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Abstract—Generative Adversarial Network (GAN) has
emerged as one of the most promising semi-supervised learning
methods where two neural nets train themselves in a competitive
environment. In this paper, as far as we know, we are the first to
present a statistically trained Ternarized Generative Adversarial
Network (TGAN) with fully ternarized weights (i.e. -1,0,+1)
to massively reduce the need for computation and storage
resources in the conventional GAN structures. In the proposed
TGAN, the computationally expensive convolution operations
(i.e. Multiplication and Accumulation) in both generator and
discriminator’s forward path are converted into hardware-
friendly Addition/Subtraction operations. Accordingly, we
propose a Processing-in-Memory accelerator for TGAN called
(PIM-TGAN) based on Spin-Orbit Torque Magnetic Random
Access Memory (SOT-MRAM) computational sub-arrays to
efficiently accelerate the training process of GAN within
non-volatile memory. In addition, we propose a parallelism
technique to further enhance the training efficiency of TGAN.
Our device-to-architecture co-simulation results show that,
with almost the same inception score to the baseline GAN
with floating point number weights on different data-sets, the
proposed PIM-TGAN can obtain ∼25.6× better energy-efficiency
and 22× speedup compared to GPU platform averagely, and,
9.2× better energy-efficiency and 5.4× speedup over the best
processing-in-ReRAM accelerators.

I. INTRODUCTION

Generative Adversarial Networks (GANs) have recently

shown the considerable success in a variety of image process-

ing problem such as image generation [1], super resolution

generation [2], text2image [3] and etc [4], [5]. GANs succeed

through the idea of adversarial training as depicted in Fig.

1, where two adversaries, a generator and a discriminator are

co-trained simultaneously. The generator strives to create fake

samples from the same distribution as the real data. However,

discriminator tries to distinguish the fake samples from the

real ones. The adversaries are nearly symmetric and modeled

as Deep Neural Networks (DNNs). Thus, the training of GAN

is very sophisticated and computationally-intensive [1], [6].

To eliminate the need for massive MAC operations and

memory usage in DNN deployments, researchers have come

up with various quantized/binarized DNNs by constraining

inputs, weights or gradients to be quantized/ binarized specif-

ically in forward propagation [7], [8]. For example, DoReFa-

Net shows acceptable accuracy over SVHN and ImageNet

data-sets under different low bit-width configurations after
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Figure 1. Overview of GAN architecture.

applying its quantization method [7]. Even recent extremely-

quantized Binary Neural Networks (BNNs) have successfully

shown close accuracy to state-of-the-art DNNs [8]. A similar

yet modified version of binary training has been adopted

for GAN as well [9] to lower the memory utilization, thus

significantly improve the hardware deployment .

In the domain of DNN accelerator architecture, the iso-

lated memory and processing units (i.e., GPU or CPU) are

interconnected via buses which has encountered serious chal-

lenges, including long memory access latency, significant

congestion at I/Os, limited memory bandwidth, huge data

communication energy and large leakage power consumption

for storing network parameters in the volatile memory [10]. To

address the aforementioned concerns, Processing-in-Memory

(PIM) architecture as a potentially viable way to address

memory wall challenge, have been widely explored in recent

accelerators design [10], [11], [12]. The key idea of PIM

is to embed logic units within memory to process data by

leveraging the inherent parallel computing mechanism and

exploiting large internal memory bandwidth. It could lead to

remarkable saving in the off-chip data communication energy

and latency. The proposals for exploiting SRAM-based PIM

architectures can be found in recent literature [13]. While,

PIM in context of DRAM [14] provides more benefits in

recent years owing to the larger memory capacity and off-chip

data communication reduction as opposed to SRAM-based

PIM. However, the existing DRAM-based PIM architecture

[14] encounters several inevitable drawbacks, such as high

refresh/leakage power, multi-cycle logic operations, operand

data overwritten, operand locality, etc.

For bringing up the countermeasure of the aforementioned

problems, massive research efforts have been investigated in

emerging Non-Volatile Memory (NVM) technology, such as

Phase Change Memory (PCM) [15], resistive RAM (ReRAM)

[10], Magnetic RAM (MRAM) and etc. Since the PIM archi-

tecture requires great amount of writing operations, MRAM



is considered as the most promising PIM candidate while

PCM and ReRAM shows high latency and power dissipa-

tion in memory write [15]. Through leveraging the resistive

property of MRAM, the bulk bit-wise logical operations (e.g.,

AND/OR/XOR) can be perform through the technique of

routed sensing [16], which open a new way to realize efficient

PIM paradigms.

