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ABSTRACT

In this paper, an energy-efficient and high-speed comparator-based
processing-in-memory accelerator (CMP-PIM) is proposed to effi-
ciently execute a novel hardware-oriented comparator-based deep
neural network called CMPNET. Inspired by local binary pattern fea-
ture extraction method combined with depthwise separable convo-
lution, we first modify the existing Convolutional Neural Network
(CNN) algorithm by replacing the computationally-intensive multi-
plications in convolution layers with more efficient and less com-
plex comparison and addition. Then, we propose a CMP-PIM that
employs parallel computational memory sub-array as a fundamen-
tal processing unit based on SOT-MRAM. We compare CMP-PIM
accelerator performance on different data-sets with recent CNN
accelerator designs. With the close inference accuracy on SVHN
data-set, CMP-PIM can get ~ 94X and 3X better energy efficiency
compared to CNN and Local Binary CNN (LBCNN), respectively.
Besides, it achieves 4.3x speed-up compared to CNN-baseline with
identical network configuration.

1 INTRODUCTION

Convolutional Neural Network (CNN) has achieved world-wide at-
tention due to outstanding performance in image recognition over
large scale data-set, such as ImageNet [1]. For instance, ResNet
shows a prominent recognition accuracy of 96.43%, which is even
higher than human beings (94.9%). Following the trend, when go-
ing deeper in CNNs (e.g. ResNet employs 18-1001 layers), mem-
ory/computation resources and their communication have faced
inevitable limitations. This has been interpreted as “CNN power and
memory wall” [2], leading to development of different approaches
to improve CNN efficiency at either algorithm or hardware level.
The most widely explored algorithmic approaches to address
such issues of CNN involves using shallower models, quantizing
parameters [3], compressing pre-trained networks, and network
binarization [4]. It has been proven that convolution layers consume
up to 90% of computation time of CNN with main purpose of feature
extraction, which brings up a question to the community: Does
there exist any other methods that can provide feature extraction
with much less computational complexity while having similar CNN
output accuracy? Following this trend, recently, some powerful
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texture descriptors like Gabor filter [5] and Local Binary Pattern
(LBP) [6] have been employed to perform feature extraction in CNN,
resulting in a similar output inference accuracy [7, 8].

In hardware domain, the separated memory and computing units
(GPU or CPU) interconnected via buses has faced serious chal-
lenges, such as long memory access latency, significant congestion
at I/Os, limited memory bandwidth, and huge leakage power con-
sumption for the neural network acceleration [9, 10]. To address
these concerns, processing-in-memory (PIM) platforms built on
non-volatile devices can be an alternative solution to integrate
memory and logic, leading to an energy-efficient information pro-
cessing platform [9, 11]. Resistive Random Access Memory (RRAM)
[9, 11], Spin-Transfer Torque Magnetic Random Access Memory
(STT-MRAM) [12] and recent Spin Orbit Torque Magnetic Random
Access Memory (SOT-MRAM) [13] are very promising candidates
to pave a novel path to realize such area and energy-efficient system
supporting in-memory processing due to features like non-volatility,
zero standby leakage, compatibility with CMOS fabrication process
and excellent integration density.

In this work, inspired by LBP feature extraction method com-
bined with depthwise separable convolution, we first modify the
existing CNN algorithm by replacing the computationally-intensive
multiplications in convolution layers with more efficient and less
complex comparison and addition (CMPNET) in Section 2. Then,
we present CMP-PIM as a comparator-based processing-in-memory
accelerator based on SOT-MRAM array to accelerate CMPNET in
Sections 3 and 4. Such processing-in-memory structure shows sig-
nificant improvements in terms of energy consumption and delay.
Accordingly, we evaluate CMP-PIM performance from both algo-
rithm and hardware implementation perspectives in Section 5.

