
S2FA: An Accelerator Automation Framework for
Heterogeneous Computing in Datacenters

Cody Hao Yu1,2, Peng Wei1, Max Grossman4, Peng Zhang2, Vivek Sarker3, Jason Cong1,⇤
1University of California, Los Angeles 2Falcon Computing Solutions, Inc.

3Georgia Institute of Technology 4Rice University
{hyu,peng.wei.prc,cong}@cs.ucla.edu,pengzhang@falcon-computing.com,jmg3@rice.com,vsarkar@gatech.edu

ABSTRACT
Big data analytics using the JVM-based MapReduce framework has
become a popular approach to address the explosive growth of data
sizes. Adopting FPGAs in datacenters as accelerators to improve
performance and energy e�ciency also attracts increasing attention.
However, the integration of FPGAs into such JVM-based frame-
works raises the challenge of poor programmability. Programmers
must not only rewrite Java/Scala programs to C/C++ or OpenCL,
but, to achieve high performance, they must also take into consider-
ation the intricacies of FPGAs. To address this challenge, we present
S2FA (Spark-to-FPGA-Accelerator), an automation framework that
generates FPGA accelerator designs from Apache Spark programs
written in Scala. S2FA bridges the semantic gap between object-
oriented languages and HLS C while achieving high performance
using learning-based design space exploration. Evaluation results
show that our generated FPGA designs achieve up to 49.9⇥ per-
formance improvement for several machine learning applications
compared to their corresponding implementations on the JVM.

1 INTRODUCTION
Because the volume of datasets has grown dramatically in recent
years, there has been a corresponding increase in the demand for
scalable high-performance computing. In 2004 Google introduced
MapReduce [12], a big data programming framework that enables
e�cient management of tens of thousands to millions of servers in
datacenters with a simple programming model. Inspired by Google
MapReduce, open source big data analytic systems such as Apache
Hadoop [2] and Spark [28] were developed and have evolved rapidly.
However, the breakdown of Dennard’s scaling has led to energy
e�ciency becoming a primary concern in datacenters, and this
spawned the adoption of power-e�cient accelerators and copro-
cessors such as GPUs (graphic processing units) and FPGAs (�eld-
programmable gate arrays) in datacenters.

Among various power-e�cient devices, FPGAs’ low power con-
sumption and reprogrammability allow them to be used as high-
performance and energy-e�cient accelerators for a variety of ap-
plications. Applications with a large fraction of computationally
intensive kernels, such as string matching, searching and sorting,
are suitable for acceleration using FPGAs. In addition, adopting
FPGAs in private datacenters has recently garnered much attention
from the community. For example, Microsoft has adopted CPU-
FPGA systems in its datacenter to help accelerate the Bing search
engine [18]. Amazon also introduced the F1 instance [1], a compute
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instance equipped with FPGA boards, in its Elastic Compute Cloud
(EC2). As a result, datacenters with FPGAs are expected to be widely
used in the near future.

To facilitate the ease of use of FPGA for big-data computations,
Blaze [14] made e�orts to integrate FPGAs into Apache Spark, one
of the most widely used big data analytic frameworks, and allow
programmers to o�oad computational kernels to FPGAs easily.
However, Blaze leaves to the programmers the responsibility for
developing FPGA accelerators for the o�oaded kernels. Therefore,
a signi�cant amount of programming e�ort is required for users
to manually produce accelerator designs. Worse still, Blaze only
supports primitive types as accelerator interfaces, indicating that ad-
ditional programming e�ort may be needed to serialize/deserialize
composite data types such as structures and classes in Java/Scala.

On the other hand, the user-written computational kernels in
Scala for Spark and Blaze contain the semantic information of
RDD transformation operators. The semantic information is capa-
ble of being used for further optimizing the design and facilitating
the design space exploration process. In this paper we present
the S2FA (Spark-to-FPGA-Accelerator) framework, a compilation
framework that automatically transforms Scala computational ker-
nels in Apache Spark applications into optimized accelerator de-
signs. S2FA leverages a parallel learning-based design space ex-
ploration approach with several proposed strategies to realize a
close-to-optimal microarchitecture con�guration e�ciently. Also,
S2FA generates appropriate application-accelerator interfaces to
o�oad the kernels onto FPGAs. Consequently, S2FA frees software
programmers from considering the underlying hardware architec-
ture. To summarize, this paper makes the following contributions:
• An automated framework that compiles computational kernels
of Spark applications to FPGA accelerators while generating
corresponding interfaces for software-hardware integration.

