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Abstract

For tasks involving language and vision, the current
state-of-the-art methods tend not to leverage any additional
information that might be present to gather relevant (com-
monsense) knowledge. A representative task is Visual Ques-
tion Answering where large diagnostic datasets have been
proposed to test a system’s capability of answering ques-
tions about images. The training data is often accompanied
by annotations of individual object properties and spatial
locations. In this work, we take a step towards integrating
this additional privileged information in the form of spatial
knowledge to aid in visual reasoning. We propose a frame-
work that combines recent advances in knowledge distilla-
tion (teacher-student framework), relational reasoning and
probabilistic logical languages to incorporate such knowl-
edge in existing neural networks for the task of Visual Ques-
tion Answering. Specifically, for a question posed against
an image, we use a probabilistic logical language to en-
code the spatial knowledge and the spatial understanding
about the question in the form of a mask that is directly pro-
vided to the teacher network. The student network learns
from the ground-truth information as well as the teachers
prediction via distillation. We also demonstrate the impact
of predicting such a mask inside the teachers network using
attention. Empirically, we show that both the methods im-
prove the test accuracy over a state-of-the-art approach on
a publicly available dataset.

1. Introduction
Vision and language tasks such as Visual Question An-

swering (VQA) are often considered as “AI-complete” tasks

[1] since they require multi-modal knowledge beyond a sin-

gle sub-domain. Recently, the VQA1.0 dataset was pro-

posed as a representative dataset for the task of VQA [1].

This task aims to combine efforts from three broad sub-

fields of AI namely image understanding, language under-

standing and reasoning. Despite its popularity, most of its

questions focus on object recognition in images and natural
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language understanding. Question-Image pairs where a sys-

tem may require compositional reasoning or reasoning with

external knowledge, seem to be largely absent. To explicitly

assess the reasoning capability, several specialized datasets

have been proposed, that emphasize specifically on ques-

tions requiring complex multiple-step reasoning (CLEVR

[12], Sort-of-Clevr [24]) or questions that require reasoning

using external knowledge (F-VQA [27]).

Current state-of-the-art neural architectures do not ex-

plicitly model such external knowledge and reasoning with

them to solve visual reasoning tasks. Several researchers

[15, 16] in their works have pointed out the necessity of ex-

plicit modeling of such knowledge. This necessitates con-

sidering the following issues:

i) What kind of knowledge is needed? ii) Where and how
to get them? and iii) What kind of reasoning mechanism to
adopt for such knowledge?

Figure 1: (a) An image and a set of questions from the

CLEVR dataset. Questions often require multiple-step rea-

soning, for example in the second question, one needs to
identify the big sphere, then recognize the reference to the
brown metal cube, which then refers to the root object, that
is, the brown cylinder. (b) An example of spatial common-
sense knowledge needed to solve a CLEVR-type question.

To understand the kind of external knowledge required,

we investigate the CLEVR dataset proposed in [12]. This

dataset explicitly asks questions that require relational and

multi-step reasoning. An example is provided in Fig. 1(a).

In this dataset, the authors create synthetic images con-
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sisting of a set of objects that are placed randomly within

the image. Each object is created randomly by varying its

shape, color, size and texture. For each image, 10 com-

plex questions are generated. Each question inquires about

an object or a set of objects in the image. To understand

which object(s) the question is referring to, one needs to de-

cipher the clues that are provided about the property of the

object or the spatial relationships with other objects. This

can be a multiple-step process, that is: first recognize ob-

ject A, that refers to object B, which refers to C and so on.

There have been multiple architectures proposed to answer

such complex questions. Authors in [9] attempt to learn

a structured program from the natural language question.

This program acts as a structured query over the objects and

relationship information provided as a scene graph and can

retrieve the desired answer. More interestingly, the authors

in [24] model relational reasoning explicitly in the neural

network architecture and propose a generic relational rea-

soning module to answer questions. This is one of the first

known attempt to formulate a differentiable function to em-

body a generic relational reasoning module that is tradition-

ally formulated using logical reasoning languages. The fail-

ure cases depicted by this work, often points to the lack of

complex commonsense knowledge such as, the front of cube
should consist of front of all visible side of cubes. These ex-

amples point that spatial commonsense knowledge might

help answer questions such as in Fig. 1(b). Even though

procuring such knowledge explicitly is difficult, we observe

that parsing the questions and additional scene-graph infor-

mation can help “disambiguate” the area of the image on

which a phrase of a question focuses on.

