CREMONA TRANSFORMATIONS AND DERIVED EQUIVALENCES
OF K3 SURFACES

BRENDAN HASSETT AND KUAN-WEN LAI

AssTrAcT. We exhibit a Cremona transformation of IP* such that the base
loci of the map and its inverse are birational to K3 surfaces. The two K3
surfaces are derived equivalent but not isomorphic to each other. As an
application, we show that the difference of the two K3 surfaces annihi-
lates the class of the affine line in the Grothendieck ring of varieties.

INTRODUCTION

Let X be a smooth complex projective variety that is rational, i.e., admits
a birational map o : P” --» X where r = dim(X). The map o blows up
various subvarieties of IP” — to what extent are these determined by X?
We can always precompose o by a birational automorphism of P (i.e., a
Cremona transformation) so we must take this into account.

For small dimensions these subvarieties are determined by X. When r =
1, o extends to an isomorphism; if r = 2, o is resolved by blowing up
points in IP?. The case of threefolds was analyzed by Clemens and Griffiths
[CG72]. We may assume that o (resp. o~ !) is resolved by blowing up a
finite number of points and nonsingular irreducible curves; let Cy,...,Cy
(resp. Dy, ..., D;) denote those of positive genus. Comparing the Hodge
structures on middle cohomology groups using the blow-up formula, we
obtain an isomorphism of principally polarized abelian varieties:

J(C) X+ X J(C) = J(X) X J(Dy) X - -+ X J(Dy).

The factors are Jacobians of curves and the intermediate Jacobian of X.
Principally polarized abelian varieties admit unique decompositions into ir-
reducible factors and the Jacobian of a curve is irreducible with respect to
the natural polarization. It follows that J(X) can be expressed as a product
of Jacobians of curves C;,,...,C;, {i1,...,i;} C{l,...,k}, and these curves
are determined up to isomorphism by the Torelli Theorem.

Therefore, we focus on fourfolds and their middle cohomology. Suppose
that a smooth projective surface X is contained in the base locus of p. The
blow-up formula gives a homomorphism of Hodge structures

B H*(Z,Z)(-1) —» H'(X,Z);
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can we recover X from its image? Keeping track of divisor classes of
¥ is complicated, as they might disappear under subsequent blow-downs.
Thus all we can expect to recover is the transcendental cohomology 7'(X) C
H*(Z,Z).

Mukai and Orlov [Orl97] have shown that K3 surfaces offer many exam-
ples of non-birational surfaces R and R with T(R) =~ T(R) as integral Hodge
structures. These are explained through the notion of derived equivalence.
There are cubic fourfolds [Has16] whose Hodge structures show the trace
of several derived equivalent K3 surfaces. However, these are not known to
be rational. Nevertheless, this raises a question:

Question 0.1. Let R and R be derived equivalent K3 surfaces. Do there
exist smooth projective fourfolds X, P, and P and birational maps

o:P-->X, @:P--aX,

such that R and R are birational to components of the base loci of o and o
respectively, and the induced

B:H*R,Z2)(-1) - HYX,Z), B:H*R,Z)(-1)— H'X,Z)
induce an isomorphism T (R) =~ T(R)?

In other words, are derived equivalences of K3 surfaces induced by bira-
tional maps? It makes sense to start with the case where P ~ P ~ P*. Are
derived equivalences of K3 surfaces induced by Cremona transformations?

This last question may be too ambitious, as the base loci of Cremona
transformations are highly constrained. According to Crauder and Katz
[CK89], the Cremona transformation of IP* which can be resolved by blow-
ing up along a smooth and irreducible surface S C IP* occurs as one of the
following two cases:

(1) S is a quintic elliptic scroll S = P¢(E), where C is an elliptic curve
and E is a rank two vector bundle with e = — deg( /\2 E)=-1.

(2) S is a degree 10 determinantal surface given by the vanishing of the
4 X 4 minors of a 4 X 5 matrix of linear forms.

Here we present an example where derived equivalences of K3 surfaces
are explained through Cremona transformations, and offer further evidence
that such examples are quite rare. We can explain derived equivalences
among degree 12 K3 surfaces in this way; however, we do not know how to
realize derived equivalences of higher degree K3 surfaces.

Our construction gives new examples of zero-divisors in the Grothendieck
ring of complex algebraic varieties. The difference of each derived equiv-

alent pair is non-vanishing in the ring and annihilated by the class of the
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affine line. The first example in this direction is given by the Pfaffian-
Grassmannian Calabi- Yau threefolds [Bor15]. Other examples include Calabi-
Yau threefolds from Grassmannians of type G, [IMOU16a, Kuz16]. Kuznetsov
and Shinder [KS16] have formulated general conjectures relating derived
equivalence to zero-divisors in the Grothendieck ring; our example is an
instance of [KS16, Conj. 1.6]. The relationship between zero-divisors in
the Grothendieck ring and approaches to the rationality of cubic fourfolds

is discussed in [GS14].

Section 1 presents preliminary results on Cremona transformations with
singular base loci. The construction of our rational map is in Section 2 and
we verify the non-trivial derived equivalence in Section 3. We apply the
results to study the Grothendieck ring in Section 4. Section 5 shows these
constructions do not admit obvious extensions through a generalization of
the classification of Crauder and Katz; the underlying computations are also
used to analyze the maps defined in Section 2.

Acknowledgments: We are grateful for conversations with Lev Borisov
that inspired this work. The manuscript benefited from correspondence with
Alexander Kuznetsov. The authors are grateful for the support of the Na-
tional Science Foundation through DMS-1551514.

1. CREMONA TRANSFORMATION WITH SINGULAR BASE LOCUS

1.1. Terminology and notation. A Cremona transformation of P" is a bi-
rational map f : P" --> P". Its base locus Bs(f) is the subscheme where f
is undefined.

Throughout this paper, we consider the Cremona transformation f : P* --»
IP* with base locus resolved by blowing up an irreducible surface S, with
singular locus consisting of transverse double points, which means a point
where the surface has two smooth branches meeting transversally.

Suppose S has ¢ transverse double points which form a subset A ¢ P*.
The blowup of IP* along S can be factored as follows:

(1) Blow up PP* along A, introducing § exceptional divisors Ej, ..., Es
isomorphic to IP>. Let P denote the resulting fourfold and S’ the
proper transform of S, which is now smooth.

(2) Blow up P along S’ to obtain P’. Let E denote the resulting excep-
tional divisor and E1, ..., E} the proper transforms of the first group
of exceptional divisors. Each E is isomorphic to E; ~ P blown up
along two skew lines Q:, Q7 C E.

(3) Each E/ is a P'-bundle over P! x P'. Indeed, through each p € E;
not on Q) and Q passes a unique line / intersecting Q) and Q. The
bundle map is given by p = (IN Q!,IN Q) € Q; x Q7. Blow down
each E/ to P! x IP'. The resulting X is isomorphic to BlgP*.
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Remark. The blowup X — P* has a quadric surface Q;, i = 1,...5, over
each transverse double point of §. Then P’ is obtained as the blowup of X
along these quadrics.