In this paper, we intertwine the novelties from both al-

gorithm and hardware architecture perspectives to efficiently

accelerate GAN’s training. First, we propose a new weight

ternarization method to massively reduce the need for com-

putation and storage resources in the forward inference paths

with minimal or no performance loss compared to the model

with floating-point weights. Second, we develop a PIM accel-

erator for TGAN called (PIM-TGAN) based on SOT-MRAM

computational sub-arrays to efficiently accelerate TGAN train-

ing within non-volatile memory. Third, we present a paral-

lelism technique to further enhance the training efficiency of

TGAN in hardware level.

II. TERNARY GAN TRAINING METHOD

In this section, we first provide an overview of the gen-

erative adversarial training architectures and algorithms that

we are using later to evaluate our TGAN. Then we propose

our TGAN training method which adapts the traditional GAN

training to make it more suitable for efficient hardware imple-

mentation.

A. GAN training

Deep convolutional GAN (DC-GAN) [1], Wasserstein GAN

(WGAN) [17] and Wasserstein GAN with gradient clipping

(WGAN-GP) [18] are some of the most recent advancement

in GAN training algorithms. DC-GAN architecture consists of

two separate models. A discriminator model (D) that estimates

the probability of a given sample being real or fake. It is

trained as a critic to differentiate between fake samples and

real ones. Whereas, the other model, popularly known as the

generator (G), samples a random/uniform noise input (z). It is

trained to trick the discriminator. In other words, G captures

the real data distribution so that the generated images can

be as real as possible. Basically, this is a zero-sum game

between the two models which motivates each of them for

improving performance as shown in Fig. 1. Therefore, both

models are non-cooperative and trained simultaneously to

find a Nash equilibrium [19]. This raises several issues, such

as no guarantee for convergence. One of the improvement

was to change the loss function and measuring distance of

GAN through introducing Wasserstein GAN [17]. WGAN

algorithm uses Wasserstein Distance as a quantitative method

to measure the distance between two probability distributions.

Later, in the work of WGAN-CP [18], WGAN training was

improved even further as they proposed to restrict the trained

weights of the discriminator within a certain range. Beyond

the weight clipping in WGAN-CP, another variant WGAN

algorithm (WGAN-GP) would be to use gradient penalty [18].

For each of the aforementioned GANs, we use the same

architecture containing four convolution and deconvolution

layers for discriminator and generator, respectively. In what

follows, We will evaluate the proposed TGAN using DC-GAN,

WGAN-CP and WGAN-GP to demonstrate its effectiveness

against a variety of bitwidth-reduced GAN training algorithms.

B. TGAN training

GAN requires a lot of computational power for training

in consideration of the fact that two separate models are

trained parallely. In order to improve the training efficiency

and enable efficient hardware mapping, we introduce a novel

training algorithm for GAN. We train both the generator

and discriminator model using tenarized weights (-1,0,+1). It

can then eliminate the needs for computationally-expensive

multiplication units. So all the convolution operations can be

implemented using addition and subtraction. We later show

that such conversion not only can provide a comparable In-

ception Score (IS) to the full-precision GANs in software level,

but also can reduce memory access and energy consumption

of convolutional layers while accelerating the forward path in

the hardware implementation.

We train both generator and discriminator from scratch

using ternarized weights. The training process can be sum-

marized into three steps, which are operating sequentially in

an iterative manner: 1©-statistical weight scaling and weight

ternarization, 2©-ternary weight-based inference for loss func-

tion computation and 3©-back propagation to update full

precision weights. 1© will first ternarize current full precision

weights and compute the corresponding scaling factor based

on current statistical distribution of full precision weight. For

weight ternarization (i.e. -1, 0, +1), we adopt the variant stair-

case ternarization function, which compares the full precision

weight with the symmetric threshold ±Δth [20]. Such weight

ternarization function in the forward path for inference can be

described as:

w′
l = α× Tern(wl) =

{
α× Sign(wl,i) |wl,i|≥ Δth

0 |wl,i|< Δth

(1)

α = E(|wl,i|), ∀{i||wl,i|≥ Δth} (2)

where wl denotes the full precision weight tensor of layer l,
w′

l is the weight after ternarization. α is the layer-wise weight

scaling factor. In this work, we employ single scaling factor

for both positive and negative weights, since such symmetric

weight scaling factor can be easily extracted and integrated

into following Batch Normalization layer or ReLU activation

function for the hardware implementation. It is also worth to

note that the whole layer share the same scaling factor, which

is negligible compared to the whole model size.

