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ABSTRACT

In this paper, an energy-efficient and high-speed comparator-based

processing-in-memory accelerator (CMP-PIM) is proposed to effi-

ciently execute a novel hardware-oriented comparator-based deep

neural network called CMPNET. Inspired by local binary pattern fea-

ture extraction method combined with depthwise separable convo-

lution, we first modify the existing Convolutional Neural Network

(CNN) algorithm by replacing the computationally-intensive multi-

plications in convolution layers with more efficient and less com-

plex comparison and addition. Then, we propose a CMP-PIM that

employs parallel computational memory sub-array as a fundamen-

tal processing unit based on SOT-MRAM. We compare CMP-PIM

accelerator performance on different data-sets with recent CNN

accelerator designs. With the close inference accuracy on SVHN

data-set, CMP-PIM can get ∼ 94× and 3× better energy efficiency

compared to CNN and Local Binary CNN (LBCNN), respectively.

Besides, it achieves 4.3× speed-up compared to CNN-baseline with

identical network configuration.

1 INTRODUCTION

Convolutional Neural Network (CNN) has achieved world-wide at-

tention due to outstanding performance in image recognition over

large scale data-set, such as ImageNet [1]. For instance, ResNet

shows a prominent recognition accuracy of 96.43%, which is even

higher than human beings (94.9%). Following the trend, when go-

ing deeper in CNNs (e.g. ResNet employs 18-1001 layers), mem-

ory/computation resources and their communication have faced

inevitable limitations. This has been interpreted as “CNN power and

memory wall” [2], leading to development of different approaches

to improve CNN efficiency at either algorithm or hardware level.

The most widely explored algorithmic approaches to address

such issues of CNN involves using shallower models, quantizing

parameters [3], compressing pre-trained networks, and network

binarization [4]. It has been proven that convolution layers consume

up to 90% of computation time of CNNwith main purpose of feature

extraction, which brings up a question to the community: Does

there exist any other methods that can provide feature extraction

withmuch less computational complexitywhile having similar CNN

output accuracy? Following this trend, recently, some powerful

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’18, San Francisco, CA, USA

© 2018 ACM. 978-1-4503-5700-5/18/06. . . $15.00
DOI: 10.1145/3195970.3196009

texture descriptors like Gabor filter [5] and Local Binary Pattern

(LBP) [6] have been employed to perform feature extraction in CNN,

resulting in a similar output inference accuracy [7, 8].

In hardware domain, the separated memory and computing units

(GPU or CPU) interconnected via buses has faced serious chal-

lenges, such as long memory access latency, significant congestion

at I/Os, limited memory bandwidth, and huge leakage power con-

sumption for the neural network acceleration [9, 10]. To address

these concerns, processing-in-memory (PIM) platforms built on

non-volatile devices can be an alternative solution to integrate

memory and logic, leading to an energy-efficient information pro-

cessing platform [9, 11]. Resistive Random Access Memory (RRAM)

[9, 11], Spin-Transfer Torque Magnetic Random Access Memory

(STT-MRAM) [12] and recent Spin Orbit Torque Magnetic Random

Access Memory (SOT-MRAM) [13] are very promising candidates

to pave a novel path to realize such area and energy-efficient system

supporting in-memory processing due to features like non-volatility,

zero standby leakage, compatibility with CMOS fabrication process

and excellent integration density.

In this work, inspired by LBP feature extraction method com-

bined with depthwise separable convolution, we first modify the

existing CNN algorithm by replacing the computationally-intensive

multiplications in convolution layers with more efficient and less

complex comparison and addition (CMPNET) in Section 2. Then,

we present CMP-PIM as a comparator-based processing-in-memory

accelerator based on SOT-MRAM array to accelerate CMPNET in

Sections 3 and 4. Such processing-in-memory structure shows sig-

nificant improvements in terms of energy consumption and delay.

Accordingly, we evaluate CMP-PIM performance from both algo-

rithm and hardware implementation perspectives in Section 5.

