
Hybrid Regional Stabilization of Linear Systems with Actuator

Saturation and Multi-Rate Samplers

Francesco Ferrante, Ricardo G. Sanfelice, and Sophie Tarbouriech

Abstract— Regional stability analysis of linear systems with
multi-rate samplers and actuator saturation is studied. A hybrid
controller is used to perform a fusion of measurements sampled
at different times. In between sampling events, the controller
behaves as a copy of the plant. When a new measurement is
available, the controller state undergoes a jump. The resulting
system is analyzed in a hybrid system framework. Sufficient
conditions in the form of matrix inequalities are given to
determine estimates of the basin of attraction of the closed-loop
system. Finally, the effectiveness of the proposed methodology
is shown in an example.

I. INTRODUCTION

Control of sampled-data systems has been attracting the

attention of researchers for a long time and its interest is

still vivid in the community as pointed out by the recent

survey [1]. Capturing the effect of sampled-data information

in control loops is indeed fundamental in addressing the

challenges posed by modern engineered systems in which

the use of embedded systems and communication networks is

central. One of the most investigated aspects in the literature

of sampled-data systems pertains to the study of aperiodic

sampled-data systems, that is systems in which the exchange

of information from the plant to the controller happens in an

intermittent aperiodic fashion; see for example [2], [3], just

to cite a few. In fact, aperiodic sampled-data systems may

be used to capture different phenomena occurring in data

networks as dropouts, sampling jitter, etc; see [1].

A common assumption in sampled-data control consists

of considering synchronous sampling of different variables.

However, in certain applications due to technological con-

straints, some variables may happen to be measured with a

different sampling-rate than others, making the assumption

of synchronous sampling restrictive; see, e.g., [4]. This need

promoted the development of new tools devoted to the

analysis of multi-rate control systems; see [5], [6].

Another limitation that is naturally present in actual con-

trol systems concerns to actuator saturation. The study of
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saturated control systems is by now a very mature research

area as testified by the large amount of publications in

this field [7], [8]. Many approaches have been proposed

in the literature to analyze the effect of actuator saturation

in (single-rate) sampled-data control systems; see [9], [10],

[11]. However, to the best of our knowledge, no results are

found in the literature to deal with actuator saturation in a

multi-rate setting.

To fill this gap, in this paper, building on the model-

based controller architecture presented in [12], originally

proposed for single-rate non-saturated linear systems, we

propose sufficient conditions for regional stability analysis

of linear systems in the presence of actuator saturation and

multi-rate samplers. The approach we propose is enabled by

the hybrid systems framework in [13]. Sufficient conditions

in the form of matrix inequalities are given to characterize

estimates of the basin of attraction of the closed-loop system.

Semidefinite programming is used to reduce the conservatism

of such estimates.

The remainder of this paper is structured as follows.

Section I-A presents some preliminaries on hybrid systems.

Section II presents the problem we solve and the adopted

modeling approach. Section III is dedicated to the main

results. Section IV shows the effectiveness of the proposed

approach in a numerical example. Due to space constraints

proofs will be published elsewhere.

