STABLE RATIONALITY OF QUADRIC SURFACE
BUNDLES OVER SURFACES
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ABSTRACT. We study rationality properties of quadric surface bun-
dles over the projective plane. We exhibit families of smooth pro-
jective complex fourfolds of this type over connected bases, con-
taining both rational and non-rational fibers.

1. INTRODUCTION

Is a deformation of a smooth rational (or irrational) projective vari-
ety still rational (or irrational)? The main goal of this paper is to show
that rationality is not deformation invariant for families of smooth com-
plex projective varieties of dimension four. Examples along these lines
are known when singular fibers are allowed, e.g., smooth cubic three-
folds (which are irrational) may specialize to cubic threefolds with or-
dinary double points (which are rational), while smooth cubic surfaces
(which are rational) may specialize to cones over elliptic curves. Totaro
shows that specializations of rational varieties need not be rational in
higher dimensions if mild singularities are allowed [Tot16b]. However,
de Fernex and Fusi [dFF13] show that the locus of rational fibers in a
smooth family of projective complex threefolds is a countable union of
closed subsets on the base.

Let S be a smooth projective rational surface over the complex num-
bers with function field K = C(S). A quadric surface bundle consists
of a fourfold X and a flat projective morphism 7 : X — S such that
the generic fiber Q/K of 7 is a smooth quadric surface. We assume
that m factors through the projectivization of a rank four vector bundle
on S such that the fibers are (possibly singular) quadric surfaces; see
Section 3 for relevant background.

Theorem 1. There exist smooth families of complex projective four-
folds ¢ : X — B over connected varieties B, such that for every b € B
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the fiber X, = ¢~ 1(b) is a quadric surface bundle over P2, and satisfy-
mg:

(1) for very general b € B the fiber X, is not stably rational;
(2) the set of points b € B such that X, is rational is dense in B
for the FEuclidean topology.

Concretely, we consider smooth hypersurfaces
XCcPxP?

of bidegree (2,2); projection onto the first factor gives the quadric
surface bundle.

Our approach has two key elements. First, we apply the technique of
the decomposition of the diagonal [Voilsb, CTP16b, CTP16a, Tot16a]
to show that very general X C P2 xP? of bidegree (2, 2) fail to be stably
rational. The point is to identify a degenerate quadric surface fibration,
with non-trivial second unramified cohomology and mild singularities.
The analogous degenerate conic bundles over P? are the Artin-Mumford
examples; deforming these allows one to show that very general conic
bundles over P? with large degeneracy divisor fail to be stably ratio-
nal [HKT15]. Second, quadric surface bundles are rational over the
base whenever they admit a section, indeed, whenever they admit a
multisection of odd degree. If the base is rational then the total space
is rational as well; this can be achieved over a dense set of the mod-
uli space [Has99, Voilba]. This technique also yields rationality for a
dense family of cubic fourfolds containing a plane; no cubic fourfolds
have been shown not to be stably rational.

Theorem 1 is proven in Section 7, which may serve as roadmap for
the steps of our argument.

This paper is inspired by the approach of Voisin [Voilba], who also
considers fourfolds birational to quadric surface bundles. While our
proof of rationality is similar, the analysis of unramified cohomology
relies on work of Pirutka [Pirl6] and Colliot-Thélene and Ojanguren
[CTO8]9].

Acknowledgments: The first author was partially supported through
NSF grant 1551514. We are grateful to Jean-Louis Colliot-Thélene and
Burt Totaro for helpful comments on drafts of this manuscript. Our
paper benefited greatly from the careful reading by the referees.
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2. THE SPECIALIZATION METHOD

We recall implications of the “integral decomposition of the diagonal
and specialization” method, following [Voil5b] [CTP16b], and [Pirl6].

A projective variety X over a field k is uniwversally CHy-trivial if for
all field extensions k’/k the natural degree homomorphism from the
Chow group of zero-cycles

CHo(Xk/) — Z

is an isomorphism. Examples include smooth k-rational varieties. More
complicated examples arise as follows:

Example 2. [CTP16a, Lemma 2.3, Lemma 2.4] Let X = U;X; be a
projective, reduced, geometrically connected variety over a field k such
that:

e Each irreducible component X; is geometrically irreducible and
k-rational, with isolated singularities.

e Fach intersection X; N X; is either empty or has a zero-cycle of
degree 1.

Then X is universally CHy-trivial.
A projective morphism

: X —>X
of k-varieties is universally CHy-trivial if for all extensions k'/k the
push-forward homomorphism

B, : CHy(Xp) — CHo(Xy)

is an isomorphism.
Proposition 3. [CTP16b, Proposition 1.8] Let

:X —>X
be a projective morphism such that for every schematic point x of X,

the fiber 371(z), considered as a variety over the residue field k(x), is
uniwersally CHg-trivial. Then (3 is universally CHq-trivial.

For example, if X is a smooth projective variety and
B:Blz(X) — X
is a blowup of a smooth subvariety Z C X, then 3 is a universally CHg-
trivial morphism, since all fibers over (schematic) points are projective

spaces. More interesting examples arise as resolutions of singularities
of certain singular projective varieties.
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Examples of failure of universal CH-triviality are given by smooth
projective varieties X with nontrivial Brauer group Br(X), or more
generally, by varieties with nontrivial higher unramified cohomology
[CTP16b, Section 1]. The following specialization argument is the key
to recent advances in investigations of stable rationality:

Theorem 4. [Voil5b, Theorem 2.1], [CTP16b, Theorem 2.3] Let
¢o: X —B
be a flat projective morphism of complex varieties with smooth generic
fiber. Assume that there exists a point b € B such that the fiber
X:=¢7'(b)
satisfies the following conditions:
e the group H2 (C(X)/C,Z/2) is nontrivial;
e X admits a desingularization
: X —>X
such that the morphism 3 is universally CHg-trivial.

Then a very general fiber of ¢ is not stably rational.

3. QUADRIC SURFACE BUNDLES

Let S be a smooth projective variety over C. Suppose that 7 : X —
S is a quadric surface bundle, i.e., a flat projective morphism from a
variety such that the generic fiber @) is a smooth quadric surface. We
assume it admits a factorization

X —=PV)—-S5,

where V' — S is a rank four vector bundle and the fibers of 7 are
expressed as quadric surfaces in the fibers of P(V) — S. There is
a well-defined degeneracy divisor D C S corresponding to where the
associated quadratic form drops rank.

Trivializing V' over an open cover of S, X may be expressed using a
symmetric 4 x 4 matrix (a;;):

E Qi3T5 = 0.

The local equation for D is the determinant det((a;;)). Note that D
has multiplicity > 2 where the rank of fibers is less than three. Indeed,
the hypersurface

{det(aij) = O} C ]P’?aij)
is singular precisely where all the 3 x 3 minors vanish.
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3.1. Rationality of quadric bundles. It is well known that @) is
rational over K = C(S) if and only if Q(K) # 0, i.e., when 7 admits a
rational section. A theorem of Springer [Spr52| implies that Q(K) # ()
provided Q(K') # () for some extension K'/K of odd degree, i.e., when
7 admits a rational multisection of odd degree. Thus we obtain

Proposition 5. Let 7 : X — S be a quadric surface bundle as abowve,
with S rational. Then X s rational provided w admits a multisection
of odd degree.

Our next step is to recast this in Hodge-theoretic terms:

Proposition 6. Let 7 : X — S be a quadric surface bundle as above,
with X smooth and S rational. Then X is rational if it admits an
integral (2,2)-class meeting the fibers of m in odd degree.

Remark 7. See [CTV12, Cor. 8.2] for results on the integral Hodge
conjecture for quadric bundles over surfaces; these suffice for our ap-
plication to quadric surface bundles over P2.

Proof. Let F1(X/S) — S denote the relative variety of lines of 7. Let
S, C S denote the largest open subset such that S, N D is smooth and
X, = X xg S,. Then Fy(X,/S,) — S, factors

Fi(X,/S.) 5T, — S,

where the second morphism is a double cover branched along S, N D
and the first morphism is an étale P!-bundle. In particular Fy(X,/S,)
is non-singular. Let a € Br(7:)[2] denote the Brauer class arising from

P.
Let F be a resolution of the closure of Fi(X,/S,) in Fi(X/S) ob-

tained by blowing up over the complement of S,. The incidence corre-
spondence between X and Fj(X/S)

I"'C X x5 Fi(X/S)
induces a correspondence I' between X and F' and a homomorphism
I, : CH*(X) — Pic(F).
Let n denote the generic point of S; there is a quadratic map
= : Pic(F,) — CH*(X,)
given by

20 a) = %(Z ail(x:))*
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where ((z;) C X, is the line which corresponds to the point z; €
F,. In geometric terms, consider Z C F, a finite reduced subscheme
with support on each component of F;, e.g., a choice of n lines from
each ruling. Take the union of the corresponding rulings in X, and
set 2(Z) C X, to be the n? points where the rulings cross. This is
compatible with rational equivalence and yields the desired mapping.
Thus a divisor with odd degree on each geometric component of F,
gives rise to a rational multisection of odd degree.
The correspondence I" and mapping = guarantee the following con-

ditions are equivalent:

o a=0;

e [V admits a divisor intersecting the generic fiber F; with odd

degree on each component;
e X admits a rational multisection of odd degree.

As the correspondence I' also acts at the level of Hodge classes we
obtain:

If X admits an integral (2, 2)-class intersecting the fibers
of 7 with odd degree then F' admits an integral (1,1)-
class intersecting the generic fiber F; with odd degree
on each component.

Applying the Lefschetz (1,1) Theorem to F' and Proposition 5 we
obtain the result. 0

3.2. A key example. The generic fiber of 7 is a quadric surface, hence
admits a diagonal form

(3.1) Q =<1,a,b,abd >,
i.e., is given by the equation
s* + at® + bu® + abdv® = 0

where a,b,d € K* and (s,t,u,v) are homogeneous coordinates in P3.
Note that since k := C C K, this form is equivalent to the form
<1,—a,—b,abd >.

Theorem 3.17 in [Pirl6] gives a general formula for the unramified
H? of the field K(Q), in terms of the divisor of rational functions

a,b,d € K*, under the assumption that d is not a square.
In Section 4 we will analyze the following special case:

Example 8. Consider the fourfold X C P? x P3 given by
(3.2) yzs® + x2t® + zyu® + F(z,y, 2)v* =0,
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where
F(x,y,2) =2* +y* + 22 — 2(zy + 22 + y2).
Dehomogenize by setting z = 1 to obtain a quadric surface over k(P?):
ys® + xt* + xyu® + F(z,y,1)v? = 0.
Multiplying through by xy and absorbing squares into the variables
yields
xS? +yT? + U? 4+ zyF (2,y,1)V: =0,

which is of the form (3.1).

We compute the divisor D C P? parametrizing singular fibers of

7 : X — P2 This is reducible, consisting of the coordinate lines (with
multiplicty two) and a conic tangent to each of the lines:

D = {2*y*2*(2? + y* + 2° — 2(zy + 22 + y2)) = 0}.

Remark 9. Hypersurfaces of bidegree (2,2) in P? x P? may also be
regarded as conic bundles over the second factor. The degeneracy sur-
face in P? has degree six and at least eight nodes, corresponding to
rank-one fibers. As a byproduct of the proof of Theorem 1, we obtain
failure of stable rationality for very general conic bundles of this type.

4. THE BRAUER GROUP OF THE SPECIAL FIBER

We refer the reader to [CTO89, Sect. 1] and [CT95] for basic prop-
erties of unramified cohomology.
Let K be a field. We write

H"(K) = H'(K,Z/2)

for its n-th Galois cohomology with constant coefficients Z/2. Let
K = k(X) be the function field of an algebraic variety X over k = C,
and let v be a rank one discrete valuation of K, trivial on k. Forn > 1,
we have a natural homomorphism

oy« H"(K) — H" " (k(v)),
where £(v) is the residue field of v. The group
H! (K/k):=n, Ker(d7)

is called the n-th unramified cohomology of K. It is a stable bira-
tional invariant [CTO89, Prop. 1.2] and vanishes if X is stably rational
[CTO89, Cor. 1.2.1]. Recall that for a smooth projective X we have

Br(X)[2] = Hy, (k(X)/k).
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The following proposition is similar to the examples in [Pir16, Section
3.5].

Proposition 10. Let K = k(x,y) = k(P?), X — P? the quadric
surface bundle defined in Example 8,

a = (z,y) € Br(K)[2],

and o its image in H*(k(X)). Then o is contained in H? (k(X)/k)
and is nontrivial; in particular,

Hy, (k(X)/k) # 0.

Proof. Let Q be the generic fiber of the natural projection 7 : X — P2,
Since the discriminant of () is not a square, the homomorphism

H*(K) — H*(K(Q))

is injective [Ara7h, p. 469], [KahO8, 6.4.13]. Note that o # 0 as the
conic S? + yT? = U? has no rational points over k(z,y); it follows
that o/ is also nontrivial. It remains to show that for every rank one
discrete valuation v on K (@) that is trivial on k, we have 0,(a’) = 0.
(For simplicity, we write 9, for 92.) We use standard coordinates z and
y (resp. y and z, resp. « and z) for the open charts of the projective
plane. Let us first investigate the ramification of a on P?; from the
definition, we only have the following nontrivial residues:

e 0,(a) =y at the line L, : = 0, where we write y for its class
in the residue field k(y) modulo squares;

e J,(a) = x at the line L, : y = 0;

e 0.(a) = 0,(z,2y) = y at the line L, : z = 0, in coordinates y
and z on P2

Let 0, be the valuation ring of v in K(Q) and consider the center of
v in P2. If 0, D K then the 9,(a’) = 0; hence there are two cases to
consider:

e The center is the generic point of a curve C, C P?; we denote
the corresponding residue map d¢, : H*(K) — H'(k(C,)).
e The center is a closed point p, € P2
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Codimension 1. The inclusion of discrete valuation rings op2 o, C 0,
induces a commutative diagram [CTOS89, p. 143]:

(4.1) HA(K(Q)) %~ H'(x(v))

T |

d
H*(K) — H'(x(C,))
The right vertical arrow need not be the functorial homomorphism
induced by inclusion of the residue fields when there is ramification.
Hence we have the following cases:

(1) C, is different from L,, L,, or L,. Then J¢,(a) = 0, so that
0,(a’) is zero from the diagram above.

(2) C, is one of the lines L,,L, or L,. Note that modulo the
equation of C,, the element d := F(z,y, z) is a nonzero square,
so that [Pirl6, Cor. 3.12] gives 0,(a’) = 0.

We deduce that for any valuation v of K(Q) with center a codimension
1 point in P2 the residue 9,(a’) vanishes.

Codimension 2. Let p, be the center of v on P2. We have an inclu-
sion of local rings op2,, C 0, inducing the inclusion of corresponding

completions O/Pz; C 0, with quotient fields K,,, C K(Q), respectively.
We have three possibilities:

(1) If p, ¢ L, UL, UL,, then « is a cup product of units in Opz,, ,
hence units in o, so that d,(a/) = 0.

(2) If p, lies on one curve, e.g., p, € L, \ (p, Up,), where p, =
(0,1,0) and p, = (0,0,1), then the image of y in k(p,) is a
nonzero complex number, hence a square in (9/];»2; , and y is
also a square in 0,. (We are using Hensel’s Lemma.) Thus
o = (z,y) =0in H*(K(Q),,Z/2), and 9,(a’) = 0.

(3) If p, lies on two curves, e.g., p, = L, N L,, then the image of
F(z,y,1) in k(p,) is a nonzero complex number, hence a square.
By [Pir16, Corollary 3.12], we have 0,(a’) = 0.

U

5. SINGULARITIES OF THE SPECIAL FIBER

In this section we analyze the singularities of the fourfold introduced
in Example 8 and studied in Section 4. Our main result is:
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Proposition 11. The fourfold X C P? x P?, with coordinates (z,y, z)
and (s,t,u,v), respectively, given by

(5.1) yzs® + x2t® + zyu® + F(z,y, 2)v* =0,
with
(5.2) F(a,y,2) = 2° +y° +2° = 2(xy + xz + y2),

admits a uniwersally CHg-trivial resolution of singularities.

We proceed as follows:

e identify the singular locus of X; .
e construct a resolution of singularities 5 : X — X
e verify universal CHy-triviality of 3.

5.1. The singular locus. Here we describe the singularities explic-
itly using affine charts on P? x P3. The equations (5.1) and (5.2) are
symmetric with respect to compatible permutations of {z,y, 2} and
{s,t,u}. In addition, there is the symmetry

(s,t,u,v) — (£s,+t, tu,v)
so altogether we have an action by the semidirect product (Z/27Z)3 x S3.

Analysis in local charts. Let L, L,, L, C P? be the coordinate lines
given by

respectively, and

P = (1,0,0), py:=(0,1,0), p. := (0,0,1)

their intersections.
The quadrics in the family (5.1) drop rank over coordinate lines
L,, Ly, L, and over the conic C' C P?, with equation (5.2)

F(z,y,z)=0.
This conic is tangent to the coordinate lines in the points
v, .= (0,1,1), v, :=(1,0,1), v, :=(1,1,0),
respectively.

By symmetry, and since no singular point satisfies s =t =u = 0, it
suffices to consider just two affine charts:
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Chart 1: z = u = 1. Equation (5.1) takes the form

(5.3)

ys® + at® + xy + F(z,y,1)v? = 0.

Derivatives with respect to s,t,v give

(5.4)

ys =0, 2t =0, vF(x,y,1) =0.

Hence zy = 0, from (5.3). Derivatives with respect to y, x give

(55) s*4+a+(2y—20—2)0*=0, * +y+ (22 — 2y — 2)v* = 0.

Since zy = 0, we have two cases, modulo symmetries:

Case 1:
Case 2:

y=0;
r=0,y#0.

We analyze each of these cases:

Case 1:

(5.7)
Case 2:

(5.8)

(5.9)

y=0. Then vF(z,y,1) =0 (from (5.4)) implies
v(r —1)* =0.

So either v =0 or z = 1. If v = 0, from (5.5) we obtain
s? + 2 =t = 0. Hence we obtain the following equations
for the singular locus:

y=v=t=s+z=0.

If x =1 then (5.4) implies t = 0, and the remaining equa-
tion from (5.5) gives s*>+ 1 —4v? = 0. Hence we obtain the
following equations:

r—l=y=t=5"+1—402=0.

x = 0,y # 0. From (5.4) the condition ys = 0 implies
s = 0. There are two more cases: v =0or v #0. [f v =0
the remaining equation (5.5) gives > + y = 0. Hence we
obtain equations for the singularity:

r=v=s=t"+y=0.

If v # 0, then F(0,y,1) = (y —1)*> = 0 from (5.4), hence
y = 1. The remaining equation from (5.5) gives

Pry+Qr—2y—20"=t*+1—-4*=0.
So we obtain equations for the singular locus:

r=y—1=s=1+1—4*=0.
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Chart 2: z = s = 1. The equation of the quadric bundle is
y+ xt? + zyu® + F(x,y,1)v? = 0.
As above, derivatives with respect to ¢, u, v give
(5.10) 2t =0, zyu =0, vF(x,y,1) =0.

Thus y = 0 from the equation. The conditions above and
derivatives with respect to y and z yield

(511) st =v(x —1)? =1+ v+ (—2v -2 =2+ (20 —2)v* =0

The second equation implies that either x =1 or v = 0.

If x =1, we obtain:

(5.12) r—l=y=t=1+u*-4*=0.
If v = 0, we obtain:
(5.13) y=t=v=1+azu>=0.

Collecting these computations, we obtain the following singularities:
(1) In Chart 1:
y=v=t=s"+2x=0
r—1l=y=t=5"4+1—-4*=0
r=v=s=t'4+y=0
r=y—1l=s=1t4+1-4*=0
(2) In Chart 2:
r—1l=y=t=1+u*>—4*=0
y=t=v=14+zu>=0
Enumeration of strata. Using the symmetries, we deduce that the sin-

gular locus of X is a union of 6 conics. We distinguish between

e Horizontal conics Cy,C,,C, C X: these project onto the co-
ordinate lines L,, L,, L, C P?. We express them using our
standard coordinates on P? x IP3:

C,={y=t=v=0, zs* + 2u* =0}
C,={r=s=v=0, 2t + yu® = 0}
C.,={z=u=v=0, 2t + ys* =0}
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The conics intersect transversally over p., p.,p, € P?, respec-
tively:
Ce NGy =q. :=(0,0,1) x (0,0,1,0), 7(az) = p-
CyNC: =g, = (1,0,0) x (1,0,0,0), 7(ds) = pa
Co N Cs =gy :=(0,1,0) x (0,1,0,0), 7(ay) = py
e Vertical conics R,, R,, R, C X: these project to the points
ty, U, T, € P
R,y={z—z2=y=t=0, s*+u*— 4° =0}
R, ={y—z2=2=5=0, * +u*> —4? =0}
R.={z—y=z2=u=0, s+t —4° =0}

Vertical conics intersect the corresponding horizontal conics
transversally in two points:

Ry N Cy :{teraty*} = (1707 1) X (:i:l,()? 170)
R, NC, ={tpq,t,_} =(0,1,1) x (0,1,+4,0)
R.NC, ={r.y,v._} =(1,1,0) x (1,£i,0,0)

Local étale description of the singularities. The structural properties
of the resolution become clearer after identifying étale normal forms
for the singularities.

We now provide a local-étale description of the neighborhood of q..
Equation (5.3) takes the form

ys® + at? + xy + F(x,y,1)v* = 0.
At q, we have F(x,y,1) # 0, so we can set
vo =/ F(z,y,1)v
to obtain
y52+xt2+xy+v§ =0.

Set t =m —n and y = m +n to get

(m+n)s>+(m—n)t? +m? —n*+v3 =0
or

m(s® + %) +n(s* — t2) +m? —n® +v] = 0.
Then let

m=mo— (s +1%)/2 and n =ny+ (s> —t%)/2
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to obtain
(5.14) mg —ng +vg = ((s* +1%)* — (s* — 17)?) /4 = s°t°.

We do a similar analysis in an étale-local neighborhood of either of
the points v,.. The singular strata for C, and R, are given in (5.6)

and (5.7):
ly=t=v=s+2=0{y=t=a0—-1=5"+1-4*=0}.
We first introduce a new coordinate w = x — 1. Thus the singular
stratum is the intersection of the monomial equations y =t = vw =0

and the hypersurface
s+ w+ 1 — 402

We regard this as a local coordinate near v,.. Equation (5.3) trans-
forms to

ys® +wt? + 2 +wy +y + 0 (—4y + (w —y)?) = 0.
Regroup terms to obtain
y(s* +w+1— 40 + 31 +w) = —v*(w —y)*

Note that w # —1 because  # 0 near t,.. Let ¢y = tV1+w, sg =
s2+w+1—4v% and wy = w — y we obtain
(5.15) yso + to = —v*w;.

The normal forms (5.14) and (5.15) are both equivalent to

a? + a3+ ai = (byby)?,
with ordinary threefold double points along the lines
ly ={ay =ay=a3=>b; =0}, fly={a; =ay=a3=>0b =0}

A direct computation — which will be presented in Section 5.2 — shows
this is resolved by blowing up ¢; and ¢5 in either order. The exceptional
fibers over the generic points of ¢; and ¢, are smooth quadric surfaces,
isomorphic to the Hirzebruch surface Fy ~ P! x P!. Over the origin,
we obtain a copy

Fo Us Fo

where ¥ ~ P! is the (—2)-curve on Fy and has self-intersection 2 on
Fo.
By symmetry, this analysis is valid at all nine special points

dz, qy7 dz, Tzt Cyt, Lot
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where components of the singular locus (the horizontal and vertical
conics) intersect. This explains why we can blow these conics up in
any order.

5.2. Resolution of singularities.

What we need to compute. We propose blowing up as follows:
(1) blow up Cy;
) blow up the proper transform of Cj;
) blow up the proper transform of C.;
) blow up the union of the proper transforms of R,, R,, and R.,
which are disjoint.

(2
(3
(4

Taking into account the symmetry, after the first step we must under-
stand:

e What are the singularities along the proper transform of C,?
e What are the singularities along the proper transform of R,?

Of course, answering the first questions clarifies the behavior along the
proper transform of C,. And R, and R, behave the exactly the same
as R,.

Let X; denote the blow up of C;, and E, , the resulting exceptional
divisor. We shall see that

e I, is smooth, except where it meets the proper transforms of
C., C,, Ry

e Since F;, C X; is Cartier, X; is also smooth at any point of
E, ,, except where F; , meets the proper transforms of C,, C., R,,.

e The fibers of F, , — C, are smooth quadric surfaces away from
Uz 9z, ty+, over which the fibers are quadric cones.

Since the quadric bundle F,, — C, admits sections, F,, is rational
over the function field of C, and all fibers of E; , — C), are rational as
well.

