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ABSTRACT. We prove necessary and sufficient conditions for the existence of homoge-
neous prime elements in normal N-graded rings of dimension two, in terms of rational
coefficient Weil divisors on projective curves.

1. INTRODUCTION

We investigate the existence of homogeneous prime elements, equivalently, of homoge-
neous principal prime ideals, in normal N-graded rings R of dimension two. It turns out
that there are elegant necessary as well as sufficient conditions for the existence of such
prime ideals in terms of rational coefficient Weil divisors, i.e., Q-divisors, on ProjR.

When speaking of an N-graded ring R, we assume throughout this paper that R is a
finitely generated algebra over its subring Ry, and that Ry is an algebraically closed field.
We say that an N-grading on R is irredundant if

gcd{neN|R, #£0} = 1.
Relevant material on Q-divisors is summarized in §2. Our main result is:

Theorem 1.1. Let R be a normal ring of dimension 2, with an irredundant N-grading,
where Ry is an algebraically closed field. Set X := ProjR, and let D be a Q-divisor on X
such that R = ©,>0H° (X, Ox (nD))T". Let d be a positive integer:

(1) Suppose x € R; is a prime element. Set
s:=gcd{n € N|[R/xR], # 0}.

Then the integers d and s are relatively prime, and the divisor sdD is linearly equiva-
lent to a point of X. In particular, degD = 1/sd.

(2) Conversely, suppose dD is linearly equivalent to a point P with P ¢ supp(frac(D)).
Let g be a rational function on X with

div(g) = P—dD.
Then x := gT? is a prime element, and the induced grading on R /XR is irredundant.

The proof of the theorem and further results regarding the number of homogeneous
principal prime ideals are included in §3. We next record various examples.
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Example 1.2. If a standard N-graded ring R, as in the theorem, has a homogeneous prime
element, we claim that R must be a polynomial ring over Ry.

If x € R, is a prime element, the theorem implies that d = 1. Independent of the theorem,
note that R/xR is an N-graded domain of dimension 1, with [R/xR],, algebraically closed,
so R/xR is a numerical semigroup ring by [GW, Proposition 2.2.11]. Since it is standard
graded, R/xR must be a polynomial ring. But then R is a polynomial ring as well.

Example 1.3. The hypothesis that the underlying field Ry is algebraically closed is crucial
in Theorem 1.1 and Example 1.2: the standard graded ring Q[x,y,z]/(x> +y? +7?) has a
homogeneous prime element x.

Example 1.4. In view of Example 1.2, the ring R := C|x,y,z] /(x> — yz), with the standard
N-grading, has no homogeneous prime element. However, for nonstandard gradings, there
can be homogeneous prime elements:

Fix such a grading with degx = a, degy = b, and degz = 2a — b, where ged(a,b) =1
and b is even. Then one has a homogeneous prime element

b2 _ b/

b

which generates the kernel of the C-algebra homomorphism R — C|[t] with

x— 19y 1’ g 127P,

Example 1.5. The ring Clx,y,z]/(x* +y*z+xz?), with degx = 4, degy = 5, and degz = 6,
has no homogeneous prime elements in view of Theorem 1.1 (1), since the corresponding
Q-divisor has degree 2/15 by Proposition 2.2.

Example 1.6. Consider Clx,y,z]/(x* +y +z°), with degx = 3, degy = 2, and degz = 1.
Then (z) is the unique homogeneous principal prime ideal: the corresponding Q-divisor
has degree 1, again by Proposition 2.2.

Example 1.7. SetR:= C[x,y,z]/(x* —y*> +7), with degx = 21, degy = 14, and degz = 6.
Then the corresponding Q-divisor has degree 1/42 by Proposition 2.2, so the degree of a
homogeneous prime element must divide 42. In view of the degrees of the generators of R,
the possibilities are 6, 14, 21, and 42, and indeed there are prime elements with each of
these degrees, namely z, y, x, and y3 — Ax2 for scalars A # 0,1, see also Example 3.4.

2. RATIONAL COEFFICIENT WEIL DIVISORS

We review the construction of normal graded rings in terms of Q-divisors; this is work
of Dolgacev [Do], Pinkham [Pi], and Demazure [De]. Let X be a normal projective variety.
A Q-divisor on X is a Q-linear combination of irreducible subvarieties of X of codimension
one. Let D = ¥ n;V; be such a divisor, where n; € Q, and V; are distinct. Set

D] =Y [m]Vi
where |n] is the greatest integer less than or equal to n. We define
Ox (D) := Ox(|D]).

