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Abstract. Confocal Laser Endomicroscopy (CLE) is novel handheld fluores-
cence imaging technology that has shown promise for rapid intraoperative
diagnosis of brain tumor tissue. Currently CLE is capable of image display only
and lacks an automatic system to aid the surgeon in diagnostically analyzing the
images. The goal of this project was to develop a computer-aided diagnostic
approach for CLE imaging of human glioma with feature localization function.
Despite the tremendous progress in object detection and image segmentation
methods in recent years, most of such methods require large annotated datasets
for training. However, manual annotation of thousands of histopathology images
by physicians is costly and time consuming. To overcome this problem, we
constructed a Weakly-Supervised Learning (WSL)-based model for feature
localization that trains on image-level annotations, and then localizes incidences
of a class-of-interest in the test image. We developed a novel convolutional
neural network for diagnostic features localization from CLE images by
employing a novel multiscale activation map that is laterally inhibited and col-
laterally integrated. To validate our method, we compared the model output to the
manual annotation performed by four neurosurgeons on test images. The model
achieved 88% mean accuracy and 86% mean intersection over union on inter-
mediate features and 87% mean accuracy and 88% mean intersection over union
on restrictive fine features, while outperforming other state of the art methods
tested. This system can improve accuracy and efficiency in characterization of
CLE images of glioma tissue during surgery, and may augment intraoperative
decision-making regarding the tumor margin and improve brain tumor resection.
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1 Introduction

Rapid intraoperative interpretation of suspected brain tumor tissue is of paramount
importance for planning the treatment and guiding the neurosurgeon towards the
optimal extent of tumor resection. Handheld, portable Confocal Laser Endomicroscopy
(CLE) is being explored as a fluorescence imaging technique for its ability to image
histopathological features of tissue at cellular resolution in real time during brain tumor
surgery [1-4]. CLE systems can acquire up to 20 images per second, with areas in the
tumor resection bed interrogated as an “optical biopsy”. Hundreds of images may be
acquired showing thousands of cells, but the images may be affected with artifacts such
as red blood cells (for CLE systems operating in the blue laser range) and motion
distortion, making them complicated to analyze. Although images may be interpreted
as largely artefactual, detailed inspection often reveals image areas that may be diag-
nostic. CLE images present a new fluorescent image environment for the pathologist.
Augmenting CLE technology with a computer aided system that can rapidly highlight
image regions that may reveal malignant or spreading tumor would have great impact
on intraoperative diagnosis. This is relevant for tumors such as gliomas where dis-
crimination of margin regions is key to achieve maximal safe resection, which has been
correlated with increased patient survival duration [5, 6].

Recent studies have shown that off-the-shelf Convolutional Neural Networks
(CNNs) can be used effectively for classifying CLE images based on their diagnostic
value [7, 8] and tumor type [9]. However, feature localization models have not been
previously applied to CLE images. Feature localization models based on fully super-
vised learning require large number of images for object-level annotation of the fea-
tures, which is expensive and time consuming. To overcome this limitation, we used a
weakly-supervised localization (WSL) approach. A WSL approach allowed the model
to learn and localize the class-specific features from image-level labels.

A few groups have recently applied WSL approaches to medical images, including
placenta scans [10], whole-slide images of colorectal cancer [11], diabetic retinopathy
[12], microscopic cellular images [13], and lung computed tomography scans [14].
Here, we present a novel model for detection of histological features of glioma on CLE
images trained on a dataset of CLE images acquired during brain surgery for this
invasive tumor. The architecture included end-to-end Multi-Layer Class Activation
Map (MLCAM) with Lateral Inhibition (LI) and Collateral Integration (CI) of the
glioma feature localizer neurons. The model was able to segment the CLE images
semantically by disentangling class-specific discriminative features that can comple-
ment interpretation by the physicians. Performance of the model was assessed by
comparing its output to CLE image segmentations performed by neurosurgeons and
other deep learning models. Additionally, we validated the significance of the
MLCAM, LI and CI architecture components on the overall performance of the model.
The model localized known diagnostic CLE features and revealed new CLE features
that correlated with the final classification and were not previously recognized by the
reviewers.
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Unlike previous models that require patch labeling [11] or an extra step for creating
the activation maps during testing [15], our model is solely trained based on the whole
image-level labels. Furthermore, we did not limit the network to localize features that
are already known phenotypes to the physicians [13, 14]. CLE images are relatively
novel to the pathology tissue diagnosis workflow. Although the tissue architecture
suggestive for a certain tumor type can be identified on CLE images [1-4], detailed
characteristic brain tumor patterns for CLE images are not yet well described. There-
fore, we used a more general concept (glioma diagnostic vs. nondiagnostic) that
includes a range of known histological diagnostic elements (i.e., large nucleus, mitotic
figures, hypercellularity, etc.) and allows for discovery of previously unrecognized
features that may correlate with final image classification. Further investigation of
detected features may deepen the understanding of glioma histopathological pheno-
types in CLE images, consequently improving their theranostic implications.