First blow up—Ilocal charts. We describe the blow up of Cy in charts.
We start in Chart 1, where 2 = u = 1. Local equations for the center
are given in (5.6) and we have a local chart for each defining equation.

e Chart associated with y: Equations for the blow up of the
ambient space take the form

v =yvy, t = yiy, 4= YWy .
The equation of the proper transform of the quadric bundle is

wy + 23 + F(z,y,1)v? =0, §° 4+ = yw,.
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The exceptional divisor E, is given by y = 0, i.e.,

wy + 23 + (x — 1)*? =0, s>+ 2 =0.
The blow up is smooth at any point of the exceptional divisor
in this chart, as the derivative of the first equation with respect
to wq is 1 and the derivative of the second equation with respect

to wy (resp. z) is O (resp. 1). (The proper transforms of R,

and C, do not appear in this chart.) We analyze E;, — C:
2

for any field k/C and a € k, the fiber above s = a, x = —a?,
y=v=1t=0,is given by

wi — a’t] + (14 a®)*0f = 0,
which is smooth in this chart. Equation (5.16) makes clear that
the exceptional divisor is rational and admits a section over the
center.
Chart associated with s? + x: Equations for the blow up of
the ambient space take the form

y=(s"+a)y, v=_(5"+a)v, t=(s>+2)t.
The proper transform of the quadric bundle has equation
y1 + ats + F(x, (s* + 2)y1, 1)v] = 0.
The exceptional divisor E , satisfies
Yy +att +(r—1)%7 =0, s> +2=0.

The blow up is smooth at any point of the exceptional divisor

in this chart. (Again, the proper transforms of R, and C, do

not appear in this chart.) The fiber above s = a, v = —a?,

y=v=1t=0,is given by
Y1 — a’t] + (1 + a*)*v; =0,

which is smooth and rational in this chart.
Chart associated with t: Equations for the blow up of the
ambient space are

y =ty v="tuv, &> +x=tw
and the proper transform of the quadric bundle satisfies
ywy + o+ F(z, ty, Dol =0, s* +z = tw;.
The exceptional divisor is given by ¢t = 0, i.e.

yiw, +z+ (z—1)%7 =0, s+ 2=0.
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The blow up is smooth along the exceptional divisor, except at
the point

t=vm1=y1=s=w; =x =0,

which lies over the point ¢,. Thus the only singularity is along

the proper transform of C,. The fiber above s = a, v = —a?,
y=uv=1t=0,is given by
(5.18) yw; — a® + (14 a?)*v* =0,

which is smooth in this chart unless a = 0.
e Chart associated with v: The equations are

Y=oy, t =uvty, s*+x=0vw
and
ywy + o2 + F(z, vy, 1) =0, %+ = vwy.
The exceptional divisor is given by v = 0, i.e.
yiw, +ati+ (-1 =0, s*+2=0.

The blow up is smooth at any point of the exceptional divisor
except for

p=v=w =t =0, z=1, s = *1.

Thus the only singularities are along the proper transform of
t,. The fiber above s = a, x = —a? y = v =1t =0, is given by

(5.19) yiw, — a*ts + (14 a?)* =0,

which is smooth in this chart unless a = =.

What is missed on restricting to Chart 1?7 For C,, we omit only
(1,0,0) x (1,0,0,0) =q, = C, N C,

but the symmetry exchanging x and z (and s and u) takes this to q.,
which lies over Chart 1. For R,, we omit the locus

rt—z=y=t=u=s —4*=0

which equals (1,0, 1) x (£2,0,0, 1). However, the same symmetry takes
these to (1,0,1) x (0,0,4£2,1), which is over Chart 1. Thus modulo
symmetries computations over Chart 1 cover these points as well.
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Singularities above p,. Our goal is to show explicitly that the singu-
larity of the blow up in the exceptional divisor E;, over (z,y,z) =
(0,0,1) = p, is resolved on blowing up the proper transform of C,. It
suffices to examine the chart associated with ¢, where we have equations

ywy + o+ F(z,ty, D)ol =0, s* +z = tw,
ie.,
(5.20)  (yy +t)wy — 82 + F(—8* 4+ twy, ty;, 1)v? =0, 8%+ = twy,
and the proper transform of C, satisfies
1+t=0, wy =s=v; =0.

If we compute the singular locus for the equation (5.20) above, at the
points of the exceptional divisor ¢ = 0 and above x = 0, we recover the
equations for the proper transform of C, in this chart.

We analyze X5, the blowup along the proper transform of C,.. In any
chart above y; =t = 0 we have F' = 1 so étale locally we can introduce
a new variable vy = v/Fv; to obtain

(y1 +t)wy — s> +v3 = 0.
After the change of variables y, = y; + t:
YWy — 52 + U% = O,
the singular locus is yo = s = w; = vy = 0. Here t is a free variable
corresponding to an A'-factor. This is the product of an ordinary
threefold double point with a curve, thus is resolved on blowing up the
singular locus. Note the exceptional divisor is a smooth quadric surface

bundle over the proper transform of C,, over this chart. (There is a
singular fiber over the point where it meets the proper transform of

C..)

Singularities above v, = (1,0,1) € P2, By the analysis above, we have
only to consider the chart of the first blowup associated with v. Recall
that it is obtained by setting

Y = vy, t=viy, s* 4+ =vw;
with equation
ywy + at; + F(x, vy, 1) = 0.
The exceptional divisor is given by v = 0. The proper transform R; of

the conic
Ry r—1l=y=t=0, s2+1—-40"=0
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is then
(5.21) r—1l=y =t =0, w; —4v =0, s>+1—4? =0.

We obtain these equations by inverting the local equation for the ex-
ceptional divisor. Eliminating x from the equation of X; yields an
equation that can be put in the form

y1(wy — 4v) + (5% +vw )t + (s* —vw; + vy +1)2 =0,

Writing we = w; — 4v we obtain
Yrwy + (=8 + vwy + 40°) 2 + (5% — vwy — 40 + oy +1)2 = 0.