2 CMPNET
2.1 Local Binary Pattern

LBP, as a computationally-efficient feature descriptor with remark-
able performance, has been extensively employed in various image
processing applications [6]. It scans through the entire image sim-
ilar as a convolutional layer, re-coding the image w.r.t the local
information correlations. As shown in Fig. 1a, the LBP descriptor
is formed by sequentially comparing the intensity of surrounding
pixels with central pixel (referred to as Pivot) in the selected image
patch. Neighbors with higher (/lower) intensity are assigned with
binary value of ‘1’(/°0’) and finally the bit stream is sequentially
read and mapped to a decimal number as the feature value assigned
to the central pixel. This LBP encoding operation of central pixel
C(x¢, ye) and its reformulated expression can be mathematically
described as [6, 7]:
d-2 d-2

LBP(C) = > cmp(in, ic) - 2" = > o((+1 - in) + (-1 -ic)) - 2" (1)
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Figure 1: (a) Standard LBP encoding with 3 X3 descriptor size.

(b) Data flow diagram of depthwise separable convolution.

where d is the dimension of the LBP, i, and i, represent the intensity
of n'™ neighboring- and central-pixel, respectively. cmp(in, ip)=1
when i, > i¢, otherwise outputs 0. o() is step function, where
o(x) = 1if % > 0, otherwise o(x) = 0. This equation clearly shows
that the comparison of LBP can be equivalently performed by a
subtraction and step function. Furthermore, the subtraction can
be substituted by convolution with a fixed ternary kernel, which
is defined in this work as a convolution kernel with only one ‘+1°
and one -1, while the rest weight elements are zeros. An example
of convolution with the fixed ternary kernel is described in the
following equation:

image patch fixed ternary kernel

e e —_——
inO inl inZ 0 +1 0
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We define the sparsity of the convolution kernel as (#non-zero
weights/#total weights). In our case, the sparsity of such fixed
ternary kernel is 2/(kh * kw), where kh and kw are the height
and width of kernel, respectively.

2.2 Depthwise Separable Convolution

Recently, the depthwise separable convolution [14] has been used
in many advanced neural networks such as MobileNet [15] and
Xception [16] to replace the standard convolutional layer, targeting
to reduce CNN computational cost. As a factorized form of normal
convolution, the depthwise separable convolution consists of two
parts: depth-wise convolution and 1x1 convolution (a.k.a. pointwise
convolution), as depicted in Fig. 1b. It is intriguing to notice that,
there exists many similarities between the structure of LBP and
depthwise separable convolution. First, both the comparison in
LBP and the depthwise convolution extract features based on the
local information. Second, both the weighted summation in LBP
and pointwise convolution create new representations through
linearly combining the extracted features. Based on this observation,
we propose to further integrate LBP feature extraction method
into depthwise separable convolution, using the introduced fixed
ternary kernel for depthwise convolution and inserting a binarized
activation function between depthwise convolution and pointwise
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Figure 2: Block diagram of CMPNET and its basic block.

convolution. It could greatly reduces the computational cost and
could be easily implemented in hardware as will be described later.

2.3 CMPNET: Comparator-based Network

As shown in Fig. 2, the proposed structure of CMPNET is built upon
the Residual Network (ResNet) [17], which composes an initial
inception block (3 X 3 spatial convolution !, Batch-normalization
and ReLU), N basic blocks, one Average Pooling layer and Multi-
Layer perceptron block (MLP). As the vital part of CMPNET, the
basic block is constructed by a series of operations, including batch
normalization, depthwise convolution with fixed sparse kernel,
binarized activation function and pointwise convolution.

We have found that the incorporation of convolution with fixed
ternary kernel and step function is mathematically equivalent to
the comparison in Equation. 1,2. For the depthwise convolution
in CMPNET, we use a randomly generated group of fixed ternary
convolution kernels that will not be updated during training. Con-
sidering such fixed ternary kernel group is in the size of kh X kw Xp,
for each kernel-slice (kh X kw), we randomly select two elements
and set them as +1 and -1, respectively. When such kernels perform
convolution over the chosen patch of the image, a subtraction is
equivalently calculated between two selected pixels. Then, com-
bining with the following binarized activation function, the com-
putations of two layers (i.e. depthwise convolution and binarized
activation function) can be converted into comparisons.

