Session 5: Synthesis

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

Rapid Cycle-Accurate Simulator for High-Level Synthesis

Yuze Chi, Young-kyu Choi,” Jason Cong, and Jie Wang
Computer Science Department, University of California, Los Angeles
{chiyuze,ykchoi,cong,jiewang}l@cs.ucla.edu

ABSTRACT

A large semantic gap between the high-level synthesis (HLS) design
and the low-level (on-board or RTL) simulation environment often
creates a barrier for those who are not FPGA experts. Moreover,
such low-level simulation takes a long time to complete. Software-
based HLS simulators can help bridge this gap and accelerate the
simulation process; however, we found that the current FPGA HLS
commercial software simulators sometimes produce incorrect re-
sults. In order to solve this correctness issue while maintaining the
high speed of a software-based simulator, this paper proposes a
new HLS simulation flow named FLASH. The main idea behind the
proposed flow is to extract the scheduling information from the
HLS tool and automatically construct an equivalent cycle-accurate
simulation model while preserving C semantics. Experimental re-
sults show that FLASH runs three orders of magnitude faster than
the RTL simulation.

ACM Reference Format:

Yuze Chi, Young-kyu Choi, Jason Cong, and Jie Wang. 2019. Rapid Cycle-
Accurate Simulator for High-Level Synthesis. In The 2019 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays (FPGA ’19), Feb-
ruary 24-26, 2019, Seaside, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3289602.3293918

1 INTRODUCTION

Although FPGA has many promising features including power-
efficiency and reconfigurability, the low-level programming envi-
ronment makes it difficult for programmers to use the platform.
In order to solve this problem, many high-level synthesis (HLS)
tools such as Xilinx Vivado HLS [9] and Intel OpenCL HLS [14]
have been released. These tools allow programmers to design FPGA
applications with high-level languages such as C or OpenCL. This
trend is reinforced by recent efforts on FPGA programming with
languages of higher abstraction—such as Spark or Halide [21, 25].

Even though such progress has been made on the design au-
tomation side, a large semantic gap still exists on the simulation
side. Programmers often need to use low-level register-transfer
level (RTL) simulators and try to map the result back to HLS. The
result is often incomprehensible to those who are not FPGA experts.
Moreover, such low-level simulation takes a very long time. Some
work has been done to automate hardware probe insertion from
the HLS source file [4, 12, 18, 22]; however, this work requires re-
generation of FPGA bitstream if there is a change in the debugging
point, and the turnaround time is often in hours.

These problems can be partially solved by the software-based
simulators provided by HLS tools. It takes little time to reconfigure

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6137-8/19/02...$15.00
https://doi.org/10.1145/3289602.3293918

178

DistPEO | (DistPE1] [DistPE2) (DistPE3]
Cycle 1: QA Missing
ycle
Cycle 2: @ 2 p“gb[?s
Cycle 3: 0 exd) . 3 4,inCsim
Cycle4: 0 CND - bubbles 3

non-blocking —
read

:0231203013... ‘

Does not match

Figure 1: Molecular dynamics simulation PEs [7]

RTL Sim

the debugging points, and no semantic gap exists between the simu-
lation and the design. However, a well-known shortcoming of these
simulators is that most of them do not provide performance esti-
mation. In addition, we found a critical deficiency—they sometimes
provide incorrect results.

An example can be found in the molecular dynamics simulation
[7] (Fig. 1). Multiple distance processing elements (Dist PEs) filter
out faraway molecules above threshold and send them to Force
PE. The pruned molecules will create a bubble (empty data) in
the FIFO, and Force PE will process only the valid data (after non-
blocking read) in the order they are received from any of the FIFOs.
However, if the modules are instantiated in the order of (Dist PE1,
PE2, ... Force PE) in the source file, Vivado HLS will finish the
simulation of Dist PE1 first, followed by Dist PE2, and so on. As a
result, by the time Force PE is simulated, the bubbles in the FIFOs
are completely removed, and the Force PE output ordering can be
entirely different from the actual result. If one was analyzing the
DRAM access behavior from the HLS simulation output, the person
would likely draw a wrong conclusion.

Another problematic example can be found in the artificial dead-
lock situation [11], which occurs when the depth of the FIFO is
smaller than the latency difference among modules (details in Sec-
tion 3.2). The first issue is that the HLS software simulator cannot
detect the deadlock situation and proceeds as if there is no problem
with the design. The second issue is that after we apply a transfor-
mation to remove the deadlock, the HLS tool cannot also simulate
the amount of performance degradation (Section 7.3) from the arti-
ficial stall (Section 3.2). We also found a problem in the simulation
of feedback loops where the feedback data is ignored by the HLS
tool (Section 3.3).