The curve R; may be expressed as a complete intersection

y=wy =t =0, 0 := (s —40* + 1) + v(yy — wy) = 0;
the coefficient

¢ = —5* + vwy + 40°

is non-vanishing along R; in this chart so we may introduce an étale
local coordinate to = y/ct;. Then our equation takes the form

Y1Ws —i—t% +o2=0.

In other words, we have ordinary threefold double points along each
point of R. Blowing up R}, resolves the singularity, and the exceptional
divisor over R, is fibered in smooth quadric surfaces.

5.3. CHo-triviality of the resolution. Let E;, denote the excep-
tional divisor after blowing up C,. We've seen that the projection
E,, — C, is a quadric surface bundle. The fibers are smooth away
from q,, g, and t,4; over these points the fibers are quadric cones.

Let E; , denote the exceptional divisor after blowing up the proper
transform C of C,. The fibration E;, — C} is also a quadric surface
bundle. The fibers are smooth away from q, and v+, where the fibers
are quadric cones.

Let F; . denote the exceptional divisor on blowing up the proper
transform C”, of C,, after the first two blow ups. Again E; , — C. is
a quadric surface bundle, smooth away from t.4; the fibers over these
points are quadric cones.

Finally, we blow up the proper transforms R, I, R, of the disjoint
vertical conics. The local computations above show that the resulting
fourfold X is smooth and the exceptional divisors

/ / /
EQ,[L' - Rx? E2,y - Ry? EQ,Z - Rz7

are smooth quadric surface bundles with sections.
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To summarize, fibers of 3: X — X are one of the following;:

e if z is not contained in any of the conics, S7!(z) is a point;

e if z is contained in exactly one of the conics, $71(z) is a smooth
quadric surface isomorphic to Fy; when x is a generic point of
one of the conics, then 37!(x) is rational over the residue field
of x;

e if z is contained in two of the conics, 57 (x) = Fo Ug Fy, where
[y is the proper transform of a quadric cone appearing as a
degenerate fiber, ¥ C Fy is the (—2) curve, and ¥ C Fy has
self-intersection 2.

By Proposition 3 and Example 2, we conclude that ( is universally
CHp-trivial.

6. ANALYSIS OF HODGE CLASSES

Our approach follows Section 2 of [Voilbal. As explained in Propo-
sition 6, a quadric surface bundle over a rational surface 7 : X — S'is
rational provided X admits an integral class of type (2,2) meeting the
fibers of 7 in odd degree. Here we analyze how these classes occur.

We start by reviewing the Hodge-theoretic inputs. Let J — B be
the family of all smooth hypersurfaces in P? x P? of bidegree (2,2), i.e.,
B is the complement of the discriminant in P(I'(Op2yp:(2,2))). For
each b € B, let Y, denote the fiber over b. The Lefschetz hyperplane
theorem gives Betti/Hodge numbers

o 52¢+1(Yb) =0
o b(Yy) = M (V) = 2, bs(Y3) = W33 (Y}) = 2.

We compute by(Y;) by analyzing Y, — P?; its degeneracy divisor is an
octic plane curve Dy, of genus 21. Indeed, the fibers away from D, are
smooth quadric surfaces and the fibers over D, are quadric cones, so
we have

W(¥;) = x(P' x PY)x(P?\ Dy) + x(quadric conc)x(Dy)
— 4-(3—(—40)) +3 - (—40) = 52.

It follows that bs(Y;) = 46.

We extract the remaining Hodge numbers using techniques of Grif-
fiths for hypersurfaces in projective space, extended to the toric case
by Batyrev and Cox. Let F' be the defining equation of bidegree (2, 2)
and consider the bigraded Jacobian ring:

Jac(F) = Clz,y, z; 5,1, u, 0] /I(F),
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where Z(F') is the ideal of partials of F'. Note the partials satisfy the
Euler relations:

(6.1) xa—F—i- a—F+za—F—2F—sa—F+ta—F+ua—F+va—F
' or Yoy " a: Y T %8s "o You T o

Consider the vanishing cohomology
H*(Y})pan = H*(Y3)/H*(P? x P?),

i.e., we quotient by (h?, hiho, h3) where h; and hy are pull-backs of the
hyperplane classes of P? and P? respectively. Then we have [BC94,
Theorem 10.13]:

o HY(Y;) = H*(Yy)yan = Jac(F)(_1,-2) =0
° Hd’l(ifb> = Hg’l(ifb)van ~ JaC(F>(170) = (C[I7 Y, Z]l = C3
° H2’2<YE;>van = JaC<F)(372) = (C37

hd HL3(}/E7) = H1,3(}/I-))Uan ~ JaC(F)(g)A) ~ Cg,
The first two dimension computations imply the others by the formula
bi(Y) = > W),
p+q=4

or one may compute the Hilbert function of an ideal generated by
three forms of degree (1,2) and four forms of degree (2, 1), subject to
the relations (6.1) but otherwise generic.

We recall the technique of Green [CHMS88, Sect. 5] and Voisin [Voi07,
proof of 5.3.4], which applies as our variation of Hodge structures is
effective of weight two after a suitable Tate twist.