In this work, to the best of our knowledge, we make the

first attempt of incorporating such additional information

in the form of spatial knowledge into existing architectures

for vision and language tasks. Specifically, we concentrate

on the task of VQA for questions that require multiple-step

(relational) reasoning, and we explore how a recently pro-

posed relational reasoning based architecture [24] can be

improved further with the aid of additional spatial knowl-

edge extracted from the image using the question and the

scene-graph information. This is an important avenue, as

humans often use a large amount of external knowledge to

solve tasks that they have acquired through years of ex-

perience1. To extract such spatial knowledge in a form

that can be integrated and reasoned with, we take inspi-

ration from techniques from the field of Knowledge Rep-

resentation and Reasoning (KR&R) and utilize a reason-

ing engine viz. Probabilistic Soft Logic (PSL) [2]. In

practice, these languages and their available implementa-

1The authors in [15] quoted a reviewer’s comment: “Human learners -

unlike DQN and many other deep Learning systems - approach new prob-

lems armed with extensive prior experience.”. The authors also ask “How

do we bring to bear rich prior knowledge to learn new tasks and solve new

problems?”.

tions are often susceptible to the high amount of noises

in real-world datasets and hence, their direct applications

have been somewhat limited. One can assume that in order

to provide robust, interpretable and accurate solutions, one

needs to leverage both the robustness and interpretability of

declarative logical reasoning languages and the high-level

representation learning capability of deep learning.

We rely on the knowledge distillation paradigm [8] in

order to integrate the extracted spatial knowledge with the

relational reasoning architecture. Knowledge distillation

aims to transfer the predictions learned by a complex model,

often regarded as a teacher model, to that of a simpler

model, usually deemed as a student model, via distillation

[8]. There are various flavours of the knowledge distillation

paradigm depending upon the complexity of the teacher’s

model as well as the amount of information it has access to

relative to the student’s model.

Thus to solve our task, we propose a student-teacher net-

work based architecture, where the teacher has access to

privileged information. For the VQA, this priveledged in-

formation is the spatial knowledge required to answer the

question in the form of an attentive image mask based on

the question and the scene-graph information. The student

network is the existing architecture we want to distill this

knowledge into. We provide two methods for calculating

the mask; i) when the object and relationships are provided

for an image, one can calculate a mask using probabilistic

reasoning, and ii) if such data is not available, such a mask

can be calculated inside the network using attention. We ex-

periment on the Sort-of-Clevr dataset, and empirically show

that both these methods outperform a state-of-the-art rela-

tional reasoning architecture. We observe that the teacher

model (using the spatial knowledge inferred by PSL infer-

ence) achieves a sharp 13.7% jump in test accuracy over

the baseline architecture. The existing architecture i.e. the

student model, distilled with this knowledge, shows a gen-

eralization boost of 6.2% as well. We also provide ablation

studies of the reasoning mechanism on (questions and scene

information from) the CLEVR dataset.

2. Related Work
Our work is influenced by the following thrusts of work:

probabilistic logical reasoning, spatial reasoning, reasoning

in neural networks, knowledge distillation; and the target

application area of Visual Question Answering.

Recently, researchers from the KR&R community, and

the Probabilistic Reasoning community have come up with

several robust probabilistic reasoning languages which are

deemed more suitable to reason with real-world noisy data,

and incomplete or noisy background knowledge. Some

of the popular ones among these reasoning languages are

Markov Logic Network [23], Probabilistic Soft Logic [2],

and ProbLog [6]. Even though these new theories are con-
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siderable large steps towards modeling uncertainty (beyond

previous languages engines such as Answer Set Program-

ming [4]); the benefit of using these reasoning engines has

not been successfully shown on large real-world datasets.