Then, in 2©, the input mini-batch takes the ternarized model

for inference and calculates loss w.r.t targets. In this step, since

all of the weights are in ternary values, all the dot-product

operations in layer l can be expressed as:

xT
l ·w′

l = xT
l · (α · Tern(wl)) = α · (xT

l · Tern(wl)) (3)



where xl is the vectorized input of layer l. Since Tern(wl,i) ∈
{−1, 0,+1}, xT

l · Tern(wl) can be easily realized through

addition/subtraction without multi-bit or floating point mul-

tiplier in hardware, which greatly reduces the computational

complexity.

In 3©, the full precision weights will be updated dur-

ing back-propagation. Then, the next iteration begins to re-

compute weight scaling factor and ternarize weights as de-

scribed in step- 1©. Meanwhile, since the ternarization function

owns zero derivatives almost everywhere, which makes it im-

possible to calculate the gradient using chain rule in backward

path. Thus, the Straight-Through Estimator (STE) [21][7] of

such ternarization function in the back-propagation is applied

to calculate the gradient as follow:

Backward :
∂g

∂w
=

{
∂g
∂w′ if |w|≤ 1

0 otherwise
(4)

where the gradient clipping prevents the full precision weight

growing too large and constrains the scaling factor α as well.

Meanwhile, it sets the upper bound of threshold Δth as β.

III. EXPERIMENTAL SETUP AND RESULTS:

Datasets: We conduct experiments of TGAN on several

datasets to evaluate the performance of proposed algorithm,

including Fashion-MNIST [22], CIFAR-10 [23] and STL-10

[24]. Fashion-MNIST is a gray-scale dataset which contains

10,000 training images and 10,000 testing images. The image

is in the size of 28×28 and there are 7000 images in each of

the 10 fashion categories. We also use CIFAR-10 [23] for RGB

images of size 32×32. It has 60,000 images evenly distributed

in 10 different classes. Among them 50,000 examples for

training and remaining 10,000 for testing. Finally, we use

STL-10 [24] along side CIFAR-10 to evaluate the performance

quantitatively. It is similar to CIFAR-10 dataset except that it

has 100,000 unlabeled images for unsupervised learning and

only 500 labeled images for training.

Evaluation Metrics: There is yet a universal figure of

merit to evaluate the performance of GAN [25]. Most of the

recent works have followed qualitative analysis by showing

the images generated by the generator [1]. Observing the

values of loss function or Wasserstein distance gives a good

overview of the training stability [19]. However, most of them

do not give proper information on the quality and variation of

the generated image. One way to measure these information

quantitatively is to use Inception Score (IS) [26]. IS uses a

pre-trained inception V3 [27] network to calculate the quality

of generated images. Considering we have an image x and

expecting the network to predict output label y for that image.

Then the generator’s inception score would be:

IS(G) = exp(Ex∼pgDKL(p(y|x)||p(y))) (5)

Here DKL(p|q) is the KL divergence between p and q

distribution. If the images generated contain clear objects then

p(y|x) should be low entropy. This means that the Inception

Network is highly confident that there is a single object.

A better performing GAN algorithm should generate a high

diversity of images from all classes meaning p(y) should be

high entropy. If both of these conditions are satisfied then we

expect a large IS for the GAN. A high IS indicates clarity and

diversity among the generated images.
Results and Analysis: We conduct several sets of experi-

ments on both CIFAR-10 and STL10 using DCGAN,WGAN-

CP and WGAN-GP. First, we use 32-bit floating point number

weights as the baseline to train GAN. Since we are the first

to ternarize GAN, as ablation study, we train several variant

GANs from scratch using 2-bit weight quantization method

in [7], trained weight ternarization method in [20] and our

proposed ternarized-weight training method, respectively, to

prove the effectiveness of our proposed method. Note that,

all above weight ternarization or quantization method could

achieve the same model compression rate. Inception Score (IS)

is used to evaluate GAN’s performance and higher score is

better.

Table I
INCEPTION SCORE (IS) FOR DIFFERENT ARCHITECTURE ON CIFAR-10

AND STL10 DATASETS.

