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ABSTRACT

Recent algorithmic progression has brought competitive classifi-

cation accuracy despite constraining neural networks to binary

weights (+1/-1). These findings show remarkable optimization op-

portunities to eliminate the need for computationally-intensive mul-

tiplications, reducing memory access and storage. In this paper, we

present ParaPIM architecture, which transforms current Spin Orbit

TorqueMagnetic RandomAccess Memory (SOT-MRAM) sub-arrays

to massively parallel computational units capable of running infer-

ences for Binary-Weight Deep Neural Networks (BWNNs). Para-

PIM’s in-situ computing architecture can be leveraged to greatly

reduce energy consumption dealing with convolutional layers,

accelerate BWNNs inference, eliminate unnecessary off-chip ac-

cesses and provide ultra-high internal bandwidth. The device-to-

architecture co-simulation results indicate ∼4× higher energy effi-

ciency and 7.3× speedup over recent processing-in-DRAM acceler-

ation, or roughly 5× higher energy-efficiency and 20.5× speedup

over recent ASIC approaches, while maintaining inference accuracy

comparable to baseline designs.
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1 INTRODUCTION
Deep Convolutional Neural Network (CNN) has obtained remark-

able success owning to outstanding performance in image recogni-

tion over large scale data-sets such as ImageNet [6]. Following cur-

rent trend, by going deeper in CNNs (e.g. ResNet employs 18-1001

layers), memory/computational resources and their communica-

tion have faced inevitable limitations. This has been interpreted as

“CNN power and memory wall” [2], leading to the development of

different approaches to improve CNN efficiency at either algorithm

or hardware level. Model pruning [14], parameters quantization

[24] and binarization [20] are among the widely-explored algorith-

mic approaches to mitigate above challenges. Meanwhile, it has

been proven that convolutional layers consume up to ∼90% [5, 6]
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of execution time and computational energy of whole CNN in both

CPUs and GPUs, with the main purpose of feature extraction.

In hardware design domain, the isolated memory and processing

units (GPU or CPU) interconnected via buses has faced serious

challenges, such as long memory access latency, significant con-

gestion at I/Os, limited memory bandwidth, huge data communica-

tion energy and large leakage power consumption for storing net-

work parameters in volatile memory [8]. To address these concerns,

Processing-in-Memory (PIM) CNN accelerators, as a potentially

viable way to address memory wall challenge, have been widely

explored [4, 5, 8, 16, 23]. The main idea of PIM is to embed logic

units within memory to process data by leveraging the inherent

parallel computing mechanism and exploiting large internal mem-

ory bandwidth. It could lead to remarkable saving in off-chip data

communication energy and latency. The proposals for exploiting

SRAM-based PIM architectures can be found in recent literature

[12]. However, PIM in context of main memory (DRAM- [16]) has

provided more benefits in recent years owing to the larger memory

capacity and off-chip data communication reduction as opposed

to SRAM-based PIM. However, the existing DRAM-based PIM ar-

chitectures encounter several inevitable drawbacks, such as high

refresh/leakage power, multi-cycle logic operations, operand data

overwritten, etc.

The PIM architectures have recently become even more popu-

lar when integrating with emerging Non-Volatile Memory (NVM)

technologies, such as Resistive RAM (ReRAM) [8]. ReRAM offers

more packing density (∼ 2− 4×) than DRAM, and hence appears to

be competitive alternatives to DRAM. However, it still suffers from

slower and more power hungry writing operations than DRAM

[15]. Spin-Transfer Torque Magnetic Random Access Memory (STT-

MRAM) [13] and recent Spin-Orbit Torque Magnetic Random Ac-

cess Memory (SOT-MRAM) [5] technologies are other promising

candidates for both the last level cache and the main memory, due

to their low switching energy, non-volatility, superior endurance,

excellent retention time, high integration density and compatibility

with CMOS technology. Meanwhile, MRAM technology is undergo-

ing the process of commercialization [9]. Hence, PIM in the context

of different NVMs, without sacrificing memory capacity, can open

a new way to realize efficient PIM paradigms [8, 17].