Unlike depthwise fixed ternary convolution kernels, the weights
of pointwise convolution layer are fully learnable during training.
More importantly, due to the inserted binarized activation function,
the input tensor of pointwise convolution layer only contains +1
and -1. Thus, the pointwise convolution can be implemented with
only addition/subtraction operations. Therefore, in CMPNET, for
both comparison and pointwise convolution operations, all the
Multiplication and Accumulation (MAC) operations within the
convolution layers are converted into computationally-efficient
comparison and addition/subtraction. In summary, the response of
basic block in CMPNET can be described as:

p
t ’ S S t
X = Elo (Kl *BN(xl)) oy
o
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where s € [p] and t € [q] denote the input channel and output
channel, respectively. K; is generated sparse binary convolution
kernel. [ is the index of basic block in CMPNET, while p is the

!To avoid ambiguity, all the unspecified convolution layer are normal spatial convolu-
tion layer hereinafter. All the convolution kernel in this work has no bias term. All the
convolution operations will not reduce the tensor size through zero padding.



number of input channels of [;;, basic block. a; ; is the real value
weight learned from training. BN() is batch-normalization. ¢”() is
the modified step function, where /(%) = +1 if * > 0, otherwise
o’(*) = =1. cmp’(m,n) = +1 when m > n, otherwise outputs -1. a
and b are the index the selected two pixels in one image channel.

We list the computational cost and memory cost of convolution
layer in both traditional CNN and proposed CMPNET as in Table 1.
It can be seen that CMPNET (with fixed ternary kernel and binarized
activation function) significantly reduces the hardware cost in both
computation and memory. Moreover, in order to successfully map
such algorithm to hardware, we adopt the quantization method
introduced in [3]. The detailed CMPNET algorithm accuracy in
pattern recognition will be presented in Section 5.1.

Table 1: Hardware cost of CNN and CMPNET.

Computational cost Memory
Mul-O(N?) Add/Sub/Cmp-O(N) cost
CNN p-q-h-w-kh-kw p-q-h-w-kh-kw p-q-kh-kw
CMP-
NET p-h-w-2+p-q-h-w|p-kh-kw+p-q
CMPNET 0 2vqg 1 1,1
CNN q-kh-kw  kh-kw q  kh-kw

3 IN-MEMORY PROCESSING PLATFORM

Fig. 3a shows the presented PIM sub-array architecture based on
Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM).
This architecture could work in dual mode that perform both mem-
ory read-write and AND/OR/XOR logic operations. SOT-MRAM
device is a composite structure of Spin Hall Metal (SHM) and Mag-
netic Tunnel Junction (MT]J). The resistance of MTJ with parallel
magnetization in both magnetic layers (data-‘0’) is lower than that
of MT] with anti-parallel magnetization (data-‘1’). Each SOT-MRAM
cell is associated with the Write Word Line (WWL), Read Word
Line (RWL), Write Bit Line (WBL), Read Bit Line (RBL), and Source
Line (SL) to perform the following operations:

1) Memory Write: To write a data bit in any of the SOT-MRAM
cells (e.g. m2 in Fig. 3a), write current should be injected through
the SHM (Tungsten, f — W [18]) of SOT-MRAM. Therefore, WWL2
should be activated by the Row Decoder where SL2 is grounded.
Now, in order to write ‘1’(/°0’), the voltage driver (V1) connected
to WBLI1 is set to positive (/negative) write voltage. This allows
sufficient charge current flows from V1 to ground (/ground to V1)
leading to change of MT] resistance.

2) Memory Read: For typical memory read, a read current flows
from the selected SOT-MRAM cell to ground, generating a sense
voltage at the input of SA, which is compared with memory mode
reference voltage (Vsensep<Vryef<Vsense,ap). This reference volt-
age generation branch is selected by setting the Enable values
(ENAND, ENp, ENoR)=(0,1,0). Now, if the path resistance is higher
(/lower) than Ryy, (i.e. Rap (/Rp)), then the output of the SA pro-
duces High (/Low) voltage indicating logic ‘1°(/°0’).