The primary reason for the incorrect simulation result is that
HLS software simulators do not guarantee cycle accuracy. The com-
parison between the software simulator of the two most popular
([17]) commercial FPGA HLS tools, Xilinx Vivado HLS and Intel
OpenCL HLS, is presented in Table 1. Vivado HLS assumes un-
limited FIFO depth which makes it difficult to accurately model
FIFO fullness/emptiness. Also, their sequential simulation execu-
tion model prevents correctly simulating designs with feedback

Table 1: Comparison of the software-based simulation of Xil-
inx Vivado HLS [24] and Intel OpenCL HLS [14]. Undesir-
able characteristics are in bold.

Xilinx Viv HLS C Sim Intel OpenCL HLS Sim
FIFO depth Unlimited Exact
Exec model Sequential Concurrent
Feedback Not supported Supported
Sim speed ~5 Mcycle/s ~1 Mcycle/s
Sim order Deterministic Non-deterministic
Cycle-acc | Not cycle-accurate Not cycle-accurate

Session 5: Synthesis

Allocation

i

Library

|HLS CcodeHCompilation Binding

GenerationH RTL code |-|
1

\ stmt,loop, !
T T T Tfunca .. >fScheduling o FTTTT *
v 'y
SW Proposed | _ _ _ _ _ ! RTL
simulator. simulator | scheduling info simulator.

Figure 2: HLS design steps [10] and simulation flows

loops (Section 3.3). Intel OpenCL HLS simulates about 5X slower
than Vivado HLS, but it correctly simulates the FIFO depth. The
tool assigns a thread to each module for concurrent simulation;
however, the execution order of the threads is not deterministic
and may produce different results in different simulation runs for
cases in Section 3.

HLS design steps and conventional simulation flows are shown
in Fig. 2. A software simulator runs fast but provides no cycle esti-
mation and may have the correctness problem. An RTL simulator
is accurate but runs slow since it incorporates low-level imple-
mentation details. Our solution to these problems is based on the
idea that it may be possible to tackle both problems by simulating
based on the scheduling information. It would be faster than the
RTL simulation without the allocation / binding information and
the component libraries; and it would solve the correctness prob-
lem of the software simulation and provide accurate performance
estimation with its cycle-accuracy.

Although simulating solely based on the scheduler output (LLVM
IR + scheduling information) is a possible option, we have instead
decided to simulate in C syntax and augment it with scheduling
information. The reason is that we wanted to raise the simulation
abstraction level to further accelerate the simulation process and
also make it easier for programmers to understand what is being
simulated. To our knowledge, this is the first HLS-based simulation
flow that takes such an approach.

By taking such an approach, however, several challenges were
encountered (will be elaborated in Section 4). One problem is how
to model high-level semantics such as functions and loops—as well
as FIFO transactions and FIFO stalls—in a cycle-accurate fashion.
Moreover, correctly simulating the task-level and pipelined paral-
lelism that is inherent in hardware (and the corresponding RTL
simulation) in sequential C semantics is a significant challenge.

In this paper we propose FLASH!?—an HLS-based software sim-
ulation flow that addresses these challenges. We describe transfor-
mations that allow cycle-accurate simulation of communication
and computation stages (will be explained in Section 4). Also, a
method will be explained to simulate multiple levels of parallelism
with C semantics. These steps will be described in Section 5.

We obtain the scheduling information from the HLS synthesis
report and automatically generate a new simulation code based on
the information. The new simulation code was made compatible
with the conventional HLS software simulator for easy integration
with the existing tool. The overall flow is described in Section 6.

Our current initial version is based on Vivado HLS, but we hope
to extend our work to Intel HLS if the tool provides detailed internal
scheduling information in the future.

2 RELATED WORK

Work in [4, 12, 18, 22] describe frameworks that allow users to spec-
ify debugging points in high-level language and synthesize hard-
ware probes into the FPGA for analysis. They can be categorized

IFLASH: Fast, ParalleL, and Accurate Simulator for HLS
2 An extended version of this paper is available at: https://arxiv.org/abs/1812.07012

179

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

data_out

void M1(stream<int>& f outl, .. f_out2){
for (int i = @; 1 < N/16; k++) {
for (int j = @; j < 16; k++) {
#pragma HLS pipeline II=1
f_outl.write(16*i+j);
f_out2.write(16*i+j+10);

void M3(stream<int>& f_in, ...
for(int 1 = @; i < N; i++){
#pragma HLS pipeline II=1
int temp = f_in.read();
f_out.write((int)((float)temp*3));
¥}

void toy_mpath(int data_out[N]){

f_out){

P}

void M2(stream<int> & f_in, ... f_out){ stream<int> fifol,fifo2,fifo3,fifo4;
for(int i = @; i < N; i++){ #pragma HLS stream var=fifol, .. depth=2
#pragma HLS pipeline II=1 #pragma HLS dataflow
int temp = f_in.read(); M1(fifol, fifo2);
f_out.write(temp*711); M2(fifol, fifo3);
3} M3(fifo2, fifo4);
M4(fifo3, fifo4, data_out);
// M4 is omitted }

Figure 3: Structure and code for motivating example
toy_mpath

into work that has more focus on verifying functional correctness
[12, 18] and work that has more focus on extracting performance-
related parameters [4, 22]. Compared to the software-based flows,
however, these hardware-based debuggers typically requires hours
of initial overhead for bitstream generation.

