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Abstract

The intensity gradientmethod (G2method), namely computing the light intensity gradient-squared,

is a widely used non-invasive experimentalmethod to extract stress information fromquasi-two-

dimensional photoelastic granularmaterials. Previousworks show that calibratedG2 is an accurate

measure of global stress. However, whether it can be used at the particle scale aside from the special

case of diametric loading remains unclear.We test here the applicability and limitations ofG2 as

particle scale stress indicator and specify its dependence on relevant experimental parameters of the

particles, light conditions, and imaging system.We first propose an explicit formula to calculate the

relationship between theG2 value and stress based on the linear elasticity and photoelasticity theories,

and then validate our formula by numerical and experimental tests.We find thatG2 is proportional to

å


∣ ∣Fi i , the sumofmagnitudes of the contact forces, for disc particles when forces are not large.We also

observe that, for large enough resolution,G2 does not changewith the number of contacts as well as

the direction of the contact forces under sameå


∣ ∣Fi i value.However, we find that this relation between

G2 andå


∣ ∣Fi i is not universal for any particle shape. As an example, we show that a square particle can

have dramatically different values ofG2under the same contact forces with different contact types

(point-edge contact and edge–edge contact).

1. Introduction

The transition between jammed andunjammed states of granularmaterials is very important inmany industrial

processes [1] and natural hazards [2, 3]. Observing and studying themicroscopic, i.e. particle-scale, stress is

crucial to understand themacroscopic transition in granularmaterials. The challenge is how to experimentally

extract particle scale stress information non-invasively. Currently, there are several experimental techniques up

to this task, including X refractive ray/computed tomography scan [4–6], reflectively indexmatching [7], and

photoelastic imaging [8–10].

The photoelastic technique has beenwidely used in granularmaterials research, and is one of themost

effective experimentalmethods, for two-dimensional (2D) granular systems [11–13]. Two prevalentmethods

well developed in Behringer’s lab [11, 14] can be used to extract the particle scale stress from the experimental

data: the force resolvingmethod [9, 11] and theG2method [14]. The force resolvingmethod is based on a

nonlinearfitting algorithm that can reveal the contact vector forces in quasi-2D granularmaterials composed of

discs with different sizes [11]. Details of this nonlinear fitting algorithmhave beenwell described in a recent

review paper [10]. However, the implementation of this technique depends on the accuracy of the initial guess

for the contact forces beforefitting [9], and is highly computationally consuming [10]. By contrast, while unable

to solve the contact vector forces of each particle, theG2method canwell reveal the particle scale pressure/stress

in a reasonable stress range, which isfirst reported byHowell et al [14]. TheG2method is still widely used
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because of its computational efficiency and simplicity [8, 10, 12, 15–23].G2 is defined by the averaged square of

the intensity gradient of the region of interest in the experimental image recording the photoelastic fringes, and

monotonically growswith the boundary stress of the granular packing [8, 14, 15, 22]. Even though several recent

works assumed that a similar relation holds at the grain scale [18, 21], the particle scale validity of this empirical

method has been neither systematically tested nor proven except for diametric loadings.

In this work, we try to answer questions includingwhat stress information is correlatedwithG2 at the grain

scale, what determines this correlation, andwhether the correlation is the same for different particle shapes.We

first propose a general formula that specifies the dependence ofG2 on all the relevant experimental parameters:

(1) the background light intensity I0, (2) the stress-optic coefficient fσ, (3) the camera resolutionN, defined as the

number of pixels permeter, and (4) the disc particle radiusR. Thenwe provide both numerical and experimental

tests to validate the formula. Finally we consider the validation of the formula on non-circular particles. Our

work provides regulations and information to setup and analyze granular experiments using photoelastic

materials.

