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1. INTRODUCTION

High-level languages are useful in formulating specifi-
cations for dynamical systems that go beyond -classi-
cal asymptotic stability, where convergence to the de-
sired point or set is typically certified to occur in the
limit, that is, over an infinitely long time horizon; see,
e.g., [Kloetzer and Belta, 2008, Kwon and Agha, 2008,
Tabuada and Pappas, 2006]. Temporal logic employs op-
erators and logic to define formulas that the solutions (or
executions) to the systems should satisfy after some finite
time, or during a particular amount of bounded time.

Linear temporal logic (LTL), as introduced in [Pnueli,
1977], permits to formulate specifications that involve
temporal properties of computer programs; see also
[Pnueli and Manna, 1992]. Numerous contributions per-
taining to modeling, analysis, design, and verification of
LTL specifications for dynamical systems have appeared
in the literature in recent years. Without attempting to
present a thorough review of the very many articles in such
topic, it should be noted that in [Fainekos et al., 2009], the
authors employ temporal logic to solve a problem involv-
ing multiple mobile robots. In [Dimitrova and Majumdar,
2014], the design of controllers to satisfy alternating-time
temporal logic (ATL*), which is an expressive branching-
time logic that allows for quantification over control strate-
gies, is pursued using barrier and Lyapunov functions for a
class of continuous-time systems. More recently, using sim-
ilar programming tools, in [Saha and Julius, 2016], tools
to design reactive controllers for mixed logical dynamical
systems so as to satisfy high-level specifications given
in the language of metric temporal logic are proposed.
Promising extensions of these techniques to the case of
specifications that need to hold over pre-specified bounded
horizons, called signal temporal logic, have been recently
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pursued in several articles; see, e.g., [Raman et al., 2015],
to just list a few.

Tools for the systematic study of temporal logic prop-
erties in dynamical systems that have solutions (or ex-
ecutions) changing continuously over intervals of ordi-
nary continuous time and, at certain time instances, hav-
ing jumps in their continuous-value and discrete-valued
states, such as the frameworks proposed in [Collins, 2004,
Goebel et al., 2012, Haddad et al., 2006, Lygeros et al.,
2003, van der Schaft and Schumacher, 2000], are much
less developed. In such hybrid dynamical systems, the
study of temporal logic using discretization-based ap-
proaches may not be fitting as, in principle, the time at
which a jump occurs is not known a priori and are likely
to occur aperiodically.

In this paper, we present tools that permit guaranteeing
high-level specifications for solutions to hybrid dynamical
systems that neither require discretization of the dynamics
or of the state space, nor the computation of the solu-
tions themselves. Our approach consists of imposing mild
properties on the data defining the system and requir-
ing existence of solution-independent certificates, such as
Lyapunov-like functions for the satisfaction of the given
formula. For a broad class of hybrid dynamical systems,
sufficient conditions for the satisfaction of temporal logic
formulas using one temporal operator are first presented
using forward (pre-)invariance and finite time attractivity
tools in [Chai and Sanfelice, 2015, Li and Sanfelice, 2016].
Our approach allows us to provide an estimate of the
(hybrid) time it takes for a temporal specification to be
satisfied, with the estimate only depending on a Lyapunov
function and the initial condition of the solution being
considered, but not involving the solution itself.

While our most of results do not require computing solu-
tions to the hybrid dynamical system, which is a key ad-
vantage when compared to methods for continuous-time,
discrete-time, and mixed logic dynamical systems cited
above and the method for hybrid traces in [Cimatti et al.,
2015], the price to pay when using the results in this
paper is finding a certificate for finite time attractivity,



which is in terms of a Lyapunov-like function. It should be
noted that though our conditions are weaker than those
in [Dimitrova and Majumdar, 2014] finding such functions
might be challenging at times. However, the same com-
plexity is present in Lyapunov methods for certifying
asymptotic stability of a point (or a set) in [Khalil, 2002]
or for employing continuously differentiable barrier cer-
tificates and Lyapunov functions to certify temporal logic
constraints for continuous-time systems.

The remainder of this paper is organized as follows. Basic
notions are summarized in Section 2. Section 3 introduces
LTL for hybrid systems. The sufficient conditions to guar-
antee the satisfaction of LTL formulas are presented in
Section 4. Due to space constraints, some details and
proofs are omitted and will be published elsewhere.

2. PRELIMINARIES

A hybrid system H = (C,F,D,G) can be described as
follows [Goebel et al., 2012]:

& € F(x zel
H {x+€ G(xg r €D (1)

where z € X is the state and X is the state space, F': X =
X is a set-valued map and denotes the flow map capturing
the continuous dynamics on the flowset C, and G: & = X
is a set-valued map and defines the jump map capturing
the discrete dynamics on the jump set D. A solution ¢
to H has initial condition ¢(0,0) € X N (C'UD) and is
parametrized by (¢,7) € R>¢ x N, where ¢ is the ordinary
time variable, j is the discrete jump variable, R>g :=
[0,00), and N:={0,1,2,...}. The domain dom ¢ C R>¢ X
N is a hybrid time domain if for every (7),J) € dom ¢,
the set dom ¢ N ([0 T) x {0,1,...,J}) can be written as
the union of sets U oIj X{j}) where I; := [t;,t;41] for
a time sequence 0 = tg <t; <ty < --- <ty41. The ;s
with j > 0 define the time instants when the state of the
hybrid system jumps and j counts the number of jumps.
A solution is given by (¢,j) — ¢ (t,j) and for each j,
t— ¢ (t,7) is absolutely continuous. A function ¢ : E — R”
is a hybrid arc if E is a hybrid time domain and if for
each j € N, the function ¢ — ¢(¢,5) is locally absolutely
continuous on the interval I; = {¢ : (¢,j) € E}. A hybrid
arc ¢ is a solution to H=(C, F, D, G) if ¢(0,0) € CUD; for
all j € N such that I; has nonempty interior, ¢(t,j) € C
for all t € intI; and ¢(t,j) € F(¢(t,j)) for almost all
t € I;; for all (¢,j) € dom ¢ such that (¢,j + 1) € dom ¢,
o(t,7) €D and ¢(t,j + 1) € G(é(t, j)). A solution to H is
called maximal if it cannot be further extended.

For convenience, we define the range of a solution ¢ to
a hybrid system H as rged = {¢(t,7) : (t,j) € dom ¢}.
We also define the set of maximal solutions to H from
the set K as Sy (K) := {¢ : ¢ is maximal solution to H
with ¢(0,0) € K'}. See [Goebel et al., 2012] for more details
about hybrid dynamical systems.

Given z € R™ and a closed set K CR", ||k = infyex |z —
y|. A function o : R>¢—R>q is a class-K function, denoted
by a € I, if it is zero at zero, continuous, and strictly
increasing; « is a class-Ko, function, denoted by a € K,
if « € K and is unbounded. For any x € R, ceil(z) denotes
the next larger integer of x.

3. LINEAR TEMPORAL LOGIC FOR HYBRID
DYNAMICAL SYSTEMS

Linear Temporal Logic (LTL) provides a framework to
specify desired properties such as safety, i.e., “something
bad never happens,” and liveness, i.e., “something good
eventually happens.” In this section, for a given hybrid
system H, we define operators and specify properties of
‘H with LTL formulas [Sanfelice, 2015]. We first introduce

atomic propositions.

Definition 3.1. (Atomic Proposition) An atomic proposi-
tion p is a statement on the system state x that, for each
x, p is either True (1 or T) or False (0 or L).

A proposition p will be treated as a single-valued function
of x, that is, it will be a function x — p(z). The set of all
possible atomic propositions will be denoted by P.

Logical and temporal operators are defined as follows:
Definition 3.2. (Logic Operators)

e — is the negation operator

e V is the disjuction operator

e A is the conjunction operator
e = is the implication operator
e & is the equivalence operator

Definition 3.3. (Temporal Operators)

e O is the next operator

<& is the eventually operator
O is the always operator

U is the until operator

Given a hybrid system H, the semantics of LTL are defined
as follows. For simplicity, we consider the case of no
inputs and state-dependent atomic propositions. When a
proposition p is True at (¢,7j) € dom ¢, i.e., p(¢(t, 7)) =1,
it is denoted by

o(t,5) I p, (2)
whereas if p is False at (¢, ) € dom ¢, it is written as
o(t,4) ¥ p. (3)

An LTL formula is a sentence that consists of atomic
propositions and operators of LTL. An LTL formula f
being satisfied by a solution (¢,7) — ¢ (t,7) at some time

(t,7) is given by

(¢, (t,49)) F [, (4)
while f not satisfied by a solution (t,j) — ¢(t,j) at some
time (t, 5) is denoted by !

(¢, (t,4)) # f. (5)

Let p,g € P be atomic propositions. The semantics of
LTL are defined as follows: given a solution ¢ to H and
(t,j)€dom ¢

(&,(t, 7)) Fp & ot j)IFp (6a)
(¢, (t,5)) F—p & (&, (t,4)) ¥ (6b)
(0,(t, ) EpVaq & (&, (1)) '=p or (</>,(t7j)) Fq (6c)
b, (t,4)) FOp & (¢, (t,5+ 1)) F (6d)

)

(
(¢, (t.5)) FpUq < 3(t', ') € dom ¢, (Ge
Ui zt+j st (o,(t, ) Fa,
and V (t,5") € dom ¢ s.t.

t+j<t"+j"<t'+5, (6, (t", 7)) Ep

1 Note that to be compatible with the literature, instead of IF, we
use F for a formula.




(¢, (t,4) FpAg < (&, (t7))Fp and (¢, (t,7))Fq (6f)

(o, (t,4)FOp < (o,(t',5))EDp (6g)
Vi'+5 ' >t+j, (t',5) € dom ¢
(0, (t,5)) EOp < 3(t',5') € dom ¢, (6h)

t'+j >t+7 st (o,(t',5)) Fp.

The same semantics of LTL are used for formulas. For
example, a formula f = Op implies that f will be True
at the next hybrid time so that ¢(t,j + 1) IF p for all
(t,j) € dom ¢ and (t,j + 1) € dom ¢. With the above
semantics, we propose sufficient conditions that, when
possible are solution independent, to check whether a given
solution satisfies a formula at hybrid time (0, 0) or at each
hybrid time (t,j) € dom ¢.

4. SUFFICIENT CONDITIONS FOR LTL FORMULAS
WITH ONE TEMPORAL OPERATOR

In this section, we present sufficient conditions to guaran-
tee atomic propositions involving the temporal operators
always(O), eventually (<), and until(U). Due to space con-
straints, conditions satisfying the nezrt operator are omit-
ted. We first build a set K on which the atomic proposition
is satisfied. Then, the satisfaction of the formula is assured
by guaranteeing particular properties of the solutions to
the hybrid system relative to the set K.

4.1 Conditions to guarantee O

According to the definition of the O operator, given an
atomic proposition p, a solution (¢, j) — ¢(t,7) to a hybrid
system H = (C, F, D, G) satisfies the formula

f=0op (7)
at (t,7) €dom ¢ when we have that ¢(t', ;') satisfies p for
all  + j° > t 4 j such that (¢',5’) € dom ¢. The set of
points in X satisfying an atomic proposition p is given by

K:={zxeX:plx)=1}. (8)
To guarantee that every solution ¢ to H satisfies f in (7) at
each (t, j) €dom ¢, each solution needs to start and stay in
the set K. For this purpose, we recall the definition of for-
ward pre-invariance and then present sufficient conditions
guaranteeing f in (7). Our result relies on an extension of

a result on forward pre-invariance in [Chai and Sanfelice,
2015].

Definition 4.1. (Forward pre-Invariance) Consider a hy-
brid system H on X. A set K C X is said to be forward
pre-invariant for H if for every x € K there exists at
least one solution, and every solution ¢ € Sy (K) satisfies
rge¢ C K.

The conditions given below provide sufficient conditions
to verify that H is such that every solution ¢ to H
with ¢(0,0) IF p satisfies f = Op. Sufficient conditions in
terms of Lyapunov-like functions as in [Chai and Sanfelice,
2015] and barrier functions in [Maghenem and Sanfelice,
2018] can also be formulated. Below, Tknco(x) denotes the
tangent cone of {z € C : p(z) =1} at a point x € X; see
[Goebel et al., 2012, Definition 5.12].