The divisor D is effective, denoted D > 0, if each n; is nonnegative. The support of the
fractional part of D is the set

supp(frac(D)) :={V; | n; ¢ Z}.
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Let K(X) denote the field of rational functions on X. Each g € K(X) defines a Weil
divisor div(g) by considering the zeros and poles of g with appropriate multiplicity. As
these multiplicities are integers, it follows that for a Q-divisor D one has

H'(X,0x(|D))) = {g € K(X) | div(g) + |D] > 0}

= {g € K(X) | div(g) +D >0} = H'(X, Ox(D)).

A Q-divisor D is ample if ND is an ample Cartier divisor for some N € N. In this case,
the generalized section ring R(X, D) is the N-graded ring

R(X,D) == @,50H" (X, Ox (nD))T",
where T is an element of degree 1, transcendental over K (X).

Theorem 2.1 ([De, 3.5]). Let R be an N-graded normal domain that is finitely generated
over a field Ry. Let T be a homogeneous element of degree 1 in the fraction field of R. Then
there exists a unique ample Q-divisor D on X := ProjR such that

R, = H°(X,0x(nD))T"  for eachn > 0.
The following result is due to Tomari:
Proposition 2.2 ([To, Proposition 2.1]). For R and D as in the theorem above, one has

lim (1 —7)%™MRP(R.1) = (degD)mR-!,

t—1

where P(R,t) is the Hilbert series of R.

3. HOMOGENEOUS PRIME ELEMENTS
Before proceeding with the proof of the main theorem, we record a lemma:

Lemma 3.1. Let R be a domain with an irredundant N-grading. Let x be a nonzero element
of degree d > 0, and set

s:=gcd{n € N|[R/xR], # 0}.
Then ged(d,s) = 1. Moreover, x is a prime element of R if and only if X° is a prime element
of the Veronese subring RY) .= Dn=0Rys.

Proof. Note that P(R/xR,t) is a rational function of #*, and that
1
Since the grading on R is irredundant, it follows that gcd(d,s) = 1.

We claim that (xR)®) = x*R"®). Choose a homogeneous element of (xR)*), and express
it as rx™ with m largest possible. Suppose m is not a multiple of s. By considering its
degree, we see that the image of r must be 0 in R/xR, contradicting the maximality of m.
It follows that (xR)(S) - st(S), the reverse containment being trivial. Hence

R/xR = (R/xR)®) = R /x*RY),
which gives the desired equivalence. (]

Proof of Theorem 1.1. For a prime element x € Ry, the ring R/xR is an N-graded domain
of dimension 1, over an algebraically closed field, so [GW, Proposition 2.2.11] implies
that it is isomorphic to a numerical semigroup ring. Take s as in Lemma 3.1. Since the
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Veronese subring R corresponds to the Q-divisor sD, the proof of (1) reduces using the
lemma to the case where s = 1. In this case,

P(R/R1) = = pl1)

for p(¢) a polynomial, so

PR = o (- 00).

and Proposition 2.2 shows that degD = 1/d. To complete the proof of (1), it remains to
verify that dD is linearly equivalent to a point of X.
The exact sequence
X

0 — R(—d) R R/xR 0

shows that for n > 0 one has

rankR, ;s = 1+rankR,.
Choose m >> 0 such that mdD is integral, and the above holds with n = md, i.e.,
rank H (X, Ox (mdD +dD)) = 1+rankH’(X, Ox(mdD)).
Let g be a rational function on X such that x = g7%. Then div(g) +dD > 0, and
rank H(X, Ox (mdD +div(g) +dD)) = 1+ rankH’(X, Ox (mdD)).
Since mdD is an integral divisor, it follows that
|div(g) +dD] # 0.
Bearing in mind that div(g) + dD is an effective divisor of degree 1, it follows that
div(g)+dD = P,

for P a point of X.
For (2), we claim that

XR = @®u=0H’(X,O0x(nD—P))T",
and that this is a prime ideal of R. Note that homogeneous elements of xR have the form
gTenT™
for hT™ € R, i.e., with h satisfying
div(h)+mD > 0.
Since div(g) = P — dD, the above condition is equivalent to
div(gh)+(m+d)D—-P > 0,