Notation: The set N is the set of positive integers including zero,

the set N>0 is the set of strictly positive integers, R≥0 represents

the set of nonnegative real scalars, Rn×m represents the set of the

n×m real matrices, and Sn
+ is the set of n×n symmetric positive

definite matrices. The identity matrix is denoted by I, whereas

the null matrix is denoted by 0. For a matrix A ∈ R
n×m, AT

denotes the transpose of A, A(i) the i-th row of A, AT

(i) the i-th

row of AT, and He(A) = A + A
T

. For two symmetric matrices,

A and B, A > B, A ≥ B mean that A − B is, respectively,

positive definite and positive semidefinite. In partitioned symmetric

matrices, the symbol • stands for symmetric blocks. The matrix

diag{A1, A2, . . . , An} :=
⊕n

i=1 An is the block-diagonal matrix

having A1, A2, . . . , An as diagonal blocks. For a vector x ∈ R
n,

|x| denotes the Euclidean norm and for a matrix A ∈ R
n×n, |A|

denotes the Euclidean induced-norm. Given two vectors x, y, we

denote (x, y) = [xT yT]T. For two vectors x, y ∈ R
n, x � y

means that the components of x − y are nonnegative. Given a

vector x ∈ R
n and a closed set A, the distance of x to A is

defined as |x|A = infy∈A |x − y|. For any function z : R → R
n,

we denote z(t+) := lims→t+ z(s). Given P ∈ Sn
+ and c > 0,

then E(P, c) := {x ∈ R
n : xTPx ≤ c}. Given a set S, we denote



coS the convex-hull of S. The symbol × denotes the Cartesian

products of two sets, while given sets S1, S2, . . . , Sn, we denote

×n

i=1
Si = S1 × S2 × · · · × Sn. Given two sets X ⊂ R

n+m and

Y ⊂ R
n, ΠY (X) := {x ∈ Y : ∃y ∈ R

m s.t. (x, y) ∈ X}.

A. Preliminaries on Hybrid Systems

We consider hybrid systems with state x ∈ R
nx of the

form

H

{
ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D

In particular, we denote the function f : Rnx → R
nx as the

flow map, C ⊂ R
nx as the flow set, the set-valued map

G : Rnx ⇒ R
nx as the jump map, and D ⊂ R

nx as the

jump set.

A set E ⊂ R≥0 × N is a hybrid time domain if it is the

union of a finite or infinite sequence of intervals [tj , tj+1]×
{j}, with the last interval (if existent) of the form [tj , T )
with T finite or T = ∞. Given a hybrid time domain E, we

denote supj E = sup{j ∈ N : ∃t ∈ R≥0 s.t. (t, j) ∈ E}.

A function φ : domφ → R
nx is a hybrid arc if: domφ

is a hybrid-time domain and φ(·, j) is locally absolutely

continuous for each j. A hybrid arc φ is a solution to H if it

satisfies the dynamics of H; see [13] . A solution φ to H is

maximal if it cannot be extended and is complete if domφ is

unbounded. In particular, given S ⊂ R
nx , we denote SH(S)

the set of maximal solutions φ to H with φ(0, 0) ∈ S, if S
is omitted, φ ∈ SH means that φ is a maximal solution to

H; see [13] for more details.

II. PROBLEM STATEMENT

A. System description

We consider continuous-time linear time-invariant systems

with saturated actuators of the form

P

{
ẋp = Axp + Bu
u = sat(v)

(1)

where xp ∈ R
np is the plant state, u ∈ R

nu is the plant input

and v ∈ R
nu is the actuator input. The function v 7→ sat(v)

is the symmetric decentralized saturation function with sat-

uration levels v̄1, v̄2, . . . , v̄nu
∈ R>0, whose components for

each v ∈ R
nu are defined as

sat(v)i = sat(vi) := min(|vi|, v̄i) sign(vi) i = 1, 2, . . . , nu

(2)

Moreover, A and B are constant matrices of appropriate

dimensions.

As in [14], assume that sporadic and asynchronous mea-

surements of the components of the plant state xp are

available. More precisely, assume that the components of

the plant state xp are clustered into ns ≤ np subvectors

x
(1)
p ∈ R

np1 , x
(2)
p ∈ R

np2 , . . . , x
(ns)
p ∈ R

npns , i.e., xp =

(x
(1)
p , x

(2)
p , . . . , x

(ns)
p ) and that the measure of each x

(i)
p is

available only at some time instances t
(i)
k , k ∈ N, not known

a priori. Let, for each i ∈ N := {1, 2, . . . , ns}, Mi ⊂ R≥0

be the set of measurement times of x
(i)
p , i.e., Mi = {t

(i)
k }∞k=0,

let M =
⋃ns

i=1 Mi the set of all measurement times, and let

K ∈ R
nu×np be a given control gain. Moreover, suppose

that the arrival of a new measurement can be instantaneously

detected and that the plant model is known1. Then, inspired

by [12], we want to study the stability of the closed-loop

system obtained by interconnecting the following controller

with state jumps to the plant (1)

K





η̇(t) = Aη(t) +B sat(Kη(t)) t /∈ M

η(i)(t+) = x
(i)
p (t) t ∈ Mi, i ∈N

ζ(t) = Kη t ∈ R≥0

(3)

In particular, η ∈ R
np is the controller state, ζ ∈ R

nu is the

controller output and the interconnection of the controller

and the plant is realized by setting v = ζ.