In this work, we take a significant step towards the energy-

efficiency and performance by exploiting recent researches on

Binary-Weight CNNs (BWNNs) [10, 20]. We present ParaPIM as a

parallel in-situ accelerator, which transforms current SOT-MRAM

sub-arrays to massively parallel computational units capable of run-

ning fast and energy-efficient inferences for BWNNs. We demon-

strate that ParaPIM can accelerate BWNNs using new mapping

methods, maximize resource utilization and minimize memory ac-

cess leveraging the PIM technique.



2 BINARY-WEIGHT NETWORKS
CNN works in two distinct modes, first, training mode in which the

configuration values of layers are calculated by training the net-

work on pre-classified training images, and second, inference mode

where new test images are examined. In both modes, Multiplication

and Accumulation (MAC) operations are the most computationally-

expensive arithmetic operations [2]. To eliminate the need for mas-

sive multiplication operations and memory usage, researchers have

come up with various BWNNs by forcing the weights to be binary

specifically in forward propagation. BinaryConnect [10] trains deep

neural networks with binary weights (-1, +1) and shows near state-

of-the-art results on MNIST and CIFAR-10 data-sets. This approach

has the potential to bring great benefits to CNN hardware imple-

mentation by enabling the replacement of multiplication operations

with much simpler complement addition/subtraction operations

[2, 20], and by drastically reducing weight storage requirements.

XNOR-NET [20] offers simple and accurate BWNN and achieves

almost similar results with full-precision AlexNet on ImageNet.

The following equation [10] shows the deterministic and stochastic

binarization functions for floating point weightswf p :

wb,De =

{
+1, wf p ≥ 0
−1, wf p < 0

, wb,St =

{
+1, p = σ (wf p )
−1, 1 − p

(1)

where σ is a hard sigmoid function to determine the probability

distribution:

σ (x ) = clip(
x + 1

2
, 0, 1) =max (0,min(1,

x + 1

2
)) (2)

In the next section, we present ParaPIM architecture to accelerate

BWNNs in the PIM context.

3 PARAPIM ARCHITECTURE

The architectural diagram of the proposed ParaPIM accelerator

is shown in Fig. 1a consisting of Image and Kernel Banks, SOT-

MRAM based computational sub-arrays and a Digital Processing

Unit (DPU) including three ancillary units (i.e. Binarizer, Batch

Normalization and Activation Function). The accelerator can be

adjusted by Ctrl unit to process entire BWNN. Assume Input fea-

ture maps (I ) and Kernels (W ) are initially stored in Image Bank

and Kernel Bank of memory, respectively. Except for the inception

block, kernels need to be constantly binarized before mapping into

computational sub-arrays which are designed to handle the com-

putational load of ParaPIM employing PIM techniques. However,

binarized shared kernels can be utilized for different inputs. This

operation is basically performed using DPU’s Bin. (see DPU in Fig.

1a) and then results are mapped to the parallel sub-arrays (1st step).

In the 2nd and 3rd steps, the parallel sub-arrays extract the features

using combining and parallel computation schemes of ParaPIM,

as will be explained in the following subsections. Finally, DPU’s

Active. activates the generated feature map to complete 4st step by

producing output fmaps.

3.1 Computational Sub-arrays

Fig. 1b depicts the presented PIM sub-array architecture based on

SOT-MRAM. This architecture mainly consists of Write Driver

(WD), Memory Row Decoder (MRD) (elaborated in Fig. 1c A ),

Memory Column Decoder (MCD), reconfigurable Sense Amplifier

(SA) (Fig. 1c C ), and can be adjusted by Ctrl unit (Fig. 1c B ) to work

in dual mode that perform both memory write/read and bit-line

computing (using two distinct methods). SOT-MRAM device is a

composite structure of spin Hall metal (SHM) and Magnetic Tunnel

Junction (MTJ). The resistance of MTJ with parallel magnetization

in both magnetic layers (data-‘0’) is lower than that of MTJ with

anti-parallel magnetization (data-‘1’). Each SOT-MRAM cell located

in computational sub-arrays is associated with the Write Word Line

(WWL), Read Word Line (RWL), Write Bit Line (WBL), Read Bit

Line (RBL), and Source Line (SL) to perform operations based on

reconfigurability of memory SAs.

New Reconfigurable SA: The key idea to perform memory

read and bit-line computing is to choose different thresholds (ref-

erences) when sensing the selected memory cell(s). The proposed

reconfigurable SA, as depicted in Fig. 1c C , consists of two sub-SAs

and totally four reference-resistance branches that can be selected

by Enable bits (ENM ,ENOR2,ENMAJ ,ENAND2) by the sub-array’s

Ctrl to realize the memory and computation schemes as tabulated

in Table 1. Such reconfigurable SA could implement memory read

and one-threshold based logic functions only by activating one

enable at a time e.g. by setting ENAND2 to ‘1’, 2-input AND/NAND

logic can be readily implemented between operands located in the

same bit-line. Meanwhile, by activating two enables at a time e.g.

ENOR2,ENAND2, two logic functions can be simultaneously im-

plemented and further used to generate two-threshold based logic

functions like XOR/XNOR as explained accordingly.
Table 1: Configuration of enable bits for different functions.

In-memory

Operations
read

OR2/

NOR2

AND2/

NAND2

MAJ/

MIN

XOR2/

XNOR2

ENM 1 0 0 0 0

ENOR2 0 1 0 0 1

ENMAJ 0 0 0 1 0

ENAND2 0 0 1 0 1

Memory Mode: To write a bit in any of the SOT-MRAM cells,

e.g. in the cell of 1st row and 1st column, write current should be

injected through the heavy metal substrate of SOT-MRAM. To acti-

vate this write current path, WWL1 is activated by MRD and SL1 is

grounded, while all the other lines are kept floating. Now, in order

to write ‘1’ (/‘0’), the WD (V1) connected to WBL1 is set to posi-

tive (/negative) write voltage. This allows sufficient charge current

flows from V1 to ground (/ground to V1), leading to MTJ resistance

in High-RAP (/Low-RP ). For typical memory read, a read current

flows from the selected cell to ground, generating a sense voltage

(Vsense) at the input of SA, which is compared with memory mode

reference voltage activated by ENM (Vsense,P<Vref,M<Vsense,AP).

Now, if the path resistance is higher (/lower) than RM (memory ref-

erence resistance) , i.e. RAP (/RP ), then the SA produces High (/Low)

voltage indicating logic ‘1’ (/‘0’). The idea of voltage comparison

for memory read is shown in Fig. 2a.

Bit-line Computing Mode: The computational sub-array of

ParaPIM is designed to perform bulk bit-wise in-memory logic op-

erations between two or three operands located in the same bit-line.

In the 2-input in-memory logic scheme, every two bits stored in the

identical column can be selected and sensed simultaneously employ-

ing the MRD [17], as depicted in Fig. 1b. Then, the equivalent resis-

tance of such parallel connected SOT-MRAMs and their cascaded ac-

cess transistors are compared with a programmable reference by SA.

Through selecting different reference resistances (RAND2,ROR2),

the SA can perform basic 2-input in-memory Boolean functions

(i.e. AND and OR) e.g. to realize AND operation, Rr ef is set at the

midpoint of RAP //RP (‘1’,‘0’) and RAP //RAP (‘1’,‘1’). Consider the

data organization shown in Fig. 1b L.H.S., where A and B operands
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Figure 1: (a) ParaPIM accelerator architecture, (b) Computational sub-array of ParaPIM and its 2-input and 3-input in-situ

logic operations, (c) Peripherals of SOT-MRAM computational sub-arrays to support computation.

correspond to M1 and M2 memory cells in Fig. 1b R.H.S., respec-

tively, 2-input in-memory logic method generates AB after SA in

a single memory cycle. The idea of voltage comparison between

Vsense and Vref for 2-input in-memory logic is shown on Fig. 2b.

It is worth pointing out that only one sub-SA is used during one-

threshold logic operations to reduce the power consumption of

sensing. Owing to the complementary outputs of sub-SAs, the re-

configurable SA can also provide 2-input NOR, NAND functions.

The XOR logic is realized with two SAs (i.e. performing AND and

NOR logic, simultaneously) and an additional CMOS NOR gate as

shown in SA circuit in Fig. 1c.
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Figure 2: The idea of voltage comparison between Vsense

and Vref for (a) memory read, (b) 2-input and (c) 3-input in-

memory logic operations.

