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Abstract— Cost evaluation problems for hybrid inclusions
are studied. Sufficient conditions, in the form of Lyapunov-like
inequalities, are provided to derive an upper bound on the cost
associated with the solution to a hybrid inclusion with respect to
a hybrid cost functional. Under additional sufficient conditions,
we determine the cost exactly without computing solutions.
Constructive results are proposed to solve cost evaluation
problems in some relevant applications. Numerical examples
are presented.

I. INTRODUCTION

Hybrid dynamical systems are dynamical systems whose

evolution is characterized by the interplay of continuous-

time dynamics and instantaneous changes. Due to the large

number of applications in which hybrid dynamical systems

can be used as a modeling paradigm, such a topic has

gained an increasing interest over the last two decades.

Research efforts in hybrid dynamical systems brought to life

numerous tools for modeling, analysis, and design of hybrid

systems; see [9], [15], [17], [24], [25]. In particular, in [9] a

general framework for hybrid systems is established. The key

feature of the framework in [9] consists of modeling hybrid

dynamical systems via hybrid inclusions. Such a modeling

approach allows one to deal with robustness aspects in hybrid

systems in an elegant and unified way.

More precisely, a hybrid inclusion is formally written as
{

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D

where x is the state, and F and G are set-valued mappings

describing the dynamics of the system. The notation ẋ repre-

sents the time derivative of the state, while x+ represents the

value of the state after an instantaneous jumps. With these

definitions, the above writing suggests that the state x evolves

according to the differential inclusion ẋ ∈ F (x) while in C,

and its value changes according to the difference inclusion

x+ ∈ G(x) when x is in D.

Optimality aspects in hybrid systems have seen a growing

interest in the community. First results on optimal control of

hybrid systems can be traced back to the 90’s in the work of

Sussmann [23], later followed by [4], [22], where maximum

principles for some class of hybrid and switched systems
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are formulated. More recently, several research directions

concerning optimality in hybrid systems have been explored

within the framework of hybrid inclusions in [9]. In [7]

connections between pointwise stability and optimal control

of hybrid systems are investigated. In [20], linear-quadratic

optimal control for hybrid systems with linear dynamics and

periodic jumps is studied. Cost evaluation problems play a

central role in guaranteed cost control [5], so the solution to

such a problem can be used to develop sub-optimal control

design tools. For the class of linear-quadratic problems, i.e.,

linear dynamics and quadratic costs, closed form expressions

of the cost value can be obtained by relying on the solution to

a differential Riccati equation; see, e.g., [13, Chapter 6.1.3].

Unfortunately, as pointed out in [2], this technique cannot be

applied when the cost is nonquadratic and does not extend

to nonlinear systems. To overcome this problem, the idea

proposed in [2] consists of establishing a connection between

the cost functional and a Lyapunov-like inequality.

In this paper we take a first step towards the development

of connections between Lyapunov theory and optimal control

for hybrid systems modeled by hybrid inclusions. In partic-

ular, motivated by the general ideas originally presented in

[2] for continuous-time systems and later extended in [6]

to constrained difference inclusions, the problem we address

consists of evaluating the cost associated to the solutions to

a hybrid inclusion with respect to a given cost functional.

Building from Lyapunov theory for hybrid systems in [9],

we extend the results in [2] to hybrid inclusions. More

precisely, the contributions in this paper are as follows.

First, we provide sufficient conditions for cost evaluation for

hybrid inclusions. In particular, we show that under some

Lyapunov-like conditions, the cost associated to the solution

to a hybrid inclusion, from a given initial condition, with

respect to a hybrid cost functional can be upper bounded by

a function of the initial condition. As a second step, we show

that by strengthening some assumptions, the cost associated

to the hybrid inclusion can be perfectly determined via the

proposed conditions. Unlike previous results, uniqueness of

solutions is nowhere assumed in the paper and when multiple

solutions exist from a given initial condition, we take the

supremum of the cost over all possible solutions. Finally, it

is shown that in some particular applications, the proposed

methodology leads to constructive conditions that can be

easily used to solve the considered cost evaluation problem.

The remainder of this paper is structured as follows. Sec-

tion II-A presents some preliminaries on hybrid inclusions.

Section II-B and Section II-C present our main results con-

cerning the considered cost evaluation problems. Section III

shows how our results can be specialized to deal with some
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relevant applications and presents some numerical examples.

Due to space constraints, proofs of the main results are

omitted and will be published elsewhere.