i.e., to the condition that gh € H°(X, Ox ((m+d)D — P)). This proves the claim.
To verify that the ideal xR is prime, consider 4;7" in R \ xR, for i = 1,2. Then

div(h;)+m;D > 0 whereas div(h;))+mD—P % 0.
Since P is not in the support of the fractional part of D, it follows that
div(hihy) + (my+mp)D—P % 0,

and hence that h1hyT™ 2 ¢ xR. Thus, xR is indeed prime. It remains to prove that the
grading on R/xR is irredundant. Set

s :=ged{n € N| [R/xR], # 0},
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in which case
P(R/xR,t) =

_p(ts)a

11—z
where p(#*) is a polynomial in #*, and

P(R,1) = ﬁ (1_1ts—p(ts)>~

Proposition 2.2 gives the second equality below,

1 . ’ 1
i }5*}(1_’) P(R,t) = degD = 7
implying that s = 1. t
Example 3.2. Take P! := ProjC[u,v], with points parametrized by /v, and set
1 1 1
D= =(0)+ = (o) — = (1).
$0)+ 3() — (1)
Then R := R(P!, D) is the C-algebra generated by
X:i= u—sz, yi= u—sz’ 7= 7(u—v)2T3’
v u uy

i.e., R is the hypersurface Clx,y,z]/(z> — xy(x —)), with degx = 2 = degy, and degz = 3.
Note that deg D = 1/2, and that 2D is an integral divisor. Theorem 1.1 (2) shows that
DuzoH’(X, Ox (nD — P))T"

is a prime ideal for P € P! \ {0,0,1}. Indeed, for P = [A : 1] with A # 0, 1, the displayed
ideal is the prime (x — Ay)R. These are precisely the homogeneous principal prime ideals
of R, with the points 0, e, and 1 that belong to supp(frac(D)) corresponding respectively
to the ideals xR, yR and (x — y)R that are not prime.

Remark 3.3. Let D be a Q-divisor on P! such that degD = 1/d where d is a positive
integer, and dD is integral. Then the ring R := R(PP!, D) has infinitely many distinct homo-
geneous principal prime ideals: all points of P! are linearly equivalent, so for each point P
there exists a rational function g with

div(g) = P—dD,
and Theorem 1.1 (2) implies that gT“R is a prime ideal for each point P with
P € P!\ supp(frac(D)).

This explains the infinitely many prime ideals in Example 3.2, and also in Example 3.4
below; the latter, moreover, has homogeneous prime elements of different degrees:

Example 3.4. On P! := ProjClu,v], consider the Q-divisor

1 1 1
D= = (e0) — = (0) — = (1).
3o~ 5 (0) (1)
Then R := R(P!, D) is the ring C|x,y,z]/(x*> —y* +7), where
_w(u—v) 4 _wu—v)? W (w—v) o
R A T A o
v v v

For each point P = [A : 1] in P! \ {0,00, 1}, i.e., with A # 0, 1, one has a prime ideal
Duz0H’ (X, Ox(nD —P))T" = (y* — Ax*)R.

These, along with xR, yR, and zR, are precisely the homogeneous principal prime ideals.



6 ANURAG K. SINGH, RYO TAKAHASHI, AND KEI-ICHI WATANABE

Example 3.5. Set X to be the elliptic curve ProjC[u,v,w]/(v*w — u® +w?). Then
div(v/w) = Pi+P,+P;—30,
where O = [0: 1 : 0] is the point at infinity, and
P =[1:0:1], P=[6:0:1], Py=1[67:0:1],
for 6 a primitive cube root of unity. Take

1 1 1
D:=-P+-P+-P—0.
21+22+23 0]

The ring R := R(X, D) has generators
X = KTZ, yi= KT3, 7= %T“,
v v v
so R = C|x,y,7]/ (x5 +y* — 2%). Since degD = 1/2, the only possible homogeneous prime
elements are in degree 2. Indeed,
2D = Pi+P+P—20 = div(v/w)+0,

and O ¢ supp(frac(D)), so (w/v)T? = x is a prime element; note that xR is the unique
homogeneous principal prime ideal of R, in contrast with Examples 3.2 and 3.4.