In the 3-input in-memory logic scheme, every three cells located

in an identical column can be selected by MRD and sensed simulta-

neously to realize 3-input majority/minority functions (Maj/Min)

in a single sensing cycle. Consider the data organization shown

in Fig. 1b where A, B and C operands correspond to M1, M2 and

M3 memory cells, respectively, the computational sub-array can

perform AB +AC + BC Boolean function by setting ENMAJ to ‘1’.

As shown in Fig. 2c, to perform MAJ operation, RMAJ is set at the

midpoint of RP //RP //RAP (‘0’,‘0’,‘1’) and RP //RAP //RAP (‘0’,‘1’,‘1’).

In order to validate the variation tolerance of the sensing circuit,

we have performed Monte-Carlo simulation with 10000 trials. A

σ = 2% variation is added to the Resistance-Area product (RAP),

and a σ = 5% process variation is added on the Tunneling Magne-

toResistive (TMR). The simulation result of sense voltage (Vsense)

distributions in Fig. 3 shows the sense margin for conventional

memory read, two fan-in in-memory logic and 3 fan-ins operation.

It can be seen that sense margin gradually reduces when increasing

the number of fan-ins (selected SOT-MRAM cells for computation).

To avoid logic failure and guarantee the SA output’s reliability, we

have limited the number of sensed cells to three. Note that, such

sense margin could be even improved by increasing the sense cur-

rent, but by sacrificing the operation’s energy-efficiency. Parallel

computing/read is implemented by using one SA per bit-line.

Figure 3: Monte-Carlo simulation of Vsense distribution for

(top) memory read operation, and bit-line computing with

(middle) two selected cells (down) three selected cells.

ParaPIM’s sub-arrays can also perform addition/subtraction (add/
sub) operation quite efficiently. With a careful observation on full-

adder Boolean logic, we notice that carry-out can be directly pro-

duced by MAJ function (Carry in Fig. 1c C ) just by setting ENMAJ

to ‘1’. Accordingly, we considered a carry latch at this point to store

intermediate carry outputs to be used in summation of next bits.

Meanwhile, Sum output can be obtained by inserting a 2-input XOR

gate in reconfigurable SA. Now, assume A, B and C operands (in

Fig. 1b), the 2- and 3-input in-memory logic schemes can generate

Sum(/Difference) and Carry(/Borrow) bits as will be elaborated in

the next subsection.
3.2 In-Memory Convolver

From hardware implementation perspective, there are two types of

convolution operations in BWNNs that need to be taken into ac-

count. The first one is massive binary-weight convolution (add/sub)



of middle layers between binary kernels and quantized inputs. The

second one is bit-wise convolution located in inception layer and

fully-connected (FC) layers in which convolution between different

bit-width inputs and kernels requires bulk bit-wise operations. Both

types can be readily implemented and accelerated with ParaPIM’s

convolution methods.

Bit-wise Adder: As the main operation of BWNNs, add/sub
is the most critical unit of the accelerator, as it is in charge for

the most iterative layers which take up the vast majority of the

run-time in the network. These units must keep high throughput

and resource efficiency while handling different input bit-widths at

run-time. Therefore, here we propose a parallel in-memory adder

(/subtractor) based on 2- and 3-input in-memory logic schemes of

ParaPIM to accelerate multi-bit add/sub operations. While there

are few designs for in-memory adder/subtractor in literature [3, 16],

to the best of our knowledge, this work is the first which presents

a fast and fully parallel design in MRAM domain.

Fig. 4a elaborates the requisite data organization and compu-

tation steps of binary-weight layers with a straightforward and

intuitive example in Fig. 4b only considering add operations. Obvi-

ously sub can be implemented based on add .
(1) Initially, c channels (here, 4) in the size of kh ×kw (here, 3×3)

are selected from input batch and accordingly produce a combined

batch w.r.t. the corresponding binary {-1,+1} kernel batch. This

combination is readily accomplished by changing the sign-bit of

input data w.r.t. kernel data (f 1 ∗ −1 = −f 1).
(2) The combined batch’s channels are transposed and mapped to

the designated computational sub-arrays. Considering n-activated
sub-arrays with the size of x×y, each sub-array can handle the

parallel add/sub of up to x elements ofm-bit (3m + 2 ≤ y) and so

ParaPIM could process n × x elements to maximize the throughput.