3) Computing Mode: Every two bits stored in the identical col-
umn can be selected and sensed simultaneously as depicted in
Fig. 3a, employing modified row decoder [10]. Then, the equiva-
lent resistance of such parallelly connected SOT-MRAMs and their
cascaded access transistors are compared with a programmable
reference by SA. Through selecting different reference resistances
(ENAND, ENp, ENOR), the SA can perform basic in-memory Boolean
functions (i.e. AND and OR). The XOR logic can be realized with

| Column Decoder (W/R/L) ] )
Visense
Vi V2 T
Tref 2 NAND MSA
— U U oo | v T8
8 D XOR
wwLt |5 ~ R Lt or
ol = [ v, By
m1 @l 8 2 ENw Rok e
S| = gL B OR] XNOR
=2 S | TR ~ SEL a
= = = ENox
N = g oy
< | Far
= T RWL1 v I
-i: SL1 > 5000 \"1"“
i
3| . WWL2 w
|l £4 15 0 o
=| 2. 2 2 O TR T T R TR TR )
gl 2 m P2 10000
= I | i IS <8 T Rap
SHM [Ryp/Rp 1)
MT) T S et LAY [Ry/Rp 00
L RWL2 _1
— N >
SLZ et v 0 6 7 8 9 LS BN BN KIS FUNS £

(a) (b)
Figure 3: (a) In-memory processing sub-array based on SOT-
MRAM, (b) Monte Carlo simulation result of Vgepse.

two SAs (AND and NOR logic) and CMOS NOR gate using Mod-
ified SA (MSA). As shown in Fig. 3a, the operation of such sense
circuit is determined by the control signals (ENanp, ENyr, ENOR),
while the desired result is acquired by the select signal (SEL) of
the output multiplexer. It is noteworthy that only one SA is used
during AND/OR/memory read operation, in order to reduce the
power consumption of sensing. To validate the variation tolerance
of sense circuit, we have performed Monte-Carlo simulation with
100000 trials. A o = 5% variation is added on the Resistance-Area
product (RAp), and a o = 10% process variation is added on the
TMR. The simulation result of sense voltage (Vsense) distributions
in Fig. 3b shows the sense margin of in-memory computing. In
this work, to avoid read failure (overlapping of Vgepse distribution),
only two fan-in in-memory logic is used. Parallel computing/read
is implemented by using one SA per bit-line.

4 CMP-PIM ACCELERATOR ARCHITECTURE

In this section, we show that our proposed CMPNET can achieve
two significant objectives in hardware implementation: (1) Reduc-
ing the energy consumption of convolution layers through utilizing
efficient comparator-based computing, and (2) Accelerating the in-
ference task. As shown in Fig. 2, four main computational blocks of
CMPNET are first convolutional block (Inception), Basic Block, Pool-
ing and MLP. The architectural diagram of the proposed CMP-PIM
accelerator is shown in Fig. 4a consisting of Image and Kernel Banks,
SOT-MRAM-based computational sub-arrays and a Digital Process-
ing Unit (DPU) including three ancillary units (i.e. Quantizer, Batch
Normalization and Activation Function). This architecture can be
adjusted by Ctrl unit to process entire CMPNET. Assume Input
fmaps (I) and Kernels (W) are initially stored in Image Banks and
Kernel Banks of memory, respectively. As depicted in Fig. 4a, inputs
can be constantly quantized before mapping into computational
sub-arrays. However, quantized shared kernels can be utilized for
different inputs. This step is performed using DPU’s Quantizer and
then the results are mapped to computational sub-arrays (Fig. 4b).
For realization of bit-wise operations, the proposed computational
sub-array discussed in Section 3 is readily utilized such that ultra-
efficient and parallel in-memory AND-XOR operations required for
different blocks can be handled. We present in-memory magnitude
comparator and in-memory convolover to handle main operations
in CMPNET.
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Figure 4: (a) General overview of the proposed CMP-PIM ac-
celerator, (b) Computational sub-array.

4.1 In-Memory Magnitude Comparator
Comparison layer is the most critical component of the accelerator,
as it is responsible for the most iterative layer which takes up
the vast majority of the runtime of CMPNET. The unit must keep
high throughput and resource efficiency while handling different
input widths at run-time. While there are several designs for in-
memory equality comparator in literature [19, 20], to the best of our
knowledge, this work is the first proposing a magnitude comparator
using in-memory bit-wise operations.