Example 3.6. With X and O as in the previous example, note that
div(u/w) = Q1+ 0> —20,

where

Consider the Q-divisor
1 1 1
D= - —0,— =0.
7 01+ 5 (0)) > o

Then the ring R := R(X, D) has generators
X = KTZ, yi= KT37 7= —T4, 1= —TG,
u u u

and presentation

R = Clx,y,z,1]/(y* —xz, x° =2 +1%).

Once again, since deg D = 1/2, the only possibility for homogeneous prime elements is in
degree 2. We see that

2D = Q1 +0,—0 = div(u/w)+O.

However, since O € supp(frac(D)), Theorem 1.1 (2) does not apply. Indeed, (w/u)T? = x
is not a prime element. The key point is that X is not rational, and there does not exist a
point P, linearly equivalent to 2D, with P ¢ supp(frac(D)).
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4. RATIONAL SINGULARITIES

Let H be a numerical semigroup. For F a field and ¢ an indeterminate, set
F[H] :=TF[t" | n € H|.

Question 4.1. Does F[H] deform to a normal N-graded ring, i.e., does there exist a normal
N-graded ring R, with x € R homogeneous, such that R/xR = F[H|?

Question 4.2. For which numerical semigroups H does there exist R, as above, such that R
has rational singularities?

The following is a partial answer:

Proposition 4.3. Let R be a normal ring of dimension 2, with an irredundant N-grading,
where Ry = F is an algebraically closed field. Suppose xy is a homogeneous prime ele-
ment that is part of a minimal reduction of Ry, and that the induced grading on R/xR is
irredundant. Then the following are equivalent:

(1) The ring R has rational singularities.
(2) There exist minimal F-algebra generators xo, . . . ,x, for R, with x; homogeneous, and
4.3.1) r—+degxp > degx; > --- >degx, =r.

Proof. Note that R/xoR is a numerical semigroup ring; let H denote the semigroup.

(1) = (2): The element xo extends to a minimal generating set xp,...,x, for R.
Since R/xoR = F[H] is a numerical semigroup ring, the degrees of xy,...,x, are distinct;
after reindexing, we may assume that

degx; > --- > degx,.
Since R is a 2-dimensional ring with rational singularities, it has minimal multiplicity
by [HW, Theorem 3.1], namely

e(R) = edim(R) — 1.
As x is part of a minimal reduction of R, the ring R/xoR has minimal multiplicity as

well, i.e., e(R/xoR) = r. It follows that degx, = r. By [RG, Corollary 3.2], the Frobenius
number of H is degx; —degx, = degx; — r, which is the a-invariant of F[H]. But then

a(R)+degxy = a(F[H]) = degx; —r.
Since R is a ring of positive dimension with rational singularities, a(R) must be negative
by [Fl, Wa], implying that r 4+ degxo > degx; as desired.
(2) = (1): Since R is normal by assumption, one has only to verify that a(R) < 0 in

view of the above references. This is immediate since the a-invariant of F[H], equivalently
the Frobenius number of H, is degx; —r. O

Example 4.4. Consider the Q-divisor

5 4
D:=-(0)— = (e
on P! := Proj C[u, v], with points parametrized by u/v. Then R := R(P', D) has generators
2 3 4 S
V3 Vs Y Y
W—ET, .X—;’T7 y—ET, Z—ufﬁT

The relations are readily seen to be the size two minors of the matrix

w X oz
x y w)’
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Each point P = [A : 1] with A # 0 gives a prime ideal
©nz0H (X, Ox(nD — P))T" = (y—A2)R,
and these are precisely the homogeneous principal prime ideals of R.
For example,
R/(y—2)R = C[P’,~.1"].
Since (y—z,w)R is a minimal reduction of R and the grading on R/(y—z)R is irredundant,
Proposition 4.3 applies. The ring R has rational singularities since a(R) = —3, and the
inequalities (4.3.1) indeed hold since

3+ deg(y—z) > degy > degx > degw = 3.

Example 4.5. Take R as in Example 1.6, i.e., R := C[x,y,7]/(x* +y> 4 z%), with degx = 3,
degy =2, and degz = 1. Then z is a prime element such that the induced grading on R/zR
is irredundant; z is also part of the minimal reduction (z,y)R of R. Since a(R) = 0, the
ring R does not have rational singularities; likewise, (4.3.1) does not hold since

2+4degz # degx.
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