2 Methods

We constructed a WSL-based model to generate glioma Diagnostic Feature Maps
(DFM) from CLE images, which includes three main components (see Fig. 1):
(1) Customized CNN architecture with new design of CAM at different CNN layers.
(2) Lateral inhibition (LI) mechanism that suppresses the activation of DFM at loca-
tions where its competitor, nondiagnostic feature map (NFM), also exhibit high acti-
vation. (3) Collateral integration (CI) mechanism that amplifies activation of DFM at
locations where its allies at other layers also have high activations.

For an input image 1, supplied to the CNN, the class scores (Sp for diagnostic and
Sx for nondiagnostic) are defined from three layers via global pooling of discriminative
regions estimated in each activation map (DFM, NFM). The class scores achieved from
each layer, are then passed to independent softmax layers. The three predictions
(probability of I,, being diagnostic (D) and nondiagnostic (ND)) achieved from the
softmax layers are streamed into three multinomial logistic loss layers and inject the
weight update into the CNN during backpropagation. The total loss is calculated by
summing the three loss values.

2.1 New Design of Class Activation Map (CAM)

To produce the CAM from each layer, a new convolutional layer is stacked to sum its
weighted feature planes. Formally, the DFM and NFM at location (x,y) achieved from
layer z/, are defined as:

DFM(x7y,Zj) = leiﬁﬁ(xay7zj)7 (l)
NFM(X,y, Z]) = Zl W]Z({lfl(xay7 Zj)) (2>

where f;(x,y, z/) is the activation of I"" feature plane of layer z/ at location (x, y) and w?,

and wig are the weights to produce the DFM and NFM, respectively. By applying GAP
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and then softmax function on DFM and NFM, the classification scores for different
classes are calculated at each layer. Therefore, the softmax input for diagnostic (Sp) and
nondiagnostic (Sy) class at layer z/ can be formulated as:

1

Sp = WZ DFM(x,y,z/) = WZ/ — ey DY wirfi(xy, 7)),  (3)
1
SN = W7 x H? Z NFM(X y,z]) WZ’ ~F7 ny Zl kaﬁ x,v,7 , 4)

where W¢' and H? are the width and height of DFM and NFM at layer z/. With the
novel design of MLCAM, DFM, and NFM are produced in every forward pass and are
updated through backpropagation. Furthermore, producing DFM from deeper layers
empowers the overall predictive power of the model (i.e. labeling the detected region as
diagnostic or nondiagnostic), while DFM from shallower layers allows larger spatial
resolution and more precise detection of fine regions.

[ FDFM |

Fig. 1. Network architecture with Lateral Inhibition (LI) and Collateral Integration (CI) com-
ponents for weakly supervised localization of glioma diagnostic features. Bottom image shows a
CLE image along with the final diagnostic feature map generated by the model.

2.2 Lateral Inhibition and Collateral Integration of Localizer Neurons

During the computation of DFM and NFM, some locations might be activated in both
feature maps, which indicates the model’s confusion about the diagnostic value of those
regions. The activation of DFM is downregulated in these regions, using NFM acti-
vations. This mechanism is known as neuronal lateral inhibition in neurobiology [16]).
Furthermore, we upregulate the activation of regions which had higher recurrence of
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activation by integrating DFMs achieved from different layers. To combine these two
neural interactions, we compose the following equation to produce the Final DFM
(FDFM):

FDFM(x,y) = ZM - [DEM’ (x,y,7)
—DFM'(x,y,7').NFM' (x,y,7)]. (5)
[DFM’ (x,y,2') — DFM'(x,y,2/) .NFM'(x,y, /)],

where DFM'(x,y,7') and NFM'(x,y,7') are the value of normalized diagnostic and
nodiagnostic feature maps achieved from layer z/, after up-sampling to the original
input image size. As shown in Eq. (5), the downregulation for layer 7 is implemented
by subtracting the DFM(x,y,7z').NFM(x,y,z') term, which represents the confusing
regions at this layer, from DFM(x,y,z'). Lastly, FDFM(x,y) is also normalized. Fig-
ure 1 presents the developed network’s architecture. The three inception modules have
the same architecture, each combines filters of size 1 x 1,3 x 3,5 x 5 in parallel, and
concatenates the outputs from each filter into a single tensor [17].