Here, Ch-1 to Ch-4 are respectively transposed and mapped to

sub-array #1.

(3) After mapping, the parallel in-memory adder of ParaPIM ac-

celerator operates to produce the output feature maps. The memory

sub-array organization for such parallel computation is delineated

in Fig. 4a R.H.S. Two reserved rows for Carry results initialized by

zero andm (here, 4) reserved rows are considered for Sum results.

We have shown the current state (Q) as well as the next state (Q*)

of SA’s latch after being enabled for further clarification. We use

the add operation of two matrices of 4-bit elements (Ch1 and Ch2)

in Fig. 4b to elaborate how addition operates in the ParaPIM. Every

two corresponding elements that are going to be added together

have to be aligned in the same bit-line. Here, Ch1 and Ch2 should

be aligned in the same sub-array. Ch1 elements take the first 4 rows

of the sub-array followed by Ch2 in the next 4 rows.

The addition algorithm starts bit-by-bit from the LSBs of the two

words and continues towards MSBs. There are 2 cycles for every

bit-position computation divided into four steps indicated by S1,

S2, C1 and C2. In step 1 of Sum (S1), 2 RWLs (accessing to LSBs

of 4 elements) and Latch (storing zero) are enabled to generate the

sum. The SAs use the 2 bit cells located in the same bit-lines as

input operands and carry latch’s data as carry-in to generate sum

based on the method explained in the previous subsection. During

step 2 of Sum (S2), a WWL is activated to save back the Sum bit. In

step 1 of Carry (C1), the same 2 operands in conjunction with one

of the carry’s reserved rows are enabled to generate the carry-out
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Figure 4: (a) Data organization and computation steps of

binary-weight layers, (b) Parallel in-memory addition steps

for generating sum and carry-out logic.
leveraging bit-line computing mode of ParaPIM accelerator. During

step 2 of Carry (C2), a WWL is activated to save back the carry-

out bit into a reserved row and also in latch. This carry-out bit

overwrites the data in the carry latch and becomes the carry-in of

the next cycle. This process is concluded after 2 ×m cycles, where

m is number of bits in elements.

Bit-wise Convolver: Besides binarized layers, there are other

layers in BWNNs, such as first conv. layer (directly taking image as

inputs, not replaced by add/sub) and FC layers. Note that, FC layers

can be equivalently implemented by convolution operations using

1 × 1 kernels [24]. Thus, the rest layers could be accelerated all

by convolution computation by exploiting logic AND and bitcount

operations as explained in [24]. The proposed 2-input in-memory

logic scheme of ParaPIM is readily leveraged to accelerate bulk bit-

wise AND logic required for this layer. Besides bitcount operation

is translated to addition of bits. Due to the lack of space, we refer

the readership to a hardware implementation of such method [5].

4 PERFORMANCE EVALUATIONS
In this section, we compare ParaPIM with other possible BWNN ac-

celeration solutions on DRAM, ASIC, ReRAM and GPU. Obviously,

enlarging the chip area brings a higher performance for ParaPIM

and other designs due to the increased number of sub-arrays or

computational units, though the die size directly impacts the chip

cost. Therefore, to have a fair comparison, the area-normalized

results (performance/energy per area) will be reported henceforth.

4.1 Experiment’s setup

Accelerators: ParaPIM:We configure the ParaPIM’s memory sub-

array organization with 256 rows and 512 columns per mat orga-

nized in a H-tree routing manner, 2×2 mats (with 2/2 and 2/2 as



Row and Column Activations) per bank, 8×8 banks (with 1/8 and

8/8 as Row and Column Activations) per group; in total 16 groups

and 512Mb total capacity. To assess the performance of ParaPIM as

a new PIM platform, a comprehensive device-to-architecture evalu-

ation framework along with two in-house simulators are developed.

First, at the device level, we jointly use the Non-EquilibriumGreen’s

Function (NEGF) and Landau-Lifshitz-Gilbert (LLG) with spin Hall

effect equations to model SOT-MRAM bitcell [5, 13]. For the circuit

level simulation, a Verilog-A model of 2T1R SOT-MRAM device

is developed to co-simulate with the interface CMOS circuits in

Cadence Spectre and SPICE. 45nm North Carolina State University

(NCSU) Product Development Kit (PDK) library [1] is used in SPICE

to verify the proposed design and acquire the performance. Second,

an architectural-level simulator is built based on NVSim [11]. Based

on the device/circuit level results, our simulator can alter the con-

figuration files (.cfg) corresponding to different array organization

and report performance metrics for PIM operations. The controllers

and add-on circuits are synthesized by Design Compiler [22] with

an industry library. Third, a behavioral-level simulator is developed

in Matlab calculating the latency and energy that ParaPIM spends

on BWNNs. In addition, it has a mapping optimization framework

to maximize the performance according to the available resources

based on method explained in Section III.B. DRAM: We developed

a DRISA-like [16] accelerator for BWNNs. 1T1C-adder method of

DRISA was selected for comparison which exploits a large n-bit
adder circuit for n-bit BLs after SAs. We modified CACTI [7] for

evaluation of DRAM’s solutions. Similar to [16], the controllers

and adders were synthesized in Design Compiler [22]. ASIC: We

developed a YodaNN-like [2] ASIC accelerator. To have a fair com-

parison, we select two versions with either 8×8 tiles or 16×16 tiles.

Accordingly, we synthesized the designs with Design Compiler [22]

under 45 nm process node. The eDRAM and SRAM performance

were estimated using CACTI [18]. ReRAM: A Prime-like [8] ac-

celerator with two full functional (FF) sub-arrays and one buffer

sub-array per bank (totally 64 sub-arrays) were considered for eval-

uation. In FF subarrays, for each mat, there are 256×256 ReRAM

cells and eight 8-bit reconfigurable SAs. For evaluation, NVSim sim-

ulator [11] was extensively modified to emulate Prime functionality.

Note that the default NVSim’s ReRAM cell file (.cell) was adopted

for the assessment. GPU: We used the NVIDIA GTX 1080Ti Pas-

cal GPU. It has 3584 CUDA cores running at 1.5GHz (11TFLOPs

peak performance). The energy consumption was measured with

NVIDIA’s system management interface. Similar to [16], we scaled

the achieved results by 50% to exclude the energy consumed by

cooling, etc.

Model: We select an eight-bit configuration for the inputs in

BWNN. The SVHN [19] as a real-world image data-set consisting of

photos of house numbers in Google Street View images, is selected

for evaluation. The cropped format of colored images (32×32) cen-

tered around each single digit is selected. Accordingly, the images

are re-sized to 40×40 and fed to the model. Our model is a CNNwith

6 binary-weight convolutional layers, 2 (average) pooling layers

and 2 FCs that cost about 80 FLOPs for a 40×40 image. To avert

prediction accuracy degradation, we don’t quantize the first and

last layers [5, 20, 24].

4.2 Energy & Performance
Fig. 5a shows the ParaPIM’s energy-efficiency results (frames per

joule) on the BWNN model compared to different accelerators for

performing a similar task with a batch size of 8 and 32. As can

be seen, the larger the batch is, the lower energy-efficiency is ob-

tained. We observe that ParaPIM solution offers the highest energy-

efficiency normalized to area compared to others owning to its

fast, energy-efficient and fully-parallel operations. It shows on av-

erage 4× and 13.5× higher energy-efficiency than that of DRAM

1T1C-adder and ReRAM-based accelerators, respectively. In addi-

tion to large refresh power of DRAM-based PIM accelerators [16],

they are dealing with a destructive data-overwritten issue due to

the charge sharing characteristic of capacitors. It means that the

result of computation will ultimately overwrite the operands. To

solve this issue in the context of DRAM, multi-cycle operations [21]

are set forth which has further degraded PIM performance. Note

that, the n-bit adder located after SAs in DRAM-1T1C-adder so-

lution doesn’t necessarily provide higher performance due to its

non-parallel operations and so it has limited its energy-efficiency.

Meanwhile, we observe that ParaPIM solution is approximately 5×

more energy-efficient than that of ASIC64 solution. This energy

reduction basically comes from two sources: first, the standard

convolution that are replaced and accelerated by energy-efficient

add/sub in ParaPIM and second, limited and multiplexed computa-

tion resources of ASIC solution compared to the large number of

available computational sub-arrays in ParaPIM distributed across

different banks. Fig. 5 also shows that ParaPIM obtains ∼42× saving

in energy compared to GPU solution.

Fig. 5b depicts the ParaPIM’s performance (frames per second)

results. We observe that ParaPIM solution is ∼7.3× faster than that

of DRAM solution (1T1C-adder) and 20.5× faster than ASIC64 solu-

tion. This is mainly because of (1) ultra-fast and parallel in-memory

operations of ParaPIM compared to multi-cycle DRAM operations

and (2) the existing mismatch between computation and data move-

ment in ASIC designs and even 1T1C-adder solution. As a result,

ASIC256 with more tiles does not demonstrate a higher perfor-

mance. We can also observe that the larger the batch is, the higher

performance is obtained for ParaPIM solution compared DRAM

owning to the its more paralleled computations. Additionally, Para-

PIM shows 14.7× higher performance than that of ReRAM solution.

Note that ReRAM design employs matrix splitting due to intrinsi-

cally limited bit levels of ReRAM device so multiple sub-arrays are
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Figure 5: (a) Energy-efficiency and (b) Performance evalua-

tion of different accelerators for running BWNNs normal-

ized to area (Y-axis=Log scale).



occupied. Besides. ReRAM crossbar has a large peripheral circuit’s

overhead such as buffers and DAC/ADC which contribute more

than 85% of area [8]. Compared to GPU-based solution, ParaPIM

can obtain roughly 33× higher performance normalize to area.

4.3 Memory Bottleneck
ParaPIM’s in-situ computing architecture can be leveraged to accel-

erate BWNNs inference, eliminate unnecessary off-chip accesses

and provide ultra-high internal bandwidth. Fig. 6a depicts the mem-

ory bottleneck ratio i.e. the time fraction at which the computation

has to wait for data and on-/off-chip data transfer obstructs its

performance (memory wall happens). The evaluation is performed

according to the peak performance and experimentally extracted

results for each platform considering number of memory access.

The results show the ParaPIM’s efficiency for solving memory wall

issue. We observe that ParaPIM, DRAM and ReRAM solutions spend

less than ∼16% time for memory access and data transfer owning to

the PIM acceleration schemes. However, ASIC accelerators spend

more than 90% time waiting for the loading data. Note that, DRAM-

based solution shows higher memory bottleneck ratio compared

with ParaPIM due to its unbalanced computation and data move-

ment. GPU data could not be accurately reported for this evaluation.

The less memory bottleneck ratio can be translated as the higher

resource utilization ratio for the accelerators plotted in Fig. 6b. We

observe that ParaPIM has the highest resource utilization with up to

∼70%. Overall, PIM solutions demonstrate high ratio (>60%) which

reconfirms the results reported in Fig. 6a.
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Figure 6: (a) The memory bottleneck ratio and (b) resource

utilization ratio.

4.4 NVM-PIM Comparison

We evaluate the energy and area of BWNN accelerators imple-

mented by two promising resistive memories (i.e. ReRAM [23] and

SOT-MRAM [5]) for inference of one single image over three well-

known data-sets under a 45nm technology node. Based on Table

2, ParaPIM can process BWNN quite efficiently. The energy and

area reported in Table 2 are the convolution computation energy

and area of all layers as an accelerator. We observe that ParaPIM

processes binary-weight AlexNet [20] for ImageNet favorably with

561.3μJ/img and reduces energy and area by ∼4× and 5×, respec-

tively, compared to the ReRAM-based design. Meanwhile, it shows

∼1.4× energy saving compared to IMCE with smaller area.
5 CONCLUSIONS
In this work, we presented ParaPIM architecture to transform cur-

rent SOT-MRAM sub-arrays to massively parallel computational

units capable of running inferences for Binary-Weight Deep Neu-

ral Networks (BWNNs). This architecture is leveraged to greatly

reduce energy consumption dealing with convolutional layers and

Table 2: Energy-area of BWNN accelerators.
ImageNet SVHN MNIST

Designs
Energy

(μJ/img)

Area

(mm2)

Energy

(μJ/img)

Area

(mm2)

Energy

(μJ/img)

Area

(mm2)

ReRAM

[23]
2275.34 9.19 425.21 0.085 13.55 0.060

IMCE

[5]
785.25 2.12 135.26 0.01 0.92 0.009

ParaPIM 561.3 1.8 91.65 0.021 0.85 0.013

also accelerate BWNN inference. The simulation results show ∼4×

higher energy-efficiency and 7.3× speedup over recent processing-

in-DRAM-based acceleration, or roughly 5× higher energy-efficiency

and 20.5× speedup over recent ASIC approaches.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science Foundation under

Grant No. 1740126 and Semiconductor Research Corporation nCORE.

