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ABSTRACT

Classified as a complex big data analytics problem, DNA short

read alignment serves as a major sequential bottleneck to massive

amounts of data generated by next-generation sequencing plat-

forms. With Von-Neumann computing architectures struggling to

address such computationally-expensive and memory-intensive

task today, Processing-in-Memory (PIM) platforms are gaining

growing interests. In this paper, an energy-efficient and parallel PIM

accelerator (AlignS) is proposed to execute DNA short read align-

ment based on an optimized and hardware-friendly alignment algo-

rithm. We first develop AlignS platform that harnesses SOT-MRAM

as computational memory and transforms it to a fundamental pro-

cessing unit for short read alignment. Accordingly, we present a

novel, customized, highly parallel read alignment algorithm that

only seeks the proposed simple and parallel in-memory operations

(i.e. comparisons and additions). AlignS is then optimized through a

new correlated data partitioning and mapping methodology that al-

lows local storage and processing of DNA sequence to fully exploit

the algorithm-level’s parallelism, and to accelerate both exact and

inexact matches. The device-to-architecture co-simulation results

show that AlignS improves the short read alignment throughput

per Watt permm2 by ∼12× compared to the ASIC accelerator. Com-

pared to recent FM-index-based ReRAM platform, AlignS achieves

1.6× higher throughput per Watt.

1 INTRODUCTION

Powered by the high-throughput genomic technologies, the new

DNA sequencing method is able to determine the accurate order of

nucleotides (nt) along genomes, and capable of measuring molec-

ular activities in cells. It empowers disease diagnostics and other

aspects of medical care, including tailor patient treatment and pre-

natal testing [1]. The sequence data generated from one patient

sample consists of tens of millions short DNA sequences (reads)

that range from 50 to 500 nt in length. These short reads do not

come with position information, and we do not know what part of

the chromosome/genome they came from. Thus, the short reads

must be aligned to the reference genome before most Genomic

analyses can begin. However, the reference genome is really big.

It contains two twisting, paired strands and each strand carries
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approximately 3 billion nucleotide bases (A,T ,C ,G) in human, and

the bases on two strands are paired specifically: A-T and C-G [2].

Therefore, the DNA sequence alignment task for one sample is

becoming to map the tens of millions of short reads to a 3 billion

base pair (bp) reference genome with 1-2 mismatches allowed on

each short read. Several sequence alignment algorithms have been

developed during the last decade. However, even the most efficient

algorithm such as BWA [3] or Bowtie [4] using Burrows-Wheeler

Transformation (BWT) requires hours or days to align such large

amount of data using DNA sequencing machine and even very pow-

erful CPU/GPU-based computing systems. Therefore, the genomic

information from DNA sequencing data cannot be widely applied

for disease diagnosis and prognosis as the other physiological data

in clinics and hospitals.

From computing hardware perspective, today’s sequencing ac-

celeration solutions including CPU, GPU [5], ASIC [1, 6, 7], and

FPGA [8] are mostly based on the Von-Neumann architecture with

separate computing and memory components connecting via buses

and inevitably consume a large amount of energy in data move-

ment between them. In the last two decades, Processing-in-Memory

(PIM) architectures, as a potentially viable way to solve the memory

wall challenge, have been well explored for different applications

[9]. The key concept behind PIM is to realize logic computation

within memory to process data by leveraging the inherent par-

allel computing mechanism and exploiting large internal mem-

ory bandwidth. It could lead to remarkable savings in off-chip

data communication energy and latency. The PIM architecture

has become even more intriguing when integrated with emerging

Non-Volatile Memory (NVM) technologies, such as Resistive RAM

(ReRAM) [2, 10]. ReRAM offers more packing density (∼ 2 − 4×)

than DRAM, but they suffer slower and more power hungry writing

operation. The most recent ReRAM-based PIM solutions for short

read alignment [10, 11] rely on Ternary Content-Addressable Mem-

ory (TCAM) arrays that unavoidably impose significant area and

energy overheads to the system [2] due to associative processing

dealing with Smith-Waterman (SW)-based algorithms that require

many write operations and takes 75% of the ReRAM cells to store

the intermediate data [12]. Alternatively, RADAR [10] and AligneR

[2] present ReRAM-based PIM architectures that can directly map

more efficient algorithms such as BLASTN and FM-index-based

searches, respectively. In emerging NVM technologies, Magnetic

RAM (MRAM) is another promising high performance paradigm,

due to its ultra-low switching energy, non-volatility, superior en-

durance, and compatibility with CMOS technology [13, 14].