There are several SystemC simulators [6, 20] that can achieve
cycle-accuracy for the source code that has explicit scheduling infor-
mation specified by the programmer, but this may be too difficult for
non-experts. Our flow, on the other hand, achieves cycle-accuracy
for a HLS C source code that does not have such user-defined
scheduling information.

There are also other HLS-based software simulators. The LegUp
HLS [2] simulator provides speedup prediction based on the profil-
ing of the source code and the execution cycle from its synthesis
result. HLScope+ [5] describes a method to extract cycle informa-
tion that is hidden by HLS abstraction and uses Vivado HLS C sim-
ulation to predict the performance for applications with dynamic
behavior. These works, however, do not guarantee cycle-accuracy.

3 PROBLEM DESCRIPTION AND
MOTIVATING EXAMPLES

In this section we describe three classes of problems that cause
current HLS tools to produce incorrect software simulation result.
The problems are demonstrated with motivating examples in the
literature.

3.1 Incorrect Data Ordering with Multiple Paths

Suppose a PE is reading data in a non-blocking fashion from mul-
tiple PEs through FIFOs as in the molecular dynamics simulation
example (Fig. 1 [7]) in the introduction. If a bubble exists in a FIFO,
the data consumer PE will skip the FIFO and proceed to read from
the next FIFO. In software simulation, however, if the data producer
PEs are instantiated in the source file before the consumer PE, Vi-
vado HLS will simulate the data producer PEs completely before
moving on the next one. This effectively removes all bubbles in
the FIFO, and the order of output from the data consumers in the
software simulation result will be different from the actual execu-
tion. In the Intel HLS, the simulation order of the data producers is
undetermined, and thus there is no guarantee that the bubbles in
the simulated result will exactly match the actual execution.

3.2 Artificial Deadlock and Stall

Consider an example in Figure 3 where the module M2 has a latency
of 5 and M3 has a latency of 15. All FIFOs have a depth of 2. After M2
has produced two output elements, M4 cannot consume any of them
because fifo4 is still empty due to the long latency of M3. Due to
the back-pressure from M2 and fifo3, fifol becomes full. Then

Session 5: Synthesis

01 i = e;

= a: T 02 while (i < N){
;z:gém; &slp;p:ii;?é:l @3s#pragnal HLS! pipeline 111
int temp = f_in.read(); |:> 04 1f(f_in.empty()==False){
p.— . . 05 int temp = f_in.read();
} f_out.write(...temp*3); 06 f_out.write(...temp*3);
o7 i++;
@8 } }

Figure 4: Source-to-source code transformation to avoid ar-
tificial deadlock for M3 in Fig. 3

PE; PE, PEy

I
s
l—o|

Figure 5: Matrix multiplication with linear systolic array ar-
chitecture

M1 will stop producing output to fifo2 because fifol and fifo2
have to be written in the same cycle. fifo2 will eventually become
empty, which blocks the pipeline of M3. Then none of the modules
can do any further useful work, and the circuit deadlocks. This is
called an artificial deadlock [11]. The deadlock is caused by the
mismatching latency of multiple paths and the small FIFO depth.
This can be observed in real applications, such as the dataflow-based
architecture for stencil computations in [3] that contains various
modules and FIFOs with different latencies and depths.

The problem is that software-based HLS simulators ignores the
latency of a module. It will simulate each iteration of a loop as
if the data is instantaneously passed from input to output. Thus
Vivado HLS will proceed with the simulation as if the deadlock has
not happened. Intel HLS compiler avoids the deadlock problem by
automatically increasing the FIFO depth; however, this creates a new
problem of mismatch between what is simulated and synthesized.

The second problem was found after we applied code transfor-
mation to avoid the deadlock. Figure 4 shows the transformation for
M3 in Figure 3. If the input FIFO is empty, a bubble is inserted into
the pipeline (line 4)—this allows the pipeline to keep processing the
already-read data even if there is no additional input. The deadlock
situation is removed since M4 can now receive the output from M3.

Even though the deadlock was avoided, however, the modules
still have to wait for the data to be flushed. This causes a delay that
we call artificial stall. Since HLS tools do not consider the delay due
to the latency of a module, such performance degradation cannot
be simulated.

3.3 Missing Data from Feedback Path

As mentioned previously, Vivado HLS simulates the functions in
the order they are instantiated in the source code. This causes
a problem if a feedback path exists that passes data from later
instantiated functions to earlier ones. At the time earlier functions
are simulated, the data would not be available. As a result, Vivado
HLS simulates the program as if the feedback FIFOs are always
empty. Intel HLS can simulate the feedback data from blocking
read correctly, because a thread simulating each module can wait
for others to pass the data—although it is not guaranteed that the
feedback data from non-blocking read will arrive at the right timing.