• Support of object-oriented constructs in the code generation to
improve programmability for developers.

• A learning-based design space exploration (DSE) approach to
e�ectively organize a given set of optimization strategies to
produce high-performance designs in a few iterations.

• Detailed evaluation of S2FA on a variety of computational kernels
on the Amazon EC2 F1 instance, and insights to the impact of
DSE optimization strategies on the quality of results.

The evaluation shows that the generated designs achieve up to
49.9⇥ speedup for several machine learning kernels over the JVM.

2 SPARK AND BLAZE RUNTIME
Apache Spark [28] is a fast, general framework for large-scale com-
putations in clusters. It is the successor to Apache Hadoop [2], but
with an optimized, lightweight data distribution mechanism called
resilient distributed datasets (RDDs). An RDD is a distributed vector
which supports in-memory caching to reduce I/O and communi-
cation overheads during large-scale data processing. As a result,
Spark performs exceedingly well on iterative algorithms in machine
learning and graph processing.

To deploy FPGA accelerators with Spark in datacenters easily
and e�ciently, the Blaze runtime system [14] was developed. Blaze
abstracts FPGA accelerators as a service by decoupling the FPGA



accelerator and Spark application developments [8]. FPGA accelera-
tors can be registered to the Blaze accelerator manager so that Spark
application developers can access FPGA accelerators using provided
APIs that hide the details of JVM-to-FPGA data communication.

Code 1: Blaze Application Code Snippet
1 val pairs: RDD[(String, String)] = // read input

2 val blaze_pairs = blaze.wrap(pairs)
3 val matching = blaze_pairs.map(new SW)
4
5 class SW() extends Accelerator[(String, String), (String, String)] {

6 val id: String = �SW_kernel�

7 def call(in: (String, String)) = { ... }

8 }

Code 1 shows a code snippet of an application to illustrate
the Blaze programming model. In this example, we apply the S-W
method to each string pair, which can be represented as (String,
String) in the RDD pairs to perform the Smith-Waterman al-
gorithm [23] for string matching. Blaze requires that the RDD be
wrapped with its API (line 2) to indicate that transformations of the
RDD (line 3) should be o�oaded to FPGAs. The RDD transforma-
tion in line 3 also invokes another Blaze class at the bottom with a
string ID to let Blaze assign tasks to the pre-registered accelerator.
While Blaze streamlines accessing FPGAs from Spark applications,
it still requires users to deal with FPGA kernels and data processing.

In this work we develop a framework for automatically gener-
ating 1) an FPGA accelerator design, and 2) data (de)serialization
methods for the Blaze runtime system. However, we note that the
S2FA framework is able to compile any Java/Scala method that sat-
is�es the constraints listed in Section 3.3 to an FPGA kernel, so we
can easily integrate S2FA with other JVM-based runtime systems
such as Hadoop and streaming APIs in Java 8.
3 S2FA FRAMEWORK
In this section we begin with an example to discuss the challenges.
Thenwe introduce the S2FA framework and explain howwe address
these challenges. This is followed by a summary of the limitations.

Code 2: Motivating Example (S-W) in Scala
1 def call(in: (String,String)): (String, String) = {

2 var out1 = new Array(String)[256]

3 var out2 = new Array(String)[256]

4 // computation start

5 ... = in._1 ...

6 ... = in._2 ...

7 out1 = ...

8 out2 = ...

9 // computation end

10 (out1, out2)

11 }

3.1 Motivating Example and Challenges
We continue to use the S-W example from Section 2 while showing
a more detail code snippet in Code 2. Note that methods _1,_2 in
lines 5, 6 are used for fetching the �rst and second element in a
Tuple2, respectively; line 10 invokes the constructor to create a
new Tuple2 as the output.