The initial idea here is to use in-memory XOR to perform bit-wise
equality comparison from MSB to LSB. As shown in Fig. 5a, Pivot (P)
and Input fmaps (F; where j = 1, 2,3, ...) are stored in consecutive
memory rows. The operation begins with bit-wise comparison (i.e.
XOR) of MSBs of P and one of the fmaps (F; in Fig. 5a) and continues
towards LSBs. The result of i*" bit comparison (P; ® Fj ;) is used
as a determining factor for CMP-PIM’s Ctrl unit to take next step.
As tabulated in Ctrl decision and operation table (Table 2), when
XOR result is “0” (indicating that two bits are equal), next less
significant bit in two memory rows are selected for comparison
and this process stops when XOR result is “1” (inequality). When
inequality is detected, P; content in memory array is read by Ctrl
unit. Now, if P; =“17(/ “0”) it denotes P is greater (/less) than F j
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Figure 5: Reafli)zation of in-memory magnitude(bc)omparator
in CMP-PIM: (a) 1-bit, (b) 4-bit.
Inspired by the proposed 1-bit magnitude comparator, we initial-
ize the hardware with an optimization algorithm to further boost

its efficiency by performing n-bit in-memory comparison. Accord-
ing to required bit-width for parallel comparison (N, > 2), both
pivot and input fmap can be split into P, (= #5’\]&) portions. We
take Fig. 5b as an instance to intuitively illustrate this process. As
depicted, a 4-bit (N, = 4 as an example) in-memory comparator
can be efficiently designed leveraging intrinsic parallel bit-wise
XOR operation by assigning multiple modified sense amplifier to
each computational sub-arrays of CMP-PIM accelerator [10]. In
this scheme, every four-bit (here P, =2 considering 8-bit quantiza-
tion for P and F), starting with MSB of P and F, can be compared
concurrently. We further devise a 4-to-2 Priority Encoder in Ctrl
unit so that it can detect and encode the first inequality position
in two bit streams. Based on Fig. 5b, bit-wise XOR result ("0011")
is sent to P-Encoder to encode bit position of the first inequality
(here, "10" corresponding to 379 bit position).
Table 2: Control decision and operation of Fig. 5.

Pi Fii & Ctrl Decision Operation
0 0 0  Continue and Compare  Pi—1 @ Fj i1
0 1 1 Stop and Read Read(P;)

1 0 1 Stop and Read Read(P;)

1 1 0 Continue and Compare Pi—1 @ Fj i—1

The rest of operations is similar to that of 1-bit magnitude com-
parator. Thus, comparator can efficiently compare input feature
maps with pivot to aggregate feature values characterizing the lo-
cal texture of an image. Clearly, number of P, portions, which is
inversely proportional to N¢, directly impacts CMP-PIM acceler-
ator performance. The optimization of P, will be analyzed later.
After comparison operations, the outputs need to be scaled by 1 x 1
convolutional kernels, which can be efficiently implemented within
accelerator using Sum unit since no multiplication is needed as
fully discussed in previous section. Meanwhile, Sum unit combined
with DPU could be used to implement pooling layer.

4.2 In-Memory Bit-Wise Convolver

Besides comparison layer as the basic block, there are some other
layers in CMPNET, such as first convolutional layer (directly taking
image as inputs, not replaced by comparison layer) and MLP block.
Note that, MLP layers can be equivalently implemented by convo-
lution operations using 1 x 1 kernels [3]. Thus, the rest layers could
be implemented all by convolution computation by exploiting logic
AND, bitcount, and bitshift as rapid and parallelizable operations [3].
Assume [ is a sequence of M-bit input integers (3-bit as an example
in Fig. 6) located in input fmap covered by sliding kernel of W, such
that I; € I is an M-bit vector representing a fixed-point integer.
Now, we index the bits of each I; element from LSB to MSB with
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Figure 6: Realization of in-memory convolver in CMP-PIM.



m = [0, M — 1], such that m = 0 and m = M — 1 are corresponding
to LSB and MSB, respectively. Accordingly, we represent a second
sequence denoted as Cy,(I) including the combination of m? h bit
of all I; elements (shown by colored elliptic). For instance, Co(I)
vector consists of LSBs of all I; elements “0110". Considering W as a
sequence of N-bit weight integers (3-bit, herein) located in sliding
kernel with index of n = [0, N — 1], the second sequence can be sim-
ilarly generated like C,(W). Now, by considering the set of all m*"
value sequences, the I can be represented like I = ZAm/I:_Ol 2Mem(I).
Likewise, W can be represented like W = ZnN= _01 2"¢c,(W). In this
way, the convolution between I and W can be defined as follow:

M-1N-1
I+=W = Z Z 2™ " pitcount(and(Cp(W), Cm(I))) (4)

m=0 n=0

As shown in data mapping step in Fig. 6, C2(W)-Co(W) are
consequently mapped to the designated sub-array. Accordingly,
Co(I) — Co(I) are mapped in the following memory rows in the same
way. Now, computational sub-array can perform bit-wise parallel
AND operation of C,,(W) and Cpy,(I) as depicted in Fig. 6. The results
of parallel AND operations stored within sub-array will be accord-
ingly processed using Bit-Counter. Bit-Counter readily counts the
number of “1”s within each resultant vector and passes it to the
Shifter unit. As depicted in Fig. 6, “0001", as result of Bit-Counter
is left-shifted by 3-bit (x22*1) to “1000". Eventually, Sum unit adds
the Shifter unit’s outputs to produce the output fmaps.

5 PERFORMANCE EVALUATION

5.1 Accuracy

1) Experiment Setup: To demonstrate that CMPNET greatly saves
computation resources while preserving good inference accuracy
in comparison with CNN (as a baseline) and LBCNN, CMPNET is
trained to perform popular pattern recognition task. For impartial
comparison, all three networks have identical hyper-parameters
in number of basic blocks, number of hidden neurons, etc. Two
data-sets, MNIST and SVHN, are used to evaluate the performance
of both algorithm accuracy and hardware implementation. Beyond
that, the simulation is performed on Torch [21], a Matlab-like deep
learning framework, with single GPU (Nvidia 1080Ti) configuration.
We modify the code based on LBCNNZ, For CMPNET, we set the
fixed ternary kernel size (kh X kw) as 7x7, basic block input-and
output channels (p, g) as 256, the number of basic blocks is 5 for
MNIST and 10 for SVHN, and 512 hidden neurons.

2) Experiment Result: According to the simulation results re-
ported in Fig. 7a, the accuracy of our proposed CMPNET is very
close to LBCNN in both full precision (32-bit) and quantized (8-bit
for all weight parameters in convolution and MLP layers) versions.
It shows the methodology that uses comparison layer to replace
convolution and ReLU function causes very small accuracy degra-
dation, but resulting in great hardware cost reduction. For MNIST
and SVHN data-sets, both CMPNET and LBCNN have shown lower
accuracy in comparison to CNN baseline. This accuracy gap could
be narrowed through fine tuning the parameters, such as increasing
the number of input and output channels, enlarging the dimension
of convolution kernel or increasing the depth of convolution neural

2LBCNN: https://github.com/juefeix/Ibcnn.torch

network [22, 23]. We then show the corresponding computational
cost of convolutional layers in these three different neural network
architectures in Fig. 7b. CMPNET shows almost two orders lower
cost compared to CNN, which matches with the theoretical analysis
in Table 1. For the rest of evaluation, we follow 8-bit quantized
CMPNET.

10° ICNNLBCNN[JCMPNET

Network  MNIST SVHN
CNN  9946% 95.01%
LBCNN  9931% 94.02% °
CMPNET
(32-bit float) 994%  928% 07
CMPNET
.. 99.4% 92.8 %
(8-bit int) 106

MNIST ~ SVHN
(a) (b)

Figure 7: (a) Inference accuracy and (b) computational cost

on MNIST and SVHN.

5.2 Memory Storage

The efficiency of entire CMPNET model in terms of memory storage
required for processing MNIST and SVHN data-sets compared to
different CNNs is shown in Fig. 8a. It can be seen that CMPNET
can save large amount of memory compared to CNN and LBCNN.
Furthermore, memory storage reduction of convolutional layers
in LBCNN and CMPNET to CNN baseline is specifically reported
in Fig. 8b. Based on the results, 92.97% and 82.69% reduction is
achieved for SVHN and MNIST data-sets, respectively, compared to
CNN baseline. This reduction mainly comes from reduced number
of fixed ternary kernel and quantization as discussed in Sections
2.3 and 5.1, respectively.
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Figure 8: (a) Mem(o)ry storage for proces(si)ng SVHN and
MNIST data-sets in CNN, LBCNN and CMPNET, (b) Mem-
ory storage reduction of convolutional layers in LBCNN and
CMPNET to CNN baseline.