We demonstrate this problem with matrix multiplication exam-
ple (C = A x B) in linear systolic array architecture [8, 16]. As
shown in Fig. 5, each PE computes one column of the matrix C
(Cij += Ajg * By;). Data from the matrix A and B are fed into the
array in the forward direction, while the results of matrix C are
collected in the backward direction. If the modules are instantiated
in the order of PEq, PE,, ..., and PEp;, Vivado HLS will simulate
PE; assuming the FIFO for C is always empty, and this will cause
the tool to produce incorrect results.

180

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

4 PROBLEM STATEMENT AND CHALLENGES

The data ordering problem (Section 3.1) can be solved if the simu-
lator models the FIFO data transaction (read/write) and the FIFO
stall (empty/full) in a cycle-accurate fashion. The artificial deadlock
problem (Section 3.2) requires modules to initiate FIFO read and
write at the timing that reflects the computation latency. In other
words, it requires cycle-accurate modeling of computation stages,
which we define as the computation latency between pairs of FIFO
read and FIFO write. The feedback problem (Section 3.3) does not
occur if the FIFO read in the feedback path is simulated after the
FIFO write.

Thus, the problem is stated as follows: given a source code and
its scheduling information, we need a simulator that models the
communication and the computation stages in a cycle-accurate
manner. The simulator also must produce correct output data.

In addition to this main requirement, the simulator should be able
to provide the execution cycles of each module to help programmers
apply performance optimization. Also, if the modules deadlock,
the simulator should provide the content of the internal registers
for debugging purpose. Moreover, the simulation code should be
semantically similar to the source code as much as possible (as
opposed to being a low-level code such as RTL), so that users can
easily understand what is being simulated.

With such complicated requirements, several challenges arise:

e Challenge 1: Cycle-accurate simulation

It is difficult to discover the exact cycle when statements
are executed since the information given by the HLS tool is
very limited. Intel OpenCL HLS only provides loop initiation
interval (I). Vivado HLS provides slightly more information—
such as the module’s finite-state machine (FSM) state when
FIFO read or write is performed. However, for computation
statements, it is difficult to find the exact cycle, because
Vivado HLS only provides lists of LLVM IR and the corre-
sponding FSM states. Mapping such low-level representation
back to the original C code is a difficult task.
Also, even if the schedule of all operations are known, the
simulator has to selectively execute statements that corre-
spond to a particular FSM state at each cycle. Moreover, the
content of the variables in the previous state has to be avail-
able, and the updated variables have to be stored for the next
state simulation.

e Challenge 2 : Simulation of parallelism
RTL is an inherently parallel language—it has multiple levels
of parallelism including task-level parallelism and pipelined
parallelism. On the other hand, pure C is written in a sequen-
tial form. The challenge is in transforming C into a form that
can simulate the concurrency.

e Challenge 3 : FIFO communication and pipeline stall
In RTL simulation, a full or empty signal from FIFO can halt
an FSM. An equivalent software simulator would also need
to mimic this behavior based on the status of the FIFOs. Also,
a deadlock would need to be detected if all pipelines can no
longer make any progress.

e Challenge 4 : Loop and function simulation
We would need to construct an equivalent model of high-
level semantics, such as loops and functions.

5 AUTOMATED CODE GENERATION FOR
RAPID CYCLE-ACCURATE SIMULATION

In this section, we provide a solution to each challenge in Section 4

and describe our proposed automated simulation code generation

flow. For illustration, we will use the toy_mpath example (Fig. 3)

Session 5: Synthesis

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

01 void M2_SIM(){ //simulation function for M2
02 static int M2_state = 1;//use “static” var for the next cycle
o3 —_—

04 if(M2_state == 1){ //state conditional block for state 1
05 . //computation stmt & communication for state 1
06

07 else if(M2_state == 2){ //state conditional block for state 2
08 //computation stmt & communication for state 2
29 }

10 } //exit sim function after simulating one cycle

Figure 6: Simulation function structure for cycle-accurate
simulation

after applying the deadlock avoidance transformation discussed in
Section 3.2.

5.1 Cycle-Accurate Simulation

For cycle-accurate simulation, we declare an FSM state variable
for each module and copy statements to the conditional block that
correspond to its simulated state. An example can be found for M2
module in lines 4-9 of Fig. 6. Only the statements for a single cycle
are simulated and then the simulation function exits. The contents
of the variables are restored and saved regardless of simulation
function entrance or exit by using static variables (line 2).

Regardless of the exact cycle a computation statement is simu-
lated, we exploit the fact that the behavior observed from outside
the module (including the module’s computation stage) would be
the same as long as the inter-module FIFO communication is simu-
lated at the correct cycle. Thus, even if the schedule of a module’s
computation statement is unknown, we can assign an arbitrary state
that does not violate the timing causality with the cycle-known
FIFO communication that has dependency with the computation
statement. We assign states to the computation statements based
on as-soon-as-possible scheduling policy to reduce the number of
pipelined shift registers (Section 5.2.1). The simulation of computa-
tion statements and FIFO communication will be further explained
in Section 5.2.1 and Section 5.3, respectively.