Let 7, : X — IP* be the blowup along S and 7, : X — P* the resolution
of f so that m, = m; o f. We organize these maps into a diagram:

P/P,\X
NP

______ > p*
Note that, by the definition of blowup, X is exactly the graph of f. Let L

(resp. M) denote the divisor of the hyperplane class of the left (resp. right)
IP*. We also use L (resp. M) to denote its pullbacks to X, P and P’ (resp. X

and P’).

It’s clear that L* = 1. We have
(1.1) M* =1
on X as f is birational. We define n by
(1.2) L’M=n
and & by
(1.3) LM =&,

We may interpret n and £ as the degrees of the homogeneous forms inducing
f and f~! respectively. Define m as the multiplicity of S in the base locus.
It is clear that

M=nL-m(E+25_E]) onP
Since a nondegenerate subvariety in projective space has degree greater than
one, the linear system in |M| inducing P’ — P* must be complete. Thus we
have

(1.4) (P, M) =5.

We use these equations in our classification of Cremona transformations
below.

1.2. Computing the intersection numbers. Let £ denote the normaliza-
tion of S and let Ky be its canonical class. Then the blowup of Z along the
preimage of the transverse double points is isomorphic to S’. We denote
by C a general sectional curve of S and also its preimages in X and S’. Let
d = C? = degS. Note that E; NS’ = Q] U Q! are exactly the exceptional
curves on S’ over the i-th double point.

4



Lemma 1.1. We have LE; = 0. We also have E°E] = —4, E*E* = 2,
EE’3 Oana'E’4 —-1.

Proof. First, LE! = 0 since their intersection is empty.
Recall that E7 is isomorphic to E; ~ IP? blown up at skew lines Q) and

Q. Write Pic(E)) = <H ', Q”> where H is the polarization from IP*> while

Q and Q" are the exceptional divisors over the lines. We clearly have
0’0" = 0and Q'H* = Q"H? = 0. Since Ny p = Og/(1) ® Og(1) then
writing ¢ = ¢1(Ora,, (1)) we obtain ¢ 2+ 2H{ = 0 in the Chow group of

é’ = IP(Ng/p3). We have Q’I@ = —( so that

O’H=-(H=-1, Q°=7=-2H!=-
We have Ngyp = O(-H) and E| E = Q’ + Q”. Thus we obtain
E3El/ (Q Q//)3 Q/3 + Q//%
E’E? = (Q +Q"P(-H) =
EE? = (Q'+Q")-H) = :
E;“ (-H)’ = -

Lemma 1.2. The intersection numbers involving L and E are
(1) L*E =0 and L*E* = —d
(2) LE® = -5d — KsC
(3) E* = —15d — 5KsC — () + 66
(3’) E* = d* - 25d - 10KsC — Ks* + 46

Proof. L’E = 0 since a general line doesn’t intersect S. We have L?E? =
—degS’ = —d.

Assume that C = S N L for some hyperplane L ~ P?. Then LE® =
s(C, L), the zeroth Segre class of C in L, which equals [c(N¢;) 'y =
[c(C)e( Tp3)™' 1o = [([C] = KsC — C*)([C] = 4d)]o = —5d — K5C.

We have E4 = —S(S/,P)o = —[C(Nsr/p)_l]o = —[C(S/) C(P)lgll]o Let
€ : P — IP* be the blowup. The blowup formula for Chern classes gives

c(P) = e€cPH)+(1+ZE)l-ZE) -1
= ([P]+ L) +Z(-3E; + 2E* + 2E;® - 3E*).

Thus we have

C(P)|S’ = ([S’] + 5C + IOCZ) + Z,[—3(Ql’ + Ql”) + 2(Ql/2 + QIHZ)]
= [$']+5C-3%(Q; + Q) +10d - 46

and also

c(P)5} = [S'] - 5C + 320, + Q) + 15d — 146.
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Let7:S” — Z be the blowup. Then we have
c(S)=[S"]-1TKs —Z(Q + Q) + c2(2) + 26.

Multiply the results to get E* = —15d — 5KsC — ¢»(X) + 60.
Another expression for E* is derived from

~[c(Nsp) "' 1o = c2(Ns+jp) — ¢1(Ns:/p)*
We have c¢,(Ns//p) = d* — 46. On the other hand

ci(Ns/p) = ci(Tp)lg: —c1(Ts)
= — (=5L+3%E)lg — (—Ks/)
= 5C+ 7Ky - 250, + Q).

hence we deduce
¢1 (Ng/p)* = 25d + 10KsC + K5 — 86

and also

&
Il

(d2 - 45) - (25d + 10KsC + Ky? — 85)
d? — 25d — 10KsC — Ks? + 46.

2. CONSTRUCTION OF OUR EXAMPLE

In this section, we use Mukai’s construction [Muk88] to produce an ex-
plicit example of a degree 12 K3 surface R C P’ together with three points
P1, P2, P3 € R. This example helps us prove the following theorem:

Theorem 2.1. Let R C P7 be a generic K3 surface of degree 12 and 11 :=
{p1, P2, P3} C R a generic triple of points.

(1) projection from I1 maps R to a surface S C P* with three transverse
double points;

(2) the complete linear system M of quartics vanishing along S cuts out
S scheme-theoretically;

(3) M induces a birational map f : P* --> P*;

(4) the base locus of the inverse f~' is also a projection of a degree 12
K3 surface from three points.

2.1. Orthogonal Grassmannian. Let V be a 10-dimensional vector space
equipped with a nondegenerate quadratic form g. The 5-dimensional sub-
spaces of V isotropic with respect to g form a subvariety S of the Grass-
mannian G(5, V). It has two components S* and S~ which are isomorphic
to each other. They are called orthogonal Grassmannians and are denoted
by OG(5, V).
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Fix a 5-subspace W € OG(5, V) and let W* be its orthogonal complement
with respect to g. Then OG(S, V) can be identified scheme theoretically as
the zero locus in

2 4
PCo \we \ w)=Pp?
of the quadratic form [IM04, §2]
o detWeo \N°We W — AN'Wew
' (x,Q,v) — (x(v) + %Q A Q, Q(v)).

Here we choose an isomorphism C =~ det W. This induces an isomorphism
AW = W

Let X = (Xo, ..., X5) be the homogeneous coordinate for P'>. Then (2.1)
can be explicitly written down as ten quadrics:

XoX11 + X5X10 — XeXg + X7Xg | —X1X12 + XoX13 — X3X14 + XqX15
XpX12 + X2X10 — X3X9 + X4Xg | X1 X11 — X5X13 + X6X14 — X7X15

(2.2) XpX13 + X1X10 — X3X7 + X4Xe | —XpX11 + X5X12 — XgX14 + X9X15
XoX14 + X1 X9 — XpX7 + X4X5 | X3X11 — XeX12 + XgX13 — X10X15
XoX15 + X1Xg — X2Xe + X3X5 | —X4X1] + X7X12 — X9X13 + X[0X14-

2.2. An explicit example. Mukai [Muk88, §3] proves that a generic K3
surface of degree 12 appears as a linear section of OG(5, V) and vice versa.
For example, the P’ c P!> spanned by the rows of the 8 x 16 matrix

-1 3 2 0 2-3-10 3 1 0 3 0 20 -3

1 03 0-2 1 10 -2-1-1-1 0 40 2

-1 -3 -2 0-3 0 32 -1-3-1 2-1 220 3

H= 30 0 2 2 3 01 2-1 0 2 -1 -22 3
- -1 1-1 0 1-33 2 2 1 3 0-30 -3

1 o 0 0 0-1 01 0 O O O O OO0 O

2 1 0 1 0 01 o o0 1 0 0O O0O0 O

30 1 0 1 O OO O O O O O OO0 O

cuts out a degree 12 K3 surface R on OG(5, V). More explicitly, let z =
(2o -.-» z7) be homogeneous coordinates for P’. We define the inclusion ¢ :
P” < P' by
x=z- H.

