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Conventional homogeneous multicore processors are not able to provide the continued performance and en-

ergy improvement that we have expected from past endeavors. Heterogeneous architectures that feature spe-

cialized hardware accelerators are widely considered a promising paradigm for resolving this issue. Among

different heterogeneous devices, FPGAs that can be reconfigured to accelerate a broad class of applications

with orders-of-magnitude performance/watt gains, are attracting increased attention from both academia and

industry. As a consequence, a variety of CPU-FPGA acceleration platforms with diversified microarchitec-

tural features have been supplied by industry vendors. Such diversity, however, poses a serious challenge to

application developers in selecting the appropriate platform for a specific application or application domain.

This article aims to address this challenge by determining which microarchitectural characteristics affect

performance, and in what ways. Specifically, we conduct a quantitative comparison and an in-depth analysis

on five state-of-the-art CPU-FPGA acceleration platforms: (1) the Alpha Data board and (2) the Amazon F1

instance that represent the traditional PCIe-based platform with private device memory; (3) the IBM CAPI

that represents the PCIe-based system with coherent shared memory; (4) the first generation of the Intel

Xeon+FPGA Accelerator Platform that represents the QPI-based system with coherent shared memory; and

(5) the second generation of the Intel Xeon+FPGA Accelerator Platform that represents a hybrid PCIe-based

(non-coherent) and QPI-based (coherent) system with shared memory. Based on the analysis of their CPU-

FPGA communication latency and bandwidth characteristics, we provide a series of insights for both applica-

tion developers and platform designers. Furthermore, we conduct two case studies to demonstrate how these

insights can be leveraged to optimize accelerator designs. The microbenchmarks used for evaluation have

been released for public use.
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1 INTRODUCTION

In today’s datacenter designs, power and energy efficiency have become two of the primary con-
straints. The increasing demand for energy-efficient high-performance computing has stimulated
a growing number of heterogeneous architectures that feature hardware accelerators or copro-
cessors, such as GPUs (graphics processing units), FPGAs (field-programmable gate arrays), and
ASICs (application-specific integrated circuits). Among various heterogeneous acceleration plat-
forms, the FPGA-based approach is considered one of the most promising directions, since FPGAs
provide low-power and high-energy efficiency and can be reprogrammed to accelerate different
applications. Motivated by such advantages, leading cloud service providers have begun to incor-
porate FPGAs in their datacenters. For instance, Microsoft has designed a customized FPGA board
called Catapult and integrated it into conventional computer clusters to accelerate large-scale pro-
duction workloads, such as search engines [24] and neural networks [23]. In its Elastic Compute
Cloud (EC2), Amazon also introduces the F1 compute instance [2] that equips a server with one
or more FPGA boards. Intel, with its $16.7 billion acquisition of Altera, has predicted that approxi-
mately 30% of servers could have FPGAs in 2020 [1], indicating that FPGAs can play an important
role in datacenter computing.

With the trend of adopting FPGAs in datacenters, various CPU-FPGA acceleration platforms
with diversified microarchitectural features have been developed. We classify state-of-the-art
CPU-FPGA platforms in Table 1 according to their physical integration and memory models. Tra-
ditionally, the most widely used integration is to connect an FPGA to a CPU via the PCIe inter-
face, with both components equipped with private memories. Many FPGA boards built on top of
Xilinx or Intel FPGAs use this way of integration because of its extensibility. The customized Mi-
crosoft Catapult board integration is such an example. Another example is the Alpha Data FPGA
board [30] with the Xilinx FPGA fabric that can leverage the Xilinx SDAccel development en-
vironment [3] to support efficient accelerator design using high-level programming languages,
including C/C++ and OpenCL. The Amazon F1 instance also adopts this software/hardware envi-
ronment to allow high-level accelerator design. However, vendors like IBM tend to support a PCIe
connection with a coherent, shared memory model for easier programming. For example, IBM has
been developing the Coherent Accelerator Processor Interface (CAPI) on POWER8 [27] for such an
integration, and has used this platform in the IBM data engine for NoSQL [5]. Meanwhile, the CCIX
consortium has proposed the Cache Coherent Interconnect for Accelerators, which can connect
FPGAs with ARM processors through the PCIe interface with coherent shared memory as well [4].
More recently, closer CPU-FPGA integration becomes available using a new class of processor in-
terconnects such as front-side bus (FSB) and the newer QuickPath Interconnect (QPI), and provides
a coherent, shared memory, such as the FSB-based Convey machine [6] and the Intel Xeon+FPGA
accelerator platform [22]. While the first generation of the Xeon+FPGA platform (Xeon+FPGA v1)
connects a CPU to an FPGA only through a coherent QPI channel, the second generation of the
Xeon+FPGA platform (Xeon+FPGA v2) adds two non-coherent PCIe data communication channels
between the CPU and the FPGA, resulting in a hybrid CPU-FPGA communication model.

The evolution of various CPU-FPGA platforms brings up a challenging question: Which plat-
form should we choose to gain better performance and energy efficiency for a given application to
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Table 1. Classification of Modern CPU-FPGA Platforms

Separate Private Memory Shared Memory

PCIe Peripheral Interconnect
Alpha Data [30], Microsoft
Catapult [24], Amazon F1 [2]

IBM CAPI [27], CCIx [4]

Processor Interconnect N/A
Intel Xeon+FPGA v1 [22] (QPI),
Convey HC-1 [6] (FSB)

Hybrid N/A Intel Xeon+FPGA v2 (QPI, PCIe)

accelerate? There are numerous factors that can affect the choice, such as platform cost, program-
ming models and efforts, logic resource and frequency of FPGA fabric, and CPU-FPGA communi-
cation latency and bandwidth, to name just a few. While some of them are easy to figure out, others
are nontrivial, especially the communication latency and bandwidth between CPU and FPGA un-
der different integration. One reason is that there are few publicly available documents for the
newly announced platforms like the Xeon+FPGA family, CAPI, and Amazon F1 instance. More
importantly, those architectural parameters in the datasheets are often advertised values, which
are usually difficult to achieve in practice. Actually, sometimes there could be a huge gap between
the advertised numbers and practical numbers. For example, the advertised bandwidth of the PCIe
Gen3 x8 interface is 8GB/s; however, our experimental results show that the PCIe-equipped Al-
pha Data platform can only provide 1.6GB/s PCIe-DMA bandwidth using OpenCL APIs imple-
mented by Xilinx (see Section 3.2.1). Quantitative evaluation and in-depth analysis of such kinds
of microarchitectural characteristics could help CPU-FPGA platform users to accurately predict
the performance of a computation kernel to accelerate on various candidate platforms and make
the right choice. Furthermore, it could also benefit CPU-FPGA platform designers for identifying
performance bottlenecks and providing better hardware and software support.