2. Theory

For an experimental image showing fringes of photoelastic particles under stress,G2 for a particular disc is

defined as
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which is the discrete version of calculating the averaged inner product of the intensity gradient at different pixels

inside the disc. Ii j, in equation (1) is the intensity of light at (i, j) pixel [9, 14].More information on the set-up of
the lightening and imaging systemutilizing photoelastic technique can be found in [10]. Viewedwith an ideal

polariscope, the light intensity is determined by: (1) the stress-optic coefficient =s
l

f
Ct
, whereλ is the

wavelength of the illumination light, t is the height of the particle, andC is amaterial constant, (2) the

background light intensity I0, and (3) the eigenvalues of the stress tensor ŝ (denoted asσ1 andσ2) [9]:

s s p
=

-

s

⎛

⎝
⎜

⎞

⎠
⎟

( )
( )I I

f
sin , 20

2 1 2

where s1 andσ2 depend on contact forces acting on the particle.We consider a disc underZ number of contact

forces, each contact force is specified by three parameters b a


( ∣ ∣)F, , . Here b pÎ [ )0, 2 is the contact angle,

a pÎ [ )0, 2 is the impact angle, and


∣ ∣F is themagnitude of the contact force

F (figure 1). In order to get the

distribution of light intensity inside the disc, we need to calculate the distribution of the stress tensor.We show a

brief derivation below and amore completed version can be found in [9]. In the following derivation, linear

elasticity is assumed, and the results are applicable only for small strain, which is the case for typical experiments

in granular physics where the deformations of particles are usually small (e.g. [9, 20]).

To calculate the stress tensor caused by one of theZ forces (denoted as

F ), we consider a spatial position

inside the disc (c, r) (figure 1). The infinitely large plate solution gives the only non-zero component of stress

Figure 1. Schematic of the relevant parameters used to calculate the stress tensor at point (c, r) inside an elastic disc particle. The

direction of the vector contact force

F is specified by the angleα. The position of the contact point is determined by the angleβ. rdis is

the pixel distance from the contact point to the point (c, r). The notions of other relevant angles are also present.
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tensorσ [9],

s
p

q
=

-


∣ ∣
( )

F

r

2 cos
, 3rr

real

where rreal is the distance inmeter from the contact point to the point (c, r). The pixel unit distance is obtained by
=r Nrdis real, whereN is the number of pixels permeter. Also note herewe imply a polar coordinate system, and

the base vectors at point (c, r) is shown by the small red arrows in figure 1. In order to rotate this axis by angle

a a q¢ º + to theCartesian axis system, we apply the rotationmatrix a¢( )IR , given by

a a
a a
¢ - ¢
¢ ¢

⎜ ⎟
⎛

⎝

⎞

⎠
cos sin

sin cos
,

which yields ŝ,

s a s a= ¢ ¢ˆ ( ) ( ) ( )IR IR 4T

To satisfy the zero-stress boundary condition, a uniform tension tensor s = Au needs to be added, where A is a

constant [9]:

p
w=


∣ ∣

( ) ( )A
F

R2
cos , 5

whereR is the particle radius inmeter.

Due to the geometry, the complete stress tensor at (c, r) is therefore

s a s a= ¢ ¢ +ˆ ( ) ( ) ( ) ( )c r, IR IR A . 6T

Formulti-contacts, the resultant stress tensor at point (c, r) is

å å ås s a s a= = ¢ ¢ +
= = =

ˆ ( ) ˆ ( ) ( ) ( ) ( )c r c r, , IR IR A . 7
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Note that in the above derivationwe assumed the strain is infinitesimal.Moreover, themodel does not

assume any relation between contact forcemagnitude and strain at contact (e.g. Hertzian or linear). From the

above equationwe see each element of the stress tensor is a linear combination of the contact forcemagnitudes

divided by a length inmeter.We define ¢Fi for ith contact force as
¢ º s

 
F F N fi i so that we canwrite

s s p- = ¢ ¢ ¢
s

 



( ) ( )f g F F F, , , Z1 2 1 2 at a particular pixel position.Note any parameter inside g function except

¢F si is either dimensionless or has unit of pixel length.We derive a general formula to calculateG2 below:
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The last step uses ¢ ¢ ¢ = å ¢ = å s= =

 


  
( ) ∣ ∣ ∣ ∣f F F F c F c F N f, , , Z i

Z
i i

Z
i1 2 1 1 , which is an assumption for small

enough forces.We note in principle c in equation (8)does not have to be constant, althoughwe assumed it to be a

constant for simplicity andwewill test this assumption later. Equation (8) provides a general formula that relates

G2with contact forces of a particular disc particle using all the relative experimental parameters I0,N,R and fσ. In

the following sections we test if this relation really holds. Since I0 dependence in equation (8) is straightforward

from the derivation, wewill focus onN,R and fσ in this paper.

3.Numerical simulation

3.1.Different contact number

Previous experiments confirmed that under diametric loading (Z= 2 and both forces are normal),

µ å µ


∣ ∣G F Pi i
2 , where p= å


∣ ∣P F R2i i is the pressure acting on a disc particle [18, 20]. It ismore convenient
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to study this relation for different number of contacts using numerical simulation. For simplicity wefirst

simulate a particle underZnormal contact forces that have the samemagnitude and are distributed evenly over

the circular boundary. The simulated disc has fσ=100,R=10
−2m, and I0=1. The values of fσ andR are close

to the values actually used in typical experiments (e.g. [9, 10, 12]). Figure 2(a) shows howG2 changes with

pressure P (andå


∣ ∣Fi i equivalently) for differentZ.

It is clear that the linear dependence holds for differentZ, but the slope ofG2 drops a little whenZ increases.

We attribute this discrepancy to the finite resolutionN. To show this, we consider the relative difference at

P=100 Nm−1 between the values ofG2withZ=2 andZ=10, quantified by

Δ= = = -( ( )G Z P2, 100 N m2 1 − = = = =- -( )) ( )G Z P G Z P10, 100 N m 2, 100 N m2 1 2 1 . The

relation betweenΔ andNwith other parameters fixed is shown infigure 2(b), which shows a power law decay

without an upper cutoff as the resolution increases. Sowe expect that when the resolution goes to infinity, allZ

cases will have the same linear behavior with the same slope. This fact is evenmore strikingwhen comparing

their very different photoelastic patterns (figure 2(c)).

3.2.Different tangential forces

We then test if the linear dependence holds when the contact forces are not normal, which is common for

frictional granularmaterials. For a disc with friction coefficientμ, the largest possible contact angleβ=arctan

(μ) is referred to as the friction angle.We consider a pair of forces with the same forcemagnitude


∣ ∣F acting at the

friction angle for differentμ. An example is shown in the inset offigure 3(b). Figure 3(a)plots theG2 changes

with


∣ ∣F at frictional angleβ(μ) for differentμ. For small forces, differentμ seems to have similar linear slopes.

However, the difference between differentμ does not vanish as the resolution goes to infinity. The inset of

figure 3(a) shows the relative differenceΔ ofG2 at F=2 Nbetweenμ=0 andμ=2 changes with the camera

resolutionN. m m mD = =


= - =


= =


=( ( ∣ ∣ ) ( ∣ ∣ )) ( ∣ ∣ )G F G F G F0, 2 N 2, 2 N 0, 2 N2 2 2 . The

relative differenceΔ goes to afinite value,Δ≈10%, as  ¥N , but this difference is not unacceptable

experimentally. Still, the discrepancy ofG2 at the same pressure becomes very large (figure 3(b)).The above

observations holdwhen the contact numbers change. For example, we consider another case whenZ=4which

includes 2 pairs of forces with samemagnitude


∣ ∣F that all act on the friction angle (shown infigure 3(d) inset).

Figure 3(c) plots theG2 versus å


∣ ∣Fi i forZ=2 cases (") and theZ=4 cases (!). Figure 3(c) shows that the

linear relation still holds for differentZwhenå


∣ ∣Fi i is not large. Figure 3(d) plots the sameG2 data versus

pressure, which shows the linear relation does not changewith contact number even for large tangential forces.

Butwith largeμ the slope betweenG2 and pressure can be very different. Particles used inmost previous

experiments have friction coefficients less than 1 (e.g. [12, 15, 18]).

3.3. A real granular packing

In the previous sectionwe show that in special cases the relationship between G2 andå


∣ ∣Fi i is linear with a

universal slope. Nowwe test in a general granular packing, where particles can have random contact numbers,

positions and forces. Figure 4(a) shows a reconstructed image using the fitted forces extracted in a real jammed

Figure 2. Simulated particle: fσ=100,R=10
−2 m. (a)Relation betweenG2 and pressure P for a disc with = ´N 5 104 under

different number of contacts. Each contact has a normal contact force with samemagnitude. (b)The relative difference
D = = = - = = = =- - -( ( ) ( )) ( )G Z P G Z P G Z P2, 100 N m 10, 100 N m 2, 100 N m2 1 2 1 2 1 changeswithN. A power-law is
evidenced such thatD  0 when  ¥N . (c)The photoelastic fringes for the same disc simulatedwith 100N m−1 pressure but
different number of contacts. The number of contacts from left to right are: 2, 3, 4, 5, 6, and 10, respectively. Although the patterns are
strikingly different, theG2 values are the samewith high enough resolution.

4
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Figure 3. Simulated particle: fσ=100, = -R 10 m2 . (a)Relation betweenG2 and individual forcemagnitude


∣ ∣F for a disc with

= ´N 5 104 under a pair of forces with samemagnitude


∣ ∣F at different contact angles. Inset: relative difference ofG2 at


=∣ ∣F 2 N

betweenμ = 0 andμ = 2: m m mD = =


= - =


= =


=( ( ∣ ∣ ) ( ∣ ∣ )) ( ∣ ∣ )G F G F G F0, 2 N 2, 2 N 0, 2 N2 2 2 .Δ goes to finite value
as  ¥N . (b)G2 versus pressure for two-contact loading at friction angle b m= ( )arctan . Inset: the photoelastic fringes of a

simulated particle withμ=1 under =


∣ ∣F 2 N. (c), (d)Comparison between four contact loading (!) and two contact loading (")

cases. The inset of (c) shows an experimental validation of the simulated photoelastic fringes as shown by the inset of (b). The inset

figure of (d) shows a particle under four-contact loadingwith each forcemagnitude =


∣ ∣F 2 N. The contact angle is the friction angle
arctan(μ)whereμ=1.

Figure 4. (a)The reconstruction of a real jammed granular packing. The contact forces are computedwith the nonlinear fitting
algorithm. The system contains particles with two different radiiRbig=0.56 cm andRsmall=0.44 cm. Each disc is in force and
torque balance. The photoelastic fringes are calculated using equation (2). The friction coefficient between particles isμ≈1. (b)The
relation between rescaled G R2 2 and pressure for each individual particle in the jammed granular system.R is the radius of the particle

being calculated. (c)The relation between rescaled G R2 2 and å


∣ ∣Fi i for each individual particle in the jammed granular system. The
data collapsesmuch better than (b).
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granular system [9]. The system contains particles with two different radii:Rbig=0.56 cm and

Rsmall=0.44 cm. Each disc is in force and torque balance. The photoelastic fringes are calculated using

equation (2). The system contains about 1000 particles. The friction coefficient between particles isμ≈1.We

check the dependence ofG2 on å


∣ ∣Fi i and pressure respectively for those particles. Figure 4(b)plots the rescaled

G R2 2 versus pressure for each individual particle in the jammed granular system, whereR is particle radius. The

data are scattered as expected from the simulationswe showed above. Figure 4(c) plots the relationship between

rescaled G R2 2 versus å


∣ ∣Fi i for each individual particle in the jammed granular system. The data collapses nicely

on a straight line. This test confirms thatG2 always has a linear dependence on å


∣ ∣Fi i under loading situations

with any contacts.

3.4. Test of the general formulation

Nowwe have shown that with high resolution and small forces, equation (8) holds for differentZ and different

contact angles with sameR,N and fσ values.We thenmove forward to test the validation of equation (8)whenR,

N and fσ changes.We study how the linear slope = ¶ ¶ å


( ∣ ∣)k G Fi i
2 changes with fσ,N, andR. Figure 5 for

example shows our analysis ofG2when changing fσwhile keeping all other relevant parameters I0,N,R the same.

Figure 5(a) plotsG2 versus å


∣ ∣Fi i using different fσ. The black lines show linearfits for the linear regimewith

different fσ. The red dotsmark the points where the linear regime breaks down. The corresponding å


∣ ∣Fi i value

is denoted as the saturation force FS. Figures 5(b) and (c) plot the change of the linear slope k and the saturation

force FSwith fσ. Both figures show good power-law dependence as expected from equation (8).We perform

same analysis onN andR aswell, which all follow the expected scalings from equation (8).

The overall validation of equation (8) can be proved by looking at the slope, k, for different fσ,N,R values

changing together over large ranges, as shown infigure 6(a). Here the background light intensity is set to be

I0=1. Figure 6(a) shows all the data well collapse with a linear fitting, = s( )k cI f R N0
2 2 , which confirms that

equation (8) holds for the numerical simulations.We note that the range of values we tested in numerical

simulation for parametersR,N, and fσ is not only large (over 3 decades for each) but also covers the typical values

themost up-to-date experimentmay have. For example, recent works typically involve∼103number of particles

withR∼10−2mrecorded by camera having~10 px6 2 resolution [10, 18–20]. This typical setting gives

N∼104. Figure 6(b) plots the change of saturation force FS against the same set of parameters. Unexpectedly, FS
scales as 1/k. This information is very important when designing and analyzing the photoelastic granular physics

experiments.

Figure 5. Simulated particle:N=104,R=10−2 m. (a)Diametric load of particles with two forces having same forcemagnitude.
Different colormeans different fσ value. The black solid lines are linear fits for small forces. The red circlesmark the points where the

linear regions end. Those saturation points arewhere the real data has 5%difference from the linearfit. The value of å


∣ ∣Fi i at the
saturation point is called the saturation force FS. (b)The linear slope k versus fσ, where a power-lawwith exponent−1 is evidenced. (c)
The saturation force FS versus fσ, where a power-lawwith exponent 1 is evidenced.
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4. Experiment

4.1. Comparing to the numerical results

Wehave shown by numerical simulations that in ideal cases equation (8) holds for discs under point contacts in

general.We now test if equation (8) holds for real experimental photoelastic discs. Figure 7(a) plots a

comparison between theG2 versuså


∣ ∣Fi i for both numerical and experimental discs. Both numerical and

experimental tests have all parameters I0,N,R, fσ and the loading conditions (Z= 2with both forces normal and

balanced) the same.We see the numerical solution gives amuch largerG2 at the same value of å


∣ ∣Fi i . Thismay be

due to the non-ideal response of thematerial close to the contacts. Figures 7(c) and (d) plots the color-map of the

calculatedG2 distribution fromnumerical solution and experimental test respectively. Redmeans largeG2 value

and bluemeans smallG2 value. It is clear that the value ofG2 around contact points in the real experiment is

significantly smaller than the numerical solution, which confirms our argument.However, the averaged

intensity á ñI , where áñmeans averaging over the pixels inside the disc, fromboth simulation and experiment are

similar as shown infigure 7(b). It should be noted that themonotonic regime of á ñI versus å


∣ ∣Fi i is significantly

smaller thanG2. Thus á ñI is not a goodmeasure of stress unless the contact forces are very small. Figures 7(e)–(g)

plot the intensity distribution of the same particle under point loading, plane loading and fromnumerical

simulation under the same pair of forceswith =


∣ ∣F 1.4 N.