Then we get R = . 1(OG(5, V)).

The last three rows of H are chosen as solutions of (2.2) so that they form
a triple of points I1 = {py, p», p3} C R. With this choice the projection from
IT is exactly the map

T P’ N P*
(ZO’ eeey Z7) = (ZO""’ Z4)
which takes Rto § = n(R).



We manipulate this example in a computer algebra system' over the finite
field IF;. We compute that S is singular along three transverse double points
{a,, a», a3} and is the base locus of a Cremona transformation

P - P

Moreover, the base locus of the inverse (f)~" is again a surface T singular
along three transverse double points {by, by, b3}. The matrix H is chosen
such that the preimage of {a;, a»,as} on R and the preimage of {by, b,, b3}
on the normalization of 7 are [F;-rational points. This is the smallest field
where our computer could quickly find such an H.

2.3. Proof of Theorem 2.1. We prove Theorem 2.1 for our example first.
We confirm the following properties by computer over [F;:

(1) S is singular along three points. The preimage of each singular point
on R has two points outside I1. So they are transverse double points.
(2) The ideal of S is generated by five quartics f, ..., f4-

The double-point formula [Ful98, Thm. 9.3] indicates that the three
transverse double points of (1) exist over characteristic zero. Indeed, let
€ : X — S be the normalization. Then X is isomorphic to R blown up at
three points. The double-point class ID(e) € CHy(X) is given by the formula

D(e) = €€e[Z]-[ecP - cZ) ']
= (5,8)p — (€'c2(PY) — €ci(PY) - ¢1(T) — c1(T)* + c2(2)).

It’s easy to verify that D(e) = 6. The quantity %lD(e) = 3 counts the number
of singularities on S with multiplicity if the singular locus is a finite set.
Therefore (1) implies that the singular locus of S consists of three transverse
double points. This proves Theorem 2.1(1).

The five quartics fo, - ]_‘4 lift to a basis fy, ..., f4 for the ideal of § over
characteristic zero. In particular Theorem 2.1(2) holds. The forms fy, ..., f4
define a rational map

fi= oy fo) i PH 5 PY
which reduces to L _
fi=foron fo): P> P*
over IF;. The degree of f is computed by the self-intersection M*, which
can be expanded as the right-hand side of equation (5.2). It’s easy to check
that our example satisfies
(n,m,d,0) =(4,1,9,3), Kz:C=3 and c(Z)=27.

Inserting these data into (5.2) we get M* = 1, i.e. the map f is birational.
Thus Theorem 2.1(3) holds.

!The main program we use in this work is SINguLAR [DGPS15]
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The inverse (f)~' can be calculated by computer. It consists of five quar-
tics also and the base locus is a surface 7 singular along three points. These
are transverse double points since each point has two preimage points on
the normalization. By the same reasons as above, the base locus of !
is again a surface cut by five quartics and singular along three transverse
double points. Then Theorem 2.1(4) follows from Theorem 5.1.

Next we prove Theorem 2.1 in the generic case.

It’s clear that (1), (2) and (3) of the theorem are open conditions, so they
hold for a generic example. As a consequence of Theorem 5.1, property
(4) holds once Bs(f') is a surface cut out by five quartics and singular
along three transverse double points. These are open conditions again so
Theorem 2.1 holds for a generic example.

2.4. Some geometry of the construction. Let f be a Cremona transfor-
mation of Theorem 2.1. It has a resolution

X
N
po- -l _op
Let S, and S, be the base locus of f and its inverse f~!, respectively. Then
my is the blowup along S ;. Recall that X coincides with the graph of f as
well as f~!. Therefore, 7, is the blowup along S ;.
This example has d = 9, KsC = 3, c2(2) = 27,6 = 3 and
M=4L-E-2% E|.
Evaluating Lemmas 1.1 and 1.2 with this data yields
Corollary 2.2. We have
(1) LE, =0, E°E] = -4, E’E/* =2, EE’ = 0, E/* = -1,
(2) L’E =0, L’E? = -9, LE® = —48, E* = —159.
Thus consequently,
() L’M =4, L>M?> =17, LM? =4, M* = 1.

Let Xo, ..., X4 be the homogeneous coordinates for P*. The Cremona
transformation f is ramified along the locus ® where the Jacobian matrix

afi
D f - (_f)
GXJ' 5%5
is degenerate. So © is a degree 15 hypersurface in IP* defined by
det(Df) = 0.

This locus is called P-locus, which is classically defined as the image of

the exceptional divisor of the blowup 7, [Dol12, §7.1.4]. In particular, O is
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irreducible. It also follows that @ is the locus contracted by f and its image
is the base locus S ;.

Proposition 2.3. The locus ® C P* contracted by f is an irreducible hyper-
surface of degree 15. It has multiplicity four along S ;. Moreover, it equals
the union of all of the 4-secant lines to S ;. The analogous statement holds
for the inverse f~' by symmetry.

Proof. Let m be the multiplicity of ® along S ;. Then the divisor class of its
pullback to X equals

®X = 15L - mEx.

Here we use E to denote the exceptional divisor of the blowup 7. Because
® is contracted onto a surface, we have

0= M*Oyx = M>(15L — mEy) = 60 — mM’Ex.

By definition, Ex is mapped onto the P-locus of the inverse map f~'. In
particular, it is again a degree 15 hypersurface in P* by symmetry. So
M?Ey = 15, which implies m = 4.

Let Fx be the exceptional locus of the blowup m,. We have L = 4M — F
by symmetry, hence

Fy=4M — L.

(Note that this equals 15L—-4Ex = Ox) The fiber of the map Fx — S, over
a smooth point is represented by the class

= = —F
X degSy 9 X
The image [ = m(lx) is a rational curve of degree
1 1 1
L-ly= §LFXM2 = §L(4M - L)M?* = §(16 -7 =1.

The intersection number between [ and S ; can be computed by

Ex-ly = gExFxM*=3(4L—- M)(4M — L)M?
= 5(64-28-4+4)=4.

Hence the fibers of Fy — § ), away from the double points is mapped by 7,
to 4-secant lines to S;. In other words, S ; admits a family of 4-secant lines
parametrized by the smooth locus of S ;.

Conversely, every 4-secant line [ to S, satisfies

[I-M=1-4L-Ex)=4-4=0.

So [ is contracted to a point by f. Hence the union of the 4-secant lines to

S ; forms a 3-fold contained in ® and thus coincides with ©. O
10



3. DERIVED EQUIVALENCES OF K3 SURFACES

Let’s keep the notation of Section 2.4. By Theorem 2.1, there exists two
degree 12 K3 surfaces R; and Ry, projected onto the base loci S, and Sy,
respectively. This section is devoted to the following:

Theorem 3.1. The two K3 surfaces R, and Ry, are derived equivalent. They
are non-isomorphic if they have Picard number one.

Corollary 3.2. There is a birational map o : R[L3] --> RESI] between the
Hilbert schemes of length three subschemes.

3.1. Derived equivalences and general strategy. Let R and R denote K3
surfaces and T'(R) and T(R) the corresponding transcendental lattices. Re-
call that R and R are derived equivalent if and only if 7(R) and T(R) are
Hodge isometric [Orl97]. Suppose that R has Picard rank one and degree
2n. Let 7(n) be the number of prime factors of n. Then the number of iso-
morphism classes of K3 surfaces derived equivalent to R is equal to 27!
[HLOYO03]. Thus a general degree 12 K3 surface admits a unique such
partner.

Our general approach is to prove that T(R;) is isometric to T(Ry) by
showing that both of them can be identified as the transcendental sublattice
of H*(X,Z). Then we show that the induced isomorphism on the discrimi-
nant groups is nontrivial, which implies that R; and R, are not isomorphic
to each other.

3.2. The middle cohomology of X. Retain the notation of Section 1. Let
H; be the polarization of R;. Let F, F, and F5 be the exceptional curves
from the projection R; --> S L Wei cogsider H;, F,, I, and F5 as curves on
S ;. Their strict transforms H;, Fy, F,, F5 on X together with L* and the
quadrics Q;, Q,, Q3 form a rank 8 sublattice A;(X) ¢ H*(X,Z). We have

H}=-Hj=-12, F}=-F'=1 and Q}=-E*=1

where i = 1,2,3. These classes are mutually disjoint, so the intersection
matrix for A;(X) is

L’ H F1,2,3 Q123
L2 1
3.1 H; -12
Fia3 L3
Q123 L3

where [543 is the identity matrix of rank 3.

Lemma 3.3. There is a decomposition

HY(X,Z) ~ HY(X, Z)ag ®. T(RL)(-1).
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where H*(X, Z)q, is the sublattice spanned by algebraic classes. We have
HY (X, Z)ay = AL(X)

when R; has Picard number one. Here we use A(—1) to denote a lattice A
equipped with the negative of its original product.

Proof. We apply the blowup formula for cohomology to the composition
P — P — P* and the map P’ — X to obtain two decompositions for
H*(P’,Z). Then we compare them to get our result.

Let §; C P be the strict transform of §;. Recall that §; is isomorphic
to R, blown up at 3+6=9 points, where 3 are from the projection R, --> S,
while 6 are from the resolution §; — §;. Thus we have

H*S},Z) = (F;, Q, Q)15 @ H' (R, ).

Let Q and Q’ be the strict transforms of Q7 and Q) on P’. Since P’ — P is
the blowup along S, we have

HY(P',Z)

1

HYP,Z)® H*(S,Z)(-1)

(L EP Fi O, OF),_,,, ® H*RLZ)(-D).

(3.2)

1R

For every i, we have

Q;Z — _Q;Z =1, Q;/Z — _Q;/Z =1, EIIZQII — E;ZQ;, -0

and E/* = —1. With these it’s straightforward to prove the isometry

(E2. 0. QY= (EP + Q). E + 0}, E + Q;+ ),
whence (3.2) equals

HYP.Z)~ (E?+ Q. E?+ 0/, E?+ Q.+ Q. >, F))

=123
®H*(R.,Z)(-1).

(3.3)

By the description of the map E; --> Q;, the two fiber classes on Q; =~
P! x P! pullback to hyperplanes in E; containing either Q} or Q}, which
correspond to the classes —E/* — Q or —E/* — Q” on P’, respectively. The
map P’ — X is the blowup along Q;, i = 1,2, 3, so

(3.4) HYP.Z) = (E + Q). E + Q;’)Zl L OH (X, Z)

Combining (3.3) and (3.4) we get

1

H'X.Z) =~ (EF+ 0, EP+0))_
<E£2 + Q + ~;,’ L, E>i—1 22 ® H(R, Z)(= D).
12 -
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Both Q; and E}* + Q + Q” are orthogonal to L2, Fi_,,3 and H*(R;,Z.),

and Q> = (2 + Q)+ Q/)* = 1,50 Q; = +(E? + Q) + Q7). Therefore
HYX,Z) = (Q, I’ F)  &HR,Z)(-1)

(0 12, Fi)_,  ®NS(R(=1) &, T(RL)(-1)
= H4(X, Z)alg DL T(RL)(_I)
where NS (R;) is the Néron-Severi lattice of R;.

When R; has Picard number one, we have NS (R;)(—1) =~ <ﬁL> In this
case

1

H X, Z)uy = (Qis L, Fiy Hp),_ . = ALX).
Lemma 3.3 also proves the decomposition
HY(X,Z) ~ H*(X, Z)aig ®. T(Ry)(=1)
from the side of f~!. So there is an isometry
T(R.) = H*(X,Z);,(-1) = T(Ry)
which allows us to conclude that

Proposition 3.4. R; and Ry, are derived equivalent.

3.3. The discriminant groups. For an arbitrary lattice A with dual lattice
A" := Hom(A, Z), we denote by dA := A*/A its discriminant group.

Let Ay/(X) be the lattice constructed in the same way as A;(X) from the
side of f~!. Assume R; and R, have Picard number one. Then Lemma 3.3
implies that there is an isometry

¢ Au(X) @ T(Ri)(=1) = AL(X) @, T(RL)(-1)

such that ¢ = @4 ® 7 with respect to the decompositions. It induces the
commutative diagram

dAy(X) =~ dAL(X)

dT (Ry) —== dT (Ry).
These groups are all isomorphic to Z/12Z. From the intersection matrix
(3.1) we know t_}lat dA;(X) is generated by —H;/12. Similarly, d_{lM(X) 1s

generated by —H),/12 where H), is the polarization of Ry, and Hy, is the
strict transform on X.

Lemma 3.5. We have the following equations in H*(X, Z.)

(1) M? =70 = 3H, + 4(F) + F2 + F3) + 2(Q) + 0 + Q3)
13



(2) Hy = 3612 — 17TH; + 24(F, + F» + F3) + 12(0; + 05 + 03)

Proof. The following computation is based on Corollary 2.2.
Assume that

M? = al? + bH, + fiF| + fiF> + fiF3 + 8101 + 8202 + 2305.
Thena = L*?M? =7. Fori = 1,2, 3, we have
g = M*Q; = ~-M*E}?
=—-U4L-E - 2ZjE})2E;2 =—(-E - 2ZjE;.)2Elf2
= —E’E? —4EE’ —4E*=-2-0+4=2.
Let C be the strict transform of the sectional curve C on P’. Note that
LM =41> - LE = 41> - C = 41> - H, + %;F,,
so we find
4 = LM? = (LM)M?