MODEL CIFAR10 STLL10

DCGAN

32-bit 5.71 ± 0.2 2.91 ± 0.2
Dorefa-Net
2-bit [7]

1.24 ± 0.003 1.39± 0.007

TWN
[20]

1.09 ± 0.003 1.45 ± 0.008

Proposed
TGAN

4.52 ± 0.1 2.91 ± 0.3

WGAN-CP

32-bit 4.97 ± 0.15 3.01 ± 0.1
Dorefa-Net
2-bit [7]

3.84 ± 0.09 2.37 ± 0.05

TWN
[20]

4.26 ± 0.07 2.78± 0.06

Proposed
TGAN

3.76 ± 0.07 2.31 ± 0.09

WGAN-GP

32-bit 5.65 ± 0.008 2.86 ± 0.09
Dorefa-Net
2-bit [7]

4.70 ± 0.05 2.31 ± 0.012

TWN
[20]

4.45± 0.05 2.68 ± 0.015

Proposed
TGAN

5.11 ± 0.01 2.49 ± 0.05

Figure 2. Inception score on CIFAR-10 dataset.

Table I summarizes the IS of ternary/quantized and full-

precision weight training. As for CIFAR-10, WGAN-GP pro-

vides the best IS (5.11). We observe that IS of our proposed



TGAN only degrades by ∼0.5 compared to its full precision

training. Moreover, the score achieved using ternary WGAN-

GP shows better performance than full-precision WGAN-

CP. The similarity in inception score between TGAN and

full-precision training indicating our proposed TGAN can be

effectively used for training GAN. For STL10 dataset, our

ternary trained weight DC-GAN gives almost similar score as

the 32-bit weight training. On the other hand, we again observe

a small degradation of IS for WGAN-CP as was the case for

CIFAR 10. Overall the training performance of our proposed

ternary GAN does not deteriorate much compared to 32-bit

weight training and outperforms existing weight ternarization/

quantization methods, making it a suitable choice for hardware

implementations. One of the major concern of GAN training

Figure 3. Fashion-MNIST generated images by Ternary WGAN-GP

is that it suffers from training instability and convergence

problem. We plot the change of IS after each epoch to

observe the stability of the proposed method compared to

the full precision one. In Fig. 2, we see TGAN actually

converges in a similar manner as the original full-precision

training for both DC-GAN and WGAN. Additionally, we

display the images generated by TGAN architectures in Fig.

3. This figure gives us a more qualitative understanding of

the performance of TGAN. Images generated by our TGAN

looks almost similar to the original Fashion MNIST images.

Both quantitative and qualitative evidence demonstrate that our

proposed ternary GAN performs on par with the state-of-the-

art GAN training algorithms. So considering the algorithm’s

suitability for efficient hardware implementation, it becomes

an obvious choice for training of GAN using accelerators.

IV. ACCELERATING TGAN TRAINING

In this section, we show that performing the most

computationally-intensive convolution and deconvolution op-

erations in GAN, converted to addition/subtraction (add/sub)
in TGAN, within a PIM accelerator brings significant ad-

vantages for training: (1) Reducing main memory access

which leads to great reduction of data transfer between

CPU/GPU and memory, (2) Reducing the energy consumption

of convolutional layers through utilizing intrinsic and effi-

cient in-memory computing, and (3) Accelerating the forward

propagation by employing parallel in-memory processing. In

the following, we first analyze GAN training mechanism

from computation perspective and then propose a PIM-TGAN

accelerator capable of implementation of each layer. Then,

we describe the mapping method and explore a parallelism

scheme to further improve GAN training efficiency.

A. GAN Training

The computational blocks of a sample GAN and the

dataflow of training for both Generator (G) and Discriminator

(D) are shown in Fig. 4. Each block is divided into different

computational layers. As can be seen, the main computation

in G and D are deconvolution (DConv) and convolution

(Conv), respectively followed by Batch Normalization and/or

an activation function. GAN training is basically accomplished

in n consecutive phases (3 for DC-GAN) that are depicted by

different colors in Fig. 4 (i.e. D1, D2 and G). In D1 training

phase, a real sample is fed to D and propagates forward

through different computational blocks until the calculation of

Loss function. The loss function for D1 is calculated based on

accurate label (‘1’ for real sample). The procedure continues

by back propagation of the error and partial gradients towards

the the first layer (GD1). During D2 training phase, injection

of a random noise continued by up-sampling of G, generates

a fake sample with the same dimension as real samples. The

generated sample flows through D and a loss function is

calculated based on accurate labels. Again, the gradients are

calculated and propagates all the way back to the first layer of

D (GD1). After D2 training phase, the weights of D is updated
according to gradients achieved in D1 and D2 training phases

and based on designated GAN architecture; in case of DC-

GAN by summing up the gradients. During G training phase,

G and D are concatenated again to make a large network,

at which a random noise propagates all the way through

G and D and loss function is calculated based inaccurate

labels. The errors propagates backward to GG1 and finally the

weights of G is updated while D remains unchanged. Note

that there is no computation difference between Conv and

DConv layers. Mathematically, we can implement a DConv
with a direct Conv [28], [6]. This is readily accomplished

by adding zeros between each input in the feature maps with

zero padding and then computing the convolution between the

extended input feature maps and kernels. As we are using

the ternarized weights in the forward path, all the Conv and

DConv operations are converted to add/sub.