To build an automated framework that generates an accelerator
to process string matching using Blaze, our goal is to generate a
high-performance FPGA accelerator design in HLS C with func-
tionality equivalent to the original Scala method. However, the
following impediments make the implementation challenging.
Challenge 1: The semantic gap. Since HLS C is a C-based pro-
gramming language, it does not support any object-oriented lan-
guage construct. In this example, the class Tuple2 with its virtual
methods _1,_2 and the constructor are not supported in FPGA
kernels. Thus, we must substitute them using FPGA-compatible
data representations. For instance, we have to leverage two one-
dimensional arrays to store a pair of strings separately instead of
using Tuple2. Although this might not be a case for expert pro-
grammers, it is a serious challenge for a compiler.
Challenge 2: Poor performance of generated FPGA designs.
Even we solve the previous challenge and successfully generate an

HLS C kernel, the performance on FPGA could be disappointing.
Heavy code transformation and pragma insertion with the consid-
eration of FPGA architecture are generally required to improve the
performance. Since it is impractical for a Spark-to-FPGA framework
to provide HLS-like pragmas or annotations for users to specify,
it is more challenging to construct an e�cient accelerator design
from a large design space.
Challenge 3: System integration. After generating an e�cient
FPGA kernel, we also need a method to tie the kernel into the
host JVM application. In our motivating example, we need a Scala
implementation for processing a Tuple2 object into two separate
arrays. Requiring the user to do this task manually would also
impose heavy programmer burdens.

These challenges make the implementation of a Spark-to-FPGA
framework highly non-trivial. Next, we present our S2FA frame-
work that addresses the these issues.
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Figure 1: S2FA Framework Overview

3.2 S2FA Framework Overview
Based on the challenges we presented in Section 3.1, we design
the S2FA framework shown in Fig. 1. In this section we introduce
each key component in the framework, along with the motivating
example to illustrate the execution �ow.
Bytecode-to-C compiler. The �rst step of the framework is to lever-
age the bytecode-to-C compiler to generate a functional equivalent
C kernel from the kernel method in Java bytecode that is com-
piled from the user-written Scala implementation. The reason of
compiling bytecode to HLS C instead of hardware description lan-
guage (HDL) is that 1) HLS C has demonstrated its ability to achieve
high performance as RTL for many applications [11], and 2) ex-
ploring the design space in the HLS C level is much more e�cient
than in the HDL level in terms of the di�culty of code reconstruc-
tion. Our bytecode-to-C compiler is developed based on the open-
source AMD APARAPI [3] framework which performs bytecode-
to-OpenCL compilation. The original APARAPI implementation,
however, exposes OpenCL-like APIs such as getGlobalId() to
users, so the APARAPI users still have to implement the kernel
with underlying architecture consideration to achieve high perfor-
mance. In this work we take the APARAPI code generation and
modify it heavily to achieve 1) sequential C code generation1, and 2)
commonly used composite types and RDD transformation operator
support. Since modifying APARAPI to generate C code from gener-
ating OpenCL code is mainly syntax translation, here we explain
how to support composite types and transformation operators.

To support commonly used composite types such as Tuple2,
S2FA �ats class �elds and inlines class methods. Taking the Scala
code snippet in Code 2 along with the generated C kernel in Code 3
as an example: in Code 2, the method invocations _1,_2 in lines 5-6
are replaced by array reference expressions. The accesses of local
variables out1,out2 are also replaced by the function arguments

1The reason we generate C instead of C++ for HLS is because the FPGA vendor tools
either do not allow C++ class as the top-level, or even do not support class types.



for writing outputs so that the class constructor in line 10 can be
removed. Note that the class �atten implementation in S2FA is
extensible so it is easy to support more customized composite types.
We plan to investigate related issues in the future work.

In addition, since users only need to specify a lambda function
(also called an anonymous function) inside the RDD transforma-
tion operators such as map and reduce, the bytecode-to-C compiler
inserts the corresponding prede�ned template to achieve the equiv-
alent functionality. For example, the loop in line 10 of Code 3 is
inserted to iterate each task to support map transformation in Spark.

Code 3: S2FA Generated C Code Snippet for DSE
1 void call(char *in_1, char *in_2, char *out_1, char *out_2) {

2 // computation start

3 ... = in_1 ...

4 ... = in_2 ...

5 out_1 = ...

6 out_2 = ...

7 // computation end

8 }

9 void kernel(int N, char *in_1, char *in_2, char *out_1, char *out_2) {

10 for (int i = 0; i < N; i++) {

11 call(&in_1[i*128], &in_2[i*128], &out_1[i*256], &out_2[i*256]);

12 }

13 }

Design space creation and exploration. Since our bytecode-to-C
compiler only translates the syntax, we have to leverage a fully
automated design space exploration (DSE) approach to improve
the performance. The challenge at this stage is to �nd the optimal
design from the large design space, including code transformation
and HLS pragma insertion that are impractical to be done by Spark
users (Challenge 2).

