(Q, W ) the cluster-tilting 

object in C corresponding to the initial seed.

Let G be an admissible group of automorphisms of (Q, W ) and denote by CG =

C(QG, WG), BG = J(QG, WG) the cluster category and the Jacobian algebra determined 

by the action of G, respectively. We denote by UG the basic cluster-tilting object in CG

corresponding to Γ(QG, WG).

We decompose U according to its G-orbits as follows

U = U1 ⊕ · · · ⊕ Us,

where Ui = ⊕g∈G gU ′
i with U ′

i indecomposable. The initial cluster variables of A are 

denoted accordingly by xi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ |G|, where the variables xi,1, . . . , xi,|G|

correspond to the indecomposable summands of Ui.

As before, we let FG := Q(y1, . . . , ys). Let F : Z[x±1] → Z[y±1] be the homomorphism 

such that F (xi,j) = yi.

We let G denote the exchange graph of all cluster-tilting objects of C. By definition, 

the vertices of G are the cluster-tilting objects of C and the edges are given by mutations. 

Note that G does not need to be connected. Let G(U) be the connected component of G

containing U . We denote by X the reachable indecomposable rigid objects of C. In other 

words, X corresponds to the indecomposable direct summands of the objects from G(U). 

If C is of acyclic type or is the Amiot cluster category of a surface without punctures, 

then X is the set of all indecomposable rigid objects in C.

Following [7], we say that C has a cluster structure if one of the following equivalent 

conditions hold.
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(i) Whenever two cluster-tilting objects T, T ′ in G(U) are related by a mutation T ′ =

μi(T ) then the quivers QT , QT ′ of the endomorphism algebras EndC(T ), EndC(T ′)

are related by the Fomin–Zelevinsky mutation, QT ′ = μi(QT ).

(ii) The quiver of any cluster-tilting object in G(U) has no loop and no 2-cycle.

(iii) The potential W is non-degenerate.

It follows from Proposition 7.7 and the multiplication formula from [34] that if C has 

a cluster structure then the cluster character X commutes with mutations in G(U) and 

mutations in A. In particular, the XM for M ∈ X are exactly the cluster variables of A. 

Moreover, G(U) is isomorphic to the exchange graph of A.

Let GG be the graph whose vertices are the G-stable cluster-tilting object of C that 

can be obtained from U by a sequence of Iyama–Yoshino mutations of G-orbits, and 

whose edges are the Iyama–Yoshino mutations. Note that GG is connected. We let XG

denote the set of indecomposable direct summands of the vertices of GG. In general, XG

does not need to be a subset of X .

In terms of the cluster algebra, when W is non-degenerate and XG ⊆ X , the set X is 

the set of all cluster variables of A and XG is the subset of those cluster variables that 

lie in the G-stable clusters obtained from the initial cluster by G-orbit mutations.

7.1. The G-mutation connected case

Definition 7.1. The cluster category C is called G-mutation connected if any finite se-

quence of mutations from UG in CG is given by a finite sequence of mutations from U

in C.

Remarks 7.2. (1) This definition is equivalent to the following. Any vertex of GG can be 

obtained from U by a finite sequence of mutations in C.

(2) If C is G-mutation connected, then XG is a subset of X .

Let C be G-mutation connected. For each cluster variable x in A, we have that 

F (x) ∈ FG. We define the cluster algebra of orbits AG associated to CG to be the 

Z-subalgebra of FG generated by the set of all F (x) with x a cluster variable of XG.

Proposition 7.3. Let C be G-mutation connected and let A′ denote the Z-subalgebra of 

A generated by the cluster variables in XG. Then we have a commutative diagram of 

algebras and their generating sets

A′ A XG X

AG A/〈xi,j − xi,j′〉 F (XG) F (X )
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where the horizontal maps are inclusions and the vertical maps are surjective and induced 

by F .