This is one of the reasons, recent advances in deep learn-

ing, especially the works of modeling knowledge distilla-

tion [8, 25] and relational reasoning have received signifi-

cant interest from the community.

Modeling of Spatial Knowledge and reasoning using

such knowledge in 2D or 3D space has given rise to multiple

interesting works in both Computer Vision and Robotics,

collectively termed as Qualitative Spatial Reasoning (QSR).

Randell et al. [22] proposed an interval logic for reasoning

about space. Cohn and Renz [5] proposed advancements

over previous languages aimed at robotic navigation in 2D

or 3D space. In these languages, the relations between two

objects are modeled spatially. Our work is also influenced

by this series of works (such as Region Connection Cal-

culus etc.), in the sense of what “privileged information”

we expect along-with the image and the question. For the

CLEVR dataset, the relations left, right, front,
behind can be used as a closed set of spatial relations

among the objects and that often suffices to answer most

questions. For real images, a scene graph that encodes spa-

tial relations among objects and regions, such as proposed

in [7] would be useful to integrate our methods.

Popular probabilistic reasoning mechanisms from the

statistical community often define distribution with re-

spect to Probabilistic Graphical Models. There have been

a few attempts to model such graphical models in con-

junction with deep learning architectures [31]. However,

multi-step relational reasoning, and reasoning with ex-

ternal domain or commonsense knowledge2 require the

robust structured modeling of the world as adopted by

KR&R languages. In its popular form, these reason-

ing languages often use predicates to describe the current

world, such as color(hair, red), shape(object1, sphere),
material(object1,metal) etc; and then declare rules that

the world should satisfy. Using these rules, truth values of

unknown predicates are obtained, such as ans(?x,O) etc.

Similarly, the work in [24], defines the relational reasoning

module as RN(O) = fφ

(∑
i,j gθ(oi, oj)

)
, where O de-

note all objects. In this work, the relation between a pair of

objects (i.e. gθ) and the final function over this collection of

relationships i.e. fφ are defined as multilayer perceptrons

(MLP) and are learnt using gradient descent in an end-to-

end manner. This model’s simplicity and its close resem-

blance to traditional reasoning mechanisms motivates us to

pursue further and integrate external knowledge.

2An example of multi-step reasoning: if event A happens, then B will

happen. The event B causes action C only if event D does not happen. For

reasoning with knowledge: consider for a image with a giraffe, we need to

answer “Is the species of the animal in the image and an elephant same?”

Several methods have been proposed to distill knowledge

from a larger model to a smaller model or from a model with

access to privileged information to a model without such

information. Hinton et al. [8] first proposed a framework

where a large cumbersome model is trained separately and a

smaller student network learns from both groundtruth labels

and the large network. Independently, Vapnik et al. [25]

proposed an architecture where the larger (or the teacher)

model has access to privileged information and the student

model does not. These models together motivated many

natural language processing researchers to formulate textual

classification tasks as a teacher-student model, where the

teacher has privileged information, such as a set of rules;

and the student learns from the teacher and the ground-

truth data. The imitation parameter controls how much the

student trusts the teacher’s decision. In [11], an iterative

knowledge distillation is proposed where the teacher and

the student learn iteratively and the convolutional network’s

parameters are shared between the models. In [10], the au-

thors propose to solve sentiment classification, by encoding

explicit logical rules and integrating the grounded rules with

the teacher network. These applications of teacher-student

network only exhibited success with classification problems

with very small number of classes (less than three).

In this paper, we show a knowledge distillation inte-

gration with privileged information which is applied to a

28-class classification, and we observe that it improves

by a large margin on the baseline. In [30], the au-

thors use encoded linguistic knowledge in the form of

P (pred|obj, subj) to perform Visual Relationship Detec-

tion. In this work, we apply knowledge distillation in a

visual question answering setting, that require both visual

reasoning and question understanding.

In the absence of the scene information or in cases where

such information is expensive to obtain, an attention mask

over the image can be predicted inside the network based

upon the posed question. Attention mechanism has been

successfully applied in image captioning [28, 19], machine

translation[3, 26] and visual question answering [29]. In

[29], a stacked attention network was used to predict a mask

over the image. They use the question vector separately

to query specific image features to create the first level of

attention. In contrast, we combine the question vector with

the whole image features to predict a coarse attention mask.