Motivated by those potential benefits to both platform users and designers, this article aims to
discover which microarchitectural characteristics affect the performance of modern CPU-FPGA
platforms, and evaluate what that effect will be. We conduct our quantitative comparison on
five state-of-the-art CPU-FPGA platforms: (1) the Alpha Data board and (2) Amazon F1 instance
that represent the conventional PCIe-based platform with private device memory; (3) IBM CAPI
that represents the PCIe-based system with coherent shared memory; (4) Intel Xeon+FPGA
v1 that represents the QPI-based system with coherent shared memory; and (5) Xeon+FPGA v2
that represents a hybrid PCIe-based (non-coherent) and QPI-based (coherent) system with shared
memory. These five platforms cover various CPU-FPGA interconnection approaches and different
memory models as well.

In summary, this article makes the following contributions:

(1) The first quantitative characterization and comparison on the microarchitectures of state-
of-the-art CPU-FPGA acceleration platforms—including the Alpha Data board and Ama-
zon F1 instance, IBM CAPI, and Intel Xeon+FPGA v1 and v2—which covers the whole
range of CPU-FPGA connections. We quantify each platform’s CPU-FPGA communica-
tion latency and bandwidth and the results are summarized in Figure 1.

(2) An in-depth analysis of the big gap between advertised and practically achievable perfor-
mance (Section 3), with step-by-step decomposition of the inefficiencies.

(3) Seven insights for both application developers to improve accelerator designs and plat-
form designers to improve platform support (Section 4). Specifically, we suggest that ac-
celerator designers avoid using the advertised platform parameters to estimate the accel-
eration effect, which almost always leads to an overly optimistic estimation. Moreover,
we analyze the trade-off between private-memory and shared-memory platforms, and
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Fig. 1. Summary of CPU-FPGA communication bandwidth and latency (not to scale).

analytically model the effective bandwidth with the introduction of the memory data reuse
ratio r. We also propose the metric of computation-to-communication (CTC) ratio to mea-
sure when the CPU-FPGA communication latency and bandwidth are critical. Finally, we
suggest that the complicated communication stack and hard-to-use coherent cache system
may improve in the next-generation of CPU-FPGA platforms.

(4) Two case studies in real applications to demonstrate how these insights can be leveraged,
including matrix multiplication and matrix-vector multiplication. The former is a well-
known compute-intensive application, and the latter is bounded by communication. We
use these two applications to demonstrate how to choose the appropriate platform by
applying the proposed insights.

2 BACKGROUND

A high-performance interconnect between the host processor and FPGA is crucial to the over-
all performance of CPU-FPGA platforms. In this section, we first summarize existing CPU-FPGA
architectures with typical PCIe and QPI interconnects. Then, we present the private and shared
memory models of different platforms. Finally, we discuss related work.

2.1 Common CPU-FPGA Architectures

Typical PCIe-based CPU-FPGA platforms feature direct memory access (DMA) and private device
DRAM (Figure 2(a)). To interface with the device DRAM as well as the host-side CPU-attached
memory, a memory controller IP and a PCIe endpoint with a DMA IP are required to be imple-
mented on the FPGA, in addition to user-defined accelerator function units (AFUs). Fortunately,
vendors have provided hard IP solutions to enable efficient data copy and faster development cy-
cles. For example, Xilinx releases device support for the Alpha Data card [30] in the SDAccel de-
velopment environment [3]. As a consequence, users can focus on designing application-related
AFUs and easily swap them into the device support to build customized CPU-FPGA acceleration
platforms.

IBM integrates the Coherent Accelerator Processor Interface (CAPI) [27] into its Power8 and
future systems, which provides virtual addressing, cache coherence, and virtualization for PCIe-
based accelerators (Figure 2(b)). A coherent accelerator processor proxy (CAPP) unit is introduced
to the processor to maintain coherence for the off-chip accelerator. Specifically, it maintains the
directory of all cache blocks of the accelerator, and it is responsible for snooping the CPU bus for
cache block status and data on behalf of the accelerator. On the FPGA side, IBM also supplies a
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Fig. 2. A tale of five CPU-FPGA platforms.

power service layer (PSL) unit alongside the user AFU. The PSL handles address translation and
coherency functions while sending and receiving traffic as native PCIe-DMA packets. With the
ability to access coherent shared memory of the host core, device DRAM and memory controller
become optional for users.

Intel Xeon+FPGA v1 [22] brings the FPGA one step closer to the processor via QPI where an
accelerator hardware module (AHM) occupies the other processor socket in a two-socket moth-
erboard. By using QPI interconnect, data coherency is maintained between the last-level cache
(LLC) in the processor and the FPGA cache. As shown in Figure 2(c), an Intel QPI IP that contains
a 64KB cache is required to handle coherent communication with the processor, and a system pro-
tocol layer (SPL) is introduced to provide address translation and request reordering to the user
AFU. Specifically, a page table of 1024 entries, each associated with a 2MB page (2GB in total), is
implemented in SPL, which will be loaded by the device driver during runtime. Though current
addressable memory is limited to 2GB and private high-density memory for FPGA is not sup-
ported, this low-latency coherent interconnect has distinct implications for programming models
and overall processing models of CPU-FPGA platforms.

Xeon+FPGA v2 co-packages the CPU and FPGA to deliver even higher bandwidth and lower
latency than discrete forms. As shown in Figure 2(d), the communication between CPU and FPGA
is supported by two PCIe Gen3 x8 and one QPI (UPI in Skylake and later architectures) physical
links. These are presented as virtual channels on the user interface. The FPGA logic is divided into
two parts: the Intel-provided FPGA interface unit (FIU) and the user AFU. The FIU provides plat-
form capabilities such as unified address space, coherent FPGA cache, and partial reconfiguration
of user AFU, in addition to implementing interface protocols for the three physical links. More-
over, a memory properties factory for higher-level memory services and semantics is supplied to
provide a push-button development experience for end-users.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 12, No. 1, Article 4. Pub. date: February 2019.



4:6 Y.-K. Choi et al.

Fig. 3. Developer view of separate and shared memory spaces.

2.2 CPU-FPGA Memory Models

Accelerators with physical addressing effectively adopt a separate address space paradigm
(Figure 3). Data shared between the host and device must be allocated in both the host-side
CPU-attached memory and the private device DRAM, and explicitly copied between them by
the host program. Although copying array-based data structures is straightforward, moving
pointer-based data structures such as linked-lists and trees presents complications. Also, separate
address spaces cause data replication, resulting in extra latency and overhead. To mitigate this
performance penalty, users usually consolidate data movement into one upfront bulk transfer
from the host memory to the device memory. In this article, the evaluated Alpha Data and
Amazon F1 platforms fall into this category.

With tighter logical CPU-FPGA integration, the ideal case would be to have a unified shared ad-
dress space between the CPU and FPGA. In this case (Figure 3), instead of allocating two copies in
both host and device memories, only a single allocation is necessary. This has a variety of benefits,
including the elimination of explicit data copies, pointer semantics, and increased performance
of fine-grained memory accesses. CAPI enables unified address space through additional hard-
ware module and operating system support. Cacheline-aligned memory spaces allocated using
posix_memalign are allowed in the host program. Xeon+FPGA v1 provides the convenience of a
unified shared address space using pinned host memory, which allows the device to directly access
data on that memory location. However, users must rely on special APIs, rather than normal C or
C++ allocation (e.g., malloc/new), to allocate pinned memory space.

Xeon+FPGA v2 supports both memory models by configuring the supplied memory properties
factory, so that users can decide whether the benefit of having a unified address space outweighs
the address translation overhead based on their use case.

2.3 Related Work

In this section, we discuss three major categories of related work.
First, in addition to the commodity CPU-FPGA integrated platforms in Table 1, there is also a

large body of academic work that focuses on how to efficiently integrate hardware accelerators into
general-purpose processors. Yesil et al. [31] surveyed existing custom accelerators and integration
techniques for accelerator-rich systems in the context of data centers, but without a quantitative
study as we did. Chandramoorthy et al. [7] examined the performance of different design points
including tightly coupled accelerators (TCAs) and loosely coupled accelerators (LCAs) customized
for computer vision applications. Cotat et al. [15] specifically analyzed the integration and in-
teraction of TCAs and LCAs at different levels in the memory hierarchy. CAMEL [12] featured
reconfigurable fabric to improve the utilization and longevity of on-chip accelerators. All of these
studies were done using simulated environments instead of commodity CPU-FPGA platforms.

Second, a number of approaches have been proposed to make accelerators more programmable
by supporting shared virtual memory. NVIDIA introduced “unified virtual addressing” beginning
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Table 2. Platform Configurations of Alpha Data, F1, CAPI, Xeon+FPGA v1 and v2

Platform Alpha Data CAPI Xeon+FPGA v1 Xeon+FPGA v2 Amazon EC2 F1

Host CPU
Xeon E5-2620v3
@2.40GHz

Power8 Turismo
@4GHz

Xeon E5-2680v2
@2.80GHz

Xeon E5-2600v4
@2.4GHz

Xeon E5-2686v4
@2.3GHz

Host Memory
64GB
DDR3-1600

16GB
DDR3-1600

96GB
DDR3-1600

64GB
DDR4-2133

64GB DDR4-2133

FPGA Fabric
Xilinx Virtex 7
@200MHz

Xilinx Virtex 7
@250MHz

Intel Stratix V
@200MHz

Intel Arria 10
@400MHz‡

Xilinx UltraScale+
@250MHz

CPU↔ FPGA
PCIe Gen3 x8,
8GB/s

PCIe Gen3 x8,
8GB/s

Intel QPI,
12.8GB/s

1× Intel QPI &
2× PCIe Gen3
x8, 25.6GB/s

PCIe Gen3 x16,
16GB/s

Device Memory
16GB
DDR3-1600

16GB
DDR3-1600†

N/A N/A 64GB DDR4-2133

†The device memory in CAPI is not used in this work.
‡The user clock can be easily configured to 137/200/273MHz using the supplied SDK, in addition to max 400MHz frequency.

with the Fermi architecture [21]. The Heterogeneous System Architecture Foundation announced
heterogeneous Uniform Memory Accesses (hUMA) that will implement the shared address para-
digm in future heterogeneous processors [25]. Cong et al. [11] propose supporting address transla-
tion using two-level TLBs and host page walk for accelerator-centric architectures. Shared virtual
memory support for CPU-FPGA platforms has been explored in CAPI and the Xeon+FPGA fam-
ily [22, 27]. This article covers both the separate memory model (Alpha Data and F1 instance) and
shared memory model (CAPI, Xeon+FPGA v1 and v2).

Third, there are several works that evaluate modern CPU and GPU microarchitectures. For ex-
ample, Fang et al. [16] evaluated the memory system microarchitectures on commodity multicore
and many-core CPUs. Wong et al. [29] evaluated the microarchitectures on modern GPUs. This
work is the first to evaluate the microarchitectures of modern CPU-FPGA platforms with an in-
depth analysis.

3 CHARACTERIZATION OF CPU-FPGA MICROARCHITECTURES

This work aims to reveal how the underlying microarchitectures—i.e., processor or peripheral in-
terconnect, and shared or private memory model—affect the performance of CPU-FPGA platforms.
To achieve this goal, in this section we quantitatively study those microarchitectural characteris-
tics, with a key focus on the effective bandwidth and latency of CPU-FPGA communication on five
state-of-the-art platforms: Alpha Data, CAPI, Xeon+FPGA v1 and v2, and Amazon F1 instance.1

3.1 Experimental Setup

To measure the CPU-FPGA communication bandwidth and latency, we design and implement our
own microbenchmarks, based on the Xilinx SDAccel SDK 2017.4 [3] for Alpha Data and F1 instance,
Alpha Data CAPI Design Kit [17] for CAPI, and Intel AALSDK 5.0.3 [18] for Xeon+FPGA v1 and v2.
Each microbenchmark consists of two parts: a host program and a computation kernel. Following
each platform’s typical programming model, we use the C language to write the host programs for
all platforms, and describe the kernel design using OpenCL for Alpha Data and F1 instance, and
Verilog HDL for the other three platforms.

The hardware configurations of Alpha Data, CAPI, Xeon+FPGA v1 and v2, and Amazon F1 in
our study are listed in Table 2.

1Results in this publication were generated using pre-production hardware or software and may not reflect the performance

of future products.
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Fig. 4. Effective bandwidth of Alpha Data, CAPI, Xeon+FPGA v1 and v2, and F1 instance.

3.2 Effective Bandwidth

3.2.1 Effective Bandwidth for Alpha Data. Traditional CPU-FPGA platforms like Alpha Data
contain two communication phases: (1) PCIe-based direct memory access (DMA) between host
memory and device memory, and (2) device memory access. We measure the effective bandwidths
with various payload sizes for both phases. The measurement results are illustrated in Figure 4.
Since the bandwidths for both directions of PCIe-DMA transfer are almost identical (less than 4%
difference), we only present the unidirection PCIe-DMA bandwidth in Figure 4.

While Figure 4 illustrates a relatively high private DRAM bandwidth (9.5GB/s for read, 8.9GB/s
for write2), the PCIe-DMA bandwidth (1.6GB/s) reaches merely 20% of PCIe’s advertised band-
width (8GB/s). That is, the expectation of a high DMA bandwidth with PCIe is far from being
fulfilled.

The first reason is that there is non-payload data overhead for the useful payload transfer [20].
In a PCIe transfer, a payload is split into small packets, each packet equipped with a header. Along
with the payload packets, there are also a large number of packets for control purposes transferred
through PCIe. As a result, the maximum supplied bandwidth for the actual payload, which we call
the theoretical bandwidth, is already smaller than the advertised value.

Another important reason is that a PCIe-DMA transaction involves not only PCIe transfer, but
also host buffer allocation and host memory copy [14]. The host memory stores user data in a
pageable (unpinned) space from which the FPGA cannot directly retrieve data. A page-locked
(pinned), physically contiguous memory buffer is in the operating system kernel space that serves
as a staging area for PCIe transfer. When a PCIe-DMA transaction starts, a pinned buffer is first
allocated in the host memory, followed by a memory copy of pageable data to this pinned buffer.

2If not specifically indicated, the bandwidth appearing in the remainder of this article refers to the maximum achievable

bandwidth.
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Fig. 5. PCIe-DMA bandwidth breakdown.

The data is then transferred from the pinned buffer to device memory through PCIe. These three
steps—buffer allocation, host memory copy, and PCIe transfer—are sequentially processed in Alpha
Data, which significantly decreases the PCIe-DMA bandwidth.

Moreover, there could be some implementation deficiencies in the vendor-provided environ-
ment which serve as another source of overhead.3 One possibility could be the data transfer over-
head between the endpoint of the PCIe channel, i.e., the vendor-provided FPGA DMA IP, and the
FPGA-attached device DRAM. Specifically, the device DRAM does not directly connect to the PCIe
channel; instead, the data from the host side first reach the on-chip DMA IP and then are written
into the device DRAM through the vendor-provided DRAM controller IP. If this extra step were
not well overlapped with the actual data transfer via the PCIe channel through careful pipelining,
then it would further reduce the effective bandwidth. Our experiments show that a considerable
gap still exists between the measured bandwidth and the theoretical value, indicating that the
vendor-provided environment could be potentially improved with further performance tuning.

Next, we quantitatively evaluate the large PCIe-DMA bandwidth gap step-by-step, with results
shown in Figure 5.

(1) The non-payload data transfer lowers the theoretical PCIe bandwidth to 6.8GB/s from the
advertised 8GB/s [20].

(2) Possible implementation deficiencies in the vendor-provided environment prevent the
6.8GB/s PCIe bandwidth from being fully exploited. As a result, the highest achieved ef-
fective PCIe-DMA bandwidth without buffer allocation and host memory copy decreases
to 5.2GB/s.

(3) The memory copy between the pageable and pinned buffers further degrades the PCle-
DMA bandwidth to 2.7GB/s.

(4) The buffer allocation overhead degrades the final effective PCIe-DMA bandwidth to only
1.6GB/s. This is the actual bandwidth that end-users can obtain.

3.2.2 Effective Bandwidth for CAPI. CPU-FPGA platforms that realize the shared memory
model, such as CAPI, Xeon+FPGA v1 and v2, allow the FPGA to retrieve data directly from the host
memory. Such platforms therefore contain only one communication phase: host memory access
through the communication channel(s). For the PCIe-based CAPI platform, we simply measure the
effective read and write bandwidths of its PCIe channel for a variety of payload sizes, as shown in
Figure 4.

3The Xilinx SDAccel environment is close-sourced, so we were not able to pinpoint this overhead.
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Compared to the Alpha Data board, CAPI supplies end-users with a much higher effective PCIe
bandwidth (3.3GB/s vs. 1.6GB/s). This is because CAPI provides efficient API support for appli-
cation developers to directly allocate and manipulate pinned memory buffers, eliminating the
memory copy overhead between the pageable and pinned buffers. However, Alpha Data’s pri-
vate local memory read and write bandwidths (9.5GB/s, 8.9GB/s) are much higher than those of
CAPI’s shared remote memory access. This phenomenon offers opportunities for both platforms.
As will be discussed in Section 4, if an accelerator is able to efficiently use the private memory
as a “shortcut” for accessing the host memory, it will probably obtain a similar or even more ef-
fective CPU-FPGA communication bandwidth in a traditional platform like Alpha Data than in a
shared-memory platform like CAPI or Xeon+FPGA.

Another remarkable phenomenon shown in Figure 4 is the dramatic falloff of the PCIe band-
width at the 4MB payload size. This could be the side effect of CAPI’s memory coherence mecha-
nism. CAPI shares the last-level cache (LLC) of the host CPU with the FPGA, and the data access
latency varies significantly between LLC hit and miss. Therefore, one possible explanation for the
falloff is that CAPI shares 2MB of the 8MB LLC with the FPGA. Payloads of a size that is not larger
than 2MB can fit into LLC, resulting in a low LLC hit latency that can be well amortized by a few
megabytes of data. Nevertheless, when the payload size grows to 4MB and cannot fit into LLC, the
average access latency of the payload data will suddenly increase, leading to the observed falloff.
With the payload size continuing to grow, this high latency is gradually amortized, and the PCIe
bandwidth gradually reaches the maximum value.

3.2.3 Effective Bandwidth for Xeon+FPGA v1. The CPU-FPGA communication of Xeon+FPGA
v1 involves only one step: host memory access through QPI; therefore, we just measure a set of ef-
fective read and write bandwidths for different payload sizes, as shown in Figure 4. We can see that
both the read and write bandwidths (7.0GB/s, 4.9GB/s) are much higher than the PCIe bandwidths
of Alpha Data and CAPI; that is, the QPI-based CPU-FPGA integration demonstrates a higher
effective bandwidth than the PCIe-based integration. However, the remote memory access band-
widths of Xeon+FPGA v1 are still lower than those of Alpha Data’s local memory access. Thus,
similar to CAPI, Xeon+FPGA v1 can possibly be outperformed by Alpha Data if an accelerator
keeps reusing the data in the device memory as a “shortcut” for accessing the host memory.

We need to mention that Xeon+FPGA v1 provides a 64KB cache on its FPGA chip for coherency
purposes [22]. Each CPU-FPGA communication will first go through this cache and then go to the
host memory if a cache miss happens. Therefore, the CPU-FPGA communication of Xeon+FPGA v1
follows the classic cache access pattern. Since the bandwidth study mainly focuses on large pay-
loads, our microbenchmarks simply flush the cache before accessing any payload to ensure all
requests go through the host memory. The bandwidths illustrated in Figure 4 are, more accurately,
miss bandwidths. Section 3.3.1 discusses the cache behaviors in detail.

3.2.4 Effective Bandwidth for Xeon+FPGA v2. While the CPU-FPGA communication of
Xeon+FPGA v2 involves only one step as well, Xeon+FPGA v2 allows the user accelerator to oper-
ate at different clock frequencies. Therefore, we measure the effective bandwidths of various pay-
loads sizes at 200 and 400MHz. The frequency that is also used by Alpha Data and Xeon+FPGA v1
is 200MHz; 400MHz is the maximal frequency supported by Xeon+FPGA v2. Note that this change
does not affect the frequency of the internal logic of the communication channels, but just the
interface between the channels and the user accelerator. Figure 4 illustrates the measurement re-
sults. We can see that Xeon+FPGA v2 outperforms the aforementioned three CPU-FPGA plat-
forms in terms of effective bandwidth (20GB/s at 400MHz, 12.8GB/s at 200MHz). This is because
Xeon+FPGA v2 connects the CPU and the FPGA through three communication channels—one QPI
channel and two PCIe channels—resulting in a significantly high aggregate bandwidth.
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Table 3. CPU-FPGA Access

Latency in Xeon+FPGA

Access Type Latency (ns)

Read Hit 70
Write Hit 60
Read Miss avg: 355
Write Miss avg: 360

Like its first generation, Xeon+FPGA v2 also provides a 64KB on-chip cache for coherency pur-
poses. However, this cache maintains coherence only for the QPI channel, and the two PCIe chan-
nels have no coherence properties. As a consequence, Xeon+FPGA v2 actually delivers a partially
coherent memory model. We will discuss the cache behaviors of the Xeon+FPGA family in Sec-
tion 3.3.1 and the coherence issue in Section 4.

3.2.5 Effective Bandwidth for F1 Instance. The Amazon EC2 F1 instance represents the state-of-
the-art advance of the canonical PCIe-based platform architecture. Like the Alpha Data board, it
connects the CPU with the FPGA through the PCIe channel, with private memory attached to both
components. It is powered by the Xilinx SDAccel environment as well to achieve the behavior-level
hardware accelerator development. Both the PCIe channel and the private DRAM are upgraded to
supply higher bandwidths. However, the end-to-end bandwidth delivered to the end-user is rather
surprising. As illustrated in Figure 4, the effective PCIe bandwidth of the F1 instance turns out
to be even worse than that of the Alpha Data board which adopts an old-generation technique.
The breakdown in Figure 5 shows that the F1 PCIe bandwidth is twice the amount of the Alpha
Data bandwidth if the buffer allocation and the memory copy overhead are not considered. This
suggests that the buffer allocation and memory copy impose more overhead on the F1 instance
than on the Alpha Data board. It might be due to the virtualization overhead of the F1 instance.

As mentioned before, the fact that CPU-FPGA bandwidth of Xeon+FPGA v1 lies between the
PCIe bandwidth and the private device DRAM bandwidth of the Alpha Data board provides op-
portunities for both platforms. The F1 instance and Xeon+FPGA v2 form another (more advanced)
pair of CPU-FPGA platforms that follows such a relation. We expect that this relation between
a private-memory platform and a shared-memory platform will continue to exist in future CPU-
FPGA platforms, and the platform suitability will depend on the characteristics of each application.
This will be discussed in Section 4.

3.3 Effective Latency

3.3.1 Coherent Cache Behaviors. As described in Sections 3.2.3 and 3.2.4, the QPI channel of the
Xeon+FPGA family includes a 64KB cache for coherence purposes, and the QPI-based communi-
cation thus falls into the classic cache access pattern. A cache transaction is typically depicted by
its hit time and miss penalty. We follow this traditional methodology for cache study and quantify
the hit time and miss latency of the Xeon+FPGA coherent cache, as shown in Table 3.

A noteworthy phenomenon is the long hit time—70ns (14 FPGA cycles) for read hit and 60ns (12
FPGA cycles) for write hit in this 64KB cache. We investigate this phenomenon by decomposing
the hit time into three phases—address translation, cache access, and transaction reordering—and
measuring the elapsed time of each phase, as shown in Table 4.

The data demonstrate a possibly exorbitant price (up to 100% extra time) paid for address trans-
lation and transaction reordering. Worse still, the physical cache access latency is still prohibitively
high—35ns (seven FPGA cycles). Given this small but long-latency cache, it is extremely hard, if
not impossible, for an accelerator to harness the caching functionality.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 12, No. 1, Article 4. Pub. date: February 2019.



4:12 Y.-K. Choi et al.

Table 4. Hit Latency Breakdown in Xeon+FPGA

Access Step Read Latency (ns) Write Latency (ns)

Address Translation 20 20
Cache Access 35 35
Transaction Reordering 15 5

Table 5. Latencies of Transferring a Single 512-bit Cache Block

Platform Alpha Data CAPI Xeon+FPGA v1 Xeon+FPGA v2 Amazon EC2 F1

Latency
PCIe: 160μs

882ns 355ns 323ns
PCIe: 127μs

DRAM: 542ns DRAM: 561ns

It is worth noting that the Xeon+FPGA v2 platform supports higher clock frequencies than
its first generation and thus can potentially lead to a lower cache access latency. However, this
does not fundamentally change the fact that the latency of accessing the coherent cache is still
much longer than that of accessing the on-chip BRAM blocks. Therefore, Xeon+FPGA v2 does
not fundamentally improve the usability of the coherent cache. As discussed in Section 4, we still
suggest accelerator designers sticking to the conventional FPGA design principle that explicitly
manages the on-chip BRAM resource.

3.3.2 Communication Channel Latencies. We now compare the effective latencies among the
PCIe transfer of Alpha Data, F1 instance and CAPI, the device memory access of Alpha Data and
F1 instance, and the QPI transfer of the Xeon+FPGA family.4 Table 5 lists the measured latencies
of all five platforms for transferring a single 512-bit cache block (since all of them have the same
512-bit interface bitwidth). We can see that the QPI transfer expresses orders-of-magnitude lower
latency compared to the PCIe transfer and is even smaller than that of Alpha Data or Amazon F1’s
private DRAM access. This rather surprising observation is largely due to the implementation of
the vendor-provided environment. In particular, Xilinx SDAccel connects the accelerator circuit to
the FPGA-attached DRAM through not only the DRAM controller but also an AXI interface that
is implemented on the FPGA chip. The data back and forth through the AXI interface impose a
significant overhead to the effective device DRAM access latency,5 resulting in the fact that the
local DRAM access latency of Alpha Data is even longer than the remote memory access latency
of Xeon+FPGA. This phenomenon implies that a QPI-based platform is preferable for applications
with fine-grained CPU-FPGA interaction. In addition, we can see that CAPI’s PCIe transfer latency
is much lower than that of the Alpha Data board. This is because the Alpha Data board harnesses
the SDAccel SDK which enables accelerator design and integration through high-level program-
ming languages. Such a higher level of abstraction introduces an extra CPU-FPGA communication
overhead in processing the high-level APIs.

4 ANALYSIS AND INSIGHTS

Based on our quantitative studies, we now analyze how these microarchitectural characteristics
can affect the performance of CPU-FPGA platforms and propose seven insights for platform users
(to optimize their accelerator designs) and platform designers (to improve the hardware and soft-
ware support in future CPU-FPGA platform development).

4For simplicity, we mainly discuss the CPU-to-FPGA read case; the observation is similar for the FPGA-to-CPU write case.
5While not being able to perfectly reason the long latency of the Xilinx platforms, we have confirmed with Xilinx that the

phenomenon is observed by Xilinx as well, and the AXI bus is one of the major causes.
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4.1 Insights for Platform Users

Insight 1: Application developers should never use the advertised communication parameters, but

measure the practically achievable parameters to estimate the CPU-FPGA platform performance.

Experienced accelerator designers are generally aware of the data transfer overhead from the
non-payload data (e.g., packet header, checksum, control packets, etc.) and expect approximately
10% to 20% or even less bandwidth degradation. Quite often, this results in a significant overes-
timation of the end-to-end bandwidth due to the unawareness of the overhead generated by the
system software stack, like the host-to-kernel memory copy discussed in this article. As analyzed
in Section 3, the effective bandwidth provided by a CPU-FPGA platform to end-users is often far

worse than the advertised value that reflects the physical limit of the communication channel.
For example, the PCIe-based DMA transfer of the Alpha Data board fulfills only 20% of the 8GB/s
bandwidth of the PCIe Gen3 x8 channel; the Amazon F1 instance that adopts a more advanced
data communication technique delivers an even worse effective bandwidth to the end-user. Eval-
uating a CPU-FPGA platform using these advertised values will probably result in a significant
overestimation of the platform performance. Worse still, the relatively low effective bandwidth
is not always achievable. In fact, the communication bandwidth for a small payload is up to two
orders of magnitude smaller than the maximum achievable effective bandwidth. A specific appli-
cation may not always be able to supply each communication transaction with a sufficiently large
payload to reach a high bandwidth. Platform users need to consider this issue as well in platform
selection.

Insight 2: In terms of effective bandwidth, both the private-memory and shared-memory platforms

have opportunities to outperform each other. The key metric is the device memory reuse ratio r.
Bounded by the low-bandwidth PCIe-based DMA transfer, the Alpha Data board generally

reaches a lower CPU-FPGA effective bandwidth than that of a shared-memory platform like CAPI
or Xeon+FPGA v1. The higher private memory bandwidth, however, does provide opportunities
for a private-memory platform to perform better in some cases. For example, given 1GB input data
sent to the device memory through PCIe, if the FPGA accelerator iteratively reads the data for a
large number of times, then the low DMA bandwidth will be amortized by the high private mem-
ory bandwidth, and the effective CPU-FPGA bandwidth will be nearly equal to the private memory
bandwidth, which is higher than that of the shared-memory platform. Therefore, the data reuse
of FPGA’s private DRAM determines the effective CPU-FPGA bandwidth of a private-memory
platform and whether it can achieve higher effective bandwidth than a shared-memory platform.

Quantitatively, we define the device memory reuse ratio, r , as

r =

∑
dev Sdev
∑

dma Sdma
,

where
∑

dev Sdev denotes the aggregate data size of all device memory accesses, and
∑

dma Sdma

denotes the aggregate data size of all DMA transactions between the host and the device memory.
Then, the effective CPU-FPGA bandwidth for a private-memory platform, bwcpu−f pдa , can be

defined as

bwcpu−f pдa =
1

1

r ∗ bwdma
+

1

bwdev

,

where bwdma and bwdev denote the bandwidths of the DMA transfer and the device memory
access, respectively.

The formula suggests that larger r leads to higher effective CPU-FPGA bandwidth. It is worth
noting that since the FPGA on-chip BRAM data reuse is typically important for FPGA design
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optimization, the finding suggests that accelerator designers using a private-memory platform
need to consider both on-chip BRAM data reuse and off-chip DRAM data reuse. Moreover, by com-
paring this effective CPU-FPGA bandwidth of a private-memory platform to the DRAM bandwidth
of a shared-memory platform, we can get a threshold of device memory reuse ratio, rthr eshold . If the
r value of an application is larger than rthr eshold , then the private-memory platform will achieve a
higher bandwidth, and vice versa. This could serve as an initial guideline for application developers
to choose the appropriate platform for a specific application. One example is the logistic regres-
sion application whose computation kernel is a series of matrix-vector multiplication operations
that iterate over the same input matrix. Our matrix-vector multiplication case study in Section 5.2
demonstrates that the Alpha Data board starts to outperform Xeon+FPGA v1 when the iteration
number grows beyond 7, which is the value of rthr eshold for Alpha Data and Xeon+FPGA v1. Also,
this phenomenon continues to exist between the next-generation platforms, i.e., the Amazon EC2
F1 instance and Xeon+FPGA v2. This suggests that the proposed device memory reuse ratio is
not merely applicable to the evaluated platforms in this article, but also provides guidance to the
selection of the private-memory versus shared-memory CPU-FPGA platforms across generations.

Fundamentally, the device memory reuse ratio quantifies the trade-off between private-memory
and shared-memory platforms based on the following two observations. First, local memory access
is usually faster than remote memory access. Using the same technology, the private-memory
platform achieves a higher device memory access bandwidth compared to the shared-memory
platform which retrieves data from the CPU-attached memory. Second, the end-to-end CPU-FPGA
data transfer routine of the shared-memory platform is a subset of that of the private-memory
platform. Specifically, the routine of the private-memory platform contains data transfers (1) from
CPU-attached memory to FPGA, (2) from FPGA to FPGA-attached memory, and (3) from FPGA-
attached memory to FPGA; whereas the shared-memory platform performs only the first step.
Since these observations are not likely to change over time, we expect that the trade-off between
these two types of platforms will continue to exist, and the device memory reuse ratio will remain
a critical parameter.

Insight 3: In terms of effective latency, the shared-memory platform generally outperforms the

private-memory platform, and the QPI-based platform outperforms the PCIe-based platform.

As shown in Table 5, the shared-memory platform generally achieves a lower communication
latency than the private-memory platform with the same communication technology (CAPI vs. Al-
pha Data). This is because the private-memory platform first caches the data in its device memory
and then allows the FPGA to access the data; this results in a longer communication routine. This
advantage, together with an easier programming model, motivates the new trend of CPU-FPGA
platforms with a PCIe connection and coherent shared memory, such as CAPI and CCIx.

Meanwhile, compared to the PCIe-based platform, the QPI-based platform brings the FPGA
closer to the CPU, leading to a lower communication latency. Therefore, a QPI-based, shared-
memory platform is preferred for latency-sensitive applications, especially those that require fre-
quent (random) fine-grained CPU-FPGA communication. Some examples, such as high-frequency
trading (HFT), online transaction processing (OLTP), or autonomous driving, might benefit from
the low communication latency of the QPI channel. Compared to Xeon+FPGA systems, the ma-
jor drive of the PCIe-based shared memory system is its extensibility for more FPGA boards in
large-scale systems.

Insight 4: CPU-FPGA communication is critical to some applications, but not all. The key metric is

the computation-to-communication ratio (CTC).
Double buffering and dataflow are well-used techniques in accelerator design optimiza-

tions. Such techniques can realize a coarse-grained data processing pipeline by overlapping the
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computation and data communication processes. As a result, the performance of the FPGA accel-
erator is generally bounded by the coarse-grained pipeline stage that consumes more time. Based
on this criterion, FPGA accelerators can be roughly categorized into two classes: (1) computation-
bounded ones where the computation stage takes a longer time, and (2) communication-bounded
ones where the communication stage takes longer time.

If an accelerator is communication-bounded, then a better CPU-FPGA communication stack
will greatly improve its overall performance. As demonstrated in our matrix-vector multiplica-
tion case study (Section 5.2), the overall performance of the FPGA accelerator is determined by
the effective CPU-FPGA communication bandwidth that the platform can provide. In this case,
the high-bandwidth F1 instance and Xeon+FPGA v2 platform are preferred. However, if an accel-
erator is computation-bounded, then switching to another platform with a better communication
stack does not make a considerable difference. As a computation-bounded accelerator example, the
matrix multiplication accelerator performs almost the same in Alpha Data, CAPI, the Xeon+FPGA
family, and the F1 instance when scaling to the same 200MHz frequency. In this case, the tradi-
tional PCIe-based private-memory platform may be preferred because of its good compatibility.
One may even prefer not to choose a platform with the best CPU-FPGA communication technology
for cost efficiency. Application developers should find out whether the application to accelerate is
compute-intensive or communication-intensive to select the appropriate platform.

Quantitatively, we use the computation-to-communication (C2C) ratio [32] (which is also named
“memory intensity” in Reference [28]) to justify whether a computation kernel is computa-
tion/communication bounded. Specifically, the C2C ratio is defined as the division of the com-
putation throughput and the data transfer throughput:

C2C ratio =
Throuдhputcompute

Throuдhputtr ansf er
.

The computation throughput is referred to as the speed of processing a certain size of input for a
given FPGA accelerator; the data transfer throughput is referred to as the speed of transferring this
certain size of input into or out of the FPGA fabric. When the C2C ratio of a kernel is above 1, this
kernel is then computation bounded; otherwise, it is communication bounded. In general, the data
transfer throughput is linearly proportional to the input size. Therefore, a computation kernel with
super-linear time complexity, such as matrix multiplication, is computation bounded. Meanwhile,
computation kernels—like matrix-vector multiplication that is of linear time complexity—are often
bounded by the CPU-FPGA communication. For computation bounded kernels, the CPU-FPGA
communication bandwidth is not the performance bottleneck, so the accelerator designers do not
need to chase for high-end communication interfaces. However, the CPU-FPGA communication
is critical to communication bounded kernels with C2C ratio less than 1, and the efficiency of the
communication interface is then a key factor in platform selection.

Insight 5: CPU-FPGA memory coherence is promising, but impractical to be used in accelerator de-

sign, at least for now.

The newly announced CPU-FPGA platforms, including CAPI, CCIx, and the Xeon+FPGA family,
attempt to provide memory coherence support between the CPU and the FPGA—either through
PCIe or QPI. Their implementation methodology is similar: constructing a coherent cache on the
FPGA fabric to realize the classic snoopy protocol with the last-level cache of the host CPU. How-
ever, although the FPGA fabric supplies a few megabytes of on-chip BRAM blocks, only 64KB
(the Xeon+FPGA family) or 128KB (CAPI) of them are organized into the coherent cache. That
is, these platforms maintain memory coherence for less than 5% of the on-chip memory space,
leaving the majority as scratchpads of which the coherence needs to be maintained by application
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developers. Although users may choose to ignore the 95% scratchpads and store data on chip only
through the coherent cache to obtain transparent coherence maintenance, this approach is appar-
ently inefficient. For one thing, the coherent cache has a much longer access latency than that of
the scratchpads. Also, the coherent cache provides much less parallel access capability compared
to the scratchpads that can potentially feed thousands of data per cycle. As a consequence, appli-
cation developers may still have to stick to the conventional FPGA accelerator design principle to
explicitly manage the coherence of the scratchpad data.

While the current implementation of the CPU-FPGA memory coherence seems to be impracti-
cal due to the aforementioned prohibitively high overhead, the methodology does create a great
potential for reducing FPGA programming effort. The coherent cache is particularly beneficial for
computation kernels with unforeseeable memory access patterns, such as hashing. As will be dis-
cussed in Insight 7, implementing the coherent cache on the FPGA fabric considerably restricts
its capacity, latency, and bandwidth. If the cache is implemented as a dedicated ASIC memory
block in future FPGA platforms, then application developers could harness the power of the cache
coherence.

4.2 Insights for Platform Designers

Insight 6: There still exists a large room for improvement to bridge the gap between the practically

achieved bandwidth and the physical limit of the communication channel.

For example, none of Alpha Data, CAPI, or Amazon F1 instance fulfill the 8GB/s PCIe bandwidth,
even without considering the overhead of pinned memory allocation and pageable-pinned mem-
ory copy. Meanwhile, it proves to be a good alternative to alleviate the communication overhead
by allowing direct pageable data transfer through PCIe, which is realized in the CAPI platform.
Another alternative is to offer end-users the capability to directly manipulate pinned memory
space. For example, both the Xeon+FPGA family and unified virtual addressing (CUDA for GPU)
provide efficient and flexible API support to allow software developers to operate on allocated
pinned memory arrays or objects just like those allocated by malloc/new [21]. Nevertheless, these
solutions result in “fragmented” payloads, i.e., the payload data may be stored in discrete memory
pages, causing reduced communication bandwidth.

Another alternative optimization is to form the CPU-FPGA communication stack into a coarse-
grained pipeline, like the CUDA streams technique in GPUs. This may slightly increase the com-
munication latency for an individual payload but could significantly boost the throughput of CPU-
FPGA communication for concurrent transactions.

Both approaches should solve the problem, and the solution has been verified by two of our
follow-up studies. Guided by this insight, Reference [26] proposes a new programming environ-
ment for streaming applications that achieves a much higher effective bandwidth in the Amazon
F1 instance; Reference [13] proposes a deep pipeline stack to overlap the communication and com-
putation steps. More discussions are provided in Section 5.3.

Insight 7: The coherent cache design could be greatly improved.

The coherent cache of the recently announced CPU-FPGA platforms aims to provide the classic
functionalities of CPU caches: data caching and memory coherence that are transparent to pro-
grammers. However, the long latency and small capacity make this component impractical to be
used efficiently in FPGA accelerator design.

One important reason for such a long-latency, small-capacity design is that the coherent cache
is implemented on the FPGA fabric. Therefore, compared to the CPU cache counterpart, the FPGA-
based coherent cache has a much lower frequency and thus a much worse performance. One pos-
sible approach to address this issue is to move the coherent cache module out of the FPGA fabric
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Fig. 6. Matrix multiplication kernel execution time.

as a hard ASIC circuit instead. This could potentially reduce the difference between the FPGA’s
cache latency and the scratchpad latency and also enlarge the cache capacity. As a result, cache
can be more efficiently utilized in FPGA accelerator designs.