Proof. First note that A/〈xi,j − xi,j′〉 is generated by F (X ). This follows from the fact 

that XG is a subset of X , thanks to C being G-mutation connected. Also note that 

A/〈xi,j − xi,j′〉 is well-defined since A ⊆ Z[x±1]. �

Recall that every cluster variable in A is a Laurent polynomial in the variables of any 

given cluster. This is the Laurent phenomenon and was proven for cluster algebras by 

Fomin and Zelevinsky in [21]. It follows from this that the generalized cluster variables in 

AG also satisfy the Laurent phenomenon, in the G-mutation connected case. Therefore, 

we can define the upper-cluster algebra U(AG) to be

U(AG) =
⋂

x∈GG

Z[F (x)±1] =
⋂

y cluster in AG

Z[y±1]

where for a set S = {a1, . . . , ar} of rational functions, we write S±1 for {a±1
1 , . . . , a±1

r }. 

Now, the Laurent phenomenon guarantees that AG ⊆ U(AG).

Proposition 7.4. Let C be G-mutation connected. Assume that AG = U(AG). Then AG =

A/〈xi,j − xi,j′〉.

Proof. Take any cluster variable x in A. Since C is G-mutation connected and by the 

Laurent phenomenon, we see that F (x) is a Laurent polynomial in each cluster of AG. 

By assumption, F (x) ∈ U(AG) = AG. This implies the equalities of algebras of the 

statement. �

7.2. The surface type

We let (S, M) be a surface with an admissible group G of T -automorphisms of (S, M)

where T is a given tagged triangulation of (S, M). As usual, we exclude the sphere 

with 1, 2, or 3 punctures and the once-punctured torus. We will also exclude the case of 

a once-punctured closed surface such that all arcs belong to the same G-orbit. Indeed, in 

this case, an orbit mutation corresponds to changing the taggings at the unique puncture. 

However, there does not exist a sequence of standard mutations that will have this overall 

effect.

Proposition 7.5. Let (S, M) be a surface with triangulation T and assume that (Q, W )

is Jacobi-finite, where W is the Labardini potential. Let G be an admissible group of 

T -automorphisms of (S, M). Assume that if (S, M) is a once-punctured closed surface, 

then there are at least two orbits of tagged arcs. Then the category C is G-mutation 

connected.
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Proof. Let T denote the set of tagged arcs of (S, M) that can be obtained from T by a 

finite sequence of standard mutations. For instance, if ∂S 	= ∅, then T contains all tagged 

arcs. First, recall from [2, Section 3.4] that since W is non-degenerate, there is a bijection 

Ψ : X → T that commutes with the standard mutations. Moreover, for indecomposable 

objects X, Y ∈ X , we have that Ext1
C(X, Y ) = 0 if and only if Ψ(X), Ψ(Y ) are com-

patible tagged arcs. Let X be an indecomposable summand of the initial cluster-tilting 

object U . Then, clearly, Ψ(gX) = gΨ(X) for all g ∈ G. It follows from the results of Sec-

tion 3.4 that if Y = μX(U) is the indecomposable rigid object obtained by mutating U in 

direction X, then for g ∈ G, we have gY = gμX(U) = μgX(gU) = μgX(U). Since Ψ and 

μ commute, we get Ψ(gY ) = Ψ(μgX(U)) = μΨ(gX)(Ψ(U)) = μΨ(gX)(T ). On the other 

hand, we have gΨ(Y ) = gΨ(μX(U)) = gμΨ(X)(T ) = μgΨ(X)(gT ) = μΨ(gX)(T ) = Ψ(gY ). 

Now, let U ′ be a reachable cluster-tilting object, X ′ and indecomposable summand 

of U ′ and U ′/X ′ ⊕ Y ′ the cluster-tilting object obtained by mutation in X ′. Let 

Y ′ = μX′(U ′). Assume we know that Ψ(gX ′) = gΨ(X ′) for all g ∈ G. Then, we have 

gY ′ = gμX′(U ′) = μgX′(gU ′). Thus in terms of the corresponding arcs in (S, M) we 

have Ψ(gY ′) = Ψ(μgX′(gU ′)) = μΨ(gX′)(Ψ(gU ′)). On the other hand, we have gΨ(Y ′) =

gΨ(μX′(U ′)) = gμΨ(X′)(Ψ(U ′)) = μgΨ(X′)(gΨ(U ′)) = μΨ(gX′)(Ψ(gU ′)) = Ψ(gY ′). This 

shows, by induction, that Ψ commutes with the action of G. Therefore, the G-stable 

cluster-tilting objects from X correspond to the G-stable tagged triangulation under Ψ.