3. Additional Knowledge Integration Method
In this section, we explain the various components of our

proposed framework for integrating additional spatial infor-

mation with existing neural architectures. We start by for-

malizing the probabilistic reasoning mechanism which en-

ables us to extract such spatial knowledge in the presence

of scene information. Then, we describe the knowledge

distillation paradigm [8] that enables us to infuse this ex-
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Figure 2: (a) The Teacher-Student Distillation Architecture. As the base of both teacher and student, we use the architecture

proposed by the authors in [24]. For the experiment with pre-processed mask generation, we pass a masked image through

the convolutional network and for the network-predicted mask, we use the image and question to predict an attention mask

over the regions. (b) We show the internal process of mask creation.

tracted knowledge into existing networks which in our case

is a relational reasoning architecture [24]. We also outline

the in-network computation required in the absence of the

scene-graph information.

3.1. Probabilistic Reasoning Mechanism

In order to reason about the spatial relations among the

objects in a scene and textual mentions of those objects in

the question, we choose Probabilistic Soft Logic (PSL) [2]

as our reasoning engine. Using PSL provides us three ad-

vantages: i) (Robust Joint Modeling) from the statistical

side, PSL models the joint distribution of the random vari-

ables using a Hinge-Loss Markov Random Field, ii) (inter-

pretability) we can use clear readable declarative rules that

(directly) relates to defining the clique potentials, and iii)

(Convex Optimization) the optimization function of PSL is

designed in a way so that the underlying function remains

convex and that provides an added advantage of faster in-

ference. We use PSL, as it has been successfully used in

Vision applications [17] in the past and it is also known to

scale up better than its counterparts [23].

3.1.1 Hinge-Loss Markov Random Field and PSL

Hinge-Loss Markov Random Fields (HL-MRF) is a general

class of continuous-valued probabilistic graphical model.

An HL-MRF is defined as follows: Let y and x be two

vectors of n and n′ random variables respectively, over the

domain D = [0, 1]n+n′
. The feasible set D̃ is a subset of

D, which satisfies a set of inequality constraints over the

random variables.

A Hinge-Loss Markov Random Field P is a probability

density over D, defined as: if (y,x) /∈ D̃, then P(y|x) = 0;

if (y,x) ∈ D̃, then:

P(y|x) ∝ exp(−fw(y,x)). (1)

PSL combines the declarative aspect of reasoning lan-

guages with conditional dependency modeling power of

undirected graphical models. In PSL a set of weighted if-

then rules over first-order predicates is used to specify a

Hinge-Loss Markov Random field.

In general, let C = (C1, ..., Cm) be such a collection

of weighted rules where each Cj is a disjunction of literals,

where each literal is a variable yi or its negation ¬yi, where

yi ∈ y. Let I+j (resp. I−j ) be the set of indices of the

variables that are not negated (resp. negated) in Cj . Each

Cj can be represented as:

wj : ∨i∈I+
j
yi ← ∧i∈I−

j
yi, (2)

or equivalently, wj : ∨i∈I−
j
(¬yi)

∨∨i∈I+
j
yi. A rule Cj

is associated with a non-negative weight wj . PSL relaxes

the boolean truth values of each ground atom a (constant

term or predicate with all variables replaced by constants)

to the interval [0, 1], denoted as V (a). To compute soft

truth values, Lukasiewicz’s relaxation [14] of conjunctions

(∧), disjunctions (∨) and negations (¬) are used:

V (l1 ∧ l2) = max{0, V (l1) + V (l2)− 1}
V (l1 ∨ l2) = min{1, V (l1) + V (l2)}

V (¬l1) = 1− V (l1).

In PSL, the ground atoms are considered as random vari-

ables, and the joint distribution is modeled using Hinge-

Loss Markov Random Field (HL-MRF).

In PSL, the hinge-loss energy function fw is defined as:

fw(y) =
∑

Cj∈C

wj max
{
1−

∑

i∈I+j

V (yi)−
∑

i∈I−j

(1−V (yi)), 0
}
.