2 CMPNET
2.1 Local Binary Pattern

LBP, as a computationally-efficient feature descriptor with remark-

able performance, has been extensively employed in various image

processing applications [6]. It scans through the entire image sim-

ilar as a convolutional layer, re-coding the image w.r.t the local

information correlations. As shown in Fig. 1a, the LBP descriptor

is formed by sequentially comparing the intensity of surrounding

pixels with central pixel (referred to as Pivot) in the selected image

patch. Neighbors with higher (/lower) intensity are assigned with

binary value of ‘1’(/‘0’) and finally the bit stream is sequentially

read and mapped to a decimal number as the feature value assigned

to the central pixel. This LBP encoding operation of central pixel

C(xc ,yc ) and its reformulated expression can be mathematically

described as [6, 7]:

LBP (C ) =
d−2∑
n=0

cmp(in, ic ) · 2
n =

d−2∑
n=1

σ ((+1 · in ) + (−1 · ic )) · 2
n (1)
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Figure 1: (a) Standard LBP encodingwith 3×3 descriptor size.

(b) Data flow diagram of depthwise separable convolution.

whered is the dimension of the LBP, in and ic represent the intensity

of nth neighboring- and central-pixel, respectively. cmp(in , ip ) = 1

when in ≥ ic , otherwise outputs 0. σ () is step function, where

σ (∗) = 1 if ∗ ≥ 0, otherwise σ (∗) = 0. This equation clearly shows

that the comparison of LBP can be equivalently performed by a

subtraction and step function. Furthermore, the subtraction can

be substituted by convolution with a fixed ternary kernel, which

is defined in this work as a convolution kernel with only one ‘+1’

and one ‘-1’, while the rest weight elements are zeros. An example

of convolution with the fixed ternary kernel is described in the

following equation:

image patch︷�����������������︸︸�����������������︷⎡⎢⎢⎢⎢⎣
in0 in1 in2
in3 ic in4
in5 in6 in7

⎤⎥⎥⎥⎥⎦
·

fixed ternary kernel︷����������︸︸����������︷⎡⎢⎢⎢⎢⎣
0 +1 0

0 −1 0

0 0 0

⎤⎥⎥⎥⎥⎦
= in1 − ic (2)

We define the sparsity of the convolution kernel as (#non-zero

weights/#total weights). In our case, the sparsity of such fixed

ternary kernel is 2/(kh ∗ kw), where kh and kw are the height

and width of kernel, respectively.

2.2 Depthwise Separable Convolution

Recently, the depthwise separable convolution [14] has been used

in many advanced neural networks such as MobileNet [15] and

Xception [16] to replace the standard convolutional layer, targeting

to reduce CNN computational cost. As a factorized form of normal

convolution, the depthwise separable convolution consists of two

parts: depth-wise convolution and 1x1 convolution (a.k.a. pointwise

convolution), as depicted in Fig. 1b. It is intriguing to notice that,

there exists many similarities between the structure of LBP and

depthwise separable convolution. First, both the comparison in

LBP and the depthwise convolution extract features based on the

local information. Second, both the weighted summation in LBP

and pointwise convolution create new representations through

linearly combining the extracted features. Based on this observation,

we propose to further integrate LBP feature extraction method

into depthwise separable convolution, using the introduced fixed

ternary kernel for depthwise convolution and inserting a binarized

activation function between depthwise convolution and pointwise
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Figure 2: Block diagram of CMPNET and its basic block.

convolution. It could greatly reduces the computational cost and

could be easily implemented in hardware as will be described later.

2.3 CMPNET: Comparator-based Network

As shown in Fig. 2, the proposed structure of CMPNET is built upon

the Residual Network (ResNet) [17], which composes an initial

inception block (3 × 3 spatial convolution 1, Batch-normalization

and ReLU), N basic blocks, one Average Pooling layer and Multi-

Layer perceptron block (MLP). As the vital part of CMPNET, the

basic block is constructed by a series of operations, including batch

normalization, depthwise convolution with fixed sparse kernel,

binarized activation function and pointwise convolution.

We have found that the incorporation of convolution with fixed

ternary kernel and step function is mathematically equivalent to

the comparison in Equation. 1,2. For the depthwise convolution

in CMPNET, we use a randomly generated group of fixed ternary

convolution kernels that will not be updated during training. Con-

sidering such fixed ternary kernel group is in the size of kh×kw×p,
for each kernel-slice (kh × kw), we randomly select two elements

and set them as +1 and -1, respectively. When such kernels perform

convolution over the chosen patch of the image, a subtraction is

equivalently calculated between two selected pixels. Then, com-

bining with the following binarized activation function, the com-

putations of two layers (i.e. depthwise convolution and binarized

activation function) can be converted into comparisons.