Let H in C be a G-stable cluster-tilting object, and let H1 be an indecomposable 

direct summand of H. We let GH1 = ⊕g∈GgH1. Let F : C → CG be the G-precovering 

functor. Recall that F (H) is a (non-basic) cluster-tilting object of CG and F (GH1) ∼=

F (H1)|G| where F (H1) is indecomposable. It follows from [24] that there is a unique 

indecomposable rigid object Z in CG with Z � F (H1) such that F (H/GH1) ⊕ Z is 

cluster-tilting. Therefore, if V, V ′ are G-stable having each |G| indecomposable direct 

summands, with both (H/GH1) ⊕ V and (H/GH1) ⊕ V ′ cluster-tilting, then each of 

F (V ), F (V ′) is isomorphic to F (H1)|G| or Z|G|. Assume that F (V ) ∼= F (H1)|G|. Applying 

the adjoint functor F̄ and using Lemma 3.5, we get V |G| ∼= ⊕g∈GgV ∼= F̄F (V ) ∼=

F̄ (F (H1)|G|) ∼= (GH1)|G|, so GH1
∼= V . Therefore, if V � GH1 and V ′ � GH1, then 

F (V ) ∼= F (V ′). Thus, (V )|G| ∼= ⊕g∈GgV ∼= F̄F (V ) ∼= F̄F (V ′) ∼= (V ′)|G|. This yields 

V ∼= V ′. This shows that orbit mutation in C is unique up to isomorphism. As we have 

seen in Section 5, T is closed under orbit mutation of tagged arcs. This means that the 

tagged arcs in Ψ(GH1) can be replaced by a G-orbit Z of tagged arcs in T such that 

Ψ(H/GH1) ∪ Z is a G-stable tagged triangulation. Lifting through Ψ, this corresponds 

to a G-stable cluster-tilting object and has to coincide with (H/GH1) ⊕V by uniqueness 

of orbit mutation in C. �

Theorem 7.6. Assume that (S, M) is as above. The algebra AG generated by F (XG)

coincides with the generalized cluster algebra A(SG, MG, O).

Proof. Let x(T ) = {xij | 1 ≤ i ≤ s, 1 ≤ j ≤ |G|} be the initial cluster corresponding to 

the tagged triangulation T of (S, M) and consider {x11, . . . , x1,|G|} corresponding to the 
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G-orbit of the arc x11 in T . Recall that yi = F (xij) for all 1 ≤ j ≤ |G|. We have seen that 

there is a finite sequence of flips going from T to another tagged triangulation T ′ such that 

G is an admissible group of T ′-automorphisms of (S, M). The corresponding cluster is 

given by x(T ′) = x(T )\{x11, . . . , x1,|G|} ∪{x′
11, . . . , x′

1,|G|}, and F (x1ix
′
1j) ∈ Z[y1, . . . , ys]

is independent of the chosen i, j. It follows from the results of Section 5 that F (x1ix
′
1j)

is the polynomial py1
of Definition 6.1. This implies the statement. �

The above theorem allows one to perform mutations in AG directly using the exchange 

relations listed in Definition 6.1. For a general G-mutation connected category C, we do 

not know how to mutate the cluster variables in AG.

7.3. Cluster characters

Recall from [34] that we have a cluster character X in C, that is, a function X :

C → Z[x±1
1 , . . . , x±1

n ] such that XM⊕N = XM XN , XM = XM ′ if M ∼= M ′, and if 

HomC(M, N [1]) is one dimensional, then XM XN = XB + XB′ where B, B′ are the two 

middle terms of the two non-split distinguished triangles with end-terms M, N .

Proposition 7.7. Suppose (Q, W ) is non-degenerate and let T be a basic cluster-tilting 

object of C obtained by a finite sequence of mutations from U . Let Y be an indecompos-

able direct summand of T and let Y ∗ be indecomposable non-isomorphic to Y such that 

(T/Y ) ⊕ Y ∗ is cluster-tilting. Then HomC(Y, Y ∗[1]) is one dimensional.