5.2 Simulation of Parallelism

5.2.1 Pipelined Parallelism. In a pipelined loop, different iterations
are executed in parallel in a single FSM state. The parallel factor is
same as the loop iteration latency (IL, also called pipeline depth). To
simulate such parallelism, we need to keep multiple copies of the
same variable for each pipelined stage. For example, the "temp" vari-
able in M2 (Fig. 3) is copied through the pipeline like shift registers
(line 15 of Fig. 7). Then, instead of placing the computation for each
pipeline stage in a corresponding M2_state conditional block as in
Fig. 6, we place all computation in a single M2_state conditional
block as shown in lines 4-23 of Fig. 7. This transformation allows
us to effectively simulate the pipelined parallelism. If II is larger
than 1, the computation at state i is placed at the state conditional
block of i%I1.

It is important to note that the order of each pipeline stage has
been reversed (st6, ... st3, st2). This limits the content of shift register
to be copied to the immediate next state only in a single cycle. Also,
in order to invalidate a pipeline bubble (from the artificial deadlock
avoidance transformation in Section 3.2), we propagate the enable
signal through the pipeline stages (line 14 and 19).

5.2.2 Task-Level Parallelism. The task-level parallelism is simu-
lated by processing one cycle of all modules and FIFOs in a round-
robin fashion. This is processed in the scheduler loop in line 6-14
of Fig. 8. It is composed of module (line 8-9) and FIFO (line 10-11)
simulation loop.

It is possible that different order of the module and FIFO simula-
tion loop leads to different output—for example, depending on if

181

01 static bool pl_en_st3, ... pl_en_st6 = false; //enable signals
02 static int temp_st3, ... temp_st6; //shift registers
e3 ...

04 else if(M2_state == 2){ //starting state for the pipelined loop
05 oee

06 if(pl_en_st6 == true){ //enabled 4 cycles after FIFO read
o7 pl_en_st6 = false; //disables enable signal after use
08 fifo3_arr[fifo3_wptr++] = temp_st6*711; //FIFO data write
09 fifo3_wnum--; //(see Sect 5.3.1)
0 }

11 ‘oo

12 if(pl_en_st3 == true){ //enabled 1 cycle after FIFO read
13 pl_en_st3 = false; //disables enable signal after use
14 pl_en_st4 = true; //enable signal propagation
15 temp_st4 = temp_st3; //shift register for “temp” variable
16

17 if(i_st2 < N){ //loop exit condition (see Sect 5.4)
18 if(fifol_rnum != @){ //if FIFO not empty (see Sect 5.3.1)
19 pl_en_st3 = true; //enables if path for later pipe stages
20 temp_st3 = fifol_arr[fifol_rptr++]; //FIFO data read
21 fifol_rnum--; //(see Sect 5.3.1)
22 i st2+4+; ... // loop iterator update (see Sect 5.4)
23113

Figure 7: Code transformation to model cycle-accurate,
pipelined parallelism (M2 in Fig. 3)

01 void (*MList[M])(); /module func ptr list
02 void (*FList[F])(); //FIFO func ptr list
03 Mlist[@] = M1_SIM; . Mlist[3] = M4_SIM; //init
04 Flist[e] = fifol; . Flist[3] = fifo4;

05

06 while(1){ //scheduler loop:

07 // loop until until deadlock or all modules finish
08 for(i =@; 1 < M; i++) //simulate all modules
09 Mlist[i]();

10 for(i =0; i < F; i++) //simulate all FIFOs
11 Flist[i]();

12 S

13 cycle++;

14 }

Figure 8: Module/FIFO simulation scheduler to model task-
level parallelism

the data producer PE is simulated before or after the consumer PE.
A way to avoid this problem will be discussed in Section 5.3.1.

5.3 FIFO Simulation

5.3.1 FIFO Communication. The FIFO is implemented as a circular
buffer with read/write pointers (fifo_rptr and fifo_wptr)and an
array (fifo_arr) of FIFO buffer size. Also, we declare fifo_rnum
and fifo_wnum variables to denote the number of data and buffer
space available in the FIFO. FIFO reads and writes in the source
code are transformed based on Table 2. For example, the FIFO
write in M2 (fifth line of M2 in Fig. 3) would be transformed to:
(fifo3_arr[fifo3_wptr ++] = temp_st6 * 711; fifo3_wnum ——;)
(line 8-9 of Fig. 7).

In addition to decreasing the number of buffer space (fifo3
_wnum ——;) for FIFO write, we would need to increase the num-
ber of available data (fifo3_rnum ++;). However, this process is
delayed until the FIFO simulation loop (line 10-11 of Fig. 8). The
reason is to ensure that simulating data producer PE earlier than
the consumer PE (in the module simulation loop in line 8-9 of Fig. 8)
does not allow transfer of data through the FIFO in the same cycle
(1 cycle latency is needed). More details on the FIFO simulation can
be found in the extended paper (see footnote? on page 2).