Assumption 4.2. Suppose C is closed in X, C' C dom F,
and D Cdom G, and

e The state space X and the atomic proposition p are
such that K in (8) is closed; and
e For every x € X such that p(x)=1, € C U D; and

e The map F': X = X is outer semicontinuous, locally
bounded relative to {z € C' : p(z) =1}, and F(z) is
convex nonempty for every x € {z € C : p(x) =1}.
Additionally, the map F' is locally Lipschitz on C.

Theorem 4.3. Consider a hybrid system H = (C, F, D,G)
on X satisfying Assumption 4.2. Then, the formula f=0p
is satisfied for all solutions ¢ to H (and for all (¢,j) €
dom ¢) if ¢(0,0)IFp and the following properties hold:

1) for each x € X such that p(z) =1 and x € D, every
¢ € G(x) satisfies p(§) = 1; and

2) for each z € X such that p(z) = 1, z € C, and
x ¢ L, F() C Tkno(z), where L={x€C : F(z) N

Remark 4.4. Note that Op is satisfied for all solutions ¢
to H if ¢(0,0) IF p and ¢(¢,j) IF p for all future hybrid
time (¢, j) € dom ¢. Under the conditions in Theorem 4.3,
solutions with ¢(0,0) ¥ p may satisfy p after some time
if ¢ reaches the set {z € X : p(x) = 1} in finite time.
Convergence to such set in finite hybrid time is presented
in the next section.

Ezample 4.5. Consider a hybrid system H = (C,F,D,G)
with the state r = (71, 12) € R? given by

Fley= |:_$$121'2:| VreCi={zeR? : [z]<1,2,>0},

G(z) = [_Ogﬁxl

Define an atomic proposition p as follows: for every x €
X :=R? p(z) =1 when |z| <1 and x5 > 0; p(z) =0
otherwise. Let K ={x € X : p(x)=1}. It is clear that for
each x € DNK, every £ € G(x) satisty p(§) =1. For every
z€int C, Tknc(z) = RxR; for every x in the boundary
of KNC, Tknc(x) is the set of tangent vectors to the unit
circle or Txne(z) includes all vectors that point inward;
for every x € K such that x5 =0, F(x) =0. That is, for each
x € X such that v € (CNK)\L, F(x) C Tknc(x). Therefore,
via Theorem 4.3, the formula f = 0Op is satisfied for each
solution ¢ to H from K and at each (¢, ;) €dom ¢. A

] VeeD:={zcR?:z;>—1,2,=0}.

4.2 Conditions to guarantee <

A solution (t,j) — ¢(t, ) to a hybrid system H satisfies
the formula
f=2<p (9)

at (t,7) € dom ¢ when there exists (¢,7') € dom ¢ such
that ¢ + j' > t+ j, and ¢(t', j') satisfies p. The same set
K introduced in (8) is used in this section.

To guarantee that every solution ¢ to H satisfies f in
(9) at each (t,j) € dom ¢, the distance of each solution
to K should become zero at some finite (t,j) € dom ¢.
For this purpose, we recall the definition of finite time
attractivity (FTA) for hybrid systems. After that, we will
present sufficient conditions guaranteeing the formula f in
(9). Our result relies on an extension of a result on FTA
in [Li and Sanfelice, 2016].

We consider a hybrid system H on X, a closed set K C X,
and an open neighborhood? N of K. The amount of
time required to converge to the set K is captured by the
settling-time function 7.

Definition 4.6. (Finite Time Attractivity) A closed set K
is said to be finite time attractive (FTA) for H if there

2 The set A can be chosen as N D X for the global version of FTA.




exists an open neighborhood U of K such that every
solution ¢ € S3(U), sup(; jyedom ¢t +3 = T(¢(0,0)) and
6(t,4)|x = 0. (10)

lim
(t,j)€dom ¢ : t+35 T (¢(0,0))

As stated above, the satisfaction of the formula f = Op
is assured at the hybrid time (0,0) by conditions that
guarantee that the set K in (8) is FTA for H.