Proof. Since k is algebraically closed, the endomorphism algebra of Y , modulo its radical, 

is isomorphic to k. Since (Q, W ) is non-degenerate, the quiver of EndC(T ) has no loop 

and no 2-cycle. Now, the result follows from the argument of the proof of Proposition 6.14 

in [8]. �

Now, let CF
G be the set of all objects of CG having all its direct summands in the 

image of F : C → CG. Let M̄ ∈ C be such that F (M̄) = M and define a function 

XG : CF
G → Z[y±1

1 , . . . , y±1
s ] by XG

M = F (XM̄ ).

Proposition 7.8. The function XG is well-defined and constant within each isomorphism 

class.

Proof. Let X = X1 ⊕· · ·⊕Xr where all Xi are indecomposable. Let Y1, Y2 ∈ C such that 

F (Y1) ∼= F (Y2) ∼= X. By using the Krull–Remak–Schmidt property in CG and the right 

adjoint F̄ : CG → C, it is not hard to show that indecomposability is preserved by F . 

It follows, for i = 1, 2, that Yi = Yi1 ⊕ · · · ⊕ Yir such that F (Yij) ∼= Xij . Now, for each 

1 ≤ j ≤ r, we have

⊕g∈GgY1j
∼= F̄F (Y1j) ∼= F̄F (Y2j) ∼= ⊕g∈GgY2j .



212 C. Paquette, R. Schiffler / Advances in Mathematics 345 (2019) 161–221

By the Krull–Remak–Schmidt property in C, we get that Y1j
∼= gjY2j for some gj ∈ G. 

Observe that if Y, Y ′ are indecomposable with Y ∼= Y ′ in C, then XY = XY ′ , hence 

F (XY ) = F (XY ′). Therefore, we need to prove that for g ∈ G and Y an indecom-

posable object in C, we have F (XY ) = F (XgY ). Consider the cluster-tilting object 

U = Γ(Q, W ) in C and let Λ = EndC(U). Now, g induces an auto-equivalence of 

C and of modΛ. Let Ksp
0 (modΛ) denote the split Grothendieck group of modΛ. Let 

〈−, −〉 denote the bilinear form Ksp
0 (modΛ) → Z such that for M, N ∈ modΛ, we have 

〈M, N〉 = dimHomC(M, N) − dimExt1
C(M, N) and 〈−, −〉a the antisymmetric bilinear 

form such that 〈M, N〉a = 〈M, N〉 − 〈N, M〉. It follows from a result of Palu [34] that 

〈−, −〉a descends to the usual Grothendieck group K0(modΛ). For M, N ∈ modΛ, we 

have

〈M, N〉 = dimHomC(M, N) − dimExt1
C(M, N)

= dimHomC(gM, gN) − dimExtC(gM, gN)

= 〈gM, gN〉.

In a similar way, we have 〈dimM, dimN〉a = 〈dimgM, dimgN〉a. Let U = ⊕i∈IUi be a 

decomposition of U into indecomposable direct summands. Observe that each g induces 

a permutation I → I with no fixed point. For each Ui, let Si be the simple top of 

the projective Λ-module HomC(U, Ui). Let also xi denote the initial cluster variable 

associated to Ui. Observe that gUi
∼= Ugi, gSi

∼= Sgi and F (xi) = F (xgi). Let Z =

HomC(U, Y ) and gZ = HomC(gU, gY ) ∼= HomC(U, gY ), where the last isomorphism is an 

isomorphism of Λ-modules. Assume first that Z is non-zero, so that Y is not isomorphic 

to a shift of an indecomposable object in U . Observe that g induces an isomorphism of 

projective varieties

g : Gre(Z) = {L ⊂ Z | L submodule of Z, dimL = e}

→ Grge(gZ) = {L ⊂ gZ | L submodule of gZ, dimL = ge}

and hence, χ(Gre(Z)) = χ(Grge(gZ)). Now, we have

XY =
∑

e

χ(Gre(Z))
∏

i

x
〈dimSi,e〉a−〈Si,Z〉
i

=
∑

ge

χ(Grge(gZ))
∏

i

x
〈dimSgi,ge〉a−〈Sgi,gZ〉
i

=
∑

e

χ(Gre(gZ))
∏

i

x
〈dimSi,e〉a−〈Si,gZ〉
g−1i

,

as one can identify the dimension vectors of the submodules of gZ as the ge where e

runs through the dimension vectors of the submodules of Z. Now,

XgY =
∑

e

χ(Gre(gZ))
∏

i

x
〈dimSi,e〉a−〈Si,gZ〉
i
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and since F (xi) = F (xg−1i) for all g ∈ G, it follows that F (XY ) = F (XgY ). Finally, if 