Notation: The symbol N>0 denotes the set of strictly positive

integers, N = N>0∪{0}, R≥0 represents the set of nonnegative real

scalars, Sn denotes the set of real symmetric matrices of dimension

n and S
n
+ denotes the set of real symmetric positive definite matrices

of dimension n. In partitioned symmetric matrices, the symbol •

stands for symmetric blocks. The matrix diag{A1, A2, . . . , An}

is the block-diagonal matrix having A1, A2, . . . , An as diagonal

blocks. For a vector x ∈ R
n, |x| denotes the Euclidean norm,

while xi denotes its i-th entry, and 1n denotes the vector in R
n

whose entries are equal to one. Given two vectors x, y, we denote

(x, y) = [xT yT]T, where xT denotes the transpose of x. Given

M ∈ S
n, we denote by C+(M) the positive cone generated by M ,

i.e., C+(M) := {x ∈ R
n : xTMx ≥ 0}. Given a vector x ∈ R

n

and a closed set A, the distance of x to A is defined as |x|A =

infy∈A |x− y|. Given a set S, we denote S the closure of S.

II. COST EVALUATION FOR HYBRID INCLUSIONS

A. Preliminaries on Hybrid Inclusions

We consider hybrid inclusions with state x ∈ Rn of the

form

H0

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(1)

In particular we denote, F : Rn ⇒ Rn as the flow map,

C ⊂ R
n as the flow set, G : Rn ⇒ R

n as the jump map, and

D ⊂ Rn as the jump set.

A set E ⊂ R≥0 × N is a hybrid time domain if it

is the union of a finite or infinite sequence of intervals

[tj , tj+1]×{j}, with the last interval (if existent) of the form

[tj , T ) with T finite or T = ∞. Given a hybrid time domain

E, we denote supj E = sup{j ∈ N : ∃t ∈ R≥0 s.t. (t, j) ∈
E} and supt E = sup{t ∈ R≥0 : ∃j ∈ N0 s.t. (t, j) ∈ E}.

A hybrid signal φ is a function defined over a hybrid time

domain. A hybrid signal φ : domφ → Rn is a hybrid

arc if φ(·, j) is locally absolutely continuous for each j.

In particular, we denote X the class of hybrid arcs with

values in Rn. Given a hybrid signal u, domt u := {t ∈
R≥0 : ∃j ∈ N s.t. (t, j) ∈ domu} and domj u := {j ∈
N0 : ∃t ∈ R≥0 s.t. (t, j) ∈ domu}. Given a hybrid signal u,

s ∈ domt u, and i ∈ domj u, j(s) = min{j ∈ N : (s, j) ∈
domu} and t(i) = min{t ∈ R≥0 : (t, i) ∈ domu}. A

hybrid arc φ ∈ X is a solution to H if φ satisfies the

dynamics of H; see [9] for more details on hybrid systems.

A solution φ to H is maximal if it cannot be extended and

is complete if domφ is unbounded. Given a set M and the

hybrid inclusion H0, we denote by SH0
(M) the set of all

maximal solutions φ to H0 with φ(0, 0) ∈ M . If no set M

is mentioned, SH0
is the set of all maximal solutions to H0.

B. Upper bounds

By following the general ideas proposed in [2], in this

section we investigate how a Lyapunov-like function can be

used to provide estimates of nonlinear cost functionals for a

given hybrid inclusion.

For each initial condition ξ ∈ C ∪D to H0 in (1), consider

the following cost:

J (ξ) = sup
φ∈SH0

(ξ)

(∫

domt φ

qc(φ(s, j(s)))ds +

domj φ∑

j=1

qd(φ(t(j), j − 1))




(2)

where qc : C → R≥0 and qd : D ∪G(D) → R≥0.

Remark 1. Given φ ∈ SH0
, the definition of the

cost (2) implies that, when domj φ is bounded, the

value of φ(tJ , supj domφ), with tJ = inf{t ∈
R≥0 : (t, supj domφ) ∈ domφ}, does not contribute to the

“jump cost”. Obviously, this does not lead to any difference

in the cost value when domφ is unbounded in the j-

direction. Such a formulation turns out to be convenient for

our analysis.

Throughout the paper, given a solution φ to (1), we denote

Jφ := lim
(τ,ι)∈domφ

(τ,ι)→supdomφ

(∫

[0,τ ]

qc(φ(s, j(s)))ds +

ι∑

j=1

qd(φ(t(j), j − 1))




The following result can be established.

