
Accelerating Low Bit-Width Deep Convolution

Neural Network in MRAM

Zhezhi He∗, Shaahin Angizi† and Deliang Fan‡

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816

Email: {∗Elliot.he, †Angizi}@knights.ucf.edu, ‡Dfan@ucf.edu

Abstract—Deep Convolution Neural Network (CNN) has
achieved outstanding performance in image recognition over
large scale dataset. However, pursuit of higher inference accu-
racy leads to CNN architecture with deeper layers and denser
connections, which inevitably makes its hardware implemen-
tation demand more and more memory and computational
resources. It can be interpreted as ‘CNN power and memory
wall’. Recent research efforts have significantly reduced both
model size and computational complexity by using low bit-width
weights, activations and gradients, while keeping reasonably good
accuracy. In this work, we present different emerging non-
volatile Magnetic Random Access Memory (MRAM) designs that
could be leveraged to implement ‘bit-wise in-memory convolution
engine’, which could simultaneously store network parameters
and compute low bit-width convolution. Such new computing
model leverages the ‘in-memory computing’ concept to accelerate
CNN inference and reduce convolution energy consumption
due to intrinsic logic-in-memory design and reduction of data
communication.

Index Terms—Neural network acceleration, In-memory com-
puting, Magnetic Random Access Memory

I. INTRODUCTION

In virtue of the fast development of the deep learning

algorithm, design of a highly parallel and energy-efficient

neural network accelerator has recently drawn tremendous

research interest. On the one hand, a great deals of model

compression techniques (e.g., pruning, parameter quantization,

model encoding [1]) have been explored to lower the network

model size, thus reducing the memory and computation cost.

On the other hand, to optimize the massive data communi-

cation used in neural network inference, the ’wall’ between

memory and processor in classical Von-Neumann computing

architecture has been crashed while the in-memory computing

has emerged as a promising candidate for deep neural network

acceleration [2]. In this work, we will focus on neural network

binarization in algorithm level and its hardware implementa-

tion using Magnetic Random Access Memory (MRAM) based

in-memory computing technique.

As the first work which successfully provides the deep

convolutional neural network with binarized weight (i.e. -1

and +1), BinaryConnect [3] achieves considerably negligible

accuracy degradation on small datasets like MNIST [4] and

CIFAR-10 [5]. The following work, BNN [6], aggressively

converts both weights and interlayer tensors into binary rep-

resentation (i.e. -1 and +1), which correspondingly transforms

the dominant computation of convolution layer from multipli-

cation and additions to bulk bit-wise XNOR operation. Such

binarization scheme in BNN reveals the path for designing a

neural network inference accelerator with extreme low bit-with

weight/interlayer-tensor. However, the binarization method in

BNN is criticized by researchers and engineers about its poor

inference accuracy on large dataset, like ImageNet [7]. In order

to solve the severe accuracy degradation degradation issue, a

series of optimized neural network binarization techniques has

been proposed and discussed in XNOR-Net [8], Dorefa-Net

[9] and ABC-Net [10]. The essential tricks extracted from

the aforementioned works can be summarized and further

optimized as (1) introducing scaling factor for both binarized

interlayer tensor and weight, and (2) using binarization func-

tions with various thresholds (e.g. vanilla binarization function

taken 0 as default threshold) to avoid information loss, which

will be discussed in the main body.

Even though network quantization techniques have made

deep neural network model compact and hardware-friendly,

its inference computing is still hampered by the limited

memory bandwidth. The newly announced NVIDIA Volta

GPU [11] has adopted the brand new DDR-6 (i.e. 3D stacked

memory) technologies which significantly improves the band-

width by 4× (∼ 1 TB/s). However, the growing speed of

memory consumption for the state-of-the-art network structure

is overwhelming the hardware evolution speed. For example,

the extremely dense structure in DenseNet [12] raises the

memory usage in quadratic manner when the network goes

deeper. Therefore, in-memory computing has emerged as a

promising countermeasure to eliminate the long-distance data

communication through merging the storage and computing

component together. In this paper, we introduce two vari-

ant in-memory computing model using Spin-Transfer Torque

Magnetic Random Access Memory (STT-MRAM) and domain

wall based racetrack memory, respectively. As the emerging

nonvolatile memory technologies, both STT-MRAM and race-

track memory own the characteristic of on-volatility, zero

standby leakage, high write/read speed, compatibility with

CMOS fabrication process, scalability, superior endurance,

excellent retention time and high integration density [13], [14].