In addition to the HLS pragmas, we also adopt a transformation
library of the Merlin compiler [9, 10], developed by Falcon Comput-
ing Solutions [4] for C/C++ to FPGA compilation, to include code
transformation into the design space. The Merlin transformation
library provides a set of pragmas for useful code transformations
such as loop tiling, tree reduction, coarse-grained parallelism, and
so forth. As we will mention in Section 4.1, S2FA analyzes the
kernel and inserts pragmas with possible values to construct the
design space. The design space will then be explored by our DSE
approach2. In addition, for the design point selected by the DSE,
S2FA executes the Merlin compiler for code transformation and
evaluates the transformed kernel by estimating the performance
and resource utilization using high-level synthesis (HLS) of the
Xilinx SDx [6]. However, performing HLS for each design point
is time-consuming, so we present a parallel learning-based design
space exploration approach in Section 4 to address this issue.
Data processing method generator. To process the input and out-
put data to �t the accelerator design interface and the host applica-
tion, our method generator accepts the data layout con�guration
from the bytecode-to-C compiler and generates corresponding Scala
methods by applying the prede�ned Scala method templates. The
generated method uses Java re�ection to access object �elds and
reorganizes them to �t the accelerator interface.

With each of these challenges solved, the �nal step is to generate
the bit-stream using the commercial design �ow and broadcast
the bit-stream to each worker node in the datacenter so that the
generated accelerator designs can be invoked by the Blaze runtime.
Due to page limit, we will skip the details of the bytecode-to-c
compiler and data processing method, and focus only on our design
space exploration approach in Section 4.
3.3 Limitations
The S2FA framework is able to compile the user-written Scala code
as long as the function satis�es the following constraints:
Data types: S2FA supports all primitive types and widely used
classes that are already de�ned in the S2FA. For other classes, we

2Although our DSE approach is used for Spark derived kernels in this paper, this
approach can actually be applied to general C kernels.

currently requires users to implement a S2FA class template. We
leave the automation to our future work.
Library calls: Since the bytecode of library methods might not
contain the enough information such as type parameter description,
S2FA currently does not support library calls.
Dynamic memory allocation: S2FA supports the JVM’s new op-
eration with a constant memory size. All new operations will be
compiled to static variable declarations in C, and no dynamic mem-
ory allocation will be performed on the FPGA.

The above restrictions do not a�ect design scopes, meaning
that users are still able to leverage S2FA to accelerate a kernel
with arbitrary functionality. Instead, the restriction only a�ects the
coding style and programming model.

4 DESIGN OPTIMIZATION
As we mentioned in the previous section, the bytecode-to-C com-
piler only guarantees the functionality. The S2FA framework thus
needs a mechanism to optimize the performance of generated de-
signs. In this section we describe the design optimization techniques
embedded in the S2FA framework. We �rst summarize the design
space in Section 4.1, and then describe our design space exploration
(DSE) approach in Section 4.2. Finally, in Section 4.3, we discuss
the strategies we applied for accelerating the DSE process.

4.1 Design Space Identi�cation
Table 1 lists the target design space. Note that the flatten option
in the loop pipeline factor refers to the Merlin code transforma-
tion that tries to apply �ne-grained pipelining to a nested loop by
fully unrolling all its sub-loops. We identify the design space for
each kernel by analyzing the kernel AST using the ROSE compiler
infrastructure [5] and polyhedral framework [30] to realize loop
trip-counts, available bit-widths, and so on. As can be seen, it is im-
practical to explore this tremendous design space exhaustively. For
example, the design space of the S-W example contains more than
a thousand trillion design points. This motivates us to implement
an automatic design space exploration (see Section 4.2) to reach a
near-optimal solution in a short time.