= (4L - H, + ;F)(TL* + bH, + ifiF; + 22,0%)
=284+ 120+ fi+ o+ /5

and thus
3.5 A+ fH+f=—12b-24.
We also have

1 = M* = (TL% + bH,, + 3. fiF; + 22, 0p)?
=49 - 120 + f+ fF+ f2+ 12

which is equivalent to

(3.6) fE+ fF+ f2=12b" - 60.
By the Cauchy-Schwarz inequality
37) (fi+ o+ AP = (L LD (i fo, )Y

< (1? 1’ 1)2(ﬁaf27ﬁ)2 = 3(f12 + f22 + f32)
Applying (3.5) and (3.6) we get (—12b — 24)> < 3(12b% — 60), i.e.
3b% +16b+21 = 3b+7)(b+3) < 0.

The only integer solution is b = —3. Because (3.7) becomes an equality
in this case, we have (fi, f>, f3) = f(1,1, 1) for some integer f. We obtain
f =4 by setting b = -3 in (3.5). As a result, we find

M? =712 —3H; + 4(F, + F» + F3) + 2(0; + 02 + 03).
Next, assume that

Hy =al® + bH, + fiF| + fiFy + f3F3 + g101 + 8:05 + g305.
14



By symmetry, H; L"M*™" = HyM"L*™" for n = 0, 1,2. In particular,
a = IF'I"ML2 = H'L]M2 = _3ﬁ1% = 36.
We have
12 = H (4L? — H; + %,F,) = H.(LM) = Hy (ML)
= (36L2 + bHL + ZlﬁF, + ZJgJQ])(4L2 — HL + ZiFi)
=144 +12b+ fi + L + f5.
Rearrange to obtain
(3.8) fi+fh+f3=—12b—-132.
Applying the symmetry again, we get
0 = ﬁLLz = i:i[l/[]\42
= (36L2 + bHL + ZlﬁF, + E]ng])(7L2 - 3HL + 421'Fi + 2ZJQ])
=252 +36b+4(fi+ o+ f3) +2(g1 + g2+ &3)
whence
20i+ o+ )+ (81 + & +g3) =—18p—-126
and combining with (3.8) gives
3.9 g1+ g+ g3 = 6b + 138.
We also have
~12 = H? = H, = (36L% + bH, + %,f;F; + £,8,0,)*
= 1296 — 120 + fi + f7 + [T + g1 + &5 + &3,
from which we obtain
(3.10) fi+fi+fi+g +g +g =12b" —1308.
By the Cauchy-Schwarz inequality,

311 (=12b-132)* = (fi + o+ 5)* = (1, L, 1) - (fi, fo, 3))
‘ S(l’ 1’ l)z(fl’fz’fé)z:3(f]2+f22+.f32)

and

(3.12) (6b +138)" = (g1 + &2+ g3)° = (1,1, 1) - (g1, 82, 83))°
' < (1,1, 1)%(g1,82.83)* = 3(g3 + g5 + &2).

Add the two inequalities and then apply (3.10) to get

(=12b — 132)% + (6b + 138)?

<3(fE+ [T+ [T +8& +8 +g3) =3(12b* — 1308)

which can be arranged as

2b* + 67b + 561 = (2b + 33)(b + 17) < 0.

The only integer solution is b = —17 which makes (3.13) an equality.

This forces (3.11) and (3.12) to be equalities also. Therefore (fi, f>, f3) =
15

(3.13)



f(,1,1) and (g1, g2,83) = g(1,1,1) for some integers f and g. We get
f =24 from (3.8) and g = 12 from (3.9). As a consequence,

Hy = 36L% — 17TH, + 24(F, + F» + F3) + 12(0; + 0a2 + 03).
O

Proposition 3.6. The isomorphism ¢4, : dAy(X) — dAL(X) equals multi-
plication by 7 on 7./124.

Proof. Recall that ¢, acts as the identity map on H*(X, Z),, thus (pA(ﬁ M) =
Hy. By Lemma 3.5 we have

@a(Hy) = 36L% — 17TH, + 24(F; + F5 + F3) + 12(01 + Qs + 03).
as a map from Ay(X) to A, (X). Therefore

‘;DA*(_ll_zﬁM) = 3L+ %IZL —2(F, + F2 + F3) = (Q1 + 02 + 03)
= -17- (—leHL) mod A, (X)
= 7-(-1Hy) modAL(X).

O

Remark. By the symmetry the Cremona transformation f, the rank-8 lat-
tice H*(X, 7)), 1s also spanned by the classes

{Mz’ ﬁM’ 619525 §3$ K19 K2’ K3}

constructed in a similar way from the right-hand side. Here 51, 52, 53 are
from the exceptional curves and K, K5, K3 are from the transverse double
points. The full transformation between the two set of bases is

M? 7 -3 4 4 4 2 2 2 L*
Hy 36 —17 24 24 24 12 12 12 H,
G, 4 -2 3 3 3 2 1 1 F
G| |4 -2 3 3 3 1 2 1 F
G, | |4 -2 3 3 3 1 1 2 7,
K, 2 -1 2 1 1 1 1 1 0,
K, 2 -1 1 2 1 1 1 1 0,
K; 2 -1 1 1 2 1 1 1 0;

This expression is unique up to the ordering of the exceptional curves and
the transverse double points on each side. The top two rows are computed

by Lemma 3.5. The other rows can be computed in a similar way.
16



3.4. Proofs of Theorem 3.1 and its Corollary. We first prove the theorem.
The derived equivalence follows from Proposition 3.4. Note that this
implies that the Picard numbers of R; and R), are the same.
Assume R; and Rj; have Picard number one. Suppose they are isomor-
phic. Then there is an isometry

0:TRy) > T(Ry)
which induces the isomorphism

0.: dT(R;)) = dT(Ry)
under the identifications d7(R;) ~ dA(X) and dT'(Ry) =~ dA(X).

By Proposition 3.6, the composition ¢4 o 8 is an automorphism on 7'(R;)
acting as multiplication by 7 on dT'(R;). This contradicts the fact that the
only automorphism on 7'(R;) is the identity [Ogu02]. Hence R, and Ry,
can’t be isomorphic to each other.

Next we prove the corollary.

The corollary is trivial if R; and R,, are isomorphic, so we assume that
they are non-isomorphic.

Given a generic triple of points I, € RY", we determine a degree 12 K3

surface Ry, and a triple of points I, € RESI] through the following steps:

(1) Project R; from II; to obtain §; C IP*, whose ideal defines a Cre-
mona transformation f : P* --> P*.

(2) The base locus of f~!is a surface S j; singular along three transverse
double points. Normalize S 5, to get Zy,.

(3) Xy 1s the blowup of a degree 12 K3 surface Ry, along three points.
The three exceptional curves on X, are contracted to I, € RES].

Recall that a pair of derived equivalent K3 surfaces of degree 12 uniquely
determines each other up to isomorphism. So R, is independent of the
choice of I € R[L3] by Theorem 3.1. Hence there is a rational map

. [3] [3]
oc: R -» R
HL = HM.