With the moderate adjustment on peripheral circuitry or device

structure itself, we could perform bit-wise bulk logic (i.e.

AND/OR/XOR and their complementary) taken two selected

bit-cells as inputs. With the assistance of model binarization

for both weight and interlayer tensor, the dominant amount of

operations is converted into bit-wise XNOR operations which

is suitable to take the aforementioned in-memory computing

architecture as the computing accelerator.

II. LOW BIT-WIDTH NETWORK QUANTIZATION

In order to obtain the low bit-width quantized neural net-

work with minimum accuracy degradation, one argument have

been adopted in almost all the related works is that there is

supposed to be two systems of model parameters: one model

with full precision (i.e. 32bit floating point) parameter w

and one model with corresponding quantized parameters wq .

For each parameters optimization iteration during the training

process, the full precision w will be updated first, then the wq

will be calculated correspondingly. In this work, we mainly

discuss the binary format weight and interlayer tensor. The

mathematical formula for weight w and interlayer tensor x

binarization firstly discussed in [6] can be described as:

Forward : q = Sign(r) =

{
+1 if r ≥ 0

−1 otherwise
(1)

Backward :
∂g

∂r
=

{
∂g
∂q

if |r| ≤ 1

0 otherwise
(2)

where q is the input (w or x) while r is the output (wq or xq)

to the binarization function. In the forward path (i.e. inference

phase), w or x is binarized using Sign() function. Note that,

the sign function owns zero derivatives almost everywhere,

which makes it impossible to calculate the gradient using

chain rule in backward path (i.e. training phase). Thus, the

Straight-Through Estimator (STE) [6], [15] is applied to

calculate gradient in this work. In the backward path, the

input gradient of binarization activation function clones the

gradient at output, if the input q is in the range from -1 to

+1. Otherwise, the gradient is cancelled to preserve training

performance. Furthermore, more works [8], [16] find that, in

order to gain high accuracy, scaling factor plays vital role in

the binarized neural network. There are several solutions to

introduce the scaling factors, such as (1) inserting the batch

normalization layer [17] right before the interlayer tensor bina-

rization function [8], and (2) replacing the activation function

with Parametric Rectifier Linear Unit (PReLU) [16]. Through

our investigation, we find that inserting batch normalization

layer before the interlayer tensor binarization function works

better for scaling the interlayer tensor, since the distribution

varies for each input. However, for the weight scaling factor

computation, the current best solution is to iteratively compute

based on the weight distribution during training, which can be

written as:

Forward : q = Sign(r) =

{
+E(|Wl|) if r ≥ 0

−E(|Wl|) otherwise
(3)

where E(|Wl|) is the mean of the absolute value of full

precision weights in lth layer. Note that, the backward path of

Eq. (3) is identical to Eq. (2). Owing to the computation of

convolution layer or linear layer is linear transformation (i.e.

dot-product), the layer-wise weight scaling factor E(|Wl|) can

be extracted and integrated with following activation function

or batch normalization function to perform element-wise com-

putation. Therefore, the computation for one convolution layer

or linear layer can be described as:

x
T
q ·wq =

N∑
i=1

xq,i · wq,i ∀xq,i, wq,i ∈ {−1,+1} (4)

where xq and wq are the vectorized form of quantized

interlayer tensor and weight. N is the vector size of xq. Since

xq and wq only consist of -1 and +1, in order to map the

computation of xq,i · wq,i into hardware, we use single bit of

0 and 1 to represent -1 and +1 respectively. For the converted

form x′

q,i and w′

q,i, the computation of xq,i ·wq,i is equivalent

to XNOR(x′

q,i,x
′

q,i) as the truth tables shown in Table I and

Table II.