Unlike depthwise fixed ternary convolution kernels, the weights

of pointwise convolution layer are fully learnable during training.

More importantly, due to the inserted binarized activation function,

the input tensor of pointwise convolution layer only contains +1

and -1. Thus, the pointwise convolution can be implemented with

only addition/subtraction operations. Therefore, in CMPNET, for

both comparison and pointwise convolution operations, all the

Multiplication and Accumulation (MAC) operations within the

convolution layers are converted into computationally-efficient

comparison and addition/subtraction. In summary, the response of

basic block in CMPNET can be described as:

xt
l+1 =

p∑
s=1

σ ′

(
Ks
l
∗ BN (xs

l
)

)
· α t

l,s

=
p∑
s=1

cmp′
(
BN (xs

l,a ),BN (xs
l,b )

)
· α t

l,i

(3)

where s ∈ [p] and t ∈ [q] denote the input channel and output

channel, respectively. Ki is generated sparse binary convolution

kernel. l is the index of basic block in CMPNET, while p is the

1To avoid ambiguity, all the unspecified convolution layer are normal spatial convolu-
tion layer hereinafter. All the convolution kernel in this work has no bias term. All the
convolution operations will not reduce the tensor size through zero padding.



number of input channels of lth basic block. αl,i is the real value
weight learned from training. BN () is batch-normalization. σ ′() is

the modified step function, where σ ′(∗) = +1 if ∗ ≥ 0, otherwise

σ ′(∗) = −1. cmp′(m,n) = +1 whenm ≥ n, otherwise outputs -1. a
and b are the index the selected two pixels in one image channel.

We list the computational cost and memory cost of convolution

layer in both traditional CNN and proposed CMPNET as in Table 1.

It can be seen that CMPNET (with fixed ternary kernel and binarized

activation function) significantly reduces the hardware cost in both

computation and memory. Moreover, in order to successfully map

such algorithm to hardware, we adopt the quantization method

introduced in [3]. The detailed CMPNET algorithm accuracy in

pattern recognition will be presented in Section 5.1.

Table 1: Hardware cost of CNN and CMPNET.

Computational cost Memory

costMul–O(N 2) Add/Sub/Cmp–O(N )

CNN p · q · h ·w · kh · kw p · q · h ·w · kh · kw p · q · kh · kw

CMP-

NET
- p · h ·w · 2 + p · q · h ·w p · kh · kw + p · q

CMPNET

CNN
0

2 + q

q · kh · kw
≈

1

kh · kw

1

q
+

1

kh · kw

3 IN-MEMORY PROCESSING PLATFORM
Fig. 3a shows the presented PIM sub-array architecture based on

Spin-Orbit TorqueMagnetic RandomAccessMemory (SOT-MRAM).

This architecture could work in dual mode that perform both mem-

ory read-write and AND/OR/XOR logic operations. SOT-MRAM

device is a composite structure of Spin Hall Metal (SHM) and Mag-

netic Tunnel Junction (MTJ). The resistance of MTJ with parallel

magnetization in both magnetic layers (data-‘0’) is lower than that

ofMTJwith anti-parallel magnetization (data-‘1’). Each SOT-MRAM

cell is associated with the Write Word Line (WWL), Read Word

Line (RWL), Write Bit Line (WBL), Read Bit Line (RBL), and Source

Line (SL) to perform the following operations:

1) Memory Write: To write a data bit in any of the SOT-MRAM

cells (e.g. m2 in Fig. 3a), write current should be injected through

the SHM (Tungsten, β −W [18]) of SOT-MRAM. Therefore, WWL2

should be activated by the Row Decoder where SL2 is grounded.

Now, in order to write ‘1’(/‘0’), the voltage driver (V1) connected

to WBL1 is set to positive (/negative) write voltage. This allows

sufficient charge current flows from V1 to ground (/ground to V1)

leading to change of MTJ resistance.

2) Memory Read: For typical memory read, a read current flows

from the selected SOT-MRAM cell to ground, generating a sense

voltage at the input of SA, which is compared with memory mode

reference voltage (Vsense,P<Vref<Vsense,AP). This reference volt-

age generation branch is selected by setting the Enable values

(ENAND ,ENM ,ENOR )= (0,1,0). Now, if the path resistance is higher

(/lower) than RM , (i.e. RAP (/RP )), then the output of the SA pro-

duces High (/Low) voltage indicating logic ‘1’(/‘0’).