Table 1: The Target Design Space
Factor Design Space (Values)
Bu�er bit-width {b | b = bw (B) 2 B, 8 < b = 2n < 512}
Loop tiling {t | t = T (L) 2 L, 1 < t < TC(L)}
Loop parallel (coarse-/�ne-grained) {u | u = U F (L) 2 L, 1 < u < TC(L)}
Loop pipeline (coarse-/�ne-grained) {p | p = P (L) 2 L, p 2 {on, of f , f latten }}

4.2 Learning-Based Design Space Exploration
Traditionally, gradient descent like numerical approaches arewidely
used for performing DSE. Unfortunately, it is inapplicable to S2FA
because such approaches require an analytical form to evaluate the
design quality. Since S2FA allows programmers to specify any func-
tion for RDD transformation, it is hard to develop a uni�ed model to
cover all possible designs. As a result, we use a set of reinforcement
learning algorithms, including uniform greedy mutation, di�eren-
tial evolution genetic algorithm, particle swarm optimization, and
simulated annealing, to perform DSE in the S2FA.

In order to assemble all listed algorithms, the DSE �ow of S2FA
is built on the top of OpenTuner [7], an open-source framework for
building domain-speci�c program tuners. The OpenTuner runtime
allows multiple reinforcement learning algorithms to work simulta-
neously to cover as many customized tuning problems as possible,
and adopts a multi-armed bandit algorithm [13] to judge the ef-
fectiveness of each search technique and allocate design points
according to the judgment. The algorithm that can e�ciently �nd
high-quality design points will be rewarded and allocated more
design points, and vice versa.

Although the adopted learning algorithms have full coverage to
the design space, it is ine�cient to �nd the best design point. We
summarize the main impediments as follows:



Impediment 1: Expensive evaluation approach: In order to
cover all possible user-written kernels in our framework, we use
the Xilinx SDx [6] to perform HLS for resource and cycle estimation
instead of building an analytical model. However, HLS takes several
minutes to evaluate one design point so only tens of design points
can be evaluated in one hour.
Impediment 2: Complex factor dependencies: Many design
space factors a have high dependency on each other. For exam-
ple, enabling �ne-grained pipelining to a nested loop (flatten in
Table 1) causes all sub-loops to be fully unrolled and results in the
invalidation of corresponding design space factors. This phenome-
non might confuse the learning algorithm, so it has to spend more
iterations on realizing such dependencies.
4.3 DSE Optimization
In this section we introduce methodologies for addressing the im-
pediments raised in the previous section to improve the DSE e�-
ciency. The idea of our parallel DSE process is partially inspired by
DATuner [26], a parallel auto-tuner for Verilog-to-Routing (VTR)
FPGA compilation. DATuner �nds the best parameter values of the
VTR tool to achieve better resource utilization and frequency in
a given, �xed time period by dynamically partitioning the design
space and allocating more CPU cores to the partition with higher
QoR. In contrast, our �ow (shown in Fig. 2) parallelizes the DSE
process based on static partition rules to avoid set-up time (Sec-
tion 4.3.1). Also, unlike DATuner that uses random seeds and a
time limit to start and terminate the DSE of a partition, our �ow
generates e�ective seeds for each partition to reduce the probability
of being trapped in the infeasible design space region (Section 4.3.2),
and sets up a stopping criteria to avoid long tails (Section 4.3.3).
The e�ectiveness analysis is presented in Section 5.2.
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Figure 2: Fast Design Space Exploration Flow in S2FA

4.3.1 Design Space Partition. Since the learning algorithms we
adopted are iterative algorithms that have a strong dependency
between iterations, we cannot simply increase the DSE e�ciency
using more CPU cores to address Impediment 1. As a result, we
statically separate the design space into independent partitions and
assign di�erent cores to di�erent partitions to perform the DSE in
parallel. As shown in Fig. 2, our �ow has a mechanism that adopts
the �rst-come-�rst-serve approach to schedule partitions to threads,
so it perfectly solves Impediment 1 as long as the partition number
is larger than or equal to the number of CPU cores.

Although the authors in [26] claim that the dynamic partition is
more case-speci�c and results in a better convergence rate than the
“one-for-all” static partition, it needs several iterations for sampling
at the beginning of the DSE process for every partition. Conse-
quently, to take advantage of both, we adopt the “some-for-all”
static partition approach. We statically create some sets of rules and
choose the set that is most suitable to the design for partitioning
only at the beginning of a DSE process.

Our rules are de�ned based on the following methodologies:
Partition the design space based on loop hierarchy in order to
re�ect the design factor dependency (Impediment 2). According
to our observation, the same loop level could have similar impact
on performance even in di�erent applications, so we attempt to

partition the design space based on the loop level. However, it is
impractical to build application-speci�c loop-level based rules with-
out any training data. As a result, we use a heuristic approach by
grouping the applications with similar loop hierarchy geometrically
and generate training data to establish the rules.
Partition the design space according to the RDD transforma-
tion semantics such as map and reduce as described in Section 3.2.
In detail, we de�ne the rule based on the scheduling of the outer-
most loop in kernels, since the outermost loop in kernels is always
inserted by our bytecode-to-C compiler to achieve the equivalent
functionality as the corresponding parallel pattern.

With the rules we obtained from above methodologies, we de-
termine and rank the rules by building a binary decision tree that
clusters the design points which potentially have similar resource
utilization or latency so that the learning process can be more ef-
�cient. Decision tree is a popular method for classi�cation and
regression. Each tree node represents a rule that is composed of a
parameter and a condition (e.g., parallel factor < 16). A path
from the tree root to a leaf with all rules on the path are conjugated
to form a partition. These nodes are determined by greedily select-
ing the best rule to maximize the information gain. Formally, we
choose nodes from the set ar�maxn IG(n,D) where IG(n,D) is the
information gain if we apply node n to the dataset D, as it has been
de�ned as follows:

IG(n, D) = Imp(D) � Nl
N

⇥ Imp(Dl ) �
Nr
N

⇥ Imp(Dr ) (1)

where Nl , Nr , N are the size of the left partition subset Dl , right
partition subset Dr and overall dataset D respectively. Imp(D) is an
impurity measurement of dataset D. Impurity function is usually
selected based on the type of decision tree task (classi�cation or re-
gression). Since the value of each partition in our case is a regressed
number (latency), we choose variance as our impurity function.

With partitions from a decision tree, we can e�ciently alleviate
Impediment 2 because the learning algorithm is able to learn infor-
mation without being disturbed by outliers. We note that since all
partitions are disjoint and the union of all partitions is the original
design space, our design space partition approach preserves the
optimality while improving the DSE e�ciency.

4.3.2 Seed Generation. Although we have partitioned the design
space systematically in the previous section, a partition may still
contain millions of design points. However, it is too aggressive to
prune the design space using heuristics such as limiting parallel
factor or local bu�er size, because the boundary of those factors
varies from arbitrary user-written kernels and results in a di�er-
ent infeasible region in the design space. For instance, performing
coarse-grained parallelism with factor 256 to the outermost loop
might be infeasible for most designs due to high routing complexity,
but it could be an optimal choice for certain designs that have a
very simple computational pattern. As a result, instead of heuris-
tic pruning, we preserve an entire design space but increase the
probability of �nding the best design point in fewer iterations by
providing seeds, the starting point for learning algorithms.

We generate two seeds for each partition with di�erent strate-
gies. The �rst seed is performance-driven. For this seed, we enable
pipelining for all loops, set the parallel factor of every loop to 32,
and set the bu�er bit-width to 512. Although this con�guration
might fail to be synthesized for some designs, we can signi�cantly
reduce the iteration number of the DSE process for others. On the
other hand, the second seed is area-driven. For this seed, we disable
all optimizations so all loops are performed sequentially and all
o�-chip bu�ers are set to the minimum bit-width. As a result, this
seed has the most conservative con�guration in terms of resource
utilization and design complexity, so it is less likely to be infea-
sible from the perspective of the high-level synthesis tool. With
the conservative seed as a starting point, the learning algorithm is
guaranteed to start searching in the feasible region and avoid being
trapped in the infeasible region all the time.



4.3.3 Early Stopping Criteria. Since the vanilla OpenTuner does
not have a systematic stopping criteria but only adopts the limita-
tion of either execution time or searched point count, the long tail
is almost inevitable. In fact, the long tail becomes a serious problem
for exploring FPGA accelerator designs because we need minutes
to an hour to evaluate a single design point using HLS.

To solve the long tail problem without the knowledge of optimal
performance, we add one more criteria in addition to the time limit
to stop the DSE process earlier based on the following concept.
According to the dataset of explored results Di after i iterations,
and its subset of the uphill performance results between any two
consecutive iterations Du

i , let PDi (Du
i | tj ) be the experimental

conditional probability by mutating design factor tj , and let P(tj )
be the theoretical probability with equal likelihood to other fac-
tors. Our early stopping criteria function should converge when
PDi (Du

i | tj ) is close enough to P(tj ). We use H (Di )—the Shannon
entropy [22], a widely used approach in information theory for
quantifying uncertainty—to formulate this concept. That means
we will terminate the DSE process for a partition at iteration i if
we have a low enough uncertainty of �nding a better result in that
partition at the next iteration. Formally, our early stopping criteria
with the Shannon entropy is de�ned as follows.

|H (Di ) � H (Di�1) |  �

H (Di ) = �
’
j
PDi (D

u
i | tj ) log PDi (D

b
i | tj ) (2)

where � is the threshold for termination. Note that this metric has
also been used in other �elds such as image processing [19]. In
practice, we terminate the DSE process after the entropy di�erence
is lower than � for consecutive N iterations to avoid pulses. As we
will illustrate in Section 5, this systematic criteria works better than
the trivial one that simply stops the process if a better result cannot
be found for a number of iterations.
5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Our evaluation of S2FA is performed onAmazon EC2 F1 instance [1].
The instance type is f1.2xlarge, which includes an 8-core CPU
with 122GB of main memory and one Xilinx Virtex UltraScale+TM
VU9P FPGA with three separated dies. In addition, we select a set
of common Spark applications to evaluate S2FA. We also select
two string processing applications in our evaluation since they are
classic applications for FPGA acceleration. All applications are built
with the software environment that consists of JDK 1.7.0_79, Scala
2.11.4 and Spark 1.5.1.
5.2 Results and Analysis
While the application-level speedup and system-level overhead
are transparent to Blaze [14] runtime, this section focuses on the
performance evaluation of S2FA-generated accelerators.

Fig. 3 depicts the process of design space exploration. The x-axis
is the exploration time in minutes while the y-axis is the normalized
execution cycle based on the random seed of the vanilla version of
OpenTuner. The dashed line in each sub-�gure is performed by the
OpenTuner [7], while the solid line is the process of the S2FA DSE.
Both processes are performed by eight CPU cores3. In summary, the
DSE process of S2FA saves 52.5% execution time on average while
achieving 35⇥ performance improvement when compared to the
OpenTuner. We analyze the e�ectiveness of our DSE optimization
from the �gure as follows.

First, the QoR di�erence of the �rst explored point illustrates the
e�ectiveness of our seed generation. Second, almost all S2FA DSE
processes drop faster, meaning that S2FA is capable of �nding a
better design point in a shorter time than the OpenTuner due to an
e�ective design space partition. The exceptions is KMeans. We can
3Since the OpenTuner does not partition the design space, it uses the eight cores to
evaluate top-8 candidates at one iteration. This is not scalable in terms of the e�ciency.

see in Fig. 3 that OpenTuner also achieves the same performance
as S2FA. This is because the design space of KMeans is relatively
small, so the bene�t of design space partition is marginal.

Third, S2FA terminates the DSE process faster (⇠1.9 hours on
average) than the OpenTuner (four hours) due to the early stop-
ping criteria. As a result, even the OpenTuner is able to realize the
same design as S2FA for KMeans; it still terminates the process at
four hours, set up in advance because of the lack of an e�ective
stopping criteria. In addition, we also analyze the e�ectiveness of
one straightforward stopping criteria that stops the DSE process if
no better result were found for consecutive 10 iterations4. It turns
out that compared to our Shannon entropy criteria, the trivial cri-
teria terminates the process one hour later (⇠2.8 hours) but only
improves 4% performance on average.
Table 2: Resource Utilization and Clock Frequency (MHz)

Kernel Type BRAM DSP FF LUT Freq.
PR (PageRank) graph proc. 25% 2% 16% 18% 250

KMeans (K-Means) classi�cation 73% 6% 10% 14% 230
KNN (K-Nearest Neighbor) classi�cation 75% 6% 50% 50% 240
LR (Logistic Regression) regression 74% 3% 49% 74% 220

SVM (Support Vector Machine) regression 74% 4% 48% 72% 250
LLS (Least linear square) regression 74% 3% 45% 21% 230

AES (encryption) string proc. 36% 0% 3% 6% 250
S-W (Smith-Waterman) string proc. 33% 30% 54% 75% 100

Based on the best con�gurations from the DSE, Table 2 lists the
resource utilization and clock frequency of each generated design.
Since the performance of AES and PR are bounded by external
memory bandwidth, they do not fully utilize hardware resources.
On the other hand, other cases fully utilize at least one kind of
resource,5 meaning that those three designs are computationally
bounded and their performance can be potentially improved if a
larger FPGA is provided. In addition, since we perform place and
route using the default setting of Xilinx SDx [6], the frequency fails
to achieve the target (250MHz) for satisfying timing constraints for
some cases. In the future we plan to model the impact of design
factors on frequency during the DSE process.