Table 2: Code transformation for FIFO communication

HLS source code | Transformed simulation code
fifo.empty() fifo_rnum ==

fifo.full() fifo_wnum ==

data = fifo.read() | data = fifo_arr[fifo_rptr++]; fifo_rnum——;
fifo.write(data) fifo_arr[fifo_wptr++] = data; fifo_wnum——;

Session 5: Synthesis

J++; //inner loop update
if(1(j<16)) //inner loop cond
i++; //outer loop update
j=6; //inner loop init

if(1(icN/16)){
M1_state = 0;
T}

Figure 9: Loop condition and update for flattened loop in M1
of Fig. 3

//outer loop cond
//loop exit

5.3.2 Pipeline Stall Modeling. If a pipeline stall condition is met,
none of the statements should be simulated at the current state.
Thus, the stall condition should be placed at the beginning of a
state conditional block. This will make the simulation function to
exit without changing any variables. After applying the artificial
deadlock avoidance transformation, FIFO read no longer causes
the stall, but FIFO write will. The stall condition is met when the
FIFO is full and when the state for the FIFO write statement has
been enabled. For example, the pipeline stall condition that corre-
sponds to FIFO write in line 8 of Fig. 7 would be: i f(p1_en_st6 &&
fifo3_wnum == 0). This condition will be added to line 5 of Fig. 7.

Note that our tool can detect a deadlock by checking if no state
transition occurs (stalled) in any modules and no data transaction
occurs in any FIFOs. This may happen if the user decides not to
incorporate the artificial deadlock avoidance method (Section 3.2).

5.4 Loop and Function Simulation

Simulation of statements inside a pipelined loop has been discussed
in Section 5.2.1. For the loop initialization statement, it is simulated
upon entering the first state of a loop. The loop update expression
is simulated at each iteration of a loop. If the loop condition is met
after the update, state transition for loop exit occurs. For a flattened
loop (e.g., M1 in Fig. 3), the update and the loop condition check is
performed starting from the innermost nested loop, as illustrated
in Fig. 9.

A function call is simulated by sending a module enable signal
to the scheduler loop (Fig. 8). Next, the function argument values
are copied into the newly called module.

6 OVERALL FLOW

The overall simulation framework of FLASH is shown in Fig. 10.
Given an input Vivado HLS C code, we apply an optional pre-
processing step of transforming pipelined loops to avoid artificial
deadlock (Section 3.2). Also, some labels are added to easily identify
loops and functions. The transformation step uses the APIs in the
ROSE compiler infrastructure [19]. The transformed code is fed
into the Vivado HLS for synthesis. Based on the scheduling report
given by the HLS tool, the input code is automatically transformed
for rapid software simulation (Section 5). The simulation code has
been made compatible with the Vivado HLS software simulator for
easy integration with the existing tool. As a final output, our flow
currently provides the number of cycles consumed in each module.
As a future effort it will be enhanced to provide both functional
debugging support (e.g., data dump, triggers), and performance
debugging support (e.g., module stall analysis).

7 EXPERIMENTAL RESULTS

7.1 Experimental Setup

For HLS tool, we use Vivado HLS 2018.2 [24]. For platform, we
target the ADM-PCIE-KU3 board [1] with Xilinx’s Ultrascale KU060
FPGA [23]. The target clock frequency is 250MHz. The simulation is
conducted with a server node that has Intel Xeon Processor E5-2680
[13] and 64GB of DRAM. The simulation files were compiled with
-03 flag.

182

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

Input: Qutput:
Vivado HLS| Prepro HLS Sim File . o
Anal
C code cessin, Synthesis Generation GISEEI LS
Type: [ROSES2S| | HLSTool | |interface |

Figure 10: Overall simulation framework of FLASH

The experiment is performed on toy_mpath (Fig. 3) and three
dataflow benchmarks: stencil [3], molecular dynamics simulation
[7] (Fig. 1), and matrix multiplication [8] (Fig. 5).

7.2 Execution Time

As mentioned in Section 6, preprocessing, HLS synthesis, and sim-
ulation file generation steps are needed to prepare the files for the
proposed simulation. The time breakdown of the steps is presented
in Table 3.

Table 3: Simulation preparation time breakdown (prepro-
cessing, HLS synthesis, and simulation file generation:
Fig. 10)

Benchmark | Preproc HLS Synth SimFile Gen | Total
Toy_mpath 7.1s 24s 7.5s 39s
Stencil 15s 60s 22s 97s
MD_sim 8.0s 35s 11s 54s
Mat_mul 8.1s 31s 10s 49s

The simulation time comparison among Vivado HLS C simula-
tion, Vivado HLS RTL simulation, Intel OpenCL HLS simulation
(using Quartus 18.0 [15]), and our FLASH simulation flow is pre-
sented in Table 4. FLASH is about 1,390X (=1,570/1.13) faster than
the RTL simulation. This confirms our initial speculation that sim-
ulating based on the scheduling information will result in much
faster speed, since the simulation is not slowed by the resource
allocation / binding information or the component library that exist
in RTL simulation.