Proposition 1. Let ξ ∈ C ∪ D, qc : C → R≥0, and

qd : D∪G(D) → R≥0. Let V : domV → R with domV ⊃
C ∪D∪G(D) be continuously differentiable on an open set

containing C. Assume that

sup
f∈F (x)

〈∇V (x), f〉+ qc(x) ≤ 0 ∀x ∈ C (3a)

sup
g∈G(x)

V (g)− V (x) + qd(x) ≤ 0 ∀x ∈ D (3b)

Let φ : domφ → Rn be a solution to (1) from ξ. Assume

that (t, j) 7→ V ◦ φ(t, j) is bounded. Then, Jφ is a finite

number and in particular

Jφ + lim sup
(τ,ι)∈domφ

(τ,ι)→supdomφ

V (φ(t, j)) ≤ V (ξ) (4)

Sketch of the proof. Pick any solution φ to (1) from ξ and

observe that for each (τ, ι) ∈ domφ

V (φ(τ, ι)) − V (φ(0, 0)) =

∫ τ

0

d

ds
V (φ(s, j(s)))ds+

ι∑

j=1

[V (φ(t(j), j)) − V (φ(t(j), j − 1))]

(5)

By using (3a) and (3b), the latter implies

V (φ(τ, ι)) − V (φ(0, 0)) ≤ −J̃φ(τ, ι) (6)
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where for each (t, j) ∈ domφ

J̃φ(t, j) :=

∫ t

0

qc(φ(s, j(s)))ds +

j∑

i=1

qd(φ(t(i), i − 1))

Therefore, from (6) one gets

V (φ(t, j)) + J̃φ(t, j) ≤ V (ξ) ∀(t, j) ∈ domφ (7)

Since by assumption V ◦ φ is bounded, (7) implies that

(t, j) 7→ J̃φ(t, j) is bounded. Using nonnegativity of qc and

qd, one can conclude that

lim
(t,j)∈domφ

(t,j)→sup domφ

J̃φ(t, j) = Jφ

is a finite number. In particular, from (7) one has

V (ξ) ≥ lim sup
(t,j)∈domφ

(t,j)→sup domφ

(V (φ(t, j))+J̃φ(t, j))=

lim sup
(t,j)∈domφ

(t,j)→sup domφ

V (φ(t, j)) + Jφ

which gives (4), concluding the proof.

Proposition 1, by building on a suitable function V ,

provides an upper bound on the cost Jφ that depends on

the solution chosen from ξ. Next, by relying on further

assumptions, for a given initial condition ξ ∈ C ∪ D, we

provide an upper bound on the cost J (ξ) that is solution

independent.

Corollary 1. Let A ⊂ Rn be closed, ξ ∈ C ∪D, qc : C →
R≥0, and qd : D ∪ G(D) → R≥0. Assume there exists a

function V : domV → R, domV ⊃ C ∪ D ∪ G(D), that

is continuously differentiable on an open set containing C

and uniformly continuous on a neighborhood of A such that

V (A ∩ domV ) = {0} and (3) holds. Furthermore, assume

that each φ ∈ SH0
(ξ) is such that

lim
(t,j)∈domφ

(t,j)→sup domφ

|φ(t, j)|A = 0 (8)

Then

J (ξ) ≤ V (ξ) (9)

�

Remark 2. To get a solution independent upper bound

on the cost, in the above result we assumed V to be

uniformly continuous on a neighborhood of A. Indeed, since

V (domV ∩A) = {0}, one can show that uniform continuity

on a neighborhood of domV ∩ A ensures that for any

(t, j) 7→ φ(t, j) such that φ approaches A, V ◦φ approaches

zero. Alternatively, building upon Proposition 1, to relax the

uniform continuity requirement of V , one could assume that

for each φ ∈ SH0
(ξ) such that |φ|A approaches zero, one

has

lim sup
(t,j)∈domφ

(t,j)→sup domφ

V (φ(t, j)) = 0

On the other hand, observe that when A is compact (which

is often the case in applications), by the Heine-Cantor

Theorem, continuity of V on a neighborhood of A is enough.

Remark 3. Corollary 1 shows that when maximal solutions

from ξ converge to A, then an upper bound on the cost J (ξ)
(which is solution independent) is given by V (ξ). On the one

hand, when qd, qc, and V are positive definite with respect

to A, (3) implies for any complete solution φ, that V ◦ φ

approaches zero. On the other hand, for maximal solutions

that are not complete, finite time convergence to A is needed.