It is birational because I1; is uniquely determined by I1,, through the same
process as above.

3.5. Connections between our construction and other approaches. The
derived equivalence and geometric connections between the degree 12 K3

surfaces (R, Hy) and (Ry;, Hy;) admit several interpretations.
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3.5.1. Mukai lattices. For a K3 surface R, the Mukai lattice
H(R,Z) = H'(R,Z) & H*(R,Z) & H*(R, Z),

equipped with a weight-two Hodge structure, i.e., the standard Hodge struc-
ture on the middle summand and the outer summands taken as (1, 1) classes.
This is polarized by

(r1, D1, 51) - (r23, D2, 82) = Dy - Dy —ry - 55 — 13 - 51
Each coherent sheaf E yields a Mukai vector
W(E) = (r(E), c1(E), s(E)),
where r(E) is the rank and r(E) + s(E) = y(E). Mukai [Muk87] has shown
that the second cohomology of a moduli space M, (R) may be expressed
+ ifv-v>2
H(M,(R).Z) = | LhrE
vi/Zyv ifv-v=0

provided v is primitive and satisfies certain technical conditions. A derived

equivalence between R and R induces an isomorphism of Hodge structures
®: HR,Z) > HR,Z)

which may be chosen so that R = M,(R) with ®(v) = (0,0, 1).

We return to our degree 12 K3 surfaces Ry, and R;. We may interpret
Ry as a moduli space of vector bundles on R; and vice versa [Muk99].
Let My u, 3)(Rr) denote the moduli space of rank-two stable bundles E with
ci(E) = Hy and y(R, E) = 5, which is isomorphic to Ry,. The universal
bundle & — R, X R induces a Hodge isometry

®: HR;,Z) — HRy,Z)
described above. We have
(D(za HL, 3) = (O’ O, 1), (D(Oa O’ 1) = (2’ HM, 3)
and @ restricts to the isogeny on transcendental cohomology mentioned in
§3.1. It follows formally that
®(1,0,-2) = (-1,0,2),

thus after a shift the Mukai vector of ideal sheaves of length-three sub-
schemes of R, goes to the Mukai vector of length-three subschemes of Ry,.
We obtain an isomorphism

H R}, Z) ~ H'(R}}. Z)

of Hodge structure arising from Mukai lattices. Thus the Torelli Theorem
[Marl1, Cor. 9.9] yields a birational equivalence

[3]1 7, pl3]
R - R},
18



Corollary 3.2 is quite natural from this perspective.

Remark: We also have ®(1,0,-1) = (1, Hy, 5). Elements of M, g, 5)(Ry)
may be interpreted as I;(H);) where Z C Ry, has length two. Similar rea-
soning gives

3.5.2. Homological projective duality. Mukai [Muk99, Ex. 1.2] proposed
an interpretation of the derived equivalence via linear algebra, which was
explored in detail by Iliev and Markushevich [IM04]. The key observation
is that the components S* and S~ described in §2.1 are naturally embedded
in dual projective spaces

S*cP?® S cPb.
Codimension r subspaces P ¢ PP correspond to codimension (16 — r)
subspaces P+ c P'5. When r = 8, the K3 surfaces R = S* N P and
R = S8~ N P* are dual. These are derived equivalent and generally non-
isomorphic. Kuznetsov [Kuz06, §6.2] has interpreted this derived equiva-
lence via Homological Projective Duality.
It would be interesting to construct the Cremona transformation through

this mechanism, by introducing the data of the three points on the K3 sur-
face into the duality construction.

4. ZERO DIVISORS IN THE GROTHENDIECK RING

Let Ko(Var/C) denote the Grothendieck ring of complex algebraic vari-
eties. It is the abelian group generated by isomorphism classes of complex
algebraic varieties subject to the relation

[Z] = [U]+[Z-U]

where U is an open subvariety of Z. The multiplication is induced by the
Cartesian product:

[X][Y] = [X x Y]
which is associative and commutative with unit 1 = [Spec C]. More gener-
ally, if Z — X is a Zariski locally trivial bundle with fibers isomorphic to Y,
by stratifying the base it’s easy to prove that
[(X1[Y] = [Z].

Let IL = [A!] be the class of the affine line in Ko(Var/C). Consider a pair
of non-isomorphic smooth projective varieties X and Y which are derived
equivalent. It is interesting to know if there exists k > 0 satisfying
4.1 (X1 - [YDL =0

and what the minimal £ is if it exists [KS16].
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When X is a generic K3 surface of degree 12, Ito, Miura, Okawa and
Ueda [IMOU16b] proves that there exists Y non-trivially derived equivalent
to X such that (4.1) holds for k = 3. Actually, it can be improved to k = 1
straightforwardly from the point of view of the Cremona transformation.

Theorem 4.1. Let R; and Ry, be a generic pair of K3 surfaces associated
with our Cremona transformation. Then we have

([R.] = [RuDL = 0.
in Ko(Var/C). The relation is minimal in the sense that [R;] — [Ry] # 0.

Proof. Recall that ¥, is the normalization of S ; as well as the blowup of R,
at three points. Hence we have

[S.]=[2]-3=[R.]+3L-3.
From the blowup 7; : X — P* we obtain
[X] = (P1-[S.D)+ 7' (Sp)]
(P*] = [S.D) + (S ] = 3P + [Q1] + [Q2] + [Q3])

(P*] = [S.D + (S ] - 3)[P'] + 3[P']?)
= [P1+3[P'I([P']- 1)+ [S I[P']-1)
[P*] + 3[P']L + [S . ]L

= [P*]+3[P'|L + [R.]L + 3LL? - 3L.
By symmetry, we also have
4.3) [X] = [P*] + 3[P']L + [R)JL + 3L? — 3L.
Subtracting (4.3) from (4.2) we get

([R.] — [RuDL = 0.

Next we show that [R;] # [Ry], and it is sufficient to show that [R;] #
[Ry] modulo IL. According to [LLO3], [R.] = [Ry] mod LL if and only
if R; and R, are stably birational. Because a K3 surface is not rationally
connected, this implies that R; and Ry, are birational and thus isomorphic,
contradicting Theorem 3.1. O

4.2)

5. EXCLUSION OF ALTERNATIVE CONSTRUCTIONS

This section shows that there exists just one class of Cremona transfor-
mations of IP* that can be resolved by blowing up an irreducible surface S
with transverse double points, i.e., the class constructed in Section 2. Recall
that [CK89] classified the case where S is smooth.

Theorem 5.1. Let S C P* be an irreducible surface of degree d with § > 0
transverse double points. Assume there exists a Cremona transformation

f:P* -5 P
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resolved by blowing up S. Let n and ¢ denote the degrees of the homoge-
neous forms inducing f and f=! respectively, and m the multiplicity of S in
the base locus. Then we have

n=¢(=4, m=1, 06=3,
and S is obtained by projecting a degree 12 K3 surface from three points.

The remainder of this section is devoted to the proof of Theorem 5.1.

5.1. Extracting Diophantine equations. By Lemmas 1.1 and 1.2, equa-
tion (1.3) can be expressed as

(5.1) E=n=3nmPd + m® (KsC + 5d).