Table 4: Simulation time comparison among Vivado HLS C
simulation, Vivado HLS RTL simulation, Intel OpenCL HLS
simulation, and FLASH simulation

Benchmark | VCSim VRTLSim IOCLSim FLASH
Toy_mpath 0.602s 492s 4.60s 0.570s

- (1.00X) (817X) (7.64X) (0.947X)
Stencil 1.46s 113s 2.63s 1.25s

(1.00X) (77.4X) (1.80X) (0.856X)

MD_sim 0.0547s 100s 0.0921s 0.0677s

- (1.00X) (1,830X) (1.68X) (1.24X)

Mat mul 0.0539s 192s 0.201s 0.0810s
- (1.00X) (3,560X) (3.73X) (1.50X)
AVG (1.00X) (1,570X) (B71X) (1.13X)

Since our flow reflects the scheduling information, we can expect
some slowdown compared to the Vivado HLS C simulation. This
is noticeable in Mat_mul, where the frequent FIFO stall (Table 5)
lengthens the simulation process. MD_sim has a long simulation
time due to the deep pipeline (55)—the overhead of copying shift
registers and enable signals (Section 5.2.1) for pipeline stages be-
comes relatively large. However, it is interesting to note that for
Toy_mpath and Stencil, FLASH was even faster than the Vivado
HLS C simulation. This suggests that there was an unexpected
factor which has negated the simulation speed overhead of the
proposed flow. We found that this is largely attributed to the fact
that Vivado HLS can allocate unlimited FIFO buffer for C simulation
(Table 1). To model FIFO, the Vivado HLS C simulator uses the C++
Standard Template Library (queue.h), which incurs the overhead of

Session 5: Synthesis

dynamically allocating buffer and copying its content. For example,
the C simulation time of Toy_mpath reduces from 0.602s to 0.076s if
we replace FIFO library calls with fixed-size arrays (array size is set
to the number of total FIFO elements written). FLASH simulation
flow does not have this problem, because the FIFO library calls
have been replaced with array-based communication (Section 5.3).
The average slowdown of FLASH compared to the Vivado HLS C
simulation is 1.13X.

Please note that in our initial research stage, we also evaluated
a similar flow with SystemC. However, the overhead in SystemC
simulation environment was causing a 2-3X slowdown compared
to the proposed C-based flow, which motivated us to follow the
current approach.

7.3 Accuracy

As explained in Section 4, the correctness problem can be solved
by simulating in a cycle-accurate manner. The data value and the
data ordering has been verified by comparing the output of FLASH
simulator with that of the RTL simulator.

In Table 5, we compare the cycle estimation accuracy with Vivado
HLS synthesis report after we specify the maximum loop bound
for each loop. We were not able to provide comparison with Intel
HLS since the tool does not provide cycle estimate. The estimation
error rate is small for Stencil, because [3] has built-in mechanism
to allocate adequate buffers. For the rest of the benchmarks, we
have applied a small (1-2) FIFO depth (an example was shown in
Fig. 3). This causes FIFO buffer to be frequently full and empty and
leads to worse performance than what HLS tool has predicted. Our
flow, on the other hand, simulates in a cycle-accurate fashion and
accurately estimates such performance degradation.

Table 5: Total execution cycle predicted by Vivado HLS syn-
thesis report and FLASH, and its error rate compared to the
RTL-simulated result

Benchmark | RTL sim Vivado HLS FLASH
Toy_mpath 4,500,010 2,000,016 4,500,010
- - (-56%) (0%)
Stencil 524,309 524,299 524,309
- (~0%) (0%)
MD_sim 12,089 10,498 12,089
- - (-13%) (0%)
Mat mul 330,006 131,075 330,006
- - (-60%) (0%)
AVG - (-32%) (0%)

8 CONCLUDING REMARKS

By simulating based on the scheduling information, we were able
to solve the correctness issue of the software simulators and also
provide accurate performance estimation. Also, simulating without
allocation / binding information and component libraries allowed us
to achieve three orders of magnitude faster speed compared to the
RTL simulators. We have described an automated code generation
flow that enables this new simulation flow.

We hope that the promising result presented in this work will
motivate HLS commercial tool industry to provide additional rou-
tine that simulates based on the scheduling information only. This
will substantially decrease the validation time of the customers who
wish to rapidly estimate cycle-accurate performance, obtain correct
output data, or detect possible deadlock situations.

As a future work, we will continue to widen the range of bench-
marks so that the transformation flow will be robust enough to
accommodate any Vivado HLS input code. We hope to include the
Intel HLS flow if their tool’s synthesis report provides detailed

183

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

schedule information in the future. Also, we will enhance the out-
put analysis stage to provide better functional and performance
debugging support. In addition, we plan to add parallelization using
Pthread/OpenMP so that large-scale simulation can be performed
by exploiting multicore architecture.