3) Computing Mode: Every two bits stored in the identical col-

umn can be selected and sensed simultaneously as depicted in

Fig. 3a, employing modified row decoder [10]. Then, the equiva-

lent resistance of such parallelly connected SOT-MRAMs and their

cascaded access transistors are compared with a programmable

reference by SA. Through selecting different reference resistances

(ENAND ,ENM ,ENOR ), the SA can perform basic in-memory Boolean

functions (i.e. AND and OR). The XOR logic can be realized with
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Figure 3: (a) In-memory processing sub-array based on SOT-

MRAM, (b) Monte Carlo simulation result of Vsense.

two SAs (AND and NOR logic) and CMOS NOR gate using Mod-

ified SA (MSA). As shown in Fig. 3a, the operation of such sense

circuit is determined by the control signals (ENAND ,ENM ,ENOR ),

while the desired result is acquired by the select signal (SEL) of

the output multiplexer. It is noteworthy that only one SA is used

during AND/OR/memory read operation, in order to reduce the

power consumption of sensing. To validate the variation tolerance

of sense circuit, we have performed Monte-Carlo simulation with

100000 trials. A σ = 5% variation is added on the Resistance-Area

product (RAP), and a σ = 10% process variation is added on the

TMR. The simulation result of sense voltage (Vsense) distributions

in Fig. 3b shows the sense margin of in-memory computing. In

this work, to avoid read failure (overlapping of Vsense distribution),

only two fan-in in-memory logic is used. Parallel computing/read

is implemented by using one SA per bit-line.

4 CMP-PIM ACCELERATOR ARCHITECTURE

In this section, we show that our proposed CMPNET can achieve

two significant objectives in hardware implementation: (1) Reduc-

ing the energy consumption of convolution layers through utilizing

efficient comparator-based computing, and (2) Accelerating the in-

ference task. As shown in Fig. 2, four main computational blocks of

CMPNET are first convolutional block (Inception), Basic Block, Pool-

ing and MLP. The architectural diagram of the proposed CMP-PIM

accelerator is shown in Fig. 4a consisting of Image and Kernel Banks,

SOT-MRAM-based computational sub-arrays and a Digital Process-

ing Unit (DPU) including three ancillary units (i.e. Quantizer, Batch

Normalization and Activation Function). This architecture can be

adjusted by Ctrl unit to process entire CMPNET. Assume Input

fmaps (I ) and Kernels (W ) are initially stored in Image Banks and

Kernel Banks of memory, respectively. As depicted in Fig. 4a, inputs

can be constantly quantized before mapping into computational

sub-arrays. However, quantized shared kernels can be utilized for

different inputs. This step is performed using DPU’s Quantizer and

then the results are mapped to computational sub-arrays (Fig. 4b).

For realization of bit-wise operations, the proposed computational

sub-array discussed in Section 3 is readily utilized such that ultra-

efficient and parallel in-memory AND-XOR operations required for

different blocks can be handled. We present in-memory magnitude

comparator and in-memory convolover to handle main operations

in CMPNET.
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4.1 In-Memory Magnitude Comparator

Comparison layer is the most critical component of the accelerator,

as it is responsible for the most iterative layer which takes up

the vast majority of the runtime of CMPNET. The unit must keep

high throughput and resource efficiency while handling different

input widths at run-time. While there are several designs for in-

memory equality comparator in literature [19, 20], to the best of our

knowledge, this work is the first proposing a magnitude comparator

using in-memory bit-wise operations.

The initial idea here is to use in-memory XOR to perform bit-wise

equality comparison fromMSB to LSB. As shown in Fig. 5a, Pivot (P )
and Input fmaps (Fj where j = 1, 2, 3, ...) are stored in consecutive

memory rows. The operation begins with bit-wise comparison (i.e.

XOR) of MSBs of P and one of the fmaps (F1 in Fig. 5a) and continues

towards LSBs. The result of ith bit comparison (Pi ⊕ Fj,i ) is used
as a determining factor for CMP-PIM’s Ctrl unit to take next step.