Similarly, equation (1.1) can be expressed as

(5.2) 1 =n*-6n*m*d + 4nm*(KsC + 5d) — m*(15d + 5K5C + c5(X) — 66)
and equivalently as

(5.2)) 1 =n*—6n’m*d+4nm’ (KsC+5d)+m*(d*—25d—10KsC — K5* +46).

The two formulas follow from the two expressions Lemma 1.2 (3) and (3”)
for E*, respectively. The right-hand sides of these equations are arranged
as polynomials in n and m. Note that only the coefficients of m* reflect the
appearance of transverse double points.

5.2. Enumeration of combinatorial cases.

Lemma 5.2. Only the following (n,m, &) can occur.

n m ¢
@3 1 2
|4 1 4
©|7 2 3
@/9 2 9
(e)|43 10 7
(24 5 24
(2) |49 10 49

Proof. In the smooth case, the same list [CK89, Theorem 1.6] is obtained
by using [CK89, Lemma 0.2] and [CK89, Formulae 0.3]. The proof of the
former proceeds unchanged even with the transverse double points. The
latter can be derived from (5.1) and (5.2) and only the terms with power
of m up to two matter, so transverse double points don’t change the result.
Therefore the same elimination process works and we obtain the same list.

a
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5.3. Exclusion of cases. Here we show that only Case (b) can occur.
Lemma 5.3. Cases (c) and (e) do not occur.

Proof. The proof is similar to the smooth case [CK89, Lemma 3.2].
Assume Case (c) holds. Then (5.1) reduces to
2KsC =11d — 85
and (5.2) reduces to
465 = 62d — 2¢,(2) + 126.

This is odd on the left and even on the right, a contradiction.
Assume Case (e) holds. Now (5.1) reduces to

79d =795 + 10K5C,
so d is divisible by 5. On the other hand, (5.2) becomes
—34188 = —11094d + 1720(KsC + 5d) — 100(15d + 5KsC + (X)) — 69).
Note that 5 divides the right but not the left, a contradiction. O

Lemma 5.4. Cases (d), (f) and (g) do not occur.

Proof. Let Ig be the ideal sheaf of S c P*. Generally, the global sections of
I{'(n) and Op/ (M) are bijective canonically. So we have

(5.3) P4, I (n) = K°(P', M) = 5

by equation (1.4).
We prove the lemma case by case. In each case, we prove by contradic-
tion in the following situations

P, I5(4) =0, =1and > 2.

Assume Case (d) holds.
Suppose h°(IP*, I5(4)) = 0. Consider the surjective map

54 P HP Ik ® HOP, L5 (k) » HOP*, ).

k1+ko=9

By hypothesis h°(IP*, Is(k)) = 0 for all kK < 4. Since k; + k, = 9 implies
ki < 4ork, < 4, the left-hand side of (5.4) vanishes. Thus /°(P*, I3(9)) = 0,
contradicting (5.3).

Let Xy, ..., X4 be a basis of degree one forms on P* in what follows.

Suppose h°(IP*, I5(4)) = 1. Let A € H°(IP*, I5(4)) be a generator. This
forces h°(IP*, Is(k)) = O for all k < 3. It follows that H'(P*, I3(8)) is
generated by A%, Then (5.3) indicates that A%X,, ..., A2X, form a basis for
H°(IP*, I£(9)). As aresult, the linear system |7%(9)| defines an automorphism

of P* instead of a Cremona transformation.
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Suppose h°(P*, I5(4)) > 2. Let A,B € H°(IP* I5(4)) be independent.
Then A? and AB are independent in H°(P*, I3(8)). We claim that there exists
an i such that A%X; is not a linear combination of ABX i»J=0,...,4. Suppose
not, i.Le. A’X; = ABL, for some linear form L;, i = 0, ...,4. Then we have
— 0 —

=% = )L(—ll, which implies that Ly = X;)(—fl, so X; divides L. Therefore

= )LT]. is a scalar, thus A and B are dependent, a contradiction. As a result,
there exists an i such that A%2X; and ABX,, ..., ABX, form an independent
subset of H(P*, I3(9)). Thus h°(P*, I3(9)) > 6 > 5, a contradiction.
Assume Case (f) holds.
Suppose h°(IP*, Is(4)) = 0. Then h°(P*, I (k)) = O for all k < 4. Now we
consider the map

SSTISvT [

5.5 B HP.Isk) @ ® H(P', Is(ks)) » HO(P, I3(24)).
ky+-+ks=24

Atleastone k; < 4,i = 1,...,5, if their sum equals 24. Hence the left-hand
side of (5.5) vanishes. Thus h°(IP*, I3(24)) = 0 # 5.

Suppose h°(P*, I5(4)) > 1. Let A € H°(IP*, I5(4)) be a nonzero element.
Then A®> € H(IP*, I3(20)). Multiplication by A° defines an injection

A3 HO(PY,Ops(4)) — HO(P*, 5 (24)).

Thus A°(P*, I3 (24)) > (i) =70 > 5, a contradiction.
The elimination of Case (g) is similar to Case (f). In Case (g), we use the
surjection

HYP*, Is(k1) ® - ® H'(P*, Is (ki) » H'(P*, [°(49))
ky+-+k10=49

to rule out the situation A°(P*, I;(4)) = 0. If H°(IP*, I5(4)) contains A # 0,
then multiplication of A'® with 9-forms produces (143) = 715 independent

elements in H(IP*, 13°(49)), which is not allowed. O

Lemma 5.5. In cases (a) and (b) we have

@ (3,1,2) (b) (4,1,4)
d <38 <15
K:C 4d - 25 7d - 60
K2 |d-11d+456+30 d*+d+45-105
o (2) 19d — 95 + 65 46d — 405 + 66
12¢(Os) | +8d — 65+ 105 d* +47d - 510 + 106
8(C) 42 4d - 29

The invariants d and 6 satisfy (d—5)* = 26 in Case (a) and (d—10)(d—15) =
26 in Case (b) respectively.
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Proof. In order to compute the invariants in the list, we first use (5.1) to
express KsC in d with given n, m and &. Then (5.2) (resp. (5.2)) allows us
to express ¢;(X) (resp. Ké) in d and 6. We compute 12y(Os) and g(C) by
Noether’s formula and the genus formula, respectively. The upper bound
for d comes from the inequality d < (n/m)? which holds generally [CK89,
Formulae 0.3 (v)].

We have h°(P*, Ig(n)) = h°(P’,M) = 5 by (1.4). On the other hand,
h'(IP*, Is(n)) = 0 by [Dol12, Prop. 7.1.4]. Hence

WP, Is(n)) = x(P*, Is (n) = (P, Is:(n))

where the second equality follows from the functoriality of the Euler char-
acteristic. The short exact sequence

0 — Ig.(nL — 2%,E;) — Op(nL — 23,E;) — Os.(nC — 2Z(Q; + Q))) — 0
implies that
X(PIs () = x(P,nL = 2%,E;) = x(S',nC = 22(Q} + 0)).

X(P,nL —2%,;E;) counts the dimension of the space of degree n polynomials
singular along A, so

+4
Y(P.nL - 25.E;) = (” ) ) _ 56,

By the previous computations and the Riemann-Roch formula, we have

1 2
, o L(d? — 10d + 385 — 626) for (a)
—9% (0 Yy — )1
X(§7,nC = 22407 + 07) { 2 (@ = 25d + 930 — 626) for (b)

12
whence
1 2
—=(d*—10d — 35 -26) for (a)
’ = 1
X (P, I:(n)) { _é(d2 —25d +90 - 26) for (b).

Then the two equations are obtained by setting y(P, Is-(n)) = 5. O
Lemma 5.6. Case (a) does not occur.

Proof. Assume (a) is satisfied. Then the same argument as in [CK89, The-
orem 3.3] implies that d = 5. By Lemma 5.5 we have 6 = 0. O

5.4. Geometric analysis of the remaining case. To complete the proof of
Theorem 5.1, it remains to analyze the last possible case.

Lemma 5.7. We have (d,6) = (8,7) or (9, 3). The invariants in these cases
are
(d,6) | KsC K} c(Z) x(Oz) g(C)
®&7nH| -4 -5 5 0 3
9,3 3 -3 27 2 7
24




Proof. By the previous part only Case (b) is allowed.

By Lemma 5.5, we have d < 15 and g(C) = 4d — 29 > 0. Hence
8 < d < 15. Then (d — 10)(d — 15) = 26 and our hypothesis 6 > 0 force
d = 8 or 9, which implies that 6 = 7 or 3, respectively.

The invariants are computed directly by using Lemma 5.5. O

Consider the linear system |Ks + C| for both cases of Lemma 5.7. We
have h!'(Ks + C) = 0 by Kodaira vanishing and h*(Ksz + C) = h°(-C) = 0
by Serre duality.

Lemma 5.8. The case (d, ) = (8,7) is not allowed.

Proof. By the Riemann-Roch formula,
W(Ks+C) = x(Ks+C)

x(Os) + 3(Ks + C)C
= 0+1(-4+8)=2

Because ¢,(X) = 5, X can’t be P?, P! x P! or a minimal ruled surface. It
implies that Os(Ky + C) is generated by global sections [Som81, Prop. 2.2].
Hence the system |Ky + C| defines a morphism

¢:X— P,

the adjunction mapping.
Consider the Stein factorization

¢ P!
Z/

where r is a proper morphism with connected fibers and s is a finite mor-
phism. By [Som81, (2.3)], this leads to two possible situations:

(1) dim¢(X) = 0. Here we have g(C) = 1, a contradiction.
(2) dim@(X) = 1. Then there exists a P'-bundle 7 : R — X’ such that r
factors as

Y

>—°-R

N

Y,
where X is the blowup of R in at most one point of each fiber blown
up, and C meets the generic fiber with degree two. Furthermore, the
map s is an isomorphism except possibly if g(C) = 3 and 20(Z) =

1.
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Let’s analyze Situation (2): The map s can’t be an isomorphism. Other-
wise, R is a Hirzebruch surface and y(Os) = x(Or) = 1, a contradiction.
Hence we obtain

gE) =n""R) =) = 1.
Then y(Os) = 0 and ¢,(X) = 5 implies that £ has Hodge diamond
1

0 7 0.

Since the Néron-Severi group of R has rank two, we conclude that X is the
blowup of R along five points on distinct fibers, and R is ruled over the
elliptic curve X’.

Let & be the class of a section on R and f be the class of a fiber so that

W =m, hf =1, and f> =0

for some integer m. According to the description of (2), the image of C in R
gives a class H = 2h + bf for some integer » and C = €' H — Zle F; where
Fy, ..., Fs are the exceptional curves on X. Note that Ky = €Ky + Zle F;.
Thus we have

8=C>=H>-5 = H*=13
_4:KZC:KRH+5 = KRH:—9

and consequently

X(H) = x(Og)+3H(H - Kg)
= 0+1(13+9) =1L

On the other hand, one can use the exact sequence
0 — Ogr — Or(h) = On(m) — 0
to get y(h) = m, and then use
0 — Or(h) — Or(2h) — Oy(2m) — 0
to obtain y(2h) = 3m. Then an induction on n with the sequence
0= Or(Rh+(n—1)f) = Or(Rh+nf) = O4(2) = 0

implies that y(H) = y(2h + bf) = 3m + 3b. But this implies 11 = y(H) is
divisible by 3, a contradiction. O

Proposition 5.9. If' S has a transverse double point, then it can only be the
image of a K3 surface R C P of degree 12 projected from three points on

R, and the number of transverse double points must be 6 = 3.
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Proof. By the Riemann-Roch formula,

R (Ks+C) = x(Ks+C)
= x(O:s) +1(Kz +C)C
2+1(3+9)=8.
Because ¢;(X) = 27, T can’t be P2, P' x P! or a minimal ruled surface. It

follows that Oz (K5 + C) is generated by global sections [Som81, Prop. 2.2].
Hence |Ks + C| defines an adjunction morphism with Stein factorization

¢

N

There are three possible situations [Som81, (2.3)]:

(1) dim¢(X) = 0. We have g(C) = 1, a contradiction.

(2) dim¢(X) = 1. Then r : ¥ — X' is again obtained by blowing up
a P'-bundle, with no more than one point in a fiber blown up. In
particular, 1 > y(Os) = 2, a contradiction.

(3) dim¢(X) = 2. Then r : £ — X’ expresses X as the blowup of a
smooth surface ¥’ along a finite set with F - C = 1 for any positive
dimensional fiber F of . Moreover, s : ¥’ — P’ is an embedding.

pX P’

Now we are in Situation (3). Let F, ..., F be the exceptional curves on
Y relative to r and let H be the very ample divisor on £ which defines s.
Then

k k
C= r*H—ZF,- and Ks = r'Ky +ZF,~

i=1 i=1

and it follows that
9=C*>’=H*-k
3=KsC=KsH+k
3=K2 =K -k

By the Riemann-Roch formula,

8 =x(H) = x(Og)+3;H(H~Ky)
2+%((9+k)—(3—k))
5+k,
which implies that k£ = 3. Hence X is obtained by blowing up X’ along three
distinct points, and £’ C P7 has
deg(X)=H*=12, KyH=K; =0, E)=24, x(Os)=2.

We claim that ¥’ is a K3 surface. Indeed, its Kodaira dimension k # 2
since KsyH = 0. If k = 1, then ¥’ has minimal model R an elliptic surface,

such that nKy is numerically equivalent to a positive linear combination of
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some fiber classes if n is large enough [Bea96, Prop. IX.3]. This implies
that K is numerically effective which contradicts to the fact that Ky, H = 0.
If k = —oo, then A'°(X’) = 0 and thus 1 > y(Os/) = 2, a contradiction. As a
result, >’ has « = 0 and thus is a K3 surface.

Besides, the birational map R --» ¥ — § can be realized as the projection
from three points on R. Furthermore, the fact that 6 = 3 can also be verified

directly by the double-point formula as in Section 2.3. O
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