Y = Ui[1] is a shift of an indecomposable direct summand of U , then XY = xi while 

XgY = gxi. Clearly, F (XY ) = F (XgY ) in this case as well. �

Remark 7.9. One can also define a cluster character X ′ : CG → Z[y±1
1 , . . . , y±1

s ] directly. 

However, we have X ′
M = XG

M only if, for F (M̄) = M , we have

∑

F (e′)=e

χ(Gre′(HomC(U, M̄))) = χ(Gre(HomCG
(FU, M))), (2)

for all e; but this is not always true. Indeed, the module HomCG
(F (U), M) may have a 

submodule of dimension vector e such that M̄ has no submodule of dimension vector e′

with F (e′) = e. Even when F is dense, that is, when F is a G-covering, we do not know 

whether the above equality on the Euler characteristics of Grassmannians always holds.

Example 7.10. Let Q be the quiver

2

1

α

β

1′

β′

α′2′

with group G = Z/2Z acting by rotation. Then the quiver QG is the Kronecker quiver 

1
α

β
2 . Here both potentials W, WG are zero. Let M be the representation

k

k

1

1

k

1

1k

and let MG denote its image under F . Then

MG = k2

[
1 0
0 1

]

[
0 1
1 0

] k2 ,

which is isomorphic to the direct sum

MG
∼= k

1

1
k ⊕ k

1

−1
k .

In particular, MG has two subrepresentations of dimension vector e = (1, 1). On the 

other hand, M has no subrepresentation with a dimension vector e′ such that F (e′) = e. 

Thus for e = (1, 1), the left hand side of equation (2) is zero, while the right hand side 
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is not. Therefore the cluster characters X ′ and the function XG are not equal in this 

example. Moreover, F is not dense.

The following yields a third way to get the generalized cluster algebra structure on 

an orbifold (SG, MG, O), using Proposition 7.5.

Proposition 7.11. Let C be G-mutation connected and let W be non-degenerate. Then the 

Z-subalgebra of FG generated by all XG
N , where N is an indecomposable direct summand 

of a cluster-tilting object obtained from UG by a finite sequence of standard mutations, 

coincides with AG.

Proof. Since C is G-mutation connected, one can identify the indecomposable direct 

summands of the cluster-tilting objects obtained from UG by a finite sequence of standard 

mutations by the F (N) where N ∈ XG. Now, XG
F (N) = F (XN ), and F (XG) is the set of 

generalized cluster variables for AG. �

Let τ denote the Auslander–Reiten translation in C. When k = C, the cluster character 

X : C → Z[x±1
1 , . . . , x±1

n ] is such that if

M1 → M2 → M3 → M1[1]

is an Auslander–Reiten triangle in C, then XM1
XM3

= 1 + XM2
; see [14]. When F is 

dense, we get a function XG : CG → Z[y±1
1 , . . . , y±1

s ] as defined in the previous section. 

A natural question arises here. Is it a cluster character? The next result answers the

latter question affirmatively.

Proposition 7.12. Assume that F is dense. Then the function XG : CG → Z[y±1
1 , . . . , y±1

s ]

is a cluster character. If k = C and L → M → N → L[1] is an Auslander–Reiten triangle 

in CG, then XG
L XG

N = XG
M + 1.

Proof. Notice now that since F is dense, the construction of XG extends to any object 

of CG. It is clear that XG is constant within an isomorphism class. Let M1, M2 ∈ CG. 