Conditions for finite-time convergence for hybrid systems are

given in [12, Theorem 3.9].

C. Exact cost evaluation

In this section, our main objective is to obtain the exact

value of the cost J (ξ) in (2) for a given initial condition

ξ, without explicitly computing it. To that end, next, under

further assumptions on the system data and a stronger

condition than (3), we provide a way to determine the exact

value of J (ξ) for a given initial condition ξ ∈ C ∪D.

Corollary 2. Let A ⊂ Rn be closed, ξ ∈ C ∪D, qc : C →
R≥0, qd : D ∪ G(D) → R≥0, and F (x) and G(x) be com-

pact, respectively, for each x ∈ C and each x ∈ D. Assume

that there exists a continuous function V : domV → R,

domV ⊃ C ∪D ∪G(D), that is continuously differentiable

on an open set containing C such that

max
f∈F (x)

〈∇V (x), f〉+ qc(x) = 0 ∀x ∈ C (10a)

max
g∈G(x)

V (g)− V (x) + qd(x) = 0 ∀x ∈ D

(10b)

Furthermore, assume that for any solution φ0 to (1) from ξ,

V ◦φ0 is bounded. Pick any solution φ to the hybrid system

ẋ ∈ argmax
f∈F (x)

〈∇V (x), f〉 x ∈ C

x+ ∈ argmax
g∈G(x)

V (g) x ∈ D
(11)

with φ(0) = ξ and let φ0 be any solution to (1) from ξ. Then,

one has that Jφ0
and Jφ are finite and in particular

Jφ0
+ lim

(t,j)∈domφ

(t,j)→sup domφ

V (φ0(t, j)) ≤

Jφ + lim
(t,j)∈domφ

(t,j)→sup domφ

V (φ(t, j)) = V (ξ)

(12)

Moreover, if V is uniformly continuous on neighborhood of

A, V (domV ∩A) = {0}, and there exists a maximal solution

φ to (11) with φ(0, 0) = ξ such that

lim
(t,j)∈domφ

(t,j)→sup domφ

|φ(t, j)|A = 0

then, one has

J (ξ) = V (ξ) (13)

�
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The results given in this section extend previous results on

cost evaluation for continuous-time nonlinear systems [2] and

constrained difference inclusions [6] to hybrid inclusions.

Similarly as in [2], [6], our results have strong connections to

Lyapunov analysis. More specifically, the applicability of our

results to specific examples requires the search of a suitable

Lyapunov-like function, which is in general a challenging

task. In the subsequent section, we show how our results

can be be used in some relevant applications in a constructive

fashion.

III. APPLICATIONS AND EXAMPLES

In this section, we specialize our results to two specific

classes of cost evaluation problems. The first class of prob-

lems we analyze pertains to the case of hybrid systems with

linear maps, conic flow and jump sets, and quadratic cost.

This setting is relevant since hybrid systems with conic flow

and jump sets arise in many different areas, such as reset

control systems; see [18]. The second class of problems

concerns the case of hybrid systems with linear maps,

periodic jumps, and quadratic cost. Such a type of systems

can be found in numerous applications such as sampled-

data control [10] and has recently attracted the attention

of researchers; see, e.g., [16], [20] just to mention a few.

In particular, in [20] specific tools have been provided for

the solution to quadratic optimal control problems for linear

hybrid systems with periodic jumps1.

A. Linear-Quadratic Problems with Conic Flow and Jump

sets

Consider the following hybrid system

HC

{
ẋ = Acx x ∈ Cc := C(Mc)
x+ = Adx x ∈ Dc := C(Md)

where Mc,Md ∈ S
n and Ac, Ad ∈ R

n×n. Then, we have

the following result.

Proposition 2. Let A = {0}, ξ ∈ C ∪ D, x 7→ qc(x) :=
xTQcx, and x 7→ qd(x) := xTQdx, where Qc, Qd ∈ Sn+.