The operating principle of the controller in (3) is as

follows. The arrival of a new measurement x
(i)
p for some

i ∈ N triggers an instantaneous jump in the controller

state. Specifically, at each jump, the measured vector x
(i)
p

is instantaneously stored in η(i). If different components of

xp are measured simultaneously, then all the corresponding

components of η get updated accordingly. Then, in between

consecutive measurements, η is continuously updated ac-

cording to continuous-time dynamics so to mimic the plant

dynamics and its value is continuously used in place of the

plant state x
(i)
p in a static state-feedback controller scheme.

It appears clear that, as long as the sampling events occur

sufficiently often, the controller state η provides an accurate

estimate of the plant state, which in turn suggests that closed-

loop stability should be preserved. In particular, we consider

the following assumption on the event times:

Assumption 1: For each i ∈ N , the sequence {t
(i)
k }∞k=1 is

strictly increasing and unbounded and there exist two positive

real scalars T
(i)
1 ≤ T

(i)
2 such that

0 ≤ t
(i)
1 ≤ T

(i)
2

T
(i)
1 ≤ t

(i)
k+1 − t

(i)
k ≤ T

(i)
2 ∀k ∈ N

(4)

△
Remark 1: The lower bound in condition (4) prevents the

existence of accumulation points in the sequences {t
(i)
k }∞k=1

and hence avoids the existence of Zeno behaviors, which

are typically undesired in practice. In fact, for each i =

1, 2, . . . , np, T
(i)
1 defines a strictly positive minimum time

in between consecutive measurements of x
(i)
p . Furthermore,

for each i = 1, 2, . . . , np, T
(i)
2 defines the maximum time in

between consecutive measurements of x
(i)
p .

Remark 2: Due to asynchronous measurements of the

plant state components, as opposed to [12], one cannot

assume the controller state to converge in finite-time to the

plant state and this renders the analysis of the closed-loop

system more challenging. Nonetheless, it is worthwhile to

observe that for each initial condition (x0, η0) such that

x0 = η0, the resulting trajectories (φp, φc) of the closed-

loop system are such that φp = φc. Thus, for such initial

1Although our construction relies on the model of the plant, closed-
loop asymptotic stability is preserved in the presence of small parametric
uncertainties. Due to space constraints, robustness issues are not discussed
in this paper and will be presented elsewhere.



conditions the effect of the sampling is totally compensated

by the controller. On the other hand, in real-world settings,

the (unavoidable) presence of plant uncertainties renders the

occurrence of such a behavior quite unlikely.

By following a similar approach as in [15], our goal is

to provide sufficient conditions for local asymptotic stabil-

ity for the closed-loop system obtained by interconnecting

controller (3) with plant (1). More precisely, the problem we

solve is as follows:

Problem 1: Given the closed-loop system obtained by

interconnecting controller (3) with the plant (1) via v = ζ,

provide an estimate of the basin of attraction for the origin

of the closed-loop system.

By interconnecting controller (3) with plant (1) via v = ζ,

by defining η̃ := xp − η, and by denoting xcl = (xp, η̃), the

closed-loop system is modeled by the following dynamical

system with jumps:




ẋcl(t) = Aclxcl(t) +Bcl dz (Kclxcl(t)) t /∈ M

xcl(t
+)=

(
I 0

XM(t) 0

)
xcl(t) t ∈ M

(5)

where

Acl :=

(
A+BK −BK

0 A

)

Bcl :=

(
B
0

)
, Kcl :=

(
K −K

)

M ∋ t 7→XM(t)=diag{X
(1)
M1

(t), X
(2)
M2

(t), . . . , X
(ns)
Mns

(t)}
(6)

where for each t ∈ M, i ∈ N

X
(i)
Mi

(t) =

{
0npi

×npi
if t ∈ Mi

Inpi
elsewhere

and for each s ∈ R
nu , s 7→ dz(s) := sat(s)− s.