ACKNOWLEDGMENTS

This research is partially supported by Intel and NSF Joint Research
Center on Computer Assisted Programming for Heterogeneous Ar-
chitectures (CAPA) (CCF-1723773). We are grateful to Xilinx for the
software and the hardware donation. We thank Professor Miryung
Kim (UCLA), Chaosheng Shi (Xilinx), and Professor Zhiru Zhang
(Cornell Univ.) for the helpful discussions and the suggestions. We
also thank Janice Wheeler for proofreading this paper.

REFERENCES

[1] AlphaData. 2017. Alpha Data ADM-PCIE-KU3 Datasheet. (2017). http://www.
alpha-data.com/pdfs/adm-pcie-ku3.pdf

A. Canis, et al. 2013. From software to accelerators with LegUp high-level
synthesis,. In Proc. Int. Conf. Compilers, Architectures and Synthesis for Embedded
Systems (CASES’13). 18-26.

Y. Chi, J. Cong, P. Wei, and P. Zhou. 2018. SODA : stencil with optimized dataflow
architecture. In Proc. [EEE/ACM Int. Conf. Computer-Aided Design (ICCAD’18).
Y. Choi and J. Cong. 2017. HLScope: High-level performance debugging for
FPGA designs,. In IEEE Ann. Int. Symp. Field-Programmable Custom Computing
Machines (FCCM’17). 125-128.

Y. Choi, P. Zhang, P. Li, and J. Cong. 2017. HLScope+: Fast and accurate perfor-
mance estimation for FPGA HLS. In Proc. IEEE/ACM Int. Conf. Computer-Aided
Design (ICCAD’17). 691-698.

M. Chung, J. Kim, and S. Ryu. 2014. SimParallel: A high performance parallel
SystemC simulator using hierarchical multi-threading. In IEEE Int. Symp. Circuits
and Systems (ISCAS’14). 1472-1475.

J. Cong, Z. Fang, H. Kianinejad, and P. Wei. 2016. Revisiting FPGA acceleration
of molecular dynamics simulation with dynamic data flow behavior in high-level
synthesis. ArXiv Preprint (2016). http://https://arxiv.org/pdf/1611.04474.pdf

J. Cong and J. Wang. 2018. PolySA: polyhedral-based systolic array auto compi-
lation. In Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD’18).

J. Cong, et al. 2011. High-level synthesis for FPGAs: From prototyping to deploy-
ment. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 30, 4
(2011), 473-491.

P. Coussy, et al. 2009. An introduction to high-level synthesis. IEEE Design &
Test of Comput. 26, 4 (2009), 8-17.

S. Dai, M. Tan, K. Hao, and Z. Zhang. 2014. Flushing-enabled loop pipelining for
high-level synthesis. In Proc. Ann. Design Automation Conf. (DAC’14).

J. Goeders and S. Wilton. 2015. Using dynamic signal-tracing to debug compiler-
optimized HLS circuits on FPGAs,. In IEEE Ann. Int. Symp. Field-Programmable
Custom Computing Machines (FCCM’15). 127-134.

Intel. 2018. Intel Xeon Processor E5-2680 v4. (2018). www.intel.com/

Intel. 2018. Intel FPGA SDK for OpenCL Pro Edition. (2018). https://www.altera.
com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices- guide.pdf

Intel. 2018. Quartus Prime Pro Edition Handbook. (2018). www.intel.com/

J. Jang, S. Choi, and V. Prasanna. 2005. Energy-and time-efficient matrix mul-
tiplication on FPGAs. IEEE Trans. Very Large Scale Integration 13, 11 (2005),
1305-1319.

S. Lahti, P. Sjovall, and J. Vanne. 2018. Are we there yet? A study on the state of
high-level synthesis. IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems (2018).

J. Monson and B. Hutchings. 2014. New approaches for in-system debug of
behaviorally-synthesized FPGA circuits,. In IEEE Int. Conf. Field Programmable
Logic and Appl. (FPL’14).

ROSE. 2018. ROSE compiler infrastructure. (2018). http://rosecompiler.org/
T.Schmidt, G. Liu, and R. Démer. 2017. Exploiting thread and data level parallelism
for ultimate parallel SystemC simulation. In Proc. Ann. Design Automation Conf.
(DAC’17).

E. Sozzo, et al. 2017. A common backend for hardware acceleration on FPGA. In
IEEE Int. Conf. Comput. Design (ICCD’17). 427-430.

A. Verma, et al. 2017. Developing dynamic profiling and debugging support in
OpenCL for FPGAs. In Proc. Ann. Design Automation Conf. (DAC’17). 56-61.
Xilinx. 2018. UltraScale architecture and product data sheet: overview
(DS890). (2018). https://www.xilinx.com/support/documentation/data_sheets/
ds890-ultrascale-overview.pdf

Xilinx. 2018. Vivado High-level Synthesis (UG902). (2018).
//www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/
ug902-vivado- high-level-synthesis.pdf

C. Yu, et al. 2018. S2FA: an accelerator automation framework for heterogeneous
computing in datacenters. In Proc. Ann. Design Automation Conf. (DAC’18).

(10]

(1]

(12]

https:

