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Abstract— In this paper, we propose a modeling and de-
sign technique for a proportional-integral-derivative (PID)
controller in the presence of aperiodic intermittent sensor
measurements. Using classical control design methods, PID
controllers can be designed when measurements are available
periodically, at discrete time instances, or continuously. Un-
fortunately, such design do not apply when measurements are
available intermittently. Using the hybrid inclusions framework,
we model the continuous-time plant to control, the mechanism
triggering intermittent measurements, and a hybrid PID control
law defining a hybrid closed-loop system. We provide suffi-
cient conditions for uniform global asymptotic stability using
Lyapunov set stability methods. These sufficient conditions are
used for the design of the gains of the hybrid PID controller.
Also, we propose relaxed sufficient conditions to provide a
computationally tractable design method leveraging a polytopic
embedding approach. The results are illustrated via numerical
examples.

I. INTRODUCTION

Proportional-integral-derivative controllers are incredibly

popular in engineering applications; see, e.g., [1], [2], [3].

For continuous-time systems, a PID control law is given by

u(t) = KP e(t) +KI

∫ t

0

e(s)ds+KDė(t), (1)

where t ≥ 0, u is the input to the system being controlled

(the plant), e is the error between the state and the reference

to be tracked, and KP , KI , and KD are the proportional,

integral, and derivative parameters (or gains) to be designed,

respectively. Several design techniques are available to de-

termine the three parameters in the PID controller to meet

design specifications such as rise time, settling time, and

overshoot [2], [4]. However, classical design methods require

continuous or periodically sampled measurements of the

output, which may not be practical in certain applications [2],

[3]. Namely, when the measurements are available only at

aperiodic, intermittent time instances novel methods for the

design of the control law in (1) are needed, and unavoidably,

demand the use of hybrid systems tools.

Some design techniques for PID controllers that could

have potential for the settling of intermittent, aperiodic

sampling are available in the literature. A multi-rate PID

control law is considered in [5] through discretizing the
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continuous-time dynamics and considering a delayed sensor

to input signal dependent on the sampling rate. It should

be pointed out that first-order reset elements have shown to

be advantageous towards the performance of PID controllers

[6]. On the other hand, with the popularization of systems

that contain both continuous and discrete dynamics, there are

several novel approaches with the potential for the design

of PID controllers under intermittence. In [7], the authors

consider a continuous-time system and design an event-

triggered control law using Lyapunov-based analysis. In [8],

the authors utilize an impulsive systems approach to design a

static feedback controller for a continuous-time linear time-

invariant system and uses an estimate event-based trigger

to update the controller. Hybrid controllers with sporadic

measurements have been studied in [9], [10] but to address

different problems. The authors of [9] consider the problem

of observer design under sporadic measurements. In [10],

the design of a hybrid feedback controller for consensus

intermittent communication over a network of agents is

proposed.

In this paper, we consider the case when the plant is a

linear time-invariant system, but the output is only mea-

sured at, potentially non-periodic, isolated time instances.

Namely, subsequent measurements can occur any time within

a known bounded window of ordinary time. To cope with

intermittency, we introduce a hybrid PID control law akin

to the continuous-time one in (1), that allows for continuous

evolution of the state as well as impulsive measurements and

control updates. Due to the continuous-time and impulsive

dynamics of the closed-loop system we utilize the hybrid sys-

tems framework in [11] for modeling, analysis, and design.

Using Lyapunov-based tools for uniform global asymptotic

stability of compact sets, we provide sufficient conditions

on the parameters of the hybrid PID controller to guarantee

such stability property. Though these conditions are nonlinear

and must be solved at infinitely many points, a polytopic

embedding approach is shown to yield a computationally

tractable design method to determine the parameters of the

hybrid PID controller. Numerical simulations validate these

results.

The paper is organized as follows. Section II provides

basic background. Section III presents the system under con-

sideration and provides a motivational example. Section IV

models the closed-loop system as a hybrid system and gives

examples for the special cases of proportional, proportional-

integral, and proportion-derivative control laws. Section V

gives the main results and design methods. Section VI

illustrates the main results and design through via examples.
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II. NOTATION AND PRELIMINARIES

A. Notation

We denote P being positive definite as P > 0 and

being negative definite as P < 0. Given x ∈ R
n and

y ∈ R
m, the pair (x, y) is equivalent to [x⊤, y⊤]⊤. The

distance from a vector x ∈ R
n to a closed set A ⊂ R

n is

|x|A := infy∈A |x− y|. A function α : R≥0 → R≥0 is a

class-K function, also written α ∈ K, if α is zero at zero,

continuous, strictly increasing; it is said to belong to class-

K∞, also written α ∈ K∞, if α ∈ K and is unbounded; α
is positive definite, also written α ∈ PD, if α(s) > 0 for

all s > 0 and α(0) = 0. A function β : R≥0 × R≥0 →
R≥0 is a class-KL function, also written β ∈ KL, if it

is nondecreasing in its first argument, nonincreasing in its

second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,

and lims→∞ β(r, s) = 0 for each r ∈ R≥0. Given a function

f , its domain is denoted by dom f . Given a set X , coX
represents the convex hull of X .

B. Hybrid Systems

This section introduces the main notions and definitions on

hybrid systems used throughout this paper. More information

on such systems can be found in [11]. For the purposes of

this paper, a hybrid system H is given in the compact form

H :

{

ẋ = f(x) x ∈ C,
x+ ∈ G(x) x ∈ D,

(2)

where x ∈ R
n is the state and the data of the hybrid system,

denoted (C, f,D,G), is defined as follows:

• f : Rn → R
n is a single-valued map defining the flow

map capturing the continuous dynamics;

• C ⊂ R
n defines the flow set on which f is effective;

• G : Rn ⇒ R
n is a set-valued map defining the jump

map and models the discrete behavior;

• D ⊂ R
n defines the jump set, which is the set of points

from where jumps are allowed.

Solutions φ to H are parameterized by (t, j), where

t ∈ R≥0 := [0,∞) counts ordinary time and j ∈ N :=
{0, 1, 2, . . .} counts the number of jumps. The domain

dom φ ⊂ R≥0 × N is a hybrid time domain if for every

(T, J) ∈ dom φ, the set dom φ ∩ ([0, T ] × {0, 1, . . . , J})
can be written as the union of sets ∪J

j=0(Ij × {j}), where

Ij := [tj , tj+1] for a time sequence 0 = t0 ≤ t1 ≤ t2 ≤
· · · ≤ tJ+1. The tj’s with j > 0 define the time instants when

the state of the hybrid system jumps and j counts the number

of jumps. A solution to H is called maximal if it cannot be

extended; i.e., it is not a truncated version of another solution.

It is called complete if its domain is unbounded. A solution

is Zeno if it is complete and its domain is bounded in the

t direction. A solution is precompact if it is complete and

bounded.

Definition 2.1: (uniform global asymptotic stability) Let a

hybrid system H be defined on R
n and A ⊂ R

n be closed.

The set A is said to be

• uniformly globally stable (UGS) for H if there exists

α ∈ K∞ such that any solution φ to H satisfies

|φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ dom φ;

−KP

−KI

∫ t

0
e(s)ds

−KD
d
dt

ż = Az +Bu

y = Hz

yuer

ZOH

{tk}
∞
k=1

Fig. 1. Block diagram of the closed loop system with each controller and
measurement timing.

• uniformly globally attractive (UGA) for H if for each

ε > 0 and r > 0 there exists T > 0 such that every

maximal solution φ to H is complete and if |φ(0, 0)|A ≤
r, (t, j) ∈ dom φ and t+ j ≥ T then |φ(t, j)|A ≤ ε;

• uniformly globally asymptotically stable (UGAS) for H
if it is both UGS and UGA.