B. Hybrid modeling

The fact that the closed-loop system experiences jumps

when a new measurement is available suggests that the

dynamics of the closed-loop system (5) can be described

via a hybrid system. We provide a hybrid model in the

framework in [13] that captures the behavior due to each

possible evolution generated by any sequence {t
(i)
k }∞k=1, for

i ∈ N , satisfying (4). This approach leads to a model

with nonunique solutions allowing one to establish a strong

result for all family of sequences {t
(i)
k }∞k=1, for i ∈ N ,

satisfying (4). The proposed approach requires to model

the hidden time-driven mechanism triggering the jumps of

the controller. To this end, similarly as in [16], we add ns

timer variables τ1, τ2, . . . , τns
to keep track of the duration

of flows and to trigger jumps according to the mechanism

in (5). To accomplish that, we make τ1, τ2, . . . , τns
decrease

as ordinary time t increases and, whenever τi = 0 for some

i ∈ N , reset it to any point in [T
(i)
1 , T

(i)
2 ], so as to enforce

(4). In particular, define τ := (τ1, τ2, . . . , τns
)

T :=
ns

×
i=1

[0, T
(i)
2 ]

and for all i ∈ N , τ ∈ T

Gτi(τ) :=
{
χ ∈ R

ns : χi ∈ [T
(i)
1 , T

(i)
2 ], ∀k∈N \{i}, χk = τk

}

(7)

Then, we consider the following dynamics for τ

τ̇ = −1ns
τ ∈ T

τ+ ∈
⋃

i∈{k∈N : τ∈Dk}
Gτi(τ) τ ∈ D̂τ

(8)

where for each i ∈ N

Di := {τ ∈ T : τi = 0} D̂τ :=
⋃

i∈N

Di

Let x := (xcl, τ) ∈ R
2np × T be the vector state. We define

for each x ∈ C := R
2np × T , where C is the flow set, the

flow map as

f(x) :=

(
Aclxcl +Bcl dz(Kclxcl)

−1ns

)

For each i ∈ N and η̃ ∈ R
np , define

Ji(η̃) = diag{E
(i)
1 , E

(i)
2 , . . . , E(i)

ns
}η̃ ∀i ∈ N

where for each i, j ∈ N

E
(i)
j =

{
0npj

×npj
if i = j

Inpj
elsewhere

and let for every (η̃, τ) ∈ R
np × D̂τ

J (η̃, τ) :=
⋃

i∈{k∈N : τ∈Dk}

(Ji(η̃)×Gτi(τ))

We define for each x ∈ D := R
2np × D̂τ , where D is the

jump set, the jump map as

G(x) = (xp,J (η̃, τ)) (9)

Therefore, the dynamics of the closed-loop system can be

represented by following hybrid system

Hcl

{
ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D

(10)

An important question that needs to be addressed to guar-

antee the robustness of the closed-loop system with respect

to small perturbations, it is whether Hcl is well-posed; see

[13] for more details and consequences of well-posedness.

A positive answer to this question is given by the following

result.

Lemma 1: The hybrid system (5) is well-posed. �

Remark 3: Notice that when τ ∈ Di ∩ Dj for some

i 6= j ∈ N , then, only one component of the vector τ
undergoes a change and multiple consecutive jumps occur.

This phenomenon directly follows from having defined an

outer semicontinuous jump map.

Concerning the existence of solutions to system Hcl, it

is straightforward to check that for every initial condition

φ(0, 0) ∈ C ∪ D, the corresponding maximal solution φ
to Hcl exists and is complete, i.e., sup domφ = ∞.

Moreover, the definition of the data of Hcl, similarly as

in [16], ensures that for each solution, at most ns jumps



can occur consecutively without flowing. Such a property,

along with (4), ensures that for every maximal solutions

φ to Hcl and each (t, j) ∈ domφ such that (t, s) ∈
domφ for some s ∈ {j + 1, j + 2, . . . , j + ns}, one

has
(
[t, t+min{T

(1)
1 , T

(2)
1 , . . . , T

(ns)
1 }]× {s}

)
⊂ domφ.

Essentially, the domain of the solutions to Hcl, manifests

an average dwell-time property, with dwell-time τD =

min{T
(1)
1 , T

(2)
1 , . . . , T

(ns)
1 } and offset N0 = ns, which for

all (t, j) ∈ domφ implies τDj ≤ t + nsτD; see, e.g., [13,

Example 2.15]. Such a property imposes a strictly positive

uniform lower bound on the length of every flow interval,

preventing from the existence of Zeno solutions.

To solve Problem 1, our approach is to determine sufficient

conditions to ensure that the following set 2

A = {0} × T (11)

is asymptotically stable for Hcl. In particular, in this work,

we consider the following notion of asymptotic stability for

a compact set:

Definition 1 (Local asymptotic stability [13]): Let A ⊂
R

2np+ns be compact. The set A is said to be

• stable for Hcl if for every ǫ > 0 there exists δ > 0
such that for every φ ∈ SHcl

(A + δB), one has that

|φ(t, j)|A ≤ ǫ for every (t, j) ∈ domφ;

• locally attractive for Hcl if there exists µ > 0 such that

every maximal solution φ to Hcl with |φ(0, 0)|A ≤ µ
is complete and such that

lim
t+j→∞

|φ(t, j)|A = 0

• locally asymptotically stable for Hcl if both stable and

locally attractive.

Definition 2 (Basin of attraction [13]): Let A ⊂
R

2np+ns be locally asymptotically stable for Hcl. The

basin of attraction of A is the set of points BA ⊂ R
2np+ns

such that each φ ∈ SHcl
(BA) is complete and converges to

A.

In light of the above definitions, it turns out that Problem 1

can be solved by determining the basin of attraction of A
defined in (11). On the other hand, the determination of such

a set is a difficult problem and cannot be solved in general. To

overcome this drawback, in the following section we provide

sufficient conditions in the form of matrix inequalities to

determine subsets of the basin of attraction of A. Building

on such conditions, we show how semidefinite programming

techniques can be used to reduce the conservatism of the

proposed estimates.

III. MAIN RESULTS

A. Sufficient Conditions

In this section we provide sufficient conditions for the

solution to Problem 1. To accomplish this task, we pursue

a Lyapunov approach. In particular, we state sufficient con-

ditions in the form of matrix inequalities guaranteeing local

2By the definition of the system Hcl and of the set A, for every x ∈
C ∪ D ∪G(D), |x|A = |(xp, η̃)|.

asymptotic stability of the set A in (11) for Hcl and providing

an estimate of the basin of attraction of A. The derivation of

such a result builds from [13, Corollary 8.4, Corollary 8.9]

and on the generalized sector condition for the deadzone

nonlinearity in [17].

Theorem 1 (Local asymptotic stability): Let W ∈ S
np

+ ,

R1 ∈ S
np1
+ , R2 ∈ S

np2
+ , . . . , Rns

∈ S
npns

+ , S ∈ Dnu

+ ,

σ1, σ2, . . . , σns
∈ R>0, Z, J ∈ R

nu×np . Assume that


W 0 ZT

(i)

0
⊕ns

j=1 Rj JT

(i)

• •
v̄2
i

µ̄


 ≥ 0 i = 1, 2, . . . , nu (12)

and that for each τ ∈ T


He((A+BK)W ) −BK B −WKT − ZT

• He(R(τ)A) − ΣR(τ) KT − JT

• • −2S


<0

(13)

where Σ :=
⊕ns

j=1 σj and for all τ ∈ T , R(τ) :=⊕ns

j=1 e
σjτjRj . Define

T ∋ τ 7→ P̂ (τ) := W−1 ⊕R(τ) (14)

Then, set A defined in (11) is locally asymptotically stable

for Hcl and the set

Eµ̄ :=
{
x ∈ C : xTclP̂ (τ)xcl ≤ µ̄

}

is included in the basin of attraction of A. �

B. Numerical Issues

Theorem 1 turns the solution to Problem 1 into the

feasibility problem of some matrix inequalities. On the other

hand, the search for feasible solutions to (13) is quite

challenging since such conditions need to be checked over

the box T . To overcome this problem, next we show that

(13) can be turned without any loss into a finite set of matrix

inequalities.