In the following, we propose sufficient conditions to satisfy
the formula f = <p. Using Clarke generalized derivative,
we define the functions uc and up as follows: uc(x) :=

max max (C,v) for each z € C, and —oco otherwise;
vEF(x) (€OV (x)

up(x) = Crencz}();)V(C) — V(z) for each z € D, and —o0

otherwise, where 0V is the generalized gradient of V in
the sense of Clarke; see, e.g. [Sanfelice et al., 2007].

Theorem 4.7. Consider a hybrid system H = (C, F, D, G)
on X. Suppose the state space X' and the atomic propo-
sition p are such that K in (8) is closed. Suppose there

exists an open set N that defines an open neighborhood
of K such that G(N)CN CX. Then, if either
1) there exists a continuous function V : N' — R,
locally Lipschitz on an open neighborhood of C NN,
and ¢; > 0,¢z € [0,1) such that
1.1) for every x € N N (C U D) such that p(z) = 0,
each ¢ € Sy (z) satisfies

vi-ea(g)
61(1 C2) S

sup t;
(t,j)€dom ¢
1.2) for all x € (C U D UG(D)) NN, there exist

functions aq, as € Ko such that
ar(lz]x) <V (2) <as(|z]x), (12)
1.2a) for each z € X such that z € C NN and
p(z) =0, uc(z) + 1 Ve (x) <0;
1.2b) for each z € X such that z € D NN and
p(z) =0, up(z) <0.

(11)

or

2) there exists a continuous function V : N — Rx,
locally Lipschitz on an open neighborhood of C NN,
and ¢ > 0 such that o

2.1) for every x € N N (C U D) such that p(z) = 0,
each ¢ € Sy (x) satisfies

ceil (@) < sup J;
(t,j)edom ¢
2.2) for all z € (CUDUG(D)) NN, there exist
functions aq, as € Ko satisfying (12) and
2.2a) for each € X such that x € C NN and
p(z) =0, uc(z) < 0;

2.2b) for each z € X such that x € D NN and

p(z) =0, up(r) < —min{c, V(z)}.
hold, then, the formula f = Cp is satisfied for every solution
¢ to H from Ly (r) N (C U D) at (t,5) = (0,0) where
Ly(r)y={zeX : V(z)<r},re [O,oo], is a sublevel set
of V contained in A/. Moreover, for each ¢ € Sy (Ly (r) N

(13)

(CUD)), defining £ =¢(0,0), the first time (¢, j') €dom ¢
such that ¢(t', j')E Op satisfies
45 =T, (14)

and an upper bound on that hybrid time is given as follows:

a) if 1) holds, then 7(£) is upper bounded by T*(§)+

J*(€), where T*(§) = ‘c/ll(zizc(f)) and J*(&) is such that

(T(£), T*(£)) € dom ¢.

b) if 2) holds, then 7(£) is upper bounded by T*(§)+
T*(€), where J*(€) = ceil (&) and 7*(¢) is such

that (77(£), 7*(£)) €dom ¢ and (T*(§), T*(§)—1)€
dom ¢. |

Remark 4.8. Under condition 1.2) or 2.2) in Theorem 4.7,
given a solution ¢ to H, there exists some time (¢/,j') €
dom ¢ such that ¢ satisfies p. Furthermore, we have this
satisfaction in finite time (¢, j'), obtained by the settling-
time function 7, for which an upper bound depends on
the Lyapunov function and the initial condition only.
Note that a settling-time function 7 does not need to
be computed. However, we provide an estimate of when
convergence happens using an upper bound that depends
on V and the constants involved in items 1) and 2) only.

Remark 4.9. Note that conditions (11) and (13) hold for
free for complete solutions unbounded in ¢ or/and j in their
domain. Moreover, maximal solutions are complete when
the conditions in [Goebel et al., 2012, Proposition 2.10 and
Proposition 6.10] hold.

Ezample 4.10. Inspired from [Li and Sanfelice, 2016, Ex-
ample 3.3], consider the hybrid system H = (C,F, D, G)
with state z = (z,7) € R x [0, 1] given by?

Fz) = [W'afgn(‘z)] Ve e C =R x[0,1],

- 5]

where a€ (0,1) and k> 0. Consider the function V' : R x
[0,1] = Rx given by V (z)= 122 for each z € C. Moreover,
each z € Rx[0, 1] satisfies p only when z € {0} [0, 1]. Then,
the set K is given by {x € C : p(z) =1}. We have that

1ta lta
(VV(x),F(x)) = —k|z|*T* = =272 kV(z) 2 for each
x€C\ K. Furthermore, for all € D\ K, V(G(z))—V (z) =
0. Therefore, condition 1.2) in Theorem 4.7 is satisfied with

1+«

N=RxR, g =22 k>0 and ¢ = 142 € (0,1). By
applying [Goebel et al., 2012, Proposition 6.10], item 1.1)
in Theorem 4.7 holds since every maximal solution to H is
complete with its domain of definition unbounded in the
t direction. Thus, the formula f = Op is satisfied for all
solutions ¢ to H at (t,5)=(0,0). A
Next, the bouncing ball example in [Goebel et al., 2012,
Example 1.1] illustrates Lyapunov conditions for verifying
that Op is satisfied for all solutions to H at (¢, ) = (0,0).
Ezample 4.11. Consider a hybrid system H = (C, F, D, G)
modeling a ball bouncing vertically on the ground, with
the state x = (11, 72) € X := R? given by

Vz e D:=Rx {1},

F(z) = [fﬂ Ve e C:={zeX x>0},

G(zx) := [—/(\)362} VeeD :={xeX :x; =0,z2 <0},

where z1 denotes the height above the surface and s is
the vertical velocity. The parameter v > 0 is the gravity
coefficient and A€ (0, 1) is the restitution coefficient. Every
maximal solution to this system is Zeno. Define an atomic
proposition p as follows: for each = € X, p(z) =1 when
zo < 0, and p(z) = 0 otherwise. With K in (8) and
N =X, let V(z) = |xa| for all € X. This function is
continuously differentiable on the open set X'\ (Rx{0}) and

3 The function sgn : R — {—1,1} is defined as sgn(z) = 1 if z > 0,
and sgn(z) = —1 otherwise.



it is Lipschitz on X. It follows that (VV (z), F((x)) = —vy
for each z € (C NN)\ K, and uc(z) + 1V (z) < 0
holds with ¢; = v and ¢ = 0. Therefore, condition 1.2)
in Theorem 4.7 is satisfied since (DNAN)\ K = . Note
that by applying [Goebel et al., 2012, Proposition 6.10],
every maximal solution is complete and condition 1.1)
in Theorem 4.7 holds with the chosen constants ¢; and
co due to the properties of the hybrid time domain of
each maximal solution. Therefore, the formula f = <p
is satisfied for all maximal solutions to H at (¢, ) = (0, 0).
Since every solution from K, after some time, jumps from
K and then converges to K again in finite time, we have
that f = Op holds for every (¢, ) in the domain of each
solution. A

Note that Theorem 4.7 guarantees that Op is satisfied for
all solutions ¢ to H at (t,j)=(0,0). These conditions can
be extended to guarantee that Op is satisfied for all (¢, j)
in the domain of any solution if the set K is forward pre-
invariant or when only jumps are allowed from points in
K and the jump map maps points in K into N.

Theorem 4.12. Consider a hybrid system H = (C, F, D, G)
on X. Suppose the state space X and the atomic propo-
sition p are such that K in (8) is closed and that there
exists an open set N that defines an open neighborhood
of K such that G(N) C N C X. Then, if there exists a
continuous function V : N' — Rxq, locally Lipschitz on
an open neighborhood of C NN, and ¢,¢1 >0, ¢z €[0,1)
such that each ¢ € Sy (Ly (r)N(CUD)) is complete, G(D N
K)CLy(r)n(CUD), and at least one among items 1.2)
and 2.2) in Theorem 4.7 holds, then, the formula f=<p
is satisfied for every solution ¢ to H from Ly (r)N(CUD)
and for all (¢,7) in the domain of each solution, where
Ly(r)y={zeX : V(x)<r}, r€[0,00] is a sublevel set of V'
contained in N. [ |
Ezample 4.13. Consider the hybrid system H=(C, F, D, G)
modeling two impulsive oscillators capturing the dynamics
of two fireflies. This system has the state z = (z1,z2) €R?
and the data given by

F(x):zm vzeC:=0,1]x[0,1],

v

9((1 +&)z2)

where >0 and the parameter £ >0 denotes the effect on
the timer of a firefly when the timer of the other firefly
expires, and the set-valued map ¢ is given by g(z) = 2
when z < 1; g(z) = 0 when z > 1; g(z) = {0,1} when
z=1. Define p as follows: for each z € R?, p(z) =1 when
z € C and x1 = x9, and p(x) = 0 otherwise. Then, the
set K is {z € C : p(x) = 1}. Let k = 5= and note that

. o+
;ig = # Define V(x):=min {|z1 —x2|, 1+k—|x1 — 2|}

forallze X :={zeR?: V(z) < ZEE}={2eR?: |2, -
x| #2EE}. This function is continuously differentiable on
the open set X\ K and it is Lipschitz on X. Let m*= %
and m € (0, m*). Consider C,, =CNM and D,, =DNM,
where M :={z€C UD : V(z)<m}. By the definition of
V, it follows that (VV(z), F(z)) =0 for each z € C,,, \ K.
Since V is symmetric, without loss of generality, consider
&= (1,22) € Dy, \ K where 5 € [0,1]\ {53z}." Then, we
obtain V(z)=min{l—xo,k+x2}. When g((14&)x2)=0,
it follows that V(G(z))=0; when g((1+ &)xs)=(1+ &)xa,

(1) e{zex Ve =1EE ]

G(z):= [9((1 + é)m)} VeeD:={zxeC : max{z1,22} =1},

it can be shown that V(z) > V(G(z)). Thus, V(G(z))—
V(z) <0 for all 2 € D,,\ K. By applying [Goebel et al.,
2009, Proposition 6.10], every maximal solution to a hybrid
system H,, =(Cp, F, Dy, G) is complete. Moreover, given

€>0, for e= 77 and m such that (K +eB)NC CCy,, we

have that for all z € D,,N(K + ¢B), G(z) =0€ K. By
applying Theorem 4.7, K is FTA for H,, with N':={z €
CUD :V(x)<m}. Thus, the formula f=<p is satisfied
for all solutions to H,,, or equivalently, for each solution
¢ to H from N; f is satisfied all (¢, ) €dom ¢. A

4.8 Conditions to guarantee U

According to the definition of the U operator, a solution
(t,7) — o¢(t,7) to a hybrid system H = (C,F,D,G)
satisfies the formula

f=pUq (15)

when there exists (¢',j') € dom ¢ and t'+j > t+j such
that ¢(t, ') satisfies ¢ and for all (¢’,j”) € dom ¢ such
that t+7 <t"+j5" <t/'+7 and ¢(t", ;") satisfies p. The
set of points in X satisfying the atomic proposition p and
the set of points satisfying the atomic proposition ¢ are,
respectively, given by

K={xeX :p(x)=1} and M={zeX :q(x)=1}. (16)
To guarantee that a solution ¢ to H satisfies f in (15)
at (t,7)=(0,0), if ¢ is ever satisfied, the solution needs to
start and stay in the set K at least until convergence to the
set M happens; or the solution needs to start from the set
M. Below, we present sufficient conditions guaranteeing f
in (15) by applying the results in Sections 4.1 and 4.2.

The following result is immediate.

Theorem 4.14. Consider a hybrid system H = (C, F, D, G)
on X. Suppose every x € X satisfies either p(z) =1 or
q(xz) =1, and that every solution ¢ € S (X) is complete.
Then, the formula f=plUq is satisfied for every solution ¢
at every (t,j) €dom ¢ to H. [ |

Furthermore, if the conditions for FTA in Theorem 4.7
with p therein replaced by ¢ hold and there exists an
open set N defining an open neighborhood of M in (16)
such that G(N) CN C X, then, under the assumptions in
Theorem 4.7, solutions to H from Ly (r) are guaranteed to
satisfy ¢ in finite time where Ly (r)={x e X : V(z) <r},
r€[0,00] is a sublevel set of V contained in N.