In this work, we intertwine the innovation from both architec-

ture and algorithm perspectives: (1) We first design a reconfigurable

PIM architecture based on Spin Orbit Torque MRAM (SOT-MRAM),

AlignS, based on a set of novel microarchitectural and circuit-level
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Figure 1: (a) The AlignS memory organization, (b) Block level scheme of computational sub-array and SOT-MRAM realization

of XNOR2 and MAJ3 in-memory logic functions, (c) AlignS’s peripheral circuitry.

schemes that position AlignS as a massive data-parallel computa-

tional unit for short read alignment; (2) We investigate optimiza-

tion of fast BWT and FM-index based DNA sequence alignment

algorithm from hardware perspective to fully exploit AlignS’s par-

allelism to accelerate DNA alignment; (3) We design a dense data

mapping and partitioning scheme to process the indices locally and

handle various length DNA sequences; (4) We extensively evaluate

and compare AlignS’s efficiency compared with state-of-the-art

short read alignment accelerators i.e. GPU, ASIC, TCAM, etc.

2 ALIGNS ARCHITECTURE

AlignS is designed to be an independent, high-performance, energy-

efficient accelerator based on main memory architecture. The main

memory rank is a set of MRAM chips. Each chip is divided into

multiple Banks. Banks within the same chip typically share I/O,

buffer and banks in different chips working in a lock-step man-

ner. Each bank consists of multiple memory matrices (mats). The

general mat organization of AlignS is shown in Fig. 1a. Each mat

consists of multiple computational memory sub-arrays connected

to a Global Row Decoder (GRD) and a shared Global Row Buffer

(GRB). According to the physical address of operands within mem-

ory, AlignS’s Controller (Ctrl) is able to configure the sub-arrays

to perform data-parallel intra-sub-array computations. Moreover,

every two sub-arrays share a Local Row Buffer (LRB).

Fig. 1b depicts the presented PIM sub-array architecture based on

SOT-MRAM. This architecturemainly consists ofWrite Driver (WD)

(Fig. 1c E ), Memory Row Decoder (MRD) D , Memory Column

Decoder (MCD), reconfigurable Sense Amplifier (SA) A , and can

be adjusted by Ctrl B unit to work in dual-mode that perform both

memory write/read and bit-line computing. SOT-MRAM device

is a composite structure of Spin Hall Metal (SHM) and Magnetic

Tunnel Junction (MTJ) [15]. The resistance of MTJ with parallel

magnetization in both magnetic layers (data-‘0’) is lower than that

ofMTJwith anti-parallel magnetization (data-‘1’). Each SOT-MRAM

cell located in computational sub-arrays is associated with theWrite

Word Line (WWL), Read Word Line (RWL), Write Bit Line (WBL),

Read Bit Line (RBL), and Source Line (SL) to perform operations

based on reconfigurability of memory SAs.

The key idea to perform memory read and bit-line computing in

AlignS is to choose different thresholds (references) when sensing

the selected memory cell(s). The proposed reconfigurable SA, as

depicted in Fig. 1c A , consists of two sub-SAs and totally four

reference-resistance branches that can be selected by control bits

(CMAJ , CAND , COR , CMem ) by the sub-array’s Ctrl to realize the

memory and computation schemes. Later, the output is routed

through two mux controllers (CmuxI and CmuxI I ) to either LR-

Bout1 and LRBout2. Such reconfigurable SA is especially optimized

to accelerate two read alignment’s intensive operations, i.e. 2-input

XNOR and addition aswell as typical memory read operation. There-

fore, there are only four available control-bit sequences (shown in

Fig. 1c B ) that provide an efficient control circuitry for AlignS.

Memory Mode: To write ‘1’ (/‘0’) in any of the SOT-MRAM

cells, e.g. in the cell of 1st row and 1st column (M1), the WD (V1)

connected to WBL1 is set to positive (/negative) write voltage. This

allows sufficient charge current flows from V1 to ground (/ground

to V1), leading to MTJ resistance in High-RAP (/Low-RP ). For mem-

ory read, a read current flows from the selected cell to ground,

generating a sense voltage (Vsense) at the input of SA, which is com-

pared with memory mode reference voltage activated by CMem

(Vsense,P<Vref,M<Vsense,AP). If the path resistance is higher (/lower)

than RMem (memory reference resistance), i.e. RAP (/RP ), then the

SA produces High (/Low) voltage indicating logic ‘1’ (/‘0’). The idea

of voltage comparison for memory read is shown in Fig. 2a.

Bit-line Computing Mode: The computational sub-array of

AlignS is optimized to perform two bulk bit-wise in-memory logic

operations between the operands located in the same bit-line. To

realize XNOR2 in-memory logic, every two bits stored in the iden-

tical column can be selected employing the MRD [16] and sensed

simultaneously, as depicted in Fig. 1b. Then, the equivalent resis-

tance of such parallel connected cells and their cascaded access

transistors are compared with two programmable references by

SA (RAND ,ROR ). Through selecting different reference resistances,

the sub-SAs can perform basic 2-input in-memory Boolean func-

tions (i.e. AND2/NAND2 and OR2/NOR2), e.g. to realize AND2 operation,
RAND is set at the midpoint of RAP //RP (‘1’,‘0’) and RAP //RAP



(‘1’,‘1’). Accordingly, as shown in 1c A , we formed a capacitive volt-

age divider after OR2 and NAND2 outputs driving a CMOS inverter

(with low-Vth PMOS and high-Vth NMOS) to realize NAND2 func-
tion, thereby enabling a multi-kilobyte-wide bitwise XNOR2 of two

rows in AlignS’s sub-arrays. Note that, dual-threshold technique

can eliminate the leakage current through a transistor, thereby

decreasing leakage power consumption while maintaining perfor-

mance [17, 18]. The idea of voltage comparison between Vsense and

Vref to realize AND2/NAND2 and OR2/NOR2 is shown on Fig. 2b.
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Figure 2: The idea of voltage comparison between Vsense and

Vref for (a) memory read, (b) (N)AND2, (N)OR2, (c) MAJ3.

AlignS’s sub-array can perform addition/subtraction (add/sub)
operation quite efficiently. The carry-out of the full-adder can be di-

rectly produced by MAJ3 function (Carry in Fig. 1c A ) just by setting

CMAJ to ‘1’ in a single memory cycle. As shown in Fig. 2c, to per-

form MAJ3 operation, RMAJ is set at the midpoint of RP //RP //RAP
(‘0’,‘0’,‘1’) and RP //RAP //RAP (‘0’,‘1’,‘1’). Meanwhile, the existing

latch in LRB (Fig. 1c C ) is equipped with additional NOT and XOR2
gates to first store intermediate carry outputs and then perform the

summation of next bits using two XOR2 gates (implementing XOR3).
Now, assume A, B, and C operands (Fig. 1b), the 3- and 2-input

in-memory logic schemes can generate Carry(/Borrow) and Sum

(/Difference), respectively, in two consecutive cycles. The Ctrl’s con-

figuration for such add operation is shown in Fig. 1c B . To validate

the variation tolerance of the sensing circuit, we have performed

Monte-Carlo simulation with 10000 trials. A σ = 2% variation is

added to the Resistance-Area product (RAP), and a σ = 5% process

variation is added on the Tunneling MagnetoResistive (TMR). The

simulation result of Vsense distributions in Fig. 3 shows the sense

margin for the memory read, two and three fan-in sense-based op-

erations. It can be seen that sense margin gradually reduces when

increasing the number of fan-ins (selected cells for computation).

To avoid logic failure and guarantee the SA output’s reliability, we

have limited the number of sensed cells to three. In order to provide

a larger sense margin for MAJ3 operation, we increased SOT-MRAM

Figure 3:Monte-Carlo simulation of Vsense for (top)memory

read, and bit-line computing (middle) 2-row (down) 3-row.

Figure 4: Short read alignment concept.

cell’s tox from 1.5nm to 2nm leading to ∼45mV increase in the sense

margin which considerably enhances the reliability.