Then Mi = F (Ni) for N1, N2 ∈ C. Therefore, XG
M1⊕M2

= F (XN1⊕N2
) = F (XN1

XN2
) =

F (XN1
)F (XN2

) = XG
M1

XG
M2

. Assume now that HomCG
(M1, M2[1]) one dimensional. We 

have

⊕g∈GHomC(N1, gN2[1]) ∼= HomCG
(M1, M2[1]).

Therefore, there is exactly one g ∈ G with HomC(N1, gN2[1]) one dimensional. By the 

2-Calabi–Yau property of C, we have that HomC(gN2, N1[1]) is one dimensional and 

HomC(g′N2, N1[1]) = 0 if g′ 	= g. Consider the non-split exact triangles

gN2 → B → N1 → gN2[1]

N1 → B′ → gN2 → N1[1]



C. Paquette, R. Schiffler / Advances in Mathematics 345 (2019) 161–221 215

in C. We know that XN1
XgN2

= XB + XB′ . Since F is exact, we get exact triangles

η1 : F (gN2) → F (B) → F (N1) → F (gN2)[1]

η2 : F (N1) → F (B′) → F (gN2) → F (N1)[1]

where F (gN2) ∼= F (N2) = M2 and F (N1) = M1. Therefore

XG
M1

XG
M2

= F (XN1
)F (XN2

)

= F (XN1
)F (XgN2

)

= F (XN1
XgN2

)

= F (XB + XB′)

= F (XB) + F (XB′)

= XG
F (B) + XG

F (B′).

Since η1, η2 are clearly non-split, we get that XG is a cluster character.

The second part of the proposition about Auslander–Reiten triangles follows from 

Proposition 7.14 and the remark above this proposition. �

7.4. The finite representation type

We assume that G is an admissible group of automorphisms of (Q, W ) where (Q, W )

is Jacobi-finite. We have seen that we have an induced functor F : C → CG which is a 

G-precovering. We call a Hom-finite Krull–Schmidt k-category B of finite type if B has 

finitely many indecomposable objects, up to isomorphism.

Proposition 7.13. The category C is of finite type if and only if the category CG is of finite 

type.

Proof. By [27, Cor. 4.4] and [9], the category modB of finite dimensional representa-

tions of B is equivalent to C/U [1] where U is the cluster-tilting object corresponding to 

Γ(Q, W ). Hence, B is of finite type if and only if C is of finite type. Similarly, BG is of 

finite type if and only if CG is of finite type. Now, by Corollary 3.11 we have a G-covering 

B → BG. Since the characteristic of k does not divide |G|, it follows from a result of 

Gabriel [22, Lemma 3.4] that if B is of finite type, then BG is of finite type. Finally, by 

[22, Lemma 3.3], if BG is of finite type, then the algebra B is of finite type. �

Proposition 7.14. Assume that one of C, CG is of finite type. Then F : C → CG is a 

G-covering that preserves indecomposability and Auslander–Reiten triangles. In particu-

lar, F induces a G-covering of Auslander–Reiten quivers of C and CG.
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Proof. By Proposition 7.13, we know that C is of finite type. As seen in the proof of 

Proposition 7.13, this implies that both B, BG are of finite type. Let U be the cluster-

tilting object of C corresponding to Γ(Q, W ). Let I be the ideal of C of the morphisms 

which factorize through U [1] and J be the ideal of CG of the morphisms which factorize 

through FU [1]. One can check that for any M, N ∈ C, we have isomorphisms

HomJ (FM, FN) → ⊕g∈GHomI(M, gN)

and

HomJ (FM, FN) → ⊕g∈GHomI(gM, N).

Thus, according to the definition in Section 3.1 and the fact that mod B = C/I and 

mod BG = CG/J , we see that F induces a G-precovering F̃ : modB → modBG. By The-

orem 4 in [31], the functor F̃ sends indecomposable objects to indecomposable objects. 

Consequently, if M is an indecomposable object in C \ add U [1] then FM is indecompos-

able in CG. On the other hand, if M is an indecomposable summand of U [1] then FM

is an indecomposable summand of F (U)[1]. This shows that all indecomposable objects 

of CG are isomorphic to an object in the image of F . Thus the G-precovering F is dense 

and hence a G-covering.