3 Experimental Setup and Results

To train our model on image-level annotations, first, a “classification dataset” was
created. The CLE images were acquired with an Optiscan 5.1 CLE as described pre-
viously [1]. The classification dataset included 6,287 CLE images (3,126 diagnostic
and 3,161 nondiagnostic) from 20 patients with glioma brain tumors. If the CLE image
depicted any distinguishable diagnostic features, it was labeled as diagnostic and
otherwise as nondiagnostic. Table 1 shows the composition of the classification dataset
and the number of images used in each stage (Fig. 2).

(]
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Table 1. Number of Diagnostic ’ - ’ -
(D) and Nondiagnostic (ND) im- ——-m—-m—-m &
ages used for training, validation cam camz w D
(Val), and test stage is presented. fe]

D ND All Fig. 2. Network architectures used for the abla-
Train | 1714 | 1729 | 3443 tion study. Top network shows the developed
Val 487 511 998 architecture without the LI and CI components.

Bottom network shows the MLGAP architecture
[14] which combines the three CAMSs and then
uses a GAP layer for classification.

Test 925 921 1846
Total |3126 |3161 |6287
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The classification dataset was divided on a patient level for model development and
test (12 cases for training, 4 cases for validation and 4 cases isolated for testing).
Stochastic Gradient Descent (SGD) with an initial learning rate of 0.001 and momentum
of 0.9 was used to optimize the model’s parameters. Learning rate decay policy was set
to step function with a gamma of 0.9 and step size of 500 iterations. Image cropping and
rotation were not used for augmentation because these might harm the validity of
images. Since the diagnostic features could be very small, not every crop of a diagnostic
image would be diagnostic. Also, there is no guarantee that the acquired CLE images are
rotation invariant (e.g. the surgeons’ preference for holding the CLE probe). Training
batch size was set to 15 images and it took 22,000 iterations to achieve the model with
the minimum loss on classification of validation images. All the experiments were
performed in Caffe [18] deep learning framework, using a GeForce GTX 980 Ti GPU
(6 GB memory).

The classification accuracy of the model was 84% on the test set (sensitiv-
ity = 83.8%, specificity = 84.1%). To validate the efficacy of the WSL model, we
tested the following three hypotheses. First, the model can correctly segment the image
regions which have features that are indicative of glioma, confirmed by physicians at
different scales (i.e., medium-sized intermediate and small-sized restrictive scales) and
without much reliance on previous exposure (i.e., images from training, validation and
test stages). Second, the new components utilized (MLCAM, LI, and CI) increase the
performance of the model in detecting the features (especially restrictive features)
compared to the other state of the art WSL methods that lack them and removing any of
these would affect the model performance negatively. Third, the developed method can
detect novel features in CLE images that were not previously recognized by the
physicians. The three hypotheses were tested empirically, using image semantic seg-
mentation task with the following evaluation metrics: mean accuracy (mean_acc),
mean intersection over union (mean_IU), and frequency-weighted intersection over
union (fw_IU).

A segmentation dataset including 310 CLE images was acquired from images
annotated by four neurosurgeons. Each observer highlighted the diagnostic glioma
features of each CLE images, independently. We used majority voting to process the
annotation variations from the neurosurgeons. For rigorous assessment of the first
hypothesis, the segmentation dataset included diagnostic regions at different scales.
(145 images were annotated for both Intermediate (Set2-I) and Restrictive (Set2-R)
features). Also, to study the effect of previous exposure of CLE image to the model, we
used images from all three stages: 30 images from training (Setl), 145 images form
validation (Set2), and 135 images from test set (Set3 and Set4)). To appraise the second
hypothesis, we sequentially altered components of the designed architecture and
assessed the resulting performance of the model (“ablation study”). All models were
trained and tested on the same data with the same parameters to avoid any bias. Finally,
to test the third hypothesis, our dataset included 55 CLE images that were known to be
from glioma tumors but were initially classified as nondiagnostic (Set4). The model
generated the segmentation mask by creating the FDFM of the input image with one
forward pass and then thresholding (threshold value of 0.03 for intermediate and 0.2 for
restrictive features).
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Table 2 shows experimental results of segmentation performance by ten different
models with respect to the annotators. Each model constructs a DFM to create a
segmentation map: M1, similar to [14]; M2 — DFM and NFM of CAM 1,2, and 3 are
first laterally inhibited and then collaterally integrated; M3 — CAM 1,2, and 3 are
collaterally integrated; M4, M5, M6 — by laterally inhibiting the DFM and NFM of
CAM 1, 2, and 3, respectively; M7, M8, M9 — by using the DFMs from CAM 1, 2, and
3 without any further processing; M10, similar to [15]. The first hypothesis proved to
be true, since our developed model, M2, produced high mean_acc, mean_IU, and
fw_IU for all the intermediate features from diagnostic images (Setl, Set2-1, and Set3).
Moreover, it could segment the images from Set3 without significant change in
mean_acc, while producing better fw_IU and mean_IU values on images that were
previously revealed to it (Setl). Results from Set2-I and Set2-R images showed that all
models generated much lower mean_IU and fw_IU on restrictive features compared to
intermediate features, except for M1 and M2 models, both of which utilize shallower
layers for enhancing the DFM’s spatial resolution. In all experiments, M2 made the
best performance for three measures (except in mean_acc for Set2-R), supporting the
second hypothesis about the significance of the utilized components (MLCAM, LI, and
CI). Specifically, M4-M6 models outperformed other ablated models (M7-M9),
highlighting the significant value of LI. The higher mean_IU value of M6 and M9
compared to M4,5 and M7,8, respectively, indicates that more abstract features were
learned by inception 3 than by inception 1,2. In the first round of review, clinicians
labeled Set4 images as nondiagnostic, however, after features were highlighted by the
developed model, the clinicians re-classified Set4 images as diagnostic. The highest
performance in Set4 belonged to M2 (mean_acc = 88% and mean_IU = 89%). High
mean_IU value achieved by the model and clinical feedback emphasize significance
and novelty of the features.