3 ALIGNS SEQUENCING ALGORITHM

BWT-basedReadMapping: The BWT is a reversible permutation

of the characters of a string. Short read alignment algorithms (e.g.,

BWA [3] and Bowtie [4]) take all the advantages of BWT and index

the large reference genome-S to do the read alignment efficiently.

Exact alignment finds all occurrences of them-bp short-read R in

the n-bp reference genome-S . Fig. 4 gives an intuitive example of

such alignment of a sample read-R = TTC to a sample reference

S = ATTCG$ extracted from a gene, where $ denotes the end of

a sequence. BW matrix is constructed by circulating string S and

then lexicographically sorting them. Thus, the Suffix Array (SA)

of a reference genome-S is a lexicographically-sorted array of the

suffixes of S , where each suffix is represented by its position in S .
BWT of such reference-S is given by the last column in the BW

matrix, here, BWT (S) = G$TCTA. The FM-Index is then built on

top of BWT providing the occurrence information of each symbol

in BWT. The SA interval (low , hiдh) covers a range of indices where
the suffixes have the same prefix. Then a backward search of the

matched positions in the reference genome-S is executed for each

short read-R starting from the rightmost nucleotide (C in Fig. 4).

During the backward search, the matched lower bound (low) and

upper bound (hiдh) in a SA of the S for each nucleotide in R are

determined based on FM-Index and count function [3]. Thus, the

result of read searching is represented as a SA interval. At the end

of search, if low<hiдh, R has found a match in S . Conversely, if
low ≥ hiдh, it has failed to find a match. Such alignment algorithm

complexity is linearly proportional to the number of nucleotides in

a read (O(m)) in contrast to dynamic programming algorithms such

as Smith-Waterman (SW) with O(nm) complexity [19]. Moreover,

BWT-based read mapping algorithms can be simply extended to

allow mismatches in the read mapping [3].

Alignment-in-Memory Algorithm: The presented DNA ex-

act alignment-in-memory algorithm is based on BWT and FM-Index

sequencing algorithm [3], but optimized using AlignS’s functions,

i.e. MEM , XNOR_Match, and IM_ADD. As the first step of such

process, shown in Fig. 5a, some important tables are needed to be

pre-computed based on reference genome-S . However, it is just a
one-step computation and only BWT, Marker Table (MT), and SA

will be stored in the AlignS , which will consume ∼12GB of mem-

ory space. To enable fast memory access and parallel in-memory

computing, these data has to be reconstructed and saved into dif-

ferent memory arrays, banks and chips. Such data reconstruction

and mapping methodology will be discussed in the next section.

In Fig. 5a, Count (nt ) represents the number of nucleotides in the

first column of BW matrix that are lexicographically smaller than

the nucleotide-nt . It only contains 4 elements for DNA sequence



Figure 5: (a) Pre-computation needed in AlignS’s alignment

algorithm, (b) The Bound procedure implementation.

computation. The Occurrence (Occ.) table, also called FM-index, is

built upon the BWT, where each element-Occ[i,nt] indicates the
number of occurrences of nucleotide-nt in the BWT from position 0

to i − 1. Due to its large size, it is sampled every d positions (bucket

width) to construct another Sampled Occ-table. Thus, the table size

is reduced by a factor of d . Then MT is constructed by element-wise

addition of Sampled Occ-table with Count (nt ), which leads to the

same size as Sampled Occ-Table. MT contains the matched position

of the nucleotides in BWT in the First Column and helps AlignS to

efficiently retrieve the values of low and hiдh in each iteration.

As shown in Fig. 5b, the read searching operation is mainly

implemented through the proposed Bound(MT ,nt , id) procedure
performed on BWT, which computes the updated interval bound

(either low or hiдh) value from MT with bucket width d and input

index-id . Such procedure is iteratively used in every step of ‘for’

loop and AlignS is especially designed to handle such computation-

intensive load through summing the current ‘marker’ value with

the occurrence counting result of the needed nucleotides between

checkpoint position and remaining positions in BWT. To imple-

ment the Bound procedure totally within memory, we exploit three

AlignS’s functions, i.e. MEM (memory read), XNOR_Match (XNOR2),
and IM_ADD (add), as highlighted in Fig. 5b.MEM function is to

access data in the saved MT or SA based on the provided index.

XNOR_Match is to conduct parallel in-memory XNOR logic to de-

termine if current input-nt matches with BWT elements stored in

the whole word-line in only one computational cycle. IM_ADD is

to conduct 32-bit integer (index range) addition operation within

memory to enable fast ‘marker+count_match’ computation without

need to send to CPU or other computing units.

4 ALIGNS HARDWARE MAPPING

Correlated Data Partitioning: Due to large memory space re-

quirement of pre-computed tables (BWT,MT, and SA) for alignment-

in-memory algorithm, we have to partition these tables to fully

leverage AlignS’s parallelism, and to maximize alignment computa-

tion throughput. Given a BWT index range, the accessed memory

region of MT and BWT could be easily predicted and computation

could be localized if we could store such correlated region into

the same memory sub-array. Thus, we propose a novel, correlated

data partitioning and mapping methodology as shown in Fig. 6
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Figure 6: AlignS’s sub-array partitioning for efficient local

(a) Parallel search and (b) Rank computation.

to locally store correlated regions of BWT and MT vectors in the

same memory sub-array and enable fully local computation (i.e.

XNOR_Match and IM_ADD completely within the same sub-array

without inter-bank/chip communication).

As discussed earlier, AlignS architecture consists of multiple

memory chips, each consisting of banks, mats, and memory sub-

arrays in a hierarchical way. Each sub-array (512 rows×256 columns)

is divided into four zones to store four different data types, i.e. BWT,

CRef, MT, and reserved space for IM_ADD and buffer (Fig. 6a). First

256 rows are occupied with the corresponding BWT, where each

row stores up to 128 bps (encoded by 2 bits). In addition, we propose

to store four nucleotide computational reference vectors (CRe f ), in
which each vector represents one type of nucleotide with vector

size of number of bits in one word-line. CRef is especially designed

to enable fully parallel match operation- XNOR_Match. Next to

it, the value of markers (MT) is pre-calculated and checkpointed

every d (=128) positions (one row), and vertically saved to keep

the size in check within AlignS platform. Hence, 256 columns are

allocated for storing MT, each storing 4-byte value for bps (128-bit).

The same colors are used in Fig. 6a to show the BWT rows and the

corresponding marker columns. After mapping the data, starting

from the rightmost symbol in R (e.g., C in Fig. 4), two steps need

to be taken in order to implement Bound procedure and return low
and hiдh for next symbol-T .

Parallel Search: Considering current input nucleotide is T and

input index as ‘id’, AlignS’s Ctrl can readily convert this BWT index

into the corresponding memory WL and BL addresses storing data

BWT[id-(id mod d)] to BWT[id]. Then, such bits and corresponding

CRef-T is sensed at the same time using the AlignS’s XNOR circuits

to implement the parallel search operations (XNOR_Match). If the

XNOR output is ‘1’, representing a match is found, Ctrl’s embeded

counter counts up to eventually compute ‘count_match’ for next
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operation. Fig. 7 shows the XNOR_Match procedure to locateT s in
a sub-array. After parallel alignment of the first row, the Ctrl starts

aligning the second row and so on. When counting is done, the sub-

array returns the ‘count_match’ and marker address (marker_add).

Note that, the correlated data partitioning methodology guarantees

the read of ‘marker’ value (MEM) is always a local memory access

within the same memory array.

Rank Calculation: After parallel search, the ‘marker’ and just

computed and transposed ‘count_match’ are buffered in MT and

reservedmemory spaces, respectively, as shown in Fig. 6b, to further

implement IM_ADD function. Now, considering n-activated sub-

arrays with the reserved row size of 124 × 256, each sub-array can

easily handle the parallel add of up to 256 elements of 32-bit to

maximize the throughput. The memory sub-array organization for

such parallel computation is delineated in Fig. 6b. Two reserved

rows for Carry results initialized by zero and 32 reserved rows are

considered for Sum results. We have shown the current state (Q) as

well as the next state (Q*) of LRB after being enabled for further

clarification. Here, we use the add operation of two 4-bit values

(11 and 5) in Fig. 8 to elaborate how multi-bit addition operates in

the AlignS. Every two corresponding elements that are going to

be added together are aligned in the same bit-line. Now parallel

addition can be performed based on the steps detailed in Fig. 8 to

generate 16 as the output.
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Figure 8: AlignS’s in-memory multi-bit addition used in

rank calculation.

Extend to Inexact Alignment: Our discussed alignment algo-

rithm and its mapping to AlignS could be easily extended to handle

inexact match during short read alignment based on the method

fully-explained in [3]. However, due to lack of space, we leave it for

the future work. Inexact match for sequence alignment has a toler-

ance for number of mismatches between short read-R and reference

genome-S . We can handle mismatch by recursively calculating the

intervals that match R[0, i] with no more than z differences on the

condition that R[i + 1] matches {low , hiдh}. As long as there is still

tolerance for differences up to current position i , we consider all
possible alignments when updating the intervals. The intervals for

position i should take union for all intervals including intervals for

match and mismatch. At the end, we report all the target positions

in the reference genome that the short read can be mapped to with

no more than z mismatches. Such algorithm iteratively uses the

Bound procedure and can be readily accelerated by AlignS.

5 EXPERIMENTAL RESULTS
5.1 Accelerators’ setup

To assess the performance of AlignS as a new PIM platform, a com-

prehensive device-to-architecture evaluation framework along with

two in-house simulators are developed. First, at the device level,

we jointly use the Non-Equilibrium Green’s Function (NEGF) and

Landau-Lifshitz-Gilbert (LLG) with spin Hall effect equations to

model SOT-MRAM bit-cell [13, 15]. For the circuit level simula-

tion, a Verilog-A model of 2T1R SOT-MRAM device is developed to

co-simulate with the interface CMOS circuits in Cadence Spectre

and SPICE. 45nm North Carolina State University (NCSU) Prod-

uct Development Kit (PDK) library [20] is used in SPICE to ver-

ify the proposed design and acquire the performance. Second, an

architectural-level simulator is built based on NVSim [21]. Based on

the device/circuit level results, our simulator can alter the configu-

ration files (.cfg) corresponding to different array organization and

report performance metrics for PIM operations. The controllers and

add-on circuits are synthesized by Design Compiler [22] with an

industry library. Third, a behavioral-level simulator is developed in

Matlab taking architectural-level results to calculate the latency and

energy that AlignS spends on alignment task based on alignment-

in-memory algorithm. It has a mapping optimization framework to

maximize the performance w.r.t. the available resources.

Accelerators: We perform an extensive comparison with state-

of-the-art accelerators including SW-based Darwin [1], RaceLogic

[6], ReCAM [23], and FM-Index-based acceleration solutions such

as Soap2 [5]/Soap3-dp [5] on CPU/GPU, AligneR [2], FPGA [8], and

ASIC [7]. Due to the lack of space, we refer the readership to the pa-

pers for the detailed configuration of each accelerator. Note that, to

perform short read alignment on CPU/GPU, we use Soap2/Soap3 [5]

considering only reads with ≤2 mismatches. Besides, ReRAM-based

arrays and CAMs are simulated with NVSim [21] and NVSim-CAM

[24], respectively.Methodology: To evaluate the performance of

AlignS and other accelerators and provide a solid comparison, we

generate 10 million 100-bp short read queries via ART simulator

[25] and align them to the human genome Hg19 1.

5.2 Results

Figure 9a and b report the power consumption and throughput of

under-test accelerators, respectively.
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Figure 9: (a) Normalized log scale power consumption, (b)

Throughput, (c) Trade-off between area, power, and through-

put of different accelerators compared to AlignS.