Proposition 1: Let W ∈ S
np

+ , R1 ∈ S
np1
+ , R2 ∈

S
np2
+ , . . . , Rns

∈ S
npns

+ , S ∈ Dnu

+ , σ1, σ2, . . . , σns
∈ R>0,

and Z, J ∈ R
nu×np be given. The following two items are

equivalent

(i) (13) holds

(ii) let Q :=
⊕ns

i=1 Ri

N (Ψ):=



He((A +BK)W ) −BK B −WKT − ZT

• He(QΨA)− ΣQΨ KT − JT

• • −2S


<0

∀Ψ ∈

{
ns⊕

i=1

ψi : ψi ∈ {1, eσiT
(i)
2 }

}

(15)

�

Another issue that needs to be tackled in Theorem 1 is

related to the fact that the resulting estimate of the basin of

attraction is a subset of C, hence intrinsically dependent on

the “artificial” variable τ . Indeed, from a practical standpoint,

one is interested in dealing with sets of initial conditions for

the closed-loop system (5). The result given next allows one

to achieve this goal.



Corollary 1: Assume that there exist W ∈ S
np

+ , R1 ∈
S
np1
+ , R2 ∈ S

np2
+ , . . . , Rns

∈ S
npns

+ , S ∈ Dnu

+ ,

σ1, σ2, . . . , σns
∈ R>0, and Z, J ∈ R

nu×np such that (12)–

(13) hold. Let for all τ ∈ T , P̂ (τ) be defined as in (14)

and

τ⋆ := (T
(1)
2 , T

(2)
2 , . . . , T

(ns)
2 )

Then, the set E(P̂ (τ⋆), µ̄) × T is included in the basin of

attraction of A for (10). �

Remark 4: Having an estimate of the basin of attraction

that is “τ -independent” allows one to define convenient size

criteria that can be conveniently exploited in an optimization

setup to optimize the size of the resulting set. This aspect is

shown in the subsequent section.

Remark 5: It is interesting to notice that the “size” of the

estimate of the basin of attraction provided by Corollary 1

depends on the vector τ⋆. In particular, one can remark

that as τ⋆ goes to infinity, E(P̂ (τ⋆), µ̄) approaches the

origin while as τ⋆ goes to zero, E(P̂ (τ⋆), µ̄) approaches

E(P̂ (0), µ̄). Thus, on the one hand, E(P̂ (0), µ̄) provides the

largest estimate of the basin of attraction achievable via our

methodology, on the other hand, increasing τ⋆ tends to give

rise to smaller estimates of the basin of attraction.

C. Optimization Issues

With the objective of reducing the conservatism of the

proposed analysis, Problem 1 can be formalized as a suitable

optimization problem. In particular, similarly as in [18], [7],

[15], the following optimization problem can be considered:

Problem 2 (Estimation of the basin of attraction):

“Maximize” the set E(P̂ (τ⋆), µ̄).
To properly formulate the above optimization problem,

one needs to define an adequate measure for the ellip-

soidal set E(P̂ (τ⋆), µ̄). To this aim, different criteria are

proposed in the literature; see [19]. In this work, we consider

trace( 1
µ̄
P̂ (τ⋆)) = 1

µ̄
trace(W−1+R(τ⋆)) as a size criterion.

In particular, larger values of trace( 1
µ̄
P̂ (τ⋆)) are associated

to a smaller ellipsoid. Therefore, the objective consists of

minimizing 1
µ̄
trace(W−1+R(τ⋆)). On other hand, to avoid

dealing in the solution to the resulting optimization problems

with W−1 as a decision variable, one can consider the

following additional constraint
(
MW I

• W

)
≥ 0 (16)

which is equivalent to MW − W−1 ≥ 0. That allows

one to achieve the minimization of the considered objective

by minimizing the objective 1
µ̄
trace(MW + R(τ⋆)). By

setting µ̄−1 := δ, this leads to the following formulation

for Problem 2



minimize ω1δ + ω2 trace(MW +R(τ⋆))

s.t.

W > 0, Q > 0, (15), (16), S ∈ Dnu

+

W 0 ZT

(i)

0
⊕ns

j=1 Rj JT

(i)

• • δv̄2i


 ≥ 0 i = 1, 2, . . . , nu

where ω1, ω2 ∈ R>0 are tuning parameters.