(3)

The maximum-a posteriori (MAP) inference objective of

230



PSL becomes:

argmax
y∈[0,1]n

P (y) ≡ argmax
y∈[0,1]n

exp(−fw(y))

≡ argmin
y∈[0,1]n

∑
Cj∈C

wj max
{
1−

∑

i∈I+j

V (yi)

−
∑

i∈I−j

(1− V (yi)), 0
}
,

(4)

where the term wj×max
{
1−∑

i∈I+
j
V (yi)−

∑
i∈I−

j
(1−

V (yi)), 0
}

measures the “distance to satisfaction” for each

grounded rule Cj .

3.2. Knowledge Distillation Framework

While PSL provides a probabilistic knowledge represen-

tation , as shown in Fig. 2(b), a mechanism is needed to

utilize them under the deep neural networks based systems.

We use the generalized knowledge distillation paradigm

[18], where the teacher’s network can be a larger network

performing additional computation or have access to priv-

ileged information, to achieve this integration resulting in

two different architectures i) (External Mask) teacher with

provided ground-truth mask, ii) (In-Network Mask) teacher

predicts the mask with additional computation. Here, we

provide general formulations for both methods and give an

overview of how the external mask is calculated3.

3.2.1 General Architecture

The general architecture for the teacher-student network is

provided in Fig. 2(a). Let us denote the teacher network as

qφ and the student network as pθ. In both scenarios, the

student network uses the relational reasoning network [24]

to predict the answer. The teacher network uses an LSTM

to process the question, and a convolutional neural network

to process the image. Features from the convolutional net-

work and the final output from the LSTM is used as input to

the relational reasoning module to predict an answer. Addi-

tionally in the teacher network, we predict a mask. For the

External Mask setting, the mask is predicted by a reason-

ing engine and applied to the image, and for the attention

setting, the mask is predicted using the image and text fea-

tures and applied over the output from the convolution. The

teacher network qφ is trained using softmax cross-entropy

loss against the ground truth answers for each question. The

student network is trained using knowledge distillation with

the following objective:

θ = argmin
θ∈Θ

N∑
n=1

(1− π)�1(yn, σθ(xn))

+ π�2(sn, σθ(xn)),

(5)

3A detailed example of how we estimate these predicates is provided in

Supplementary material.

where xn is the image-question pair, and yn is the an-

swer that is available during the training phase; the σθ(.) is

the usual softmax function; sn is the soft prediction vector

of qφ on xn and �i denotes the loss functions selected ac-

cording to specific experiments (usually �1 is cross-entropy

and �2 is euclidean norm). π is often called the imitation

parameter and determines how much the student trusts the

teacher’s predictions.

3.2.2 External Mask Prediction
This experimental setting is motivated by the widely avail-

able scene graph information in large datasets starting from

Sort-of-Clevr and CLEVR to Visual Genome. We use the

following information about the objects and their relation-

ships in the image: i) the list of attribute, value pairs for

each object, ii) the spatial relationships between objects,

and iii) each object’s relative location in the image.

We view the problem as a special case of the bipartite

matching problem, where there is one set of textual men-

tions (M ) of the actual objects and a second set of ac-

tual objects (O). Using probabilistic reasoning we find

a matching between object-mention pairs based on how

the attribute-value pairs match between the objects and the

corresponding mentions, and when mention-pairs are con-

sistently related (such as larger than, left to, next to) as

their matched object-pairs. Using the scene graph data,

and by parsing the natural language question, we esti-

mate the value of the following predicates: attro(O,A, V ),
attrm(M,A, V ) and consistent(A,O,O1,M,M1). The

predicate attrm(M,A, V ) denotes the confidence that the

value of the attribute A of the textual mention M is

V . The predicate attro(O,A, V ) is similar and de-

notes a similar confidence for the object O. The pred-

icate consistent(R,O,O1,M,M1) indicates the confi-

dence that the textual mentions M and M1 are consistent

based on a relationship R (spatial or attribute based), if M
is identified with the object O and M1 is identified with the

object O1. Using only these two predicate values, we use

the following two rules to estimate which objects relate to

which textual mentions.
w1 : candidate(M,O) ← object(O) ∧mention(M)

∧ attro(O,A, V ) ∧ attrm(M,A, V ).

w2 : candidate(M,O) ← object(O) ∧mention(M)

∧ candidate(M,O)

∧ candidate(M1, O1)

∧ consistent(A,O,O1,M,M1).

We use the grounded rules (variables replaced by constants)

to define the clique potentials and use eq. 4 to find the con-

fidence scores of grounded candidate(M,O) predicates.

Using this mention to object mapping, we use the objects

that the question refers to. For each object, we use the cen-

ter location, and create a heatmap that decays with distance
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from the center. We use a union of these heatmaps as the

mask. This results into a set of spherical masks over the ob-

jects mentioned in the question, as shown in Fig. 2(b). To

validate our calculated masks, we annotate the CLEVR val-

idation set with the ground-truth objects, using the ground-

truth structured program. We observe that our PSL-based

method can achieve a 75% recall and 70% precision in pre-

dicting the ground-truth objects for a question.

In Figure 3, we provide more details of the calculated

PSL predicates for the example question and image in Fig-

ure 2(b). We use this top collection of objects and their

relative locations to create small spherical masks over the

relevant objects in the images.

Figure 3: We elaborate on the calculated PSL predicates for

the example image and question in Figure 2(b). The under-

lying optimization benefits from the negative examples (the

consistent predicate with 0.0, marked in red). Hence, these

predicates are also included in the program.

3.2.3 In-Network Mask Prediction

The External Mask setting requires privileged information

such as scene graph data about the image, which includes

the spatial relations between objects. Such information is

often expensive to obtain. Hence, in one of our experiments,

we attempt to emulate the mask creation inside the network.

We formulate the problem as attention mask generation over

image regions using the image (xI ∈ R
64×64×3) and the

question (xq ∈ R
w×d). The calculation can be summarized

by the following equations:

rI = conv∗(xI). qemb = LSTM(xq).

v = tanh(WIrI +Wqqemb + b).

α = exp(v)/

x∗y∑
r=1

exp(vr),

(6)

where rI is x×y regions with oc output channels, qemb ∈
R

h is the final hidden state output from LSTM (hidden

state size is h); WI(∈ R
xyoc×xy) and Wq(∈ R

xy×h) are

the weights and b is the corresponding bias. Finally, the

attention α over regions is obtained by exponentiating the

weights and then normalizing them. The attention α is then

reshaped and element-wise multiplied with the region fea-

tures extracted from the image. This is considered as a mask

over the image regions conditioned on the question vector

and the image features.

4. Experiments and Results

We propose two architectures, one where the teacher

has privileged information and the other where the teacher

performs additional calculation using auxiliary in-network

modules. We perform experiments to validate whether the

direct addition of information (external mask), or additional

modules (model with attention) improves the teacher’s per-

formance over the baseline. We also perform similar exper-

iments to validate whether this learned knowledge can be

distilled to existing neural networks (student model) . Ad-

ditionally, we conduct ablation studies on the probabilistic

logical mechanism using which we predict a ground-truth

mask from the question and the scene information.

4.1. Setup

As our testbed, we use the “Sort-of-Clevr” from [24]

and the CLEVR dataset from [12]. As the original Sort-

of-Clevr dataset is not publicly available, we create the syn-

thetic dataset as described by the authors4. We use simi-

lar specification, i.e., there are 6 objects per image, where

each object is either a circle or a rectangle, and we use 6
colors to identify each different object. Unlike the orig-

inal dataset, we generate natural language questions along

with their one-hot vector representation. In our experiments

we primarily use the natural-language question. We only

use the one-hot vector to replicate results of the baseline

Relational Network (RN)5. For our experiments, we use

9800 images for training, 200 images each for validation

and testing. There are 10 question-answer pairs for each

image. For Sort-of-Clevr, we use four convolutional layers

with 32, 64, 128 and 256 kernels, ReLU non-linearities, and

batch normalization. The questions were passed through

an LSTM where the word embeddings are initialized with

50-dimensional Glove embeddings [20]. The LSTM out-

put and the convolutional features are passed through the

RN network6. The baseline model was optimized with a

cross-entropy loss function using the Adam optimizer with

a learning rate of 1e−4 and mini-batches of size 64. For

CLEVR, we use the Stacked Attention Network [29] with

4We make the code and data available in supplementary material.
5We were unable to replicate the results of [24] on CLEVR dataset.

This is why we used another baseline (Stacked Attention Network) and

show how our method improves on that baseline. The primary reason being

the original network was trained by authors on 10 parallel GPUs on 640
batch size. This was not feasible to replicate in lab setting. Based on

our experiments, the best accuracy obtained by the relational reasoning

network is 68% with a batch-size of 640 on a single-GPU worker, after

running for 600 epochs over the dataset.
6A four-layer MLP consisting of 2000 units per layer with ReLU non-

linearities is used for gθ ; and a four-layer MLP consisting of 2000, 1000,

500, and 100 units with ReLU non-linearities used for fφ.
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the similar convolutional network and LSTM as above. We

get similar results with VGG-16 as the convolutional net-

work. Instead of the RN layer, we pass the two outputs

through two levels of stacked attention, followed by a fully-

connected layer. On top of this basic architecture, we define

the student and teacher networks. The student network uses

the same architecture as the baseline. We propose two varia-

tions of the teacher network, and we empirically show how

these proposed changes improve upon the performance of

the baseline network.

4.2. External Mask Prediction

In this setting of the experiment, the ground-truth mask,

as calculated in 3.2.2, is element-wise multiplied to the im-

age and then the image is passed through the convolutional

network. We experiment with both sequential and iterative

knowledge distillation. In the sequential setting, we first

train the teacher network for 100 epochs with random em-

bedding size of 32, batch size as 64, learning rate 0.0001. In

the previous attempts to use distillation in natural language

processing ([10, 13]), the optimal value of π has been re-

ported as min(0.9, 1−0.9t) or 0.9t. Intuitively, either at the

early or at the latter stages, the student almost completely

trusts the teacher. However, our experiments show differ-

ent results. For the student network, we employ a hyper-

paramter search on the value of imitation parameter π and

use two settings, where π is fixed throughout the training

and in the second setting, π is varied using min(π, 1− πt).
We vary the loss �2 among cross entropy and euclidean

norm. The results of the hyperparameter optimization ex-

periment is depicted in Fig. 5. From this experiment, it can

be observed that varying π over epochs gives better results

than using a fixed π value for training the student. We ob-

serve a sharp increase in accuracy using the π value 0.575.

This result is more consistent with the parameter value cho-

sen by the authors in [30]. We also experiment by varying

the word embedding (50-dimensional glove embedding and

32-dimensional word embedding) and learning rate. For se-

quential knowledge distillation, we get the best results with

glove embedding and learning rate as 1e−4. However, we

get huge improvements by using iterative knowledge dis-

tillation, where in each alternate epoch the student learns

from the teacher and the groundtruth data; and the teacher

learns from its original loss function and the student’s soft

prediction (similar to Eqn. 5). Both weighted loss functions

use the imitation parameter 0.9 (which remains fixed dur-

ing training). We show the gradual learning of the teacher

and the student till 800 epochs in Fig. 4 and compare it with

the RN baseline. We observe that: 1) the External Mask-

augmented Teacher network converges faster than the base-

line and 2) the Student network outperforms the baseline

after 650 epochs of training.

Figure 4: Validation accuracy after each epoch for teacher

and student networks for iterative knowledge distillation on

Sort-of-Clevr dataset and compare with the baseline.

4.3. Larger Model with Attention

In this framework, we investigate whether the mask can

be learnt inside the network with attention mechanism. We

train the teacher network for 200 epochs with glove vectors

of size 50, batch size as 64, learning rate as 0.0001. We

have employed a hyperparamter search over learning rate,

embedding type, and learning rate decay, and found that

the above configuration produces best results. For the stu-

dent network, we employed a similar hyperparamter search

on the value of imitation parameter π and use two settings,

where π is fixed throughout the training and in the second

setting, π is varied using min(π, 1− πt). We also vary the

learning rate and the type of embedding (random with size

32 or glove vectors of size 50). The effect of the hyperpa-

rameter search is plotted in Fig. 6. We have experimented

with iterative knowledge distillation and the best accuracy

obtained for the teacher and the student networks are simi-

lar to that of sequential setting. The best test accuracies of

the student network, the teacher with larger model and the

baselines are provided in Table 1.