Power-Throughput-Area Trade-offs:We observe that ASIC

design [7] and ReRAM-based AligneR [2] consume the least power

1The population variation and genome error rate were set to 0.1% and 0.2%, respectively.



compared to other designs, where AlignS stands as the third-best

power-efficient design. From the throughput point of view, Race

Logic [6] and Darwin [1] show the best performance compared to

others. However,AlignS can show the highest throughput compared

to others such as GPU, ASIC, FPGA, ReCAM, and AligneR due to

its massively-parallel and local computational scheme. Therefore,

we can analyze the existing trade-offs between power, through-

put, and area as Fig. 9c. Such trade-off can be better understood

by correlated parameters as tabulated in Table 1. Based on this

table, we observe that AlignS outperforms different accelerators

w.r.t.Throuдhput/Watt .AlignS can improve short read alignment’s

throughput per Watt by 4.8× over the best SW-based accelerator,

Race Logic [6], and ∼1.6×, 3.4×, 67.5× over AligneR [2], ASIC [7],

and FPGA [8] acceleration solutions, respectively. Table 1 also re-

ports throughput per Watt permm2 for different accelerators. Con-

sidering the area factor, we observe that AlignS can improve read

alignment performance significantly over all the other solutions

except AligneR. AlignS improves the throughput per Watt permm2

by ∼12× compared to the ASIC accelerator. Therefore, AlignS’s

parallel computing schemes can be leveraged to accelerate short

read alignment and provide ultra-high internal bandwidth.

Table 1: Performance of short read alignment accelerators.

GPU ASIC FPGA AligneR Darwin Race ReCAM AlignS

Throughput/Watt 581.3 122K 6.1K 259.6K 12.8K 85K 26.81 412.28K

Throughput/Watt/mm2 0.39 547 0.42 7.2K 0.47 47 0.24 6.6K

Memory Wall: Figure 10a shows the required off-chip memory

access for different accelerators. We observe that all the FM-Index

accelerators including CPU/GPU[5], ASIC [7], and FPGA [8], ex-

cept PIM platforms (i.e. AligneR, ReCAM, and AlignS) heavily rely

on off-chip memory consuming humongous energy to fetch data

from stored tables and queries. Note that, ASIC design performs

FM-Index-based alignment with 1GB off-chip memory after com-

pression. Figure 10b reports the Memory Bottleneck Ratio (MBR),

i.e. the time fraction at which the computation has to wait for data

and on-/off-chip data transfer obstructs its performance (memory

wall happens). The evaluation is performed according to the peak

throughput for each platform considering number of memory ac-

cess. The results show the AlignS’s efficiency for solving memory

wall issue. We observe that AlignS spends less than ∼15% time for

memory access and data transfer owning to the PIM acceleration

schemes. Note that, ASIC and other PIM platforms spend less than

50% time waiting for the loading data. AligneR solution shows

higher memory bottleneck ratio compared with AlignS due to its

unbalanced computation and data movement. The less MBR can

be translated as the higher Resource Utilization Ratio (RUR) for

the accelerators plotted in Fig. 10c. We observe that AlignS has the

highest resource utilization with up to ∼76%. Overall, PIM solu-

tions demonstrate high ratio (>60%) which reconfirms the results

reported in Fig. 10b.

6 CONCLUSION
In this paper, we propose an efficient processing-in-memory acceler-

ator based on SOT-MRAM (AlignS) to execute short read alignment

based on a hardware-friendly alignment algorithm. AlignS is op-

timized through a new correlated data partitioning and mapping

technique that provides local storage and processing of indices to

fully exploit the algorithm-level’s parallelism to accelerate both ex-

act and inexact matches. The results show that AlignS improves the

C
P

U
G

P
U

F
P

G
A

A
S

IC
A

lig
ne

R
R

eC
A

M
D

ar
w

in
R

ac
e

A
lig

nS

0

50

100

150

C
P

U
G

P
U

F
P

G
A

A
S

IC
A

lig
ne

R
R

eC
A

M
D

ar
w

in
R

ac
e

A
lig

nS

0

50

100

C
P

U
G

P
U

F
P

G
A

A
S

IC
A

lig
ne

R
R

eC
A

M
D

ar
w

in
R

ac
e

A
lig

nS

0

20

40

60

80

00

Off-Chip Memory (GB) MBR (%) RUR (%)

0

(a) (b) (c)
Figure 10: (a) Off-chip memory, (b) Memory Bottleneck Ra-

tio, (c) Resource Utilization Ratio for different accelerators.

read alignment throughput per Watt permm2 by ∼12× compared

with the ASIC design. Besides, it achieves 1.6× higher throughput

per Watt compared to recent FM-index-based ReRAM platform.
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