As tabulated in Ctrl decision and operation table (Table 2), when

XOR result is “0” (indicating that two bits are equal), next less

significant bit in two memory rows are selected for comparison

and this process stops when XOR result is “1” (inequality). When

inequality is detected, Pi content in memory array is read by Ctrl

unit. Now, if Pi =“1”(/“0”), it denotes P is greater (/less) than Fj .

Pi
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Figure 5: Realization of in-memory magnitude comparator

in CMP-PIM: (a) 1-bit, (b) 4-bit.
Inspired by the proposed 1-bit magnitude comparator, we initial-

ize the hardware with an optimization algorithm to further boost

its efficiency by performing n-bit in-memory comparison. Accord-

ing to required bit-width for parallel comparison (Nc � 2), both

pivot and input fmap can be split into Pr (= #bits
Nc

) portions. We

take Fig. 5b as an instance to intuitively illustrate this process. As

depicted, a 4-bit (Nc = 4 as an example) in-memory comparator

can be efficiently designed leveraging intrinsic parallel bit-wise

XOR operation by assigning multiple modified sense amplifier to

each computational sub-arrays of CMP-PIM accelerator [10]. In

this scheme, every four-bit (here Pr =2 considering 8-bit quantiza-

tion for P and F), starting with MSB of P and F , can be compared

concurrently. We further devise a 4-to-2 Priority Encoder in Ctrl

unit so that it can detect and encode the first inequality position

in two bit streams. Based on Fig. 5b, bit-wise XOR result ("0011")

is sent to P-Encoder to encode bit position of the first inequality

(here, "10" corresponding to 3rd bit position).

Table 2: Control decision and operation of Fig. 5.

Pi Fj,i ⊕ Ctrl Decision Operation

0 0 0 Continue and Compare Pi−1 ⊕ Fj,i−1
0 1 1 Stop and Read Read(Pi )
1 0 1 Stop and Read Read(Pi )
1 1 0 Continue and Compare Pi−1 ⊕ Fj,i−1

The rest of operations is similar to that of 1-bit magnitude com-

parator. Thus, comparator can efficiently compare input feature

maps with pivot to aggregate feature values characterizing the lo-

cal texture of an image. Clearly, number of Pr portions, which is

inversely proportional to Nc , directly impacts CMP-PIM acceler-

ator performance. The optimization of Pr will be analyzed later.

After comparison operations, the outputs need to be scaled by 1× 1

convolutional kernels, which can be efficiently implemented within

accelerator using Sum unit since no multiplication is needed as

fully discussed in previous section. Meanwhile, Sum unit combined

with DPU could be used to implement pooling layer.

4.2 In-Memory Bit-Wise Convolver

Besides comparison layer as the basic block, there are some other

layers in CMPNET, such as first convolutional layer (directly taking

image as inputs, not replaced by comparison layer) and MLP block.

Note that, MLP layers can be equivalently implemented by convo-

lution operations using 1× 1 kernels [3]. Thus, the rest layers could

be implemented all by convolution computation by exploiting logic

AND, bitcount, and bitshift as rapid and parallelizable operations [3].

Assume I is a sequence ofM-bit input integers (3-bit as an example

in Fig. 6) located in input fmap covered by sliding kernel ofW , such

that Ii ∈ I is an M-bit vector representing a fixed-point integer.

Now, we index the bits of each Ii element from LSB to MSB with

I W

I = W =

I W = 16I

W

I

= =

W

I

Figure 6: Realization of in-memory convolver in CMP-PIM.



m = [0,M − 1], such thatm = 0 andm = M − 1 are corresponding

to LSB and MSB, respectively. Accordingly, we represent a second

sequence denoted as Cm (I ) including the combination ofmth bit

of all Ii elements (shown by colored elliptic). For instance, C0(I )
vector consists of LSBs of all Ii elements “0110". ConsideringW as a

sequence of N -bit weight integers (3-bit, herein) located in sliding

kernel with index of n = [0,N − 1], the second sequence can be sim-

ilarly generated like Cn (W ). Now, by considering the set of allmth

value sequences, the I can be represented like I =
∑M−1
m=0 2mcm (I ).