TABLE I
TRUTH TABLE FOR ORIGINAL

BINARIZED DOT-PRODUCT

Input Output

xi wi xi · wi

-1 -1 +1

-1 +1 -1

+1 -1 -1

+1 +1 +1

TABLE II
TRUTH TABLE FOR CONVERTED

BINARIZED DOT-PRODUCT

Input Output

x′

i
w′

i
XNOR(x′

i
,w′

i
)

0 0 1

0 1 0

1 0 0

1 1 1

Thus, the computation in Eq. (4) can be transformed into

bitwise XNOR, and bit-count operations without multiplica-

tions [9]:

x
T
q ·wq = 2 · bitcount(XNOR(xq,wq))−N (5)

where bitcount() function function count the number of ‘1’.

Based on such reformulated dot-product equation, we can

utilize the counter and XNOR logic gate as the primary

computing element to accelerate the neural network inference

in energy-efficient manner. Moreover, in order to encounter the

aforementioned limited memory bandwidth issue in the Sec-

tion I, we leverage the MRAM based in-memory computing

techniques to further boost the performance of such binarized

neural network accelerator which will be elaborated in the

following sections.

Beyond that, for contradicting the argument that network

binarization can lead to significant accuracy loss which makes

such extreme low bit-width quantization scheme not practical

in the real world applications, recent research efforts in [10],

[16] has brought up multiple binarization method to compen-

sate the information loss due to the aggressive quantization.

Thus, further integrating such multiple binarization with in-

memory computing technique will provide accurate deep neu-

ral network inference result with high throughput.

III. MRAM-BASED NEURAL NETWORK ACCELERATION

In this section, we will first provide an over-view intro-

duction for low bit-width CNN accelerator in block level.

Then, as the primary computing unit, several different designs

utilizing STT-MRAM array and racetrack memory based mag-

netic crossbar will be introduced to perform bit-wise XNOR

operations.

W

(a)

I

(b)

Fig. 1. (a) General overview of the CNN accelerator with image bank, kernel
bank, computational sub-arrays, and DPU, (b) Bit-wise IMCE’s sub-array.

The general overview of the system architecture for per-

forming low bit-width CNN is shown in Fig. 1.a [18]. This

architecture mainly consists of Image Bank, Kernel Bank,

bit-wise In-Memory Convolution Engine (IMCE), and Digital

Processing Unit (DPU). Since linear layer can be visualized as

convolution layer with 1 × 1 kernel size, the computation of

linear layer could be implemented by the same convolution

accelerator as well. Assuming the Input feature maps (I)

and Kernels (W) are initially stored in the Image Banks and

Kernel Banks of memory, respectively. As depicted in Fig. 1.a,

inputs need to be constantly quantized before mapping into

computational sub-arrays. However, quantized shared kernels

can be utilized for different inputs. This step is performed

using DPU’s Quantizer and then the results are mapped to

IMCE’s sub-arrays (Fig. 1.b). For the realization of bit-wise

IMCE, several different in-memory computing techniques are

readily utilized such that ultra-efficient and parallel in-memory

XNOR operations required for convolutions can be handled.

The functionality of peripheral components are elaborated as

follow:

• Quantizer: This unit binarize the interlayer tensor or

weight w.r.t Eq. (1), Eq. (2) and Eq. (3).

• Batch-Norm: Batch Normalization layer [17] alleviates

the information loss caused by weight and activation

binarization, through normalizing the input mini-batch to

have zero mean and unit variance. The batch normal-

ization function can be considered as an affine function

y = kx+ b [19], where

k =
γ√

σ2 + ε
and b = β − μγ√

σ2 + ε
(6)

• Activ. Function: the activation function module perform

the element-wise computation, which normally takes

ReLU as the activation function.

Moreover, as the vital component of the low bit-width

accelerator, IMCE mainly consists of in-memory computing

sub-array, bit-counter, shifter. The in-memory computing sub-

array plays the role of both on-chip buffer and the computing

bit-wise computing unit. In this work, we enumerate two vari-

ant in-memory computing designs leveraging STT-MRAM [2]

and racetrack memory based magnetic crossbar [20] that are

in-charge for the most computationally-intensive operations

i.e. XNOR. After this computation, a CMOS counter unit is

devised to count the number of +1 elements within generated

XNOR vector. According to Eq. (5), the result of bitcount

operation should be multiplied by 2, which is implemented by

shifter unit in our design. Then, the produced binary result is

processed in parallel by partial sum (subtract) units.

A. STT-MRAM array

(a)

(b)

Operations
Write

‘1’(‘0’)
Read

WL VDD VDD

BL GND (VDD) IREAD

SL VDD (GND) GND

(c)

Fig. 2. (a) Device structure of conventional magnetic tunnel junction in
parallel- and anti-parallel states, with current-induced spin-transfer torque
switching scheme. (b) Bit-cell schematic of 1T1R STT-MRAM. (c) Biasing
conditions for STT-MRAM operations.

1) memory mode: A typical Magnetic Tunnel Junction

(MTJ) structure, as shown in Fig.2a, consists of two ferromag-

netic layers with a tunnel barrier sandwiched between them.

Due to the Tunnel MagnetoResistance (TMR) effect [21], the

resistance of MTJ is high (low) when the magnetization of

two ferromagnetic layers are in anti-parallel (parallel) state.

The TMR ratio is defined as (RAP-RP)/RP, which may vary

from 10% to 400% depending on materials and temperature

[21]. Thus, the data are stored as the magnetization direction

in the free layer, which could be programmed through current

induced Spin-Transfer Torque (STT). Note that, the MTJ with

Perpendicular Magnetic Anisotropy (PMA) is used in this

work. The 1T1R bit-cell is widely used in the typical STT-

MRAM design, as depicted in Fig. 2b, which is correspond-

ingly controlled by Bit Line (BL), Word Line (WL) and Source

Line (SL). The biasing conditions of memory read and write

are presented in Fig. 2c. For both memory read and write

operation, the WL is enabled, which turns on the access

transistor. Then, a voltage drop -VDD or +VDD is applied across

the BL and SL, in order to realize write ‘1’ or ‘0’ respectively.

For memory read, a sensing current (IREAD) is applied on the

BL and consequently generates a sensing voltage, which can

be detected by sense amplifier.

B. computing mode

(a) (b)

Fig. 3. The idea of voltage comparison between Vsense and Vref for (a)
memory read and (b) in-memory logic operation.

The key idea to perform memory read and in-memory

computing is to choose different thresholds when sensing the

selected memory cell(s). As shown in Fig. 3a, for memory

read operation, a single memory cell is addressed and routed

in the memory read path to generate a sense voltage (Vsense),

which will be compared with a reference voltage (Vref). Owing

to the parallel- or anti-parallel state of selected STT-MRAM

bit-cell (RM1), the sense voltage are VP or VAP (VP<VAP)

respectively. Thus, through setting the reference voltage at

(VAP+VP)/2, the sense amplifier outputs binary ‘1’ when

Vsense>Vref, otherwise the sense amplifier outputs ‘0’. the

sensing-based method of in-memory Boolean computing is

depicted in Fig. 3b, where two memory bit-cells (RM1 and

RM2) are sensed simultaneously. R1 and R2 corresponds to

the access transistors within the sensing path. Owing to the

different resistance combinations of two selected STT-MRAM

bit-cells (i.e. RAP, RAP; RAP, RP; RP, RP), three different

sense voltages Vsense (VAP,AP; VAP,P; VP,P) could be gener-

ated respectively. Consider setting the reference voltage as

(VAP,AP+VAP,P)/2 through tuning reference resistance, the sense

amplifier only outputs ‘1’ when both selected STT-MRAMs

are in anti-parallel state (Vsense>Vref). Thus, this sensing

operation with modified reference voltage performs an AND

logic operation taken the binary data stored in RM1 and RM2 as

logic inputs. Similarly, when the reference voltage is shifted

to (VP,P+VAP,P)/2, the OR logic operation can be performed

as well. Therefore, through tuning the reference voltage for

comparison, the sense amplifier can perform reconfigurable

in-memory computations.

In order to build the in-memory computing STT-MRAM

array to perform bitwise XNOR operation, further modification

is made on the peripheral control and sensing circuit. Fig. 4a

depicts the architecture of STT-MRAM based IMCE, where

memory read/write path of the specific bit-cell is enabled by

the row/column decoders. As shown in Fig. 4b, the modified

row/column decoders can enable either single line (memory

write/read) or double lines (bit-wise Boolean computation),

depending on the addresses (Addr1 and Addr2) provided. For

memory write, the voltage drop across BL and SL is generated

(a)

(b) (c)

Fig. 4. (a) The modified sub-array structure of STT-MRAM.(b) Modified
decoder which provides single/multiple lines enable function. (c) Modified
sense circuit for regular memory W/R and in-memory computing operations.

by the Voltage Drivers (VD), which realize the fast memory

switching [2]. For memory read and Boolean computation, a

small sense current (Isense � 3μA) is injected into the read

path to generate a sense voltage (Vsense), which is taken as

the input of modified sense circuit. As shown in Fig. 4c, the

modified sense circuit can provide memory read, AND/NAND,

OR/NOR and XOR/XNOR functions, through combining two

sense amplifiers (i.e. StrongARM latch [22]), external CMOS

logic gate and control units. Owing to the complementary

outputs of SA, the modified sensing circuit can provide NAND

and NOR without additional cost. Moreover, according to the

Boolean representation of p
⊕

q = (p∨ q)∧ (p ∧ q), the XOR

and XNOR can be realized with two sense amplifiers (i.e.

performing AND and NOR logic respectively) and an addi-

tional CMOS NOR gate. The operation of such sense circuit is

determined by the control signals (ENAND, ENOR and ENM),

while the desired result is acquired by the selection signal

(SEL) of the output multiplexer. Note that, only one sense

amplifier is used during AND/OR/memory-read operation, in

order to reduce the power consumption of sensing.

Moreover, transient simulation result of the sense circuit

under a 2ns period clock signal (CLK) is included in Fig. 5

to validate the in-memory computing functionality. It takes

the data stored in MRAM1 and MRAM2 as inputs. When

CLK is high, the sense amplifier is in pre-charge phase and

the output is reset to ‘0’. When CLK is low, the sense am-

plifier is in sampling phase, and generates logic computation

result depending on the reference voltage configuration. Vcmp

includes all the input signals of SAs, which are sense voltage

(Vsense) and two reference voltage (Vref1 and Vref2). Vref1 is

set to (VAP,AP+VAP,P)/2, and Vref2 is set to (VP,P+VAP,P)/2, for

0
0.5

1

C
L

K
(V

)

0
0.5

1

In
pu

t

MRAM1 MRAM2

0
10
20
30

V
cm

p
(m

V
) Vsense Vref1 Vref2

0
0.5

1

V
O

R
(V

)

0
0.5

1

V
A

N
D

(V
)

0 1 2 3 4 5 6
Time (ns)

0
0.5

1

V
X

O
R

(V
)

Pre-charge Sampling Sampling Pre-charge SamplingPre-charge

'0''0'

'0' '0'

'1'

'1'

'1'

'1''0'

('0', '0') ('0', '1') ('1', '1')

Fig. 5. Transient simulation results of in-memory computing operations (i.e.
AND, OR and XOR).

performing AND and OR respectively. Through the combina-

tion of two SAs in Fig. 4c, XOR is correctly performed as

well. The XNOR bit-wise logic could be easily obtain with

an cascaded NOT gate.

C. Magnetic crossbar

In this subsection, we describe a magnetic crossbar archi-

tecture consisting of perpendicularly coupled magnetic domain

wall motion racetracks [20], which is able to morph between

two modes: memory and computation mode. Different from

that the STT-MRAM based in-memory computing structure

which can perform AND/OR/XOR and theirs complemen-

tary, the introduced magnetic crossbar can only perform

XOR/XNOR.

1) memory mode: In the memory mode, all the mag-

netic domain wall motion racetrack nano-wires are employed

as conventional magnetic racetrack memory for non-volatile

multi-bit data storage [23]. The device structure of the com-

putational magnetic crossbar design is shown in Fig. 6a, which

mainly constitutes of equally spaced ferromagnetic nanowires

both longitudinally and latitudinally. Each nanowire could

work individually as a normal domain wall racetrack memory

to store the interlayer tensor and weight, where binary data

are represented by the magnetization directions and stored in

the form of domain wall pair train within the nanowires [23].

In this work, we define +z oriented magnetization (in red) as

binary ‘1’, and -z oriented magnetization (in blue) as binary

‘0’. Write and read operations are performed through the write

head (spin polarizer) and read head (sensing MTJ) mounted

on the two sides of nanowires [20].