DCo
nv2

DCo
nv3

DCo
nv4

Random
noise

Conv
2

Conv
3

Conv
4

Conv Loss 

Real 
sample

Generated 
fake sample

GD4GD3GD2GD1GG4GG3GG2GG1

D1
D2
G

DCo
nv1

Figure 4. GAN training. D1 and D2 show the dataflow for first and second
training phases of Discriminator, G represents Generator’s training phase.

B. PIM-TGAN
In this subsection, we develop a processing-in-memory ac-

celerator for ternary GAN (PIM-TGAN) as a potential solution

to better address computation and data transfer bottlenecks

of different GAN architectures. As discussed in Section III,
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Figure 5. (a) PIM-TGAN accelerator architecture, (b) SOT-MRAM based
computational sub-array architecture of PIM-TGAN.

TGAN imposes the least possible computational complexity to

underlying hardware due to the ternarization of weights in for-

ward path compared to well-trained GANs which use floating

point operations on both CPU and GPU. Thus, in this work,

we mainly focus on accelerating the forward path of training in

both generator and discriminator units, however PIM-TGAN

is utilized to process entire GAN training phases discussed in

previous subsection. The architectural diagram of PIM-TGAN

accelerator is shown in Fig. 5a consisting of Image and Kernel

Banks, SOT-MRAM-based computational sub-arrays and a

Digital Processing Unit (DPU) including four ancillary units

(i.e. Ternarizer, Batch Normalization, Activation Function and

Loss Function). The proposed SOT-MRAM array architecture,

as will be thoroughly discussed in next subsection, can support

flexible bit-width add/sub operation required in both forward

and backward paths in GAN’s training.

Assume Input fmaps (I) and Kernels (W ) are initially stored

in Image Banks and Kernel Banks of memory, respectively. As

depicted in Fig. 5a, weights can be constantly ternarized before

mapping into computational sub-arrays, which is required

for both Conv and DConv blocks. Therefore, mapping of
ternarized weights is the first processing step that need be

accomplished by the accelerator. This step is performed using

DPU’s Ternarizer (Tern. unit in Fig. 5a) and then the results

are mapped to computational sub-arrays. Note that, ternarized

shared kernels can be utilized for different inputs. Next two

processing steps are combining and parallel computation that

will be performed within computational sub-arrays.

1) Computational Sub-array: The proposed SOT-MRAM

sub-array architecture could work in dual mode that perform

both memory read-write and logic operations. Fig. 5b (R.H.S.)

shows the architecture of a 2×3 memory array. Each SOT-

MRAM cell is associated with the Write Word Line (WWL),

Read Word Line (RWL), Write Bit Line (WBL), Read Bit

Line (RBL), and Source Line (SL) to perform typical memory

operations. Moreover, in our design, any three cells in identical

row could be sensed simultaneously to implement an in-

memory logic function after Sense Amplifiers (SA). The

peripheral decoders (active-high output) control the activation

of current path through the array. Voltage drivers are used

with the WBLs for providing the required write voltage. A

voltage mode SA [29] is connected to the RBL for sensing

the total resistance in the selected current path during Read

and Computing mode. We have devised a Mode demultiplexer

(MDMUX) right after SAs to switch between memory mode

and computing method based on Ctrl unit. As can be seen in

block-level sub-array architecture (Fig. 5b (L.H.S.)), the output

of each SA is routed to MDMUX. According to the mode

selector, output data can be routed to either GMUX (i.e. global

Mux for interfacing with other sub-arrays) or FA/FS unit.