Likewise,W can be represented likeW =
∑N−1
n=0 2ncn (W ). In this

way, the convolution between I andW can be defined as follow:

I ∗W =
M−1∑
m=0

N−1∑
n=0

2m+nbitcount (and (Cn (W ), Cm (I ))) (4)

As shown in data mapping step in Fig. 6, C2(W )-C0(W ) are

consequently mapped to the designated sub-array. Accordingly,

C2(I )−C0(I ) are mapped in the following memory rows in the same

way. Now, computational sub-array can perform bit-wise parallel

AND operation ofCn (W ) andCm (I ) as depicted in Fig. 6. The results
of parallel AND operations stored within sub-array will be accord-

ingly processed using Bit-Counter. Bit-Counter readily counts the

number of “1”s within each resultant vector and passes it to the

Shifter unit. As depicted in Fig. 6, “0001", as result of Bit-Counter

is left-shifted by 3-bit (×22+1) to “1000". Eventually, Sum unit adds

the Shifter unit’s outputs to produce the output fmaps.

5 PERFORMANCE EVALUATION

5.1 Accuracy

1) Experiment Setup: To demonstrate that CMPNET greatly saves

computation resources while preserving good inference accuracy

in comparison with CNN (as a baseline) and LBCNN, CMPNET is

trained to perform popular pattern recognition task. For impartial

comparison, all three networks have identical hyper-parameters

in number of basic blocks, number of hidden neurons, etc. Two

data-sets, MNIST and SVHN, are used to evaluate the performance

of both algorithm accuracy and hardware implementation. Beyond

that, the simulation is performed on Torch [21], a Matlab-like deep

learning framework, with single GPU (Nvidia 1080Ti) configuration.

We modify the code based on LBCNN2. For CMPNET, we set the

fixed ternary kernel size (kh × kw) as 7×7, basic block input-and

output channels (p,q) as 256, the number of basic blocks is 5 for

MNIST and 10 for SVHN, and 512 hidden neurons.

2) Experiment Result: According to the simulation results re-

ported in Fig. 7a, the accuracy of our proposed CMPNET is very

close to LBCNN in both full precision (32-bit) and quantized (8-bit

for all weight parameters in convolution and MLP layers) versions.

It shows the methodology that uses comparison layer to replace

convolution and ReLU function causes very small accuracy degra-

dation, but resulting in great hardware cost reduction. For MNIST

and SVHN data-sets, both CMPNET and LBCNN have shown lower

accuracy in comparison to CNN baseline. This accuracy gap could

be narrowed through fine tuning the parameters, such as increasing

the number of input and output channels, enlarging the dimension

of convolution kernel or increasing the depth of convolution neural

2LBCNN: https://github.com/juefeix/lbcnn.torch

network [22, 23]. We then show the corresponding computational

cost of convolutional layers in these three different neural network

architectures in Fig. 7b. CMPNET shows almost two orders lower

cost compared to CNN, which matches with the theoretical analysis

in Table 1. For the rest of evaluation, we follow 8-bit quantized

CMPNET.

Network MNIST SVHN

CNN 99.46% 95.01%

LBCNN 99.31% 94.02%

CMPNET

(32-bit float)
99.4% 92.8 %

CMPNET

(8-bit int)
99.4% 92.8 %

MNIST SVHN
10 6

10 7

10 8

10 9 CNN LBCNN CMPNET

(a) (b)

Figure 7: (a) Inference accuracy and (b) computational cost

on MNIST and SVHN.

5.2 Memory Storage

The efficiency of entire CMPNETmodel in terms of memory storage

required for processing MNIST and SVHN data-sets compared to

different CNNs is shown in Fig. 8a. It can be seen that CMPNET

can save large amount of memory compared to CNN and LBCNN.

Furthermore, memory storage reduction of convolutional layers

in LBCNN and CMPNET to CNN baseline is specifically reported

in Fig. 8b. Based on the results, 92.97% and 82.69% reduction is

achieved for SVHN and MNIST data-sets, respectively, compared to

CNN baseline. This reduction mainly comes from reduced number

of fixed ternary kernel and quantization as discussed in Sections

2.3 and 5.1, respectively.

(a) (b)
Figure 8: (a) Memory storage for processing SVHN and

MNIST data-sets in CNN, LBCNN and CMPNET, (b) Mem-

ory storage reduction of convolutional layers in LBCNN and

CMPNET to CNN baseline.