The following result relaxes the covering of X in Theorem
4.14 by requiring that K contains a subset of the basin for
finite-time attractivity of M. It provides conditions for the
formula f = plq to be satisfied for all solutions ¢ to H,
both at (¢,7)=(0,0) and any (¢, j) €dom ¢.

Theorem 4.15. Consider a hybrid system H = (C, F, D, G)
on X, C Cdom F, and D C dom G. Suppose the state
space X and the atomic propositions p and ¢ are such
that K and M in (16). Suppose there exists an open
set N defining an open neighborhood of M such that
G(N) C N C X. Then, the formula f = plq is satisfied
for every solution ¢ to H at (t,5) = (0,0) if

1) M is closed;

2) at least one among condition 1) and 2) in Theorem
4.7 with p therein replaced by ¢ is satisfied with some
function V' as required therein;

3) ¢(0,0)€ (K N Ly(r)) U M;

4) (Ly(r)n(CUD))\ M C K,



where Ly (r) is a sublevel set of V contained in N.
Moreover, the upper bound of the settling-time function
T(¢(0,0)) is given in item a) or b) in Theorem 4.7,
respectively. Furthermore, if the following holds:

5) For each z € M N D, G(x) C Ly(r) N (C U D) where
Ly (r) as above,

then the formula f=plq is satisfied for every solution ¢
to H at every (t,7) €dom ¢. [ |

Though at times might be more restrictive, condition 4)
in Theorem 4.15 can be replaced by forward invariance of
K when C and F' satisfy condition 2) in Theorem 4.3.

The bouncing ball example in Example 4.11 is used to
illustrate Theorem 4.15.

Ezample 4.16. Consider H=(C, F, D,G) in Example 4.11.
Define p as 1 when z2 > 0, and 0 otherwise. Define ¢ as 1
when x5 < 0, and 0 otherwise. With the sets K and M in
(16), as shown in Example 4.11, item 2) in Theorem 4.15
is satisfied with A = R2. Thus, every solution from M,
after some time, jumps from M to K and then converges
to M again in finite time. Moreover, from the definition
of M and K in (16), if a solution does not belong to M,
then it belongs to K. Furthermore, K satisfies item 4) in
Theorem 4.15 since (CUD)\ M C K. Thus, every solution
that has not converged to M remains in K at least until
it converges to M, which is guaranteed to occur in finite
hybrid time. A

5. FINAL REMARKS

Section 4 provides sufficient conditions for formulas that
involve a single temporal operator. Table 1 summarizes
the conditions for each temporal operator. As indicated
therein, all that is needed is either a certificate for finite-
time convergence in terms of a Lyapunov-like function, or
the data of the hybrid system and the set of points where
the proposition is true to satisfy conditions for invariance.
The latter can be actually certified using Lyapunov-like
functions or barrier functions as in [Chai and Sanfelice,
2015], which for space reasons is not pursued here.

Moreover, the case of logic operators can be treated
similarly by using intersections, unions, and complements
of the sets where the propositions hold. For instance,
sufficient conditions for O(p A ¢) can immediately be
derived from the sufficient conditions already given in
Section 4.1 with {ze X :p(x)=1}N{ze X :q(z)=1} in
place of {x € X : p(z) = 1}. Thus, the conditions in Table
1 can be combined to certify more involved formulas. A
systematic methodology to satisfy general formulas within
the considered language is part of current research.

Sufficient Conditions

a) G(x)C{reX :p(x)=1} Vze D,p(x)

b) F(x) CT{mEC:p(z):l} ({,E) Vo € C,p(CU)
P F(z) N Te(x)#0
or Lyapunov-like/Barrier functions

Op Lyapunov function for FTA

c)
pUq | d) Combination of a), b), and c)
Op | e)GID)CDN{zeX :p(x)=1}

Table 1. Sufficient conditions for O, &, U, O.
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