Fig. 4 shows the speedup of manual and S2FA-generated FPGA
designs over the original Spark transformation methods running
on a JVM. The x-axis lists all designs while the y-axis illustrates
the speedup in logarithm scale. We use a single-threaded Spark
executor on the JVM as a baseline because only one thread is nec-
essary for launching FPGA and other threads are able to perform
other tasks simultaneously. The manual design for each application
is also implemented in HLS C. Both manual and S2FA-generated
designs use Xilinx SDx 2017.2 [6] as the design �ow. However, as we
mentioned in Section 1, S2FA only requires a few hours including
bit-stream generation to �nish a FPGA design, greatly reducing the
development time.

As can be seen in Fig. 4, most S2FA-generated designs achieve
competitive speedups to the manual designs (⇠ 85% on average)
and outperform the corresponding Scala implementations on the
JVM by 181.5⇥ on average. On the other hand, the core compu-
tation of LR is the regression model that involves �oating point
multiplication and exponential calculation so the minimal initial
interval is still 13. The LR manual design splits the computation
statement to multiple stages to form a highly e�cient pipeline.
Future work would try to solve this problem by analyzing such
a performance bottleneck and perform automatic partitioning. In
addition, since the computational pattern of PR is too simple to hide
the communication latency, even the manual HLS implementation
cannot achieve a high performance on the FPGA.
6 RELATEDWORK
There is some amount of previous work that generates FPGA accel-
erators from parallel pattern programming models. The author in

4We skip this evaluation in Fig. 3 for the sake of visualization.
5We set the maximum resource utilization to 75% since the rest of them were used by
the vendor-provided control logic.
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Figure 4: Comparison to Manual Designs over JVMs
[17] lets users write FPGA kernels in parallel patterns and compiles
them to their intermediate representation (IR) language, DHDL [15].
Then, a heuristic DSE approach is proposed to improve the QoR.
However, the programming model in [17] only supports primitive
types, and the design space in DHDL does not include the archi-
tecture hierarchy since it is determined and �xed before the explo-
ration. In addition, SparkCL [21] integrates AMD APARAPI [3] into
Apache Spark and targets to FPGAs. However, the programming
model of SparkCL also limits to primitive types, and requiresmanual
design optimization. Melia [25] is a C-based MapReduce framework
that automatically generates OpenCL FPGA kernels, and optimizes
them by leveraging an analytical performance model [24]. However,
the analytical model in [24] assumes that fully pipelining all loops
is achievable, and cannot align to the optimization done by HLS
design �ow. In addition, Melia is a standalone framework so it is not
compatible with any widely used big data analytics frameworks.

In addition, adopting learning-based DSE approaches with HLS
tools to deal with the tremendous design space of high-level syn-
thesis is also getting more and more attention [16, 20, 27, 29]. Some
of them build predictive models for HLS tools to guide the DSE
process[16, 20, 27], but do not consider the dependency of design
factors so only suboptimal solutions can be achieved. Although [29]
uses a linear model with explored points based on loop hierarchy,
it is limited to nested loops and not scalable.
7 CONCLUSIONS
In this paper we present an automated framework that compiles the
kernel of Spark applications to FPGA accelerators and integrates the
accelerator to Blaze runtime. The S2FA framework supports object-
oriented constructs in bytecode-to-C code generation to improve
the programmability for programmers. It also adopts an e�cient
parallel learning-based design space exploration to optimize the
accelerator performance. The experimental results show that our
generated FPGA kernels reach 1225.2⇥ and 49.9⇥ speedup for string
processing and machine learning applications respectively when
compared with the equivalent Scala implementations from which
they are automatically generated.

There are several opportunities for future work in this area.
For example, it is worthwhile to explore the high-performance im-
plementations and DSE of more object-oriented constructs while
preserving their semantics and programmability. It is also promis-
ing to improve the backend side by 1) introducing more design

optimization methodologies, and 2) investigating more approaches
for further improving the e�ciency of �nding the best design point.
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