Another important reason is that the cache structure generally has a very limited number of
data access ports. In contrast, the BRAM blocks on the FPGA fabric can be partitioned to supply
thousands of data in parallel. To exploit such a parallel data supply, it is also a common practice
to assign a dedicated BRAM buffer for multiple processing elements in FPGA accelerator design
(e.g., Reference [9]). Since massive parallelism is a widely adopted way for FPGA acceleration, the
future cache design may also need to take this into consideration; e.g., a distributed, many-port
cache design might be preferred to a centralized, single-port design.

5 CASE STUDIES

To demonstrate the usefulness of our proposed insights, we conduct two case studies that utilize
those insights (for platform users) to optimize the accelerator designs: matrix multiplication and
matrix-vector multiplication. These two applications share the same basic operations, floating-
point addition and multiplication, but belong to different categories. The former is computation-
bounded, and the latter is communication-bounded. We use them to demonstrate how to leverage
our two proposed metrics—device memory reuse ratio r and the computation-to-communication
ratio CTC—to choose the right platform.

The basic settings of the two cases are almost identical. The dimension of the matrices is
4096×4096, and the dimension of the vectors is 4096. The input data are initially stored in the
CPU-attached memory, and the output data will be stored back to the CPU-attached memory. The
same systolic-array-based matrix multiplication accelerator design presented in Reference [19]
is implemented on all five platforms, and the matrix-vector multiplication design has a similar
architecture. For comparison purposes, the computation architecture has been almost identically
designed on all platforms; thus, the capacity of the FPGA fabric has no effect on our case evaluation.

5.1 Matrix Multiplication

Given two N × N floating-point matrices as input and a N × N matrix as output, the computa-
tion time complexity (O (N 3)) is higher than that of data communication (O (N 2)), resulting in the
algorithm being computation-bounded. Figure 6 illustrates the accelerator performances on the
five platforms. We can see that the performance is proportionate to the frequency of the accelera-
tor design. In detail, since Alpha Data and Xeon+FPGA v1 have the same frequency of operation,
200MHz, the same accelerator design leads to almost identical performance. For the Xeon+FPGA v2
platform that supports multiple frequencies, we configure the accelerator under both 200MHz
and 273MHz to (1) make a fair comparison with other platforms, (2) demonstrate the impact of
frequency. The results show that the 200MHz design on the Xeon+FPGA v2 platform does not
achieve any superiority over the ones on Alpha Data and Xeon+FPGA v1, even though it has a
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Fig. 7. Matrix-vector multiplication kernel execution time.

much higher CPU-FPGA communication bandwidth. Meanwhile, the CAPI platform and the F1
instance with the 250MHz frequency delivers a better performance over the 200MHz designs on
the other platforms.

The fundamental reason for such results is that the matrix multiplication design is computation-
bounded. The data communication is therefore completely overlapped by the accelerator computa-
tion, which is determined by the frequency of operation given the same circuit design. This verifies
our insight that a carefully designed accelerator may diminish the impact of CPU-FPGA communi-
cation if it is computation-bounded. Application developers could thus focus on the other factors
in platform selection, like compatibility, cost, and so on.

5.2 Matrix-Vector Multiplication

Given an N × N floating-point matrix and an N -dimension vector as input, and an N -dimension
vector as output, the computation time complexity (O (N 2)) is the same as that of the data commu-
nication (O (N 2)). The algorithm is generally communication-bounded. To avoid the interference of
the accelerator design and the frequency of operation, we use the same design on Alpha Data and
Xeon+FPGA under the same 200MHz frequency. In order to demonstrate the impact of the device
memory reuse ratio, we iteratively perform the matrix-vector multiplication with the same matrix,
but the updated vector that is generated from the last iteration. This is the typical computation
pattern of the widely used logistic regression application.

Figure 7 illustrates the performances on different platforms with various iteration numbers. Note
that the accelerator performance on Xeon+FPGA is not affected by the iteration number, so we
just show one value for it. We can see that the accelerator performance on the Alpha Data board
improves with the increase of the iteration number, because the one-time, low-bandwidth PCIe
transfer is amortized by the high-bandwidth device memory access. After the iteration number
(device memory reuse ratio r) grows beyond 7—the value of rthr eshold between Alpha Data and
Xeon+FPGA—the Alpha Data board starts to outperform Xeon+FPGA.

5.3 Optimization of Communication Overhead

While the case studies demonstrate how the insights work, there is a set of follow-up studies that
demonstrates the effectiveness of the insights in acceleration design and platform optimization.
In Section 3.2, we claimed that the effective host-to-FPGA bandwidth will be reduced by vari-
ous factors such as PCIe packet header overhead, host buffer allocation, and host memory copy.
In addition to the analysis we provided, this claim may also be verified by optimizing away the
aforementioned overheads and measuring the performance improvement. We summarize them as
follows:
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In ST-Accel [26], a new communication library is proposed to provide direct connection between
IO and FPGA, therefore bypassing host DRAM and FPGA DRAM data copy. This has improved the
effective host-to-FPGA bandwidth from 2.59GB/s to 11.89GB/s. In Reference [13], the data transfer
from FPGA to JVM is pipelined with FPGA computation and host-JVM communication, effectively
hiding the low PCIE bandwidth. This improves the throughput by 4.9× on average. The work in
Reference [8] provides another case study on DNA sequencing where the host-to-FPGA bandwidth
is improved by batch processing and sharing the FPGA accelerator among multiple threads. These
techniques reduce the communication overhead from 1000× of the computation time down to only
16% of the overall execution time.

6 CONCLUSION AND FUTURE WORK

To the best of our knowledge, this is the first comprehensive study that aims to evaluate and
analyze the microarchitectural characteristics of state-of-the-art CPU-FPGA platforms in depth.
The article covers all the latest-announced, shared-memory platforms, as well as the traditional
private-memory Alpha Data broad and the Amazon EC2 F1 instance, with detailed data published
(most of which not available from public datasheets). We found that the advertised communica-
tion parameters are often too ideal to be delivered to end-users in practice, and suggest applica-
tion developers avoiding overestimation of the platform performance by considering the effective
bandwidth and the communication payload. Moreover, we demonstrate that the communication-
bounded accelerators can be significantly affected by different platform implementations, and pro-
pose the device memory reuse ratio as a metric to quantify the boundary of platform selection be-
tween a private-memory platform and a shared memory platform. Also, we demonstrate that the
CPU-FPGA communication may not matter for computation-bounded applications where the data
movement can be overlapped by the accelerator computation, and propose to use the computation-
to-communication ratio CTC to measure it. In addition, we point out that the transparent data
caching and memory coherence functionalities may be impractical in the current platforms be-
cause of the low-capacity and high-latency cache design.

We believe these results and insights can aid platform users in choosing the best platform for
a given application to accelerate, and facilitate the maturity of CPU-FPGA platforms. To help the
community measure other platforms, we have also released our microbenchmarks at http://vast.
cs.ucla.edu/ubench-cpu-fpga.
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