Now assume that

η : L
u
→ M

v
→ N → L[1]

is an Auslander–Reiten triangle in C. The exact functor F sends this distinguished tri-

angle to the distinguished triangle

F (η) : FL
F u
→ FM

F v
→ FN → FL[1].

We know that FL, FN are indecomposable from what was shown above. Let Z be any 

indecomposable object in CG and Z̄ be such that F (Z̄) = Z. Let f : Z → FN be a 

non-isomorphism. By the adjunction property of Lemma 3.5, we get an isomorphism

HomCG
(Z, FN) → ⊕g∈GHomC(Z̄, gN).

Therefore, there exists (fg)g∈G with f =
∑

g∈G F (fg). Now, recall that the gN for 

g ∈ G are pairwise non-isomorphic since G acts freely on the indecomposable objects 

of C. Therefore, there is at most one fg that is an isomorphism. Since F is exact and 

FX is non-zero whenever X is non-zero, we see that a non-isomorphism is sent to 

a non-isomorphism through F . Now if one fg is an isomorphism, then the morphism ∑
g∈G F (fg) = f is the sum of an isomorphism and a nilpotent endomorphism, thus f

is an isomorphism, a contradiction. Therefore, no fg is an isomorphism. Since for g ∈ G, 

we have that fg : Z̄ → gN is a non-isomorphism between indecomposable objects and gη
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is an Auslander–Reiten triangle, we get that fg factors through gv, meaning that F (fg)

factors through F (gv) = F (v). Since each F (fg) factors through F (v), we see that f

factors through F (v). This proves that F (η) is an Auslander–Reiten triangle. Therefore, 

F sends Auslander–Reiten triangles to Auslander–Reiten triangles and the second part 

of the statement follows. �

Proposition 7.15. Let C be of finite type and let V ∈ CG be cluster-tilting. Then there 

exists a cluster-tilting object Z ∈ C such that FZ = V .

Proof. Since F is dense, there exists V̄ ∈ C such that FV̄ = V . We need to prove 

that Z := ⊕g∈GgV̄ is cluster-tilting. We have HomCG
(V, V [1]) = 0. This means 

⊕g∈GHomC(V̄ , gV̄ [1]) = 0. Similarly, we get

⊕g∈GHomC(g′V̄ , gV̄ [1]) = 0

for any g′ ∈ G. In particular, Z is rigid. Let Y ∈ C be indecomposable with 

HomC(Z, Y [1]) = 0. Thus, ⊕g∈GHomC(gV̄ , Y [1]) = 0. Then HomCG
(FV̄ , FY [1]) = 0. 

Hence, we get HomCG
(V, FY [1]) = 0. Since V is cluster-tilting, we know that FY is a 

summand of V . By applying the adjoint F̄ : CG → C to F , we get that F̄FY ∼= ⊕g∈GgY is 

a direct summand of F̄V = F̄F V̄ ∼= ⊕g∈GgV̄ = Z. In particular, Y is a direct summand 

of Z. This proves that Z is cluster-tilting. �

In what follows, we call C of acyclic type if there is a cluster-tilting object M of C

such that the quiver of EndC(M) has no oriented cycles. By [26], this means that C is 

equivalent to the (classical) cluster category of a finite quiver without oriented cycles. 

Observe also that if (Q, W ) is non-degenerate and C is of finite type, then C is just the 

(classical) cluster category of a quiver of Dynkin type.

Proposition 7.16. Assume that C is of acyclic and of finite type. Then the indecomposable 

rigid objects in CG are precisely the {F (Vi) | i ∈ I}, where the {Vi | i ∈ I} form a complete 

set of the representatives of the G-orbits of those indecomposable rigid objects V in C

with HomC(V, gV [1]) = 0 for all g ∈ G. Therefore, the generalized cluster variables in 

AG can be obtained by the following methods.

(1) The F (XVi
) for i ∈ I.

(2) The XG
Y where Y is rigid in CG.

Proof. Since C is of acyclic type, every indecomposable rigid object in C is a summand of a 

cluster-tilting object that can be obtained from U by finitely many mutations. Therefore, 

C is G-mutation connected. It follows from the argument of the proof of Proposition 7.15

that for X indecomposable in C, F (X) is rigid in CG if and only if HomC(X, gX[1]) = 0

for all g ∈ G. Moreover, all indecomposable rigid objects of CG can be obtained this way. 