2) compute mode: In order to realize the in-memory

XOR/XNOR operation, we modify the normal racetrack mem-

ory through introducing XOR/XNOR joint (i.e. a multi-layer

structure) at the intersection of each longitudinal and latitudi-

nal nanowire. It consists of coupling insulator (FeCo-Oxide

[24]), ferromagnetic layer (FeCoB), tunnel barrier(MgO),

ferromagnetic layer (FeCoB) and coupling insulator (FeCo-

Oxide), from top to bottom as shown in Fig. 6b. Owing to

the magnetic coupling effect [24], two ferromagnetic layers

are consistently staying in the identical magnetization state

with corresponding top and bottom nanowire as indicated by

the white arrow in Fig. 6b. When the domain wall nanowire is

(a)

(b)

(c)

Fig. 6. (a) The device structure of magnetic crossbar in the size of 8×8. (b)
The XOR logic cell in the intersection of longitudinal and latitudinal domain
wall nanowires. (c) The micromagnetic simulation of current induced domain
wall motion and magnetic coupling effect.

written with a new data followed by a domain wall pair shifting

operation, the ferromagnetic layers switch their magnetization

direction simultaneously due to magnetic coupling. As the

transient micromagnetic simulation result shown in Fig. 6c,

the initial binary bits (1, 0, 1) are stored in the bottom

nanowire at 0ns. The coupled ferromagnetic layers have the

same magnetization with the corresponding bottom domain

wall nanowire. Through injecting lateral shifting current into

the bottom nanowire, the domain wall pairs start to shift from

L.H.S to R.H.S, which simultaneously rotate the magnetization

of the coupled ferromagnetic layers. As shown in Fig. 6b,the

ferromagnetic layers that respectively couple with the top and

bottom magnetic nanowires can jointly work with the tunnel

barrier layer to form a Magnetic Tunneling Junction (MTJ). In

this design, the binary bit A and B located within intersection

region are taken as the inputs of XOR computation, while the

intersectional MTJ resistance (RMTJ) represents the output

result (A⊕B).
As listed in Table. III, when the magnetization of two

TABLE III
THE XOR LOGIC OPERATION IN MAGNETIC CROSSBAR

A B A⊕B MA MB RMTJ

0 0 0 Down Down RP

0 1 1 Down Up RAP

1 0 1 Up Down RAP

1 1 0 Up Up RP

ferromagnetic layers (MA and MB) are both up (‘1’) or

down (‘0’), the intersectional MTJ cell is in parallel state

with low resistance (RP). Otherwise, when MA and MB

are in the opposite orientation (i.e. one up and one down),

the intersectional MTJ cell is in anti-parallel state with high

resistance (RAP). Based on this description, we could see

that the XOR computation is automatically implemented by

the magnetic coupling physics when the data are loaded into

the top and bottom domain wall nanowires with no cost of

additional operations, leading to extreme energy efficient logic

in-memory design. In order to read out the computation result,

a similar circuit as Fig. 4a is needed. Furthermore, since the

StrongARM sense amplifier generates complementary output,

the XNOR(A,B) can be computed with no extra cost.

TABLE IV
ENERGY COST FOR w · x W.R.T MEMORY ACCESS AND COMPUTATION

Baseline
(32bit mul)

STT-MRAM
(1bit xnor)

Magnetic crossbar
(1bit xnor)

memory access 65.6nJ 1.6nJ/- 4.8nJ/-
compute 3.7pJ 0.9nJ 0.8nJ

In general, two designs with STT-MRAM and magnetic

crossbar are introduced in details to provide in-memory bit-

wise XNOR operation through either circuit level or device

level modification. In comparison with normal network ac-

celerator design [25] using 32bit floating multiplication (i.e.,

baseline in Table IV), the computation of dot-product involves

energy-expensive off-chip DRAM access to load the model

parameter w to the processing element, and the on-chip

SRAM access to load interlayer tensor x. Such long-distance

data communication is avoided with our in-memory bit-wise

computing method, and the energy consumption is shown

in Table IV. Note that, the memory access for in-memory

computing with STT-MRAM and magnetic crossbar is only

required when w and x are not stored in the same memory

subarray.
IV. SUMMARY

In this work, we explicitly discuss the method to leverage

in-memory XNOR computation using two different com-

putational MRAM designs to accelerate the state-of-the-art

binarized deep neural network, spanning across algorithm,

architecture, circuit and device. Great energy efficiency is

achieved due to its intrinsic in-memory logic designs and

processing-in-memory architecture to reduce off-chip memory

access.