Sufficient conditions for UGAS of a closed set A can be

found utilizing a Lyapunov function candidate; for more

information regarding such properties, see [11].

III. MOTIVATIONAL EXAMPLE

AND PROBLEM STATEMENT

Consider a continuous linear time-invariant system defin-

ing the plant, with state z ∈ R
n and input u ∈ R

m given

by

ż = Az +Bu (3)

where A and B are matrices of appropriate dimension. We

consider the case when the output of the plant

y = Hz ∈ R
p (4)

is available for the purposes of control at isolated time

instances. More precisely, the output y is available to the

controller when t ∈ {tk}
∞
k=1, where the sequence of times

{tk}
∞
k=1

satisfies

T1 ≤ tk+1 − tk ≤ T2 ∀k ∈ N \ {0}, 0 ≤ t1 ≤ T2

(5)

with T1 and T2 such that 0 < T1 ≤ T2. The parameter T1

denotes the minimum time for samples while T2 denotes

the maximum time in between samples, which is known

in the literature as the maximum allowable transfer interval

(MATI); see, e.g., [12]. Figure 1 depicts a feedback closed-

loop system using a PID controller where the output is

available at times given by the sequence of times {tk}
∞
k=1

as indicated by the switch therein. Note that the closed-loop

system includes a reference signal r to be tracked.

To illustrate the effects of intermittent measurements of

the output on a PID feedback loop, consider a mass-spring

system where only position can be measured. The state z =
(z1, z2) ∈ R × R, where z1 is position and z2 is velocity

of the mass, respectively. Namely, the system in (3)-(4) is

defined by matrices

A =

[

0 1
−1 0

]

, B =

[

0
1

]

, H =
[

1 0
]

(6)

Suppose the goal is to design a PID controller to meet the

following specifications: rise time tr ≤ 0.2 seconds, settling
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Fig. 2. Trajectories of a mass-spring system tracking a reference signal r =
1 (red). The black trajectory was generated when the closed-loop system
had continuous sensor measurements. The remaining trajectories illustrate
the degradation of the closed-loop system when sensor measurements arrive
sporadically.

time ts ≤ 2 seconds, and overshoot Mp ≤ 15%. When the

output y is available continuously, the gains KP = 250,

KI = 350, and KD = 30 generate a closed-loop system

satisfying the given specifications. The output trajectory in

black in Figure 2 shows the response of the system with

such feedback. Unfortunately, when the same feedback gains

in the PID controller are used with the output measured

intermittently, at times satisfying (5), leads to degradation

of performance. Figure 2 shows the output trajectories to

the system for the above PID gains with a sample-and-

hold feedback scheme for increasing values of T1 and T2.

Note that, even for small parameters T1 = 0.06 seconds

and T2 = 0.07 seconds (shown in magenta in Figure 2),

the overshoot increases by 50% compared to the continuous

feedback case. Also, for such choices, the settling time is

well beyond specification as oscillations are still present

beyond 3 seconds. If T1 and T2 are large enough, then there

is no guarantee that convergence will happen at all.

IV. THE HYBRID PID

In this section, we present a modeling approach of the

PID controller in (1) when the measurements occur at times

given by (5). Due to the continuous dynamics of the plant

in (3), the intermittent sensor measurements communicating

at times given by (5), and the control law in (1) (yet

to be designed), the system naturally has both continuous

and discrete dynamics. Therefore, we model the closed-loop

systems using the hybrid systems framework presented in

[11]. In this paper, for simplicity, we consider the case when

the reference signal is zero, but the results and ideas can be

extended to the case when the reference is generated by an

exosystem; e.g., as in [13].

A. Intermittent Measurement Model

The output of the plant is measured at impulsive times

satisfying (5). To generate all possible such sequences, we

define a timer state, denoted by τ ∈ [0, T2], which decreases

continuously in ordinary time t and, when it reaches zero, it

is reset to a point in the interval [T1, T2]. The timer can be

modeled as an autonomous hybrid inclusion given by
{

τ̇ = −1 τ ∈ [0, T2]
τ+ ∈ [T1, T2] τ = 0

(7)

Such a timer defines a hybrid system with solutions having

jump times tj satisfing (5); for more details on the use of

such timers, see [9], [10].

B. Hybrid PID Model

Next, we introduce each component of the proposed

hybrid PID controller. The hybrid PID controller has three

components: the proportional component, vP ; the integral

component, vI ; and the derivative component, vD. With

a slight abuse of notation, we denote the output of the

controller by the state u, which evolves according to zero-

order hold dynamics. Namely, during the intervals of time

between successive measurement updates, u is held constant,

and, when the controller receives a new measurement, we

update it with the components of the controller. The hybrid

PID controller is given by
{

u̇ = 0 τ ∈ [0, T2]
u+= vP + vI + vD τ = 0

(8)

where vP , vI , and vD are defined explicitly below.

1) Proportional Action: Following the construction in (1),

the contribution of the proportional component vP of the

hybrid PID is proportional to the measurement received. It

follows that, at jumps, the component vP is given by vP =
−KPy = −KPHz.

2) Integral Action: In classical state-space control design,

an integral controller requires the introduction of an auxiliary

state which ‘memorizes’ the integral of the error between the

state and reference [2], [3]. To capture such a mechanism

in the case of intermittent measurements, we introduce two

states: a memory state ms and an integral state zI . We use

zI ∈ R
p as the state storing an approximation of the running

total integral. The memory state ms ∈ R
p is used to store

the most recent measurement of the output y. The memory

state is updated when a new output measurement is available,

which according to (7) is when the timer τ is equal to zero.

Between sensor measurements, the integral state zI evolves

according to żI = ms while the memory state ms remains

constant. Then, the integral control law is then implemented

as

vI = −KIzI . (9)

3) Derivative Action: To implement the derivative action

vD, first, consider the case when only the derivative term in

(1) is present. Therefore we have that

vD = −KDẏ = −KDH(Az +BvD) (10)

which leads to vD = −(I+KDHB)−1KDHAz where, im-

plicitly, we assume that I+KDHB is invertible. Combining

the proportional and integral controller, we have

vD = −(I +KDHB)−1KDH(Az −BKPHz − BKIzI).
(11)
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C. Hybrid Closed-loop System

To write the resulting hybrid closed-loop system com-

bining the three control actions in Sections IV-B.1, IV-B.2,

and IV-B.3, we define the state of the hybrid system H as

x = (x1, x2) ∈ X := R
n × R

p × R
m × R

p × [0, T2], where

x1 = (z, zI , u,ms) and x2 = τ . The resulting closed-loop

system with the plant in (3), PID controller in (8), and timer

in (7) has data (C, f,D,G) given by

f(x) :=

[

Afx1

−1

]

∀x ∈ C := X

G(x) :=

[

Agx1

[T1, T2]

]

∀x ∈ D := {x ∈ X : τ = 0}

(12)

The matrices Af and Ag are given by

Af =









A 0 B 0
0 0 0 1
0 0 0 0
0 0 0 0









, Ag =









I 0 0 0
0 I 0 0

−K̃P − K̃D −K̃I 0 0
H 0 0 0









(13)

where

K̃P = KPH − (I +KDHB)−1KDHBKPH

K̃I = KI − (I +KDHB)−1KDHBKI

K̃D = (I +KDHB)−1KDHA

(14)

Note that the definitions of K̃P , K̃I , and K̃D depend on

(KP ,KD), (KI ,KD), and KD respectively1. We will treat

K̃P , K̃I , and K̃D as our design parameters2.

Remark 4.1: If the parameters K̃P , K̃I , and K̃D are

known, then the values of KP , KD and KI can be recovered.

Namely, the parameter KD can be solved for directly as long

as the invertibility condition on (I +KDHB) holds. In that

case KD can be used to solve for the parameters KP and KI

directly. For example, consider the case when the dynamics

and control inputs are scalars, then if follows that the control

parameters KP , KI (in terms of KD), and KD are given as

KP = K̃P (1 + KDHB)/H , KI = K̃I(1 + KDHB), and

KD = K̃D/(HA− K̃DHB), respectively.

Given the hybrid closed-loop system in (12), and param-

eters 0 < T1 ≤ T2, our goal is to design the parameters

K̃P , K̃I , and K̃D of the hybrid PID controller such that the

compact set

A = {(z, zI, u,ms, τ) ∈ X : z = zI = u = ms = 0} (15)

is uniformly globally asymptotically stable. Note that this set

captures the usual equilibrium point, namely, the origin, to

which (3) is stabilized to via PID control when the reference

is zero.

D. Special Cases

Next, we showcase three special cases of the hybrid PID

controller in (8) that not only simplify its construction but

also find wide use in applications.

1For the scalar case, the expressions for K̃P and K̃I are so that KP

and KI can be chosen to yield desired values of K̃P and K̃I , even though
KD plays a role in their definition.

2The inveritibity condition on (I + KDHB) is only necessary if the
gains KP , KI , and KD need to be derived specifically.

1) Proportional Control Case: In the case when the

control law implements the proportional action only, the

states zI and ms in (12) can be removed. In this particular

case, the state of the closed-loop system is x = (x1, x2)
with x1 = (z, u) and x2 = τ . The flow map, flow set, jump

map, and jump set are still given as in (12) but with obvious

changes on dimensions. The matrices in (13) reduce to

Af =

[

A B
0 0

]

, Ag =

[

I 0

−K̃P 0

]

(16)

with K̃P = KPH . In this case, the desired set to stabilize

is

A = {(z, u, τ) ∈ R
n × R

m × [0, T2] : z = u = 0} (17)

2) Proportional-Integral Control Case: The model in (12)

for only proportional-integral (PI) control still requires the

memory states ms and zI used to approximate integration

between sampling events. The state of the closed-loop system

is x = (x1, x2) with x1 = (z, zI , u,ms) and x2 = τ .

Definitions of Af and Ag follow directly from (13) with

the derivative gain KD = 0, resulting in

Af =









A 0 B 0
0 0 0 I
0 0 0 0
0 0 0 0









, Ag =









I 0 0 0
0 I 0 0

−K̃P −K̃I 0 0
H 0 0 0









(18)

with K̃P = KPH and K̃I = KI . The flow map, flow set,

jump map, and jump set are still given as in (12) and the set

to stabilize remains as in (15).

3) Proportional-Derivative Control Case: In the case of

proportional-derivative (PD) control only, the components of

the state x = (x1, x2) in the model (12) simplify to x1 =
(z, u) and x2 = τ , as the integration states zI and ms are

no longer needed. The matrices Af and Ag reduce to

Af =

[

A B
0 0

]

, Ag =

[

I 0

−K̃P − K̃D 0

]

(19)

where the gains K̃P and K̃D are defined in (14), while

the definition of the data of (12) remains the same, modulo

obvious changes of dimensions. The set to stabilize is given

in (17). In the next section, we provide tools for the design

of the gains in (14).

V. DESIGN CONDITIONS FOR THE HYBRID PID

The following result gives sufficient conditions for uni-

form global asymptotic stability of the set A in (15) for the

hybrid system in (12) in terms of matrix inequalities. The

result holds for the generic matrices Af and Ag in (13),

and covers the special cases in Sections IV-D.1, IV-D.2, and

IV-D.3.

Following [9] and [11], we establish uniform global

asymptotic stability of the set A in (15) using a Lyapunov-

based analysis following the ideas in [11, Example 3.14].