Clearly, for X1, X2 rigid in C, we have F (X1) ∼= F (X2) if and only if X1, X2 lie in the 
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same G-orbit, up to isomorphism. This yields the main part of the proposition. This also 

shows that (1) and (2) give the same elements. Now, part (1) gives the description of the 

generalized cluster variables in AG by definition, since it is well known in this case that 

the cluster variables of A are given by the XV where V is indecomposable rigid in C. �

We present two examples for illustration.

Example 7.17. Let S be the disk with 6 marked points on the boundary represented by a 

regular hexagon. Let T be a triangulation of (S, M) such that a rotation of 2π/3 fixes T , 

see Fig. 9. Let G = Z3 be the cyclic group of order 3 generated by a rotation of 2π/3. We 

let x1, x2, x3 be the initial cluster variables corresponding to the arcs of T . The quiver Q

is an oriented cycle of length 3 and the potential is this cycle. In the following picture, 

we put the Auslander–Reiten quiver of C where each indecomposable M of C is replaced 

by its cluster variable XM .

x3
x1+x2+x3

x1x3

x1+x3

x2

x2+x3

x1

x1+x2

x3

x1
x1+x2+x3

x1x2
x2

x1+x2+x3

x2x3

We know that the set X of cluster variables of A consists of the XM where M is any 

indecomposable object of C. On the other hand, the set XG contains only the 6 cluster 

variables of the top row and the bottom row. Setting x1, x2, x3 equal to y1 and mak-

ing the appropriate identifications in the quiver, we obtain the following picture of the 

Auslander–Reiten quiver of CG where each indecomposable Y of CG is replaced by XG
Y .

2

y1 3/y1

The set of cluster variables F (XG) is {y1, 3/y1} while the set F (X ) is {y1, 3/y1, 2}. 

Note that both sets generate the same algebra, thus AG = A/〈xi,j − xi,j′〉.

If V denotes the indecomposable object of CG labeled by a 2 and V̄ is a lift of it, then 

⊕g∈GgV̄ is not rigid in C. So the object with character 2 is not rigid, even though it comes 

from a rigid object in C. Observe that an Auslander–Reiten triangle L → M → N → L[1]

of CG satisfies XG
L XG

N = XG
M + 1.

Example 7.18. Let S be the once-punctured disk with 4 marked points on the boundary. 

Let T be the triangulation of (S, M) such that a rotation of π/4 fixes T . Let G = Z4

be the cyclic group of order 4 generated by a rotation of π/4. We let x1, x2, x3, x4 be 
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the initial cluster variables corresponding to the arcs of T . The quiver Q is an oriented 

cycle of length 4 with arrows α, β, γ, δ and the potential is W = αβγδ. In the following 

picture, we put the Auslander–Reiten quiver of C where each indecomposable M of C is 

replaced by XM .

x1 f2 x3 f4

f1 x2 f3 x4

g2 g3 g4 g1 g2

x1+x3

x2

x2+x4

x3

x1+x3

x4

x4+x2

x1

x1+x3

x2

where

fi =
x4x1 + x1x2 + x2x3 + x3x4

x1x2x3x4
xi

and

gi =
x4x1 + x1x2 + x2x3 + x3x4 − xixi+1

xixi+1

and where indices are taken modulo 4. We know that the set X of cluster variables of A

consists of the 16 variables XM where M is any indecomposable object of C. On the other 

hand, the set XG contains only the 8 cluster variables xi, fi. Again setting x1, x2, x3, x4

equal to y1 and making the appropriate identifications in the quiver, we obtain the 

following picture of the Auslander–Reiten quiver of CG where each indecomposable Y of 

CG is replaced by XG
Y .

y1

3 4/y1

2

The set of cluster variables F (XG) is {y1, 4/y1} whereas the set F (X ) is {y1, 4/y1, 2, 3}. 

Again both sets generate the same algebra, thus AG = A/〈xi,j − xi,j′〉.
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