Figure 5: External Mask Prediction: Test Accuracy for dif-

ferent hyperparamter combination to obtain the best imita-

tion parameter (π) for student in sequential distillation.

4.4. Analysis

The reported baseline accuracy on Sort-of-Clevr by [24]

is 94% for both relational and non-relational questions.

However, we use LSTMs to embed the natural language

questions. Our implementation of the baseline achieves an
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Baseline
External Mask In-Network Mask Performance Boost Over Baseline (Δ)

Teacher Student Teacher Student Teacher Student

Sort-of-Clevr 82% ([24]) 95.7% 88.2% 87.5% 82.8% 13.7% 6.2%
CLEVR 53% ([29]) 58% 55% - - 5% 2%

Table 1: Test set accuracies of different architectures for the Sort-of-Clevr (with natural language questions) and CLEVR

dataset. For CLEVR, we used the Stacked Attention Network (SAN) [29] as baseline and only conducted the external-mask

setting experiment as it already calculates in-network attention. Our re-implementation of SAN achieves 53% accuracy on

CLEVR. Accuracy reported by [24] on SAN is 61%. The reported best accuracy for Sort-of-Clevr and CLEVR are 94%

(one-hot questions [24]) and 97.8% ([21]).

Figure 6: Model with Attention Mask: Test accuracy for the

student network for different hyperparamter combination to

obtain the best imitation parameter (π). We get the best

validation accuracy using the π as 0.9, �2 as cross entropy

loss and varying π by over epochs.

overall test accuracy of 89% with one-hot question repre-

sentation and 82% with LSTM embedding of the question.

Addition of the pre-processed mask provides an increase

in test accuracy to 95.7%. In contrast, the teacher model

with attention mask achieves 87.5%. This is expected as

the mask on the image simplifies the task by eliminating

irrelevant region of image with respect to the question.

Student Learning: One may argue that adding such ad-

ditional information to a model can be an unfair compari-

son. However, in this work, our main aim is to integrate

additional knowledge (when it is available) with existing

neural network architectures and demonstrate the benefits

that such knowledge can provide. We experiment with the

knowledge distillation paradigm to distill knowledge to a

student. Extracted knowledge can be noisy, imperfect and

often costly at test time. The distillation paradigm helps in

this regard as the student network can choose to learn from

the ground-truth data (putting less weight on teacher’s pre-

dictions) during the training phase and doesn’t require the

additional knowledge during test time. For Sort-of-Clevr,

we see an accuracy of 88.2% achieved by the student net-

work (in external mask setting), whereas for CLEVR the

distillation effort increases the accuracy over the baseline

method by 2%. Lastly, we show some qualitative exam-

ples of student network’s output on the Sort-of-Clevr dataset

(Fig. 7). The qualitative results indicate that our method

can handle counting, spatial relationships well, but fails

mostly on cases relating to shapes. This observation cou-

pled with improvement in generalization validates that the

spatial knowledge has a significant role in our method.

Figure 7: Some example images, questions and answers

from the synthetically generated Sort-of-Clevr dataset.

Red-colored answers indicate failure cases.

5. Conclusion
There has been a significant increase in attempts to inte-

grate background knowledge (linguistic knowledge [30] or

commonsense rules [10]) with state-of-the-art Neural Ar-

chitectures in Computer Vision and Natural Language Pro-

cessing applications. In this work, we attempt to integrate

additional information in the form of spatial knowledge

with existing neural networks to aid Visual Reasoning. The

spatial knowledge is obtained by reasoning on the natural

language question and additional scene information using

the Probabilistic Soft Logic inference mechanism. We show

that such information can be encoded using a mask over the

image and integrated with neural networks using knowledge

distillation. Such a procedure shows significant improve-

ment on the accuracy over the baseline network.
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