Acknowledgement: This work is supported in part by the

National Science Foundation under Grant No. 1740126 and

Semiconductor Research Corporation nCORE.

REFERENCES

[1] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint

arXiv:1510.00149, 2015.
[2] Z. He, S. Angizi, and D. Fan, “Exploring stt-mram based in-memory

computing paradigm with application of image edge extraction,” in
Computer Design (ICCD), 2017 IEEE International Conference on.
IEEE, 2017, pp. 439–446.

[3] M. Courbariaux et al., “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in Advances in neural infor-

mation processing systems, 2015, pp. 3123–3131.
[4] Y. LeCun et al., “Mnist handwritten digit database,” AT&T Labs [On-

line]. Available: http://yann. lecun. com/exdb/mnist, vol. 2, 2010.
[5] A. Krizhevsky et al., “The cifar-10 dataset,” online: http://www. cs.

toronto. edu/kriz/cifar. html, 2014.
[6] I. Hubara et al., “Binarized neural networks,” in Advances in neural

information processing systems, 2016, pp. 4107–4115.
[7] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”

in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on. IEEE, 2009, pp. 248–255.
[8] M. Rastegari et al., “Xnor-net: Imagenet classification using binary

convolutional neural networks,” in European Conference on Computer

Vision. Springer, 2016, pp. 525–542.
[9] S. Zhou, et al., “Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160,
2016.

[10] X. Lin et al., “Towards accurate binary convolutional neural network,”
in Advances in Neural Information Processing Systems, 2017, pp. 344–
352.

[11] Nvidia, “Nvidia volta gpu,” March 2018, https://www.nvidia.com/en-
us/data-center/volta-gpu-architecture/.

[12] G. Huang et al., “Densely connected convolutional networks,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition, vol. 1, no. 2, 2017, p. 3.
[13] Y. Kim et al., “Write-optimized reliable design of stt mram,” in

Proceedings of the 2012 ACM/IEEE ISLPED. ACM, 2012, pp. 3–8.
[14] X. Fong et al., “Spin-transfer torque memories: Devices, circuits, and

systems,” Proceedings of the IEEE, vol. 104, pp. 1449–1488, 2016.
[15] Y. Bengio et al., “Estimating or propagating gradients through stochastic

neurons for conditional computation,” arXiv preprint arXiv:1308.3432,
2013.

[16] W. Tang et al., “How to train a compact binary neural network with
high accuracy?” 2017.

[17] S. Ioffe et al., “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167,
2015.

[18] S. Angizi et al., “Imce: energy-efficient bit-wise in-memory convolution
engine for deep neural network,” in Proceedings of the 23rd Asia and

South Pacific Design Automation Conference. IEEE Press, 2018, pp.
111–116.

[19] L. Yang, Z. He, and D. Fan, “A fully onchip binarized convolutional
neural network fpgaimpelmentation with accurate inference,” in Pro-

ceedings of the 2018 International Symposium on Low Power Electronics

and Design. ACM, 2018.
[20] Z. He, S. Angizi, F. Parveen, and D. Fan, “Leveraging dual-mode

magnetic crossbar for ultra-low energy in-memory data encryption,” in
Proceedings of the on Great Lakes Symposium on VLSI 2017. ACM,
2017, pp. 83–88.

[21] G. Autès et al., “Strong enhancement of the tunneling magnetoresistance
by electron filtering in an fe/mgo/fe/gaas (001) junction,” Physical

review letters, p. 217202, 2010.
[22] Z. He and D. Fan, “A low power current-mode flash adc with spin hall

effect based multi-threshold comparator,” in Proceedings of the 2016

International Symposium on Low Power Electronics and Design. ACM,
2016, pp. 314–319.

[23] S. S. Parkin et al., “Magnetic domain-wall racetrack memory,” Science,
vol. 320, pp. 190–194, 2008.

[24] V. Sokalski et al., “Naturally oxidized feco as a magnetic coupling layer
for electrically isolated read/write paths in mlogic,” IEEE Trans. Magn.,
vol. 49, no. 7, pp. 4351–4354, 2013.

[25] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks,” IEEE Journal of Solid-State

Circuits, vol. 52, no. 1, pp. 127–138, 2017.