REFERENCES
[1] 2011. NCSU EDA FreePDK45. http://www.eda.ncsu.edu/wiki/FreePDK45:

Contents
[2] Renzo Andri et al. 2016. YodaNN: An ultra-low power convolutional neural

network accelerator based on binary weights. In ISVLSI. IEEE, 236–241.
[3] Shaahin Angizi et al. 2017. Rimpa: A new reconfigurable dual-mode in-memory

processing architecture with spin hall effect-driven domain wall motion device.
In ISVLSI. IEEE, 45–50.

[4] Shaahin Angizi et al. 2018. CMP-PIM: an energy-efficient comparator-based
processing-in-memory neural network accelerator. In 55th DAC. ACM, 105.

[5] Shaahin Angizi et al. 2018. IMCE: energy-efficient bit-wise in-memory convolu-
tion engine for deep neural network. In Proceedings of the 23rd ASP-DAC. IEEE
Press, 111–116.

[6] Lukas Cavigelli et al. 2015. Accelerating real-time embedded scene labeling with
convolutional networks. In DAC, 2015 52nd ACM/IEEE.

[7] Ke Chen et al. 2012. CACTI-3DD: Architecture-level modeling for 3D die-stacked
DRAM main memory. In DATE, 2012. IEEE, 33–38.

[8] Ping Chi et al. 2016. Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory. In ISCA. IEEE Press.

[9] S-W Chung et al. 2016. 4Gbit density STT-MRAM using perpendicular MTJ
realized with compact cell structure. In IEDM. IEEE.

[10] Matthieu Courbariaux et al. 2015. Binaryconnect: Training deep neural networks
with binary weights during propagations. In Advances in Neural Information
Processing Systems. 3123–3131.

[11] Xiangyu Dong et al. 2014. NVSim: A circuit-level performance, energy, and area
model for emerging non-volatile memory. In Emerging Memory Technologies.
Springer, 15–50.

[12] Charles Eckert et al. 2018. Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks. arXiv preprint arXiv:1805.03718 (2018).

[13] Xuanyao Fong et al. 2016. Spin-transfer torque devices for logic and memory:
Prospects and perspectives. IEEE TCAD 35 (2016).

[14] Song Han et al. 2015. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. In ICLR’16.

[15] Benjamin C Lee et al. 2009. Architecting phase change memory as a scalable
dram alternative. In ACM SIGARCH Computer Architecture News, Vol. 37. ACM.

[16] Shuangchen Li et al. 2017. DRISA: A DRAM-based Reconfigurable In-Situ Accel-
erator. In Micro. ACM, 288–301.

[17] Shuangchen Li, Cong Xu, et al. 2016. Pinatubo: A processing-in-memory archi-
tecture for bulk bitwise operations in emerging non-volatile memories. In DAC.
IEEE.

[18] Naveen Muralimanohar et al. 2009. CACTI 6.0: A tool to model large caches. HP
Laboratories (2009), 22–31.

[19] Yuval Netzer et al. 2011. Reading digits in natural images with unsupervised
feature learning. In NIPS workshop, Vol. 2011. 5.

[20] Mohammad Rastegari et al. 2016. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European Conference on Computer Vision.
Springer, 525–542.

[21] Vivek Seshadri et al. 2017. Ambit: In-memory accelerator for bulk bitwise opera-
tions using commodity DRAM technology. In Micro. ACM, 273–287.

[22] Synopsys Design Compiler. Product Version 14.9.2014. Synopsys, Inc. [n. d.]. ([n.
d.]).

[23] Tianqi Tang et al. 2017. Binary convolutional neural network on RRAM. In 22nd
ASP-DAC. IEEE, 782–787.

[24] Shuchang Zhou et al. 2016. DoReFa-Net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. arXiv preprint:1606.06160 (2016).