Memory Mode: To write a bit in any of the SOT-MRAM

cells, for example in the cell of 1st row and 1st column, write

current should be injected through the heavy metal substrate

of SOT-MRAM. To activate this write current path, WWL1

should be activated by Memory Row Decoder (MRD) and SL1

is grounded, while all the other lines are kept floating. Now, in

order to write ‘1’ (/‘0’), the voltage driver (V1) connected with

WBL1 is set to positive (/negative) write voltage. This allows

sufficient charge current flows from V1 to ground (/ground to

V1), leading to MTJ resistance in High-RAP (/Low-RP ). For

typical memory read, a read current flows from the selected

SOT-MRAM cell to ground, generating a sense voltage at the

input of SA, which is compared with memory mode reference

voltage (Vsense,P<Vref<Vsense,AP). Now, if the path resistance

is higher (/lower) than Rref , i.e. RAP (/RP ), then the SA

produces High (/Low) voltage indicating logic ‘1’ (/‘0’).

Computing Mode: The key idea behind exploiting a CMOS

FA/FS unit is to realize a fast in-memory full adder (/subtrac-

tor) after SAs to efficiently process the data avoiding inevitable

operand write-back in conventional in-memory adder designs

as well as accelerating in-memory processing. Memory Col-

umn Decoder (MCD) is modified such that it can activate more

than one RBL at the same time. As a result, more than one

column can be sensed and routed from SAs to FA/FS unit.

Assume A, B and C operands (in Fig. 5b L.H.S.) correspond

to M1, M2 and M3 memory cells in Fig. 5b A , respectively.

The operands are readily read out and fed to FA/FS unit.

According to the selector, this unit yields Sum(/Difference)

and Carry(/Borrow) bits in a single cycle.

2) Mapping Method: As shown in Fig. 4, Conv and

DConv are the main computational blocks of TGAN that

are replaced by add/sub operations due to ternarization, thus

add/sub is the most critical unit of the accelerator, as it is

responsible for the most iterative computational blocks which

takes up the vast majority of the run-time. The add/sub
units must keep high throughput and resource efficiency while



handling different input widths at run-time. Here we present an

in-memory convolver within PIM-TGAN to efficiently handle

multi-bit add/sub operations. While there are few designs for

in-memory adder/subtractor in literature [30], to the best of our

knowledge, this work is the first proposing a fast (2-cycle) and

parallelable in-memory add/sub method.

We use the data organization depicted in Fig. 6 as the main

mapping method to perform an n-bit addition (/subtraction)

operation within PIM-TGAN’s computational sub-arrays. As

shown, operands (an−1...a1a0 and bn−1...b1b0) are initially

loaded and organized into different memory rows of PIM-

TGAN’s sub-array such that one computation can be per-

formed per memory cycle. Here in Fig. 6 L.H.S., LSBs of two

operands along with carry-in (ci) are selected and processed to

generate Carry-out (c0) and Sum (s0). After the computation,

the results need to be stored in the sub-array to be prepared for

next computing round. This can be fulfilled using the modified

Write Driver (WD) and MRD in one cycle (memory write).

The same process continues towards the MSBs computation

(Fig. 6 R.H.S.). Therefore, each computational sub-array is

able to implement an n-bit add/sub operations in 2×n cycles

(n read + n write). Finally, cn−1sn−1...s1s0 is produced and

stored in designated computational sub-array.

an-1 bn-1

a0 b0 ci
a1 b1
a2 b2
a3 b3

an-1 bn-1 s0

c0
a0 b0 ci

a1 b1
a2 b2
a3 b3

s0

c0

s1

c1

a0 b0 ci
a1 b1
a2 b2
a3 b3

s0

c0

s1

c1c2
c3

cn-2 Sn-1an-1 bn-1 cn-1

an-1...a1a0
bn-1...b1b0

Cn-1sn-1...s1s0

Figure 6. Realization of n-bit in-memory addition in PIM-TGAN.

Leveraging the presented idea in multiple PIM-GAN’s sub-

arrays can provide a parallel computation for PIM-TGAN.

Fig. 7a shows the requisite data organization and computation

of Conv and DConv layers. Initially, c channels (here,

4) in the size of kh × kw (here, 3×3) are selected from

input batch and accordingly produce a combined batch w.r.t.

the corresponding {-1,+1} kernel batch. This combination is

readily accomplished by changing the sign-bit of input data

corresponding to its kernel data. The combined batch is then

mapped to the designated computational sub-arrays. Consid-

ering 16-activated sub-arrays (within 4 memory matrix (mat)),

each combined batch’s channel (Ch) can be processed using

four parallel sub-arrays as depicted Fig. 7a. Here, Ch-1 to Ch-4

are respectively mapped to mat-1 to mat-4. After mapping, the

parallel activated sub-arrays of PIM-TGAN operate to produce

the output feature maps leveraging the same add/sub method

shown in Fig. 6.