To that end, we consider the following Lyapunov function

candidate

V (x) = W (exp(Afτ)x1) ∀x ∈ X (20)
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where W (s) = s⊤Ps with P a symmetric positive definite

matrix. Note that (20) is a Lyapunov function candidate

according to Definition 3.16 in [11], in particular, V is con-

tinuously differentiable everywhere. We have the following

result.

Theorem 5.1: Let T1 and T2 be positive scalars such that

T1 ≤ T2. Suppose there exist matrices K̃P , K̃I , and K̃D,

and a positive definite symmetric matrix P satisfying

Γ(ν)⊤PΓ(ν)− P < 0 ∀ν ∈ [T1, T2] (21)

where Γ(ν) = exp(Afν)Ag , and the matrices Af and Ag

are given in (13). Then, the set A in (15) is uniformly

globally asymptotically stable for the hybrid system H with

data as in (12).

Proof Sketch: Consider the Lyapunov function given in

(20) with P = P⊤ > 0. First note that there exists 0 <
c < c such that, for each x ∈ C ∪ D ∪ G(D), V satisfies

c|x|2A ≤ V (x) ≤ c|x|2A. During flows, namely, for each x ∈
C, there is no change in V . It follows that at jumps through

the continuity in V of (21) there exists ǫ > 0 such that

the change in V is given by V (g) − V (x) ≤ −ǫ|x|2A for

each x ∈ D, g ∈ G(x). From Proposition 6.10 in [11], every

maximal solution φ to H is complete. Moreover, the intervals

of flow time between jumps for each maximal solution φ is

bounded as t ≤ (j + 1)T2 for all (t, j) ∈ domφ, where

the given T2 is positive. Moreover, for every (t, j) ∈ domφ
such that t + j ≥ T it follows that j ≥ T

T2+1
− T2

T2+1
from

Theorem 3.24 in [11], the set A in (15) is uniformly globally

asymptotically stable for H in (12). �

Remark 5.2: Due to the nonlinearities, solving (21) for

P , K̃P , K̃I , and K̃D may not be numerically tractable.

When the update times are periodic, namely, when T1 = T2

and the controller gains are given a priori, we can use a

convex optimization solver like CVX in [14] to solve for P .

However, when the gains are being designed, (21) contains

nonlinear terms and must be evaluated over infinitely many

points ν ∈ [T1, T2].

To alleviate the issues pointed out in Remark 5.2, we

provide a systematic and numerically tractable approach

using the polytopic embedding in [9] to solve for the

controller gains K̃D, K̃I , K̃P , and the matrix P . First,

following Proposition 1 in [9], we use the Projection Lemma

and Schur’s complement to get an equivalent form for the

inequality in (21).

Theorem 5.3: Let T1 and T2 be positive scalars such that

T1 ≤ T2. Given the matrices A, B, and H defining the plant

dynamics and output, the matrices Af and Ag in (13), and

the matrix P satisfy (21) if and only if there exists a matrix

F ∈ R
n×n satisfying





−(F + F⊤) FAg exp (A⊤
f ν)P

∗ −P 0
∗ ∗ −P



 < 0 ∀ν ∈ [T1, T2]

(22)

A similar construction to Theorem 5.3 is proposed in [9]

for the design of a hybrid observer when measurements are

available intermittently.

Theorem 5.3 gives an equivalent form of (21) that is

linear with respect to P , F , and Ag . However, this condition

still needs to be checked for infinitely many values of

ν ∈ [T1, T2]. One method to deal with the dense set [T1, T2]
is to embed exp (Afν) into finitely many polytopes; that

is, find matrices {X1, X2, . . . , Xw} such that exp (Afν) ∈
co{X1, X2, . . . , Xw} for each ν ∈ [T1, T2].

Corollary 5.4: Let T1 and T2 be positive scalars such that

T1 ≤ T2. Let the matrices {X1, X2, . . . , Xw} satisfy

exp(Af [T1, T2]) ⊂ co{X1, X2, . . . , Xw}.