Assume that there exists P ∈ Sn+, τ1, τ2 ∈ R>0 such that

AT

cP + PAc +Qc − τ1Mc ≤ 0

AT

dPAd − P +Qd − τ2Md ≤ 0
(14)

Let φ ∈ SHC
(ξ) and assume that φ is complete. Then

Jφ ≤ ξTPξ (15)

Moreover, if every φ ∈ SHC
(ξ) is complete, one has

J (ξ) ≤ ξTPξ (16)

�

Obviously the upper bound one gets is in general conserva-

tive. On the other hand, such a conservatism can be reduced

by suitably selecting the matrix P in (14). In particular, P

1Simulations of hybrid systems are performed in Matlab R© via the Hybrid

Equations (HyEQ) Toolbox [21].

can be selected to minimize a certain criterion. A possible

choice to minimize ξTPξ in all directions consists of picking

λmax(P ) as a criterion; i.e., the induced 2-norm of P ; see

[3]. Pursuing this approach, P can be taken as the solution

to the following semidefinite program:

minimize
P,λ,τ1,τ2

λ

λI − P ≥ 0

AT

cP + PAc +Qc − τ1Mc ≤ 0

AT

dPAd − P +Qd − τ2Md ≤ 0

τ1 > 0, τ2 > 0, λ > 0, P ∈ S
n
+

(17)

An example within the setting considered in the above

result is presented next.

Example 1. Consider the following data for the hybrid

inclusion HC

Ac =

(
0 1
−1 0

)
, Ad = exp (Ac − I) , Qc = Qd = I

Md = −Mc =

(
−1 0.5
0.5 0

)

by [9, Proposition 6.10], it can be easily shown that the

above definition of the data of HC ensures that maximal

solutions to HC are complete. By solving (17) in Matlab R©

using the YALMIP package [14], combined with the solver

Mosek [1], one gets2

P ≈

(
1.526 −0.5
−0.5 2.526

)

Fig. 1 shows the unique maximal solution to HC from ξ =
(2, 6). The solution converges to the origin and is Zeno. In

Fig. 2, we report the evolution of the function

(t, j) 7→ J̃φ(t, j) :=

∫ t

0

qc(φ(s, j(s)))ds+

j∑

i=1

qd(φ(t(i), i − 1))

As expected, J (ζ) = lim
t+j→∞

J̃φ(t, j) is upper bounded by

V (ξ) = ξTPξ.

B. Linear-Quadratic Problems with Periodic Jumps

Consider the following hybrid system with state x =
(xp, τ) :∈ Rn × [0, T ]

HP





ẋp = Acxp

τ̇ = 1

}
x ∈ CP := Rn × [0, T ]

x+
p = Adxp

τ+ = 0

}
x ∈ DP := R

n × {T }

where Ac, Ad ∈ Rn×n, and T > 0. We have the following

result.

2Code at https://github.com/HybridSystemsLab/HybridCostLQConic
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Fig. 1: The flow (grey) and jump (white) sets, and a trajectory

from the initial condition ξ = (2, 6) (red ×) for the system

HC in Example 1.

0 2 4 6 8 10 12 14

0

20

40

60

80

100

t [sec]

V (ξ)

Fig. 2: The evolution of the function J̃φ in Example 1.

Proposition 3. Let A = {0} × [0, T ], ξ = (ξp, ξτ ) ∈ Rn ×
[0, T ], x 7→ qc(x) := xTpQcxp, and x 7→ qd(x) := xTpQdxp,

where Qc, Qd ∈ S
n
+, and x = (xp, τ). Furthermore, define

Ψ(τ) := eH(τ−T ) =

(
ψ1,1(τ) ψ1,2(τ)
ψ2,1(τ) ψ2,2(τ)

)
∀τ ∈ [0, T ]

with

H :=

(
Ac 0
−Qc −AT

c

)

Assume that there exists X ∈ Sn+ such that

X −AT

de
AT

cTXeAcTAd = AT

dψ2,1(0)e
AcTAd +Qd (18a)

and define for each τ ∈ [0, T ]

P (τ) =
(
ψ2,1(τ) + e−AT

c(τ−T )X
)
e−Ac(τ−T ) (18b)

Then

J (ξ) = ξTpP (ξτ )ξp (19)

Sketch of the proof. First notice that due to the structure of

H , it is straightforward to check that for each τ ∈ [0, T ]

Ψ(τ) =

(
eAc(τ−T ) 0

ψ2,1(τ) eA
T

c(T−τ)

)
(20)

for some τ 7→ ψ2,1(τ). Thanks to [19, Theorem 2.1] and due

to the structure of Ψ outlined in (20), it follows that [0, T ] ∋
τ 7→ P (τ) in (18b), which is continuously differentiable on