C. Parallelism

In this subsection, we develop a Fully-Pipelined Com-

putation optimization method called FPC leveraging spatial

parallelism method (SP) presented in [6] and a new method

to further accelerate PIM-TGAN by increasing the system

throughput. In training phase, the input data are typically pro-

cessed in a batch size b (e.g. 8 or 64). Fig. 8 intuitively shows
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Figure 7. (a) Combining and (c) Parallel computing steps in PIM-TGAN.

the presented method with a small batch size of 2. A new batch

can enter the pipeline only if all inputs in previous batch are

processed. However, the pipelining can be readily achieved in

PIM-TGAN by duplicating the data for intermediate layers.

The pipeline for b1 and b2 are depicted in Fig. 8. Considering

DL as the number of discriminator’s layers, D1 training

phase takes DL+1+DL+(b-1) cycles to be done (b-1 cycles

to drain a batch from pipeline). With a careful observation

of GAN training phases, the authors in [6] have shown that

the discriminator’s phases can be simultaneously co-trained

for each batch. Fig. 8 shows that there is no data-dependency

between discriminator’s phases. We exploit the same method;

D1 and D2 phases take different computational sub-arrays

where Conv and DConv layers are being processed at a same

time. Considering GL as the number of generator’s layers, D2

latency is GL+DL+1+DL+1+(b-1) in order to update the D.

In addition, we observe that after calculation of D2’s Loss

function and back-propagation of the results to GD4 layer,

the generator training phase (G) for different batches can be

started while corresponding GD3 is being processed in D2.

This phase takes 2DL+2GL+2+(b-1). Regardless of pipelining,

GAN training imposes b×(D1+D2+G) cycles.
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Figure 8. Fully-paralleled training method of PIM-TGAN.

V. PERFORMANCE EVALUATION

In the following, we compare PIM-TGAN with other pos-

sible GAN acceleration solutions (based on ReRAM, ASIC

and GPU) running two GAN architectures (WGAN-GP and



DC-GAN). It is obvious that enlarging the chip area brings in

a higher performance for PIM-TGAN and other designs due

to the increased number of sub-arrays or computational units,

though the die size directly impacts the chip cost. Therefore,

in order to have a fair comparison, the area-normalized results

(performance/energy per area) will be reported henceforth.
A. Accelerators’ Setup

PIM-TGAN: We setup the PIM-TGAN’s memory sub-

array organization with 256 rows and 512 columns per mat

organized in a H-tree routing manner, 2×2 mats per bank,

8×8 banks per group; in total 16 groups and 512Mb total

capacity. To assess the performance of PIM-TGAN as a

new PIM platform, a comprehensive device-to-architecture

evaluation framework is developed. First, at the device level,

we jointly use the Non-Equilibrium Green’s Function (NEGF)

and Landau-Lifshitz-Gilbert (LLG) with spin Hall effect equa-

tions to model SOT-MRAM bitcell [16]. For the circuit level

simulation, a Verilog-A model of 2T1R SOT-MRAM device

is developed to co-simulate with the interface CMOS circuits

in Cadence Spectre and SPICE. 45nm NCSU Product Devel-

opment Kit (PDK) library [31] is used in SPICE to verify

the proposed design and acquire the performance of designs.

Second, an architectural-level simulator is built based on

NVSim [32]. The controllers and add-on circuits are synthe-

sized by Design Compiler [33] with an industry library. Third,

a behavioral-level simulator is developed in Matlab calculating

the latency and energy that PIM-TGAN spends. ReRAM: A

Prime-like [10] accelerator with two full functional (FF) sub-

arrays and one buffer sub-array per bank (totally 64 sub-

arrays) were considered for evaluation. In FF subarrays, for

each mat, there are 256×256 ReRAM cells and eight 8-bit

reconfigurable SAs. For evaluation, NVSim simulator [32]

was extensively modified to emulate Prime functionality. Note

that the default NVSim’s ReRAM cell file (.cell) was adopted

for the assessment. ASIC: We developed a YodaNN-like [34]

ASIC accelerator. To have a fair comparison, we select two

versions with either 64 tiles or 256 tiles. We synthesized the

designs with Design Compiler [33] under 45 nm process node.

The eDRAM and SRAM performance were estimated using

CACTI [35]. GPU: We used the NVIDIA GTX 1080Ti Pascal

GPU. It has 3584 CUDA cores running at 1.5GHz (11TFLOPs

peak performance). The energy consumption was measured

with NVIDIA’s system management interface. We scaled the

achieved results by 50% to exclude the energy consumed by

cooling, etc.