5.3 Energy and Delay

To perform energy and delay evaluation, the circuit level simula-
tion is initially implemented in Cadence Spectre with NCSU 45nm
CMOS PDK [24]. For modeling the SOT-MRAM cell, we incorporate
the Landau-Lifshitz-Gilbert (LLG) equation to model the free layer
magnetization dynamics and Non-Equilibrium Green’s Function
(NEGF) to calculate the SOT-MRAM resistance range (Rp,R 4p) with
similar device parameters as in [25]. Then, we simulate the real-
time resistance in the memory read/write paths w.r.t to the memory
configuration. Accordingly, we massively modified the system level
memory evaluation tool NVSim [26] to co-simulate with an in-
house developed C++ code based on circuit level results. Control
unit is designed through Verilog coding synthesized by Synopsys
Design Compiler with 45nm CMOS Standard Cell libraries. Based



on these cross-layer simulation results, CMP-PIM accelerator per-
formance is evaluated. Setting N, to 4, Fig. 9a shows the normalized
log scale energy consumption of the proposed CMP-PIM acceler-
ator running CMPNET under SVHN data-set compared to CNN
and LBCNN designs. It can be seen that the proposed accelerator
demonstrates up to ~ 94x and 3X better energy efficiency compared
to CNN and LBCNN counterparts, respectively. Clearly, replacing
the most computationally-expensive multiplication operations in
convolutional layers of LBCNN and CNN with energy-efficient com-
parison operation (CMP) has yielded such significant improvement.
To further explore the performance of CMPNET, Fig. 9b relatively
compares inference delay per input image in above-mentioned
designs. As shown, CMPNET achieves ~4.3X and 3X speed-up com-
pared to CNN and LBCNN designs, respectively. Fig. 9c explores
the trade-off between energy consumption and delay for inference
in SVHN data-set w.r.t P. It can be seen that the larger P, is, less
delay and higher energy consumption are resulted. Based on this
plot, we determine the optimum performance of CMP-PIM where
N.=4 and P,=2.
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Figure 9: (a) Normalized log scale energy consumption and
(b) Normalized Delay of CMP-PIM accelerator compared to
CNN and LBCNN [7] under SVHN data-set. (c) Trade-off be-
tween energy and delay w.r.t P,.

5.4 Hardware Mapping Comparison

In this subsection, we compare the hardware mapping results of sim-
ilar CNN-PIM accelerators implemented by two promising resistive
memories (i.e. RRAM [9] and SOT-MRAM herein) over two different
data-sets in terms of energy and area under 45nm technology node.
According to Table 3, among all the listed designs, CMP-PIM shows
the best energy efficiency in two data-sets. It consumes 87.54 pJ/img
for processing one image in SVHN data-set, which gets ~ 10X better
energy efficiency compared to CNN-RRAM accelerator. In addition
to energy efficiency of SOT-MRAM compared to RRAM, such sig-
nificant improvement mainly comes from two sources: (1) RRAM
design employs matrix splitting due to intrinsically limited bit levels
of RRAM device so multiple sub-arrays should be simultaneously
used in even simplest computations and (2) RRAM-based crossbar
peripheral circuit such as buffers and DAC/ADC which contribute
to more than 85% of energy consumption [9, 11].
Table 3: Performance estimation of CNN accelerators

SVHN MNIST

Energy Area  Energy Area

(W/img) (mm2) (u/img) (mm?)
CNN-RRAM [9] 850.42 0.09 18.39 0.054
BCNN-RRAM [9] 425.21  0.085 13.55 0.060

CMP-PIM- spin-CMOS  87.54 1.7 0.74 1.7

Accelerator

6 CONCLUSION
In this work, we proposed CMP-PIM as an energy-efficient and

high-speed comparator-based processing-in-memory accelerator
for neural network. CMP-PIM employed parallel computational
memory sub-array as a fundamental processing unit based on SOT-
MRAM design to process CMPNET. With almost similar inference
accuracy on SVHN data-set, the CMP-PIM can get to ~ 94X and 3x
better energy efficiency compared to CNN and Local Binary CNN
(LBCNN), respectively. Besides, it achieves 4.3% speed-up compared
to CNN-baseline design with identical network configuration.
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