5.3 Energy and Delay

To perform energy and delay evaluation, the circuit level simula-

tion is initially implemented in Cadence Spectre with NCSU 45nm

CMOS PDK [24]. For modeling the SOT-MRAM cell, we incorporate

the Landau-Lifshitz-Gilbert (LLG) equation to model the free layer

magnetization dynamics and Non-Equilibrium Green’s Function

(NEGF) to calculate the SOT-MRAM resistance range (RP ,RAP ) with
similar device parameters as in [25]. Then, we simulate the real-

time resistance in the memory read/write paths w.r.t to the memory

configuration. Accordingly, we massively modified the system level

memory evaluation tool NVSim [26] to co-simulate with an in-

house developed C++ code based on circuit level results. Control

unit is designed through Verilog coding synthesized by Synopsys

Design Compiler with 45nm CMOS Standard Cell libraries. Based



on these cross-layer simulation results, CMP-PIM accelerator per-

formance is evaluated. Setting Nc to 4, Fig. 9a shows the normalized

log scale energy consumption of the proposed CMP-PIM acceler-

ator running CMPNET under SVHN data-set compared to CNN

and LBCNN designs. It can be seen that the proposed accelerator

demonstrates up to ∼ 94× and 3× better energy efficiency compared

to CNN and LBCNN counterparts, respectively. Clearly, replacing

the most computationally-expensive multiplication operations in

convolutional layers of LBCNN and CNNwith energy-efficient com-

parison operation (CMP) has yielded such significant improvement.

To further explore the performance of CMPNET, Fig. 9b relatively

compares inference delay per input image in above-mentioned

designs. As shown, CMPNET achieves ∼4.3× and 3× speed-up com-

pared to CNN and LBCNN designs, respectively. Fig. 9c explores

the trade-off between energy consumption and delay for inference

in SVHN data-set w.r.t Pr . It can be seen that the larger Pr is, less
delay and higher energy consumption are resulted. Based on this

plot, we determine the optimum performance of CMP-PIM where

Nc=4 and Pr=2.

N
c
=4

P
r
=2

(a) (b) (c)

Figure 9: (a) Normalized log scale energy consumption and

(b) Normalized Delay of CMP-PIM accelerator compared to

CNN and LBCNN [7] under SVHN data-set. (c) Trade-off be-

tween energy and delay w.r.t Pr .

5.4 Hardware Mapping Comparison

In this subsection, we compare the hardwaremapping results of sim-

ilar CNN-PIM accelerators implemented by two promising resistive

memories (i.e. RRAM [9] and SOT-MRAMherein) over two different

data-sets in terms of energy and area under 45nm technology node.

According to Table 3, among all the listed designs, CMP-PIM shows

the best energy efficiency in two data-sets. It consumes 87.54 µJ/img

for processing one image in SVHN data-set, which gets ∼ 10× better

energy efficiency compared to CNN-RRAM accelerator. In addition

to energy efficiency of SOT-MRAM compared to RRAM, such sig-

nificant improvement mainly comes from two sources: (1) RRAM

design employs matrix splitting due to intrinsically limited bit levels

of RRAM device so multiple sub-arrays should be simultaneously

used in even simplest computations and (2) RRAM-based crossbar

peripheral circuit such as buffers and DAC/ADC which contribute

to more than 85% of energy consumption [9, 11].

Table 3: Performance estimation of CNN accelerators

SVHN MNIST

Accelerator
Energy

(µJ/img)

Area

(mm2)

Energy

(µJ/img)

Area

(mm2)

CNN-RRAM [9] 850.42 0.09 18.39 0.054

BCNN-RRAM [9] 425.21 0.085 13.55 0.060

CMP-PIM- spin-CMOS 87.54 1.7 0.74 1.7

6 CONCLUSION
In this work, we proposed CMP-PIM as an energy-efficient and

high-speed comparator-based processing-in-memory accelerator

for neural network. CMP-PIM employed parallel computational

memory sub-array as a fundamental processing unit based on SOT-

MRAM design to process CMPNET. With almost similar inference

accuracy on SVHN data-set, the CMP-PIM can get to ∼ 94× and 3×

better energy efficiency compared to CNN and Local Binary CNN

(LBCNN), respectively. Besides, it achieves 4.3× speed-up compared

to CNN-baseline design with identical network configuration.
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