Table 2. Segmentation performance by different models. M2* is the developed model.

*

Set M1l M2 (M3 (M4 M5 M6 M7 M8 M9 |MI10
mean_acc | Setl  [0.71|0.88 1 0.71 |0.75|0.750.77 | 0.71 | 0.71 | 0.71 | 0.7
Set2-1 [0.760.85/0.74|0.76 | 0.76 | 0.77 | 0.74 | 0.74 | 0.74 | 0.74
Set3 |0.72/0.86|0.720.75]0.75|0.76 | 0.72 | 0.72 | 0.72 | 0.72
Set2-R | 0.78 | 0.87{0.79 |1 0.88 | 0.88 | 0.85 | 0.78 | 0.79 | 0.81 | 0.78
Set4 | 0.7410.88|0.74 | 0.76 | 0.76 | 0.78 | 0.74 | 0.74 | 0.74 | 0.72
mean_IU |Setl |0.65/0.9 |0.61]0.69]0.69|0.72|0.61|0.61|0.61 |0.63
Set2-I |0.69|0.86|0.67 | 0.69|0.71|0.73 | 0.65 | 0.67 | 0.67 | 0.69
Set3 [0.570.82|0.56|0.59|0.610.63|0.56|0.56 | 0.56 | 0.59
Set2-R | 0.77 | 0.88 | 0.29 | 0.57 | 0.63 | 0.59 | 0.27 | 0.29 | 0.31 | 0.63
Set4 | 0.48/0.89|0.48 0.52/0.55|0.57/0.480.48|0.48 0.5
fw_IU Setl 0.8 [0.99|0.8 /0.83/0.85/0.87/0.8 [0.8 |[0.8 |0.8
Set2-1 [0.880.98|0.86|0.88 /0.9 10.92|0.86|0.86|0.860.86
Set3 | 0.65/0.88|0.65|0.69|0.71|0.73 | 0.65 | 0.65 | 0.65 | 0.67
Set2-R |09 [0.97|0.18 0.5 [0.61]0.58/0.14|0.16|/0.2 |0.67
Set4 |0.38/0.79|0.35/0.42]0.44|0.46|0.35]0.35/0.35 | 0.4
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4 Conclusions

In this study, a WSL model was developed to localize the diagnostic features of
gliomas in CLE images. It utilizes three fundamental components for creating the final
glioma DFM: multi-scale DFM, LI for removing confusing regions, and CI to spatially
infuse diagnostic areas from DFMs with different spatial resolutions. The model could
detect the diagnostic regions with high agreement compared with annotation by neu-
rosurgeon, from both diagnostic and nondiagnostic images (i.e., images that were
initially designated as lacking diagnostic features) in intermediate and restrictive fea-
tures, while outperforming other methods. Such an approach should be tested on larger
datasets. Initial testing demonstrated that WSL has the potential to identify not only
relevant, but novel or unrecognized diagnostic features in CLE images that were not
previously discriminated by human inspection, requiring further investigation. This
approach can be augmented with active learning and patch clustering to create an atlas
of glioma phenotypes in CLE images. Further detailed studies correlating regular
histology and CLE images are necessary for better understanding of glioma
histopathological features on CLE images.
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