Proposition 12. Suppose there exists a by € B and v € H**(Yy,)van
such that the infinitesimal period map evaluated at ~

V() : Ty, — HY (V)

is surjective. Then there exists a Zariski-dense set of b € B such that
for any simply connected Euclidean neighborhood B’ of b, the image of
the natural map (composition of inclusion with local trivialization):

Ty - H]%z - H4(%7R)van

contains an open subset Vi, C H*(Yy, R)yan. Here H%’Q 1s a vector bundle
over B" with fiber

H]lifu = H4<Yu7 R)van N F2H4(Y“7 (C)”‘m

over u € B’.
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Note that the image is the set of real degree four vanishing classes
that are of type (2,2) for some b’ € B'.
The infinitesimal condition is easy to check here. Since

B C P(I'(Op2xp3(2,2)))
we may identify
Ty, = (Clz,y, 28,1, u,0]/ (Fo))2.2),
where Fj is the defining equation of Y;,,. The infinitesimal period map
T — Hom(H**(Y;), H"*(Y}))
was interpreted by Carlson and Griffiths as a multiplication map
(Clz,y, z; 8, t,u,v]/ (Fb))(2,2) X Jac(Fy)(3,2) — Jac(Fo)(5,4)-

For fixed v € Jac(Fy)(s,2), the differential in Voisin’s hypothesis is com-
puted by multiplying v with the elements of bidegree (2,2) [Voi07,
Theorem 6.13].

Example 13. Consider the hypersurface Y, C P? x P? with equation

Fy = (W +uv+ts)a® + (=2 +u? — v — $%)zy + (1% + uv + ts)y?
+(—t* +u? —v* — $?)zz + (12 — 16tu — u? + v* + s*)yz
+(=3uv — 3ts + s%)z2.

We computed the Jacobian ring using Macaulay2 [GS]. In particular,
we verified that

o Jac(Fy)(my,me) = 0 for
(m1,ma) > (13,2),(7,3),(3,5),

so in particular Y, is smooth;

e the monomials {zz*v?, yz*v?, 25v*} form a basis for Jac(Fp) s 4).-

Setting v = z*v?, the multiples of  generate Jac(Fy).4). Hence this
example satisfies Voisin’s hypothesis on the differential of the period
map.

Proposition 14. Consider the Noether-Lefschetz loci

{b € B:Y} admits an integral class of type (2,2) meeting
the fibers of Yy, — P? in odd degree}.

These are dense in the Fuclidean topology on B.
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Proof. We retain the set-up of Proposition 12. The intersection of the
Noether-Lefschetz loci with B’ may be expressed as

{u < B Hé’i N T;1H4<%7 Q)van 7é O}
The density of the Noether-Lefschetz loci reflects the fact that
H* (Y, Q)van € H(Y3, R)yan

is dense.

However, we are interested in vectors of H*(Y;, Q)yan that are ra-
tional multiples of those associated with odd degree multisections M
of Y}, — P2, Such multisections exist because we can write a bidegree
(2,2) hypersurface containing a constant section of P? x P* — P2, The
parity condition corresponds to a congruence on the image of M in
H*(Y}, Z)yan: Indeed, write A = H*(Y},,7Z) and consider the natural
inclusions and homomorphisms

AD <h%7 h1h27 h§>L - A/ <h%a h1h27 h§> = H4(}/ba Z)Uan;

the cokernel of the middle arrow is the discriminant group of the lattice
(h2, hiha, h2)", a finite abelian group. The class M yields an element
of this group and the parity condition translates into

M - h} = 1mod?2.

Rational multiples of the elements satisfying this condition remain
dense in H 4(Yb, R)yan, so Proposition 12 gives the desired result. O

The Noether-Lefschetz loci produced by this argument have codi-
mension at most three in moduli; each is an algebraic subvariety of
B C P(T(Opzyps(2,2))) ~ P* [CDK95]. Any projective threefold in
P> will meet the closures of infinitely many of these loci.

7. PROOF OF THEOREM 1

We assemble the various ingredients developed above:

(1) Theorem 4 guarantees that a very general hypersurface of bide-
gree (2,2) in P? x P2 fails to be stably rational, provided we can
find a special X satisfying its hypotheses.

(2) The candidate example is introduced in Example 8.

(3) In Section 4, we show that X has non-trivial unramified second
cohomology. This verifies the first hypothesis of Theorem 4.

(4) In Section 5, we analyze the singularities of X, checking that it
admits a resolution with universally CHy-trivial fibers.
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(5)

Proposition 6 gives a cohomological sufficient condition for ra-
tionality of (2, 2) hypersurfaces in P? x P3; Proposition 14 shows
this condition is satisfied over a dense subset of the moduli
space.

Consider a family ¢ : X — B of smooth (2, 2) hypersurfaces in P? x P3

over a C

onnected base B. If the base meets both the locus parametrizing

non-stably rational varieties and the Noether-Lefschetz loci then ¢ has
both rational and irrational fibers.

Remark 15. Concrete examples of rational hypersurfaces X,.,; C P? x
P? of bidegree (2,2) are easy to produce, e.g., those containing a con-
stant section of the first projection. Any very general pencil containing

Xrat Wl

[Ara75]

[BC94]

[CDK95]

1l have both rational and irrational fibers.
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