Whenever the scalars σ1, σ2, . . . , σns
are selected, the

above optimization problem is a semidefinite program, i.e.,

an optimization problem with linear objective and linear

matrix inequality constraints. Therefore, the solution to this

problem can be efficiently obtained via numerical available

software; see [19]. On the other hand, the nonlinearities

involving the real numbers σi, for i = 1, 2, . . . , ns, are easily

manageable (at least when ns is small enough) in a numerical

scheme by treating these scalars as tuning parameters or by

selecting those via an iterative search.

IV. NUMERICAL EXAMPLE

Consider the example in [20], which is defined by the

following data:

A =

(
−0.8 −0.01
1 0.1

)
, B =

(
0.4 0.1

)T

K =
(
−1.2625 −1.2679

)

assume the control input is saturated with saturation level

ū = 1, and set T
(1)
1 = T

(2)
1 = 0.1, T

(1)
2 = 0.3, T

(2)
2 =

2.35× T
(1)
2 . By solving Problem 2 via a grid search for the

scalars σ1, σ2, one gets3:

W−1 =

(
0.0779 0.0629
0.0629 0.0558

)
, R1 = 0.041342, R2 = 0.018985

σ1 = 1.8, σ2 = 2.3, µ̄ = 2.1380

To better assess the conservatism of the estimate of the

basin of attraction (given by E(P̂ (τ⋆), µ̄) × T ), we pick

initial conditions for Hcl in U := (E(P̂ (τ⋆), µ̄) ∩ Y) × T ,

were Y := {(xp, η̃) ∈ R
2np : η̃ = xp}, i.e., we enforce

zero initial conditions for the controller (3). The projection

of U onto R
2 (the plant state space) is shown in Fig. 1

along with some trajectories for the plant state. In partic-

ular, let φ = (φxp
, φη̃, φτ1 , φτ2) be a solution to Hcl, in

this simulation we selected initial conditions of the form

φ(0, 0) = (x0, x0, T
(1)
2 , T

(2)
2 ), x0 ∈ R

2, and for each

(tj , j + 1) ∈ domφ

φτ1(tj , j + 1) =
T

(1)
2 − T

(1)
1

2
sin(tj) +

T
(1)
2 + T

(1)
1

2

φτ1(tj , j + 1) =
T

(2)
2 − T

(2)
1

2
sin(10tj) +

T
(2)
2 + T

(2)
1

2
(17)

In particular, observe that

(x0, x0, T
(1)
2 , T

(2)
2 ) ∈ E(P̂ (τ⋆), µ̄)× T

if and only if x0 ∈ ΠR2(U).
Fig.1 points out that for some initial conditions outside

the set E(P̂ (τ⋆), µ̄) × T the plant state diverges. On the

other hand, the conservatism of our approach is revealed by

the existence of converging trajectories from points outside

E(P̂ (τ⋆), µ̄)× T (x0 = (1.5, 4)). In Fig. 2, we reported the

3Numerical solutions to SDP problems are obtained in Matlab R© via
Mosek [21] thanks to YALMIP [22]. Simulations of hybrid systems are
performed in Matlab R© via the Hybrid Equations (HyEQ) Toolbox [23].
Code at https://github.com/HybridSystemsLab/IntermittentCtrlSatMrate

https://github.com/HybridSystemsLab/IntermittentCtrlSatMrate
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Fig. 1: The set U projected onto R
2 (dashed gray) and some trajectories of the plant

state: x0 = (−4, 2) (dash-dotted black), x0 = (−2, 4) (black dotted), x0 = (2, 4)
(solid black), x0 = (−2,−4) (gray solid), and x0 = (1.5, 4) (dashed black).
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Fig. 2: The evolution of the control input u from x0 = (−2, 4).

evolution of the control input when x0 = (−2, 4). The figure

emphasizes that, as foreseen through our methodology, de-

spite the saturation of the control input, asymptotic stability

is preserved.

V. CONCLUSION

Regional stability analysis of linear systems with multi-

rate samplers and actuator saturation was studied. The ap-

proach we proposed is able to provide explicit estimates for

the basin of attraction by the use of semidefinite program-

ming.

The results presented in this paper open the door to

several research directions. In particular, the extension of

these results to L2-external stability is currently an ongoing

work. Other valuable extensions of this work pertain to the

design of state estimators to address more realistic scenarios

in which the vector state is not fully measurable and the

analysis of the effect of plant uncertainties.
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