B. Energy Efficiency
Fig. 9a shows the PIM-TGAN’s energy-efficiency results

(frames per joule) using two parallelism methods (i.e. FPC
and SP ) compared to different accelerators for performing a

similar task with a batch size of 8 and 64. As can be seen,

the larger the b is, the lower energy-efficiency is obtained.

As shown, PIM-TGAN solution offers the highest energy-

efficiency normalized to area compared to others owning to

its fast, energy-efficient and parallel operations. We observe

that PIM-TGAN’s FPC solution shows ∼ 1.6× better energy-

efficiency than that of SP . We also observe that PIM-TGAN’s

FPC solution is ∼1.8×, 9.2× and 25.6× more energy-

efficient than the best ASIC solution, ReRAM design and

GPU. This energy reduction mainly comes from three sources:

1) standard Conv and DeConv operations in forward path

are replaced with energy-efficient add/sub operations due to

ternarization, 2) PIM-TGAN’s parallelism which massively

reduces the latency of operations and 3) bulk and energy-

efficient in-memory operations of PIM-TGAN.
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Figure 9. (a) Energy-efficiency and (b) Performance evaluation of different
accelerators normalized to area (Y-axis=Log scale).

C. Performance
Fig. 9b shows and compares the PIM-TGAN performance

(frames per second) results normalized with area with different

accelerators. Based on the results, we observe that PIM-

TGAN’s FPC is ∼2× faster than SP method. In addition, it

is ∼22× and 18× faster on average than GPU and ASIC-64

solutions. This is mainly because of (1) ultra-fast and parallel

in-memory operations of PIM-TGAN compared to multi-cycle

ASIC and GPU operations and (2) the existing mismatch

between computation and data movement in ASIC designs

and even GPU solution. As a result, ASIC-256 with more tiles

does not necessarily show a higher performance. We can also

observe that the larger the batch is, the higher performance is

obtained for PIM-TGAN’s FPC solution compared SP own-

ing to the its more paralleled computations as discussed earlier.

Additionally, it can be seen that PIM-TGAN is 5.4× faster that

ReRAM solution. Note that ReRAM design employs matrix

splitting due to intrinsically limited bit levels of RRAM device

so multiple sub-arrays are occupied. This can further limit the

parallelism methods. Besides, ReRAM crossbar has a large

peripheral circuit’s overhead such as buffers and DAC/ADC

which contribute more than 85% of area [10].

D. Memory Wall
Fig. 10a depicts the memory bottleneck ratio i.e. the time

fraction at which the computation has to wait for data and

on-/off-chip data transfer obstructs its performance (memory

wall happens) for DC-GAN structure under different imple-

mentations. The evaluation is performed according to the

peak performance and experimentally extracted results for

each platform considering number of memory access. The

results1 show the PIM-TGAN’s favorable solution for solving

memory wall issue. (1) We observe that PIM-TGAN and

ReRAM solutions spend less than ∼ 20% time for memory

1GPU data could not be accurately reported for this evaluation.



access and data transfer. However, ASIC accelerator spends

more than 90% time waiting for the loading data. (2) In the

larger batch size, ReRAM solution shows even lower memory

bottleneck ratio compared with PIM-TGAN. This comes from

two sources: (1) increased number of computational cycles

and (2) unbalanced computation and data movement of PIM-

TGAN due to limitation in number of activated sub-arrays

when number of operands increases. The less memory wall

ratio can be interpreted as the higher resource utilization ratio

for the accelerators which is plotted in Fig. 10b. We observe

that PIM-TGAN can efficiently utilize more than 55% of

its computation resources. Overall, PIM-TGAN and ReRAM

solutions can demonstrate the highest ratio (up to 65% which

reconfirms the results reported in Fig. 10a.
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Figure 10. (a) The memory bottleneck ratio and (b) resource utilization ratio
for DC-GAN structure.

VI. CONCLUSION

Conventional training methodology to train generative ad-

versarial network using full-precision weights introduces a lot

of memory and computational expenses. Here, we introduced

a novel GAN training algorithm using ternary weights which

eliminates the need for computationally-expensive multipli-

cation operations in hardware. Additionally, we presented a

novel processing-in-memory accelerator (PIM-TGAN) based

on SOT-MRAM to further accelerate the ternary training

process. Our simulation results showed that, with almost the

same inception score to the baseline GAN on different data-

sets, PIM-TGAN can obtain ∼25.6× better energy-efficiency

and 22× speedup compared to GPU platform.
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