(0, T ), is the unique solution to the following final value

problem:

d

dτ
P (τ) = −He(AcP (τ)) −Qc ∀τ ∈ (0, T ) (21a)

P (T ) = X (21b)

Moreover, it can be proven that for each τ ∈ [0, T ], P (τ) ∈
Sn+. Define CP ∋ x 7→ V (x) := xTpP (τ)xp and observe that,

due to P ([0, T ]) ⊂ Sn+, V is positive definite with respect to

A on CP . For all x ∈ CP

〈∇V (x), Acx〉 = xTp

(
He(P (τ)Ac) +

d

dτ
P (τ)

)
xp

hence, thanks to (21a), the latter gives

〈∇V (x), Acx〉 = −xTpQcxp ∀x ∈ CP (22)

which corresponds to (10a). Additionally, for all x ∈ DP ,

one has

V (Adx)− V (x) = xTp(A
T

dP (0)Ad −X)xp (23)

By substituting the expression of P (0) given by (18b) into

(23) and by using (18a), one gets

V (Adx) − V (x) = −xTpQxp x ∈ DP ∀x ∈ DP

(24)

which corresponds to (10b). At this stage, since Qc and

Qd are positive definite and maximal solutions to HP are

complete, by [9, Theorem 3.18], (22)–(24) imply that maxi-

mal solutions to HP converge to A. Therefore, by invoking

Proposition 1, (22) and (24) give (15) and the result is

established.

Remark 4. It is worthwhile to observe that (21a) is a

differential Riccati equation3. The fact that our approach

when specialized to the case of linear hybrid systems with

periodic jumps leads to a differential Riccati equation is

consistent with linear quadratic control theory. In particular,

from linear quadratic control theory (see, e.g., [13, Chapter

6.1.3]), it is well-known that the solution P : [0, T ] → Sn+

to (21) is such that for any solution ϕ to ẋ = Acx with

ϕ(0) = ξp and any θ ∈ [0, T ], one has

ξTpP (θ)ξp =

∫ T

θ

ϕ(s)TQcϕ(s)ds + ϕT(T )P (T )ϕ(T ) (25)

Therefore, Proposition 3 establishes a direct relationship

between the considered hybrid cost evaluation problem and

a specific continuous-time finite-horizon linear quadratic

3A similar definition for the Lyapunov function appeared in [8, Example
26], though no cost evaluation is considered therein.
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cost evaluation problem. In particular, by comparing (25)

with (19), Proposition 3 enables to conclude that, for any

(ξp, ξτ ) ∈ CP , the cost associated to the solutions to HP

with respect to the “hybrid” cost (2), with qc and qd are

quadratic functions, coincides with

∫ T

ξτ

ϕ(s)TQcϕ(s)ds+ ϕT(T )P (T )ϕ(T ) (26)

where for all t ∈ (0, T ), ϕ̇(t) = Acϕ(t), ϕ(0) = ξp, and the

terminal-cost matrix X is selected as in (18a).

0 2 4 6 8 10 12 14

0

1

2

3

4

5

6

t [sec]

V (ξ)

Fig. 3: The evolution of the function J̃φ in Example 2.

Example 2. Consider the following data for HP :

Ac =

(
1 1
0 0

)
, Ad =

(
1.0 0
−2.0 0

)
, T = 1

Solving (18a) in Matlab R© yields4 X ≈

(
19.26 0
• 1

)
. In

Fig. 3, we report the evolution of the function

(t, j) 7→ J̃φ(t, j) :=

∫ t

0

qc(φ(s, j(s)))ds +

j∑

i=1

qd(φ(t(i), i − 1))

with φ ∈ SHP
(ξ) and ξ = (0.2, 0, 0). As expected

J (ξ) = lim
t+j→∞

J̃φ(t, j) = V (ξ)

IV. CONCLUSION

In this paper we addressed cost evaluation problems for

hybrid inclusions in the framework of [9]. The results are

obtained by establishing a connection between a general

hybrid cost functional and a Lyapunov like function. Suf-

ficient conditions for exact cost evaluation are provided.

Additionally, in some applications of relevant interest, our

results have been specialized to get constructive tools for

cost evaluation.

Future research directions include the extension of the

proposed approach to hybrid optimal control. Moreover, the

extension of the proposed approach to hybrid dynamical

games in the spirit of [11] is part of our current research.

4Code at https://github.com/HybridSystemsLab/HybridCostLQPeriodic
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