If there exist matrices J and F , and a positive definite

symmetric matrix P such that, for each i ∈ {1, 2, . . . , w},




−(F + F⊤) J XiP
⋆ −P 0
⋆ ⋆ −P



 < 0 (23)

where the entries Fik of F satisfy3









F11 − F13KPD + F14H F12 − F13K̃I

F21 − F23KPD + F24H F22 − F23K̃I

F31 − F33KPD + F34H F32 − F33K̃I

F41 − F43KPD + F44H F42 − F43K̃I









=









J11 J12
J21 J22
J31 J32
J41 J42









(24)

with KPD = K̃P + K̃D and

J =









J11 J12 0 0
J21 J22 0 0
J31 J32 0 0
J41 J42 0 0









, (25)

then the matrices P and FAg = J satisfy condition (21).

VI. EXAMPLES

We illustrate the design of a hybrid PID in examples.

Simulations use the HyEQ Toolbox in Matlab4 [15].

Example 6.1: In this example we illustrate Theorem 5.1.

Consider the mass-spring system with matrices as in (6).

Let K̃P = 10, K̃I = 4, and K̃D = 4. The time bounds

T1 and T2 are chosen as T1 = 0.1 and T2 = 0.25. Using

CVX [14] and defining matrices Af and Ag as in (13),

we can solve for P while enforcing the condition in (21)

and that P = P⊤ > 0. Components of a solution to the

closed-loop system and the value of V along it are shown

in Figure 3 (projected to the t axis). Trajectories for the

case of continuous measurements and same parameters are

also shown. Under intermittent output measurements, we are

able to guarantee uniform global asymptotic stability of the

desired set. Figure 3 also shows the control input to the

system over time. Note that the value of the control signal u
is held constant between output measurements – these events

3Note that there are multiple options for constraining F and J according
to (24). For instance, when conditions F23 = F33 = F43 = 0 and F13 = I

are imposed, then K̃DP = J11 − F11 − F14C and K̃I = J12 − F12.
4The MATLAB code for simulations presented

in this paper are available at GitHub repository
https://github.com/HybridSystemsLab/HybridPID.git
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Fig. 3. The position of the mass from a mass-spring-damper system when
using a PID controller and for a given reference signal r = 0 is shown in
the first plot. The control signal generated from the PID controller with a
sample and hold mechanism in the feedback loop is depicted in the second
graph. The timer triggering the sporadic events is seen in the third plot. The
Lyapunov function along a solution is shown in the bottom plot.

are not periodic. Simulation results validate Theorem 5.1 as

confirmed by the evolution of the Lyapunov function V at

the bottom of Figure 3.

Example 6.2: Consider the design of a PI controller as

in Section IV-D.2 for the mass-spring system with matrices

in (6), but now with the ability to observe both position

z1 and velocity z2. Given a constant reference signal, a PI

controller should have the steady state error ess = 0. We

design appropriate values of K̃P and K̃I to show that with

sporadic output measurements triggered at times satisfying

(5), the steady state error of the closed-loop system with PI

control is zero. To this end, pick K̃P = 2 and K̃I = 1, and

define Af and Ag as in (18). Figure 4 compares the state

response and associated input signal for the hybrid closed-

loop system given a unit step input r = 1. The initial state of

the plant is zero and the time bounds are chosen as T1 = 0.4
and T2 = 0.8.

VII. CONCLUSION

We have shown a systematic approach to designing a

PID controller where the measurements occur at intermittent

instances. By modeling the closed-loop system using the hy-

brid inclusion framework, we provided sufficient conditions

for uniform global asymptotic stability for the set of interest

and give a detailed approach for design following a polytopic

embedding approach. Future work for this research is to in-

vestigate dynamic gain scheduling to maximize convergence

rate while minimizing overshoot.
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