Figure 6.Collapse of data for simulated discs with I0=1 and different fσ,N,R (meter) values. (a)The red line is a linearfit using
= s( )k cI f R N0

2 2 where c=0.2757±0.0001. (b)The red line is a power lawfit using = ¢ sF c f R N IS
2

0
2 where

¢ = c 0.1507 0.0003.

Figure 7. (a)G2 versus å


∣ ∣Fi i for a disc withN=8925, fσ=147 andR=0.92 cmunder I0=0.6 light condition. The red circle
shows result fromnumerical simulation. The blue circles and triangles showdata from experiment using point contact test (shown in
(e)) and plane contact test (shown in (f)) respectively. Note in the plane contact loading case,finite contact area is allowed. (b)The

intensity per pixel á ñI versus å


∣ ∣Fi i for the same disc as in (a) from simulation (red circles) and point contact experiment (blue circles).
(c)TheG2 distribution calculated from the simulated photoelastic pattern (g). (d)TheG2 distribution calculated from the point
contact experimental image (e). (e), (f)The experimental images got under point and plane contact forces loading. (g)The numerically
calculated pattern. The contact force in (c)–(g) is =∣ ∣F 1.4 N.
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4.2. Validation of the scaling relation

To test the scaling relation equation (8), we performdiametric loading to discs with 4 different radii: 0.92, 1.25,

1.57, and 2.26 cmunder the same light conditions. DifferentN is achieved by blurring the experimental image by

resizing. Figure 8(a) plots theG2 dependence onå


∣ ∣Fi i with different parameters. All the curves collapse in their

linear regime after rescaling using equation (8), as shown infigure 8(b). Therefore although the value of c in

equation (8) is different in experiment due to the non-ideal response of thematerial close to the contacts, the

scaling relations still holds, which is very useful in designing and analyzing experiments.

4.3. General contact situations

The above analysis confirms that equation (8) holds for experimental diametric loadings.We expect this relation

holds formore general cases: particles with different contact numbers, positions, and forces. To confirm this

expectation, we show a test with a real jammed experimental system. The system is the same packing shown in

figure 4. Figure 9(a) shows the experimental photoelastic fringes captured by camera for this packing. Thewhite

circles are plotted to highlight the particle boundaries. Figures 9(b) and (c) plot the relation between the rescaled

G R2 2 versus pressure andå


∣ ∣Fi i respectively. å


∣ ∣Fi i and pressure are obtained by the vector forcefitting

algorithm [9, 10]. The data points infigures 9(b) and (c) are both scatted around a straight line. Due to the

scattering of the data, nomeasurable advantage is observed for å


∣ ∣Fi i over pressure. This is probably because the

forcefitting algorithm tomeasureå


∣ ∣Fi i itself has around 5%–10%uncertainty [9], which overwhelms the small

distinction between pressure and å


∣ ∣Fi i shown infigure 4. Thus experimentally, for this system,G2may still be

used as a pressure indicator considering the experimental noise. However, we expect that when the friction

coefficientμ is large enough,G2 in experiment will no longer be a good indicator of pressure, but still a good

indicator of å


∣ ∣Fi i .We note in this packing,μ≈1. Previous experiments have usually hadμ<1 [12, 15, 18].

Most importantly, figure 9 showsG2 for particles with different contact situations collapse reasonably well after

proper rescaling. Thus equation (8) is verified in general cases experimentally.

5.Other particle shapes: contact areamatters

Particles in real world granular systems and industrial products are not spherical. It is important to test if theG2

method can be used to analyze non-circular particle systems.

Consider a square particle under a uniform edge-to-edge uni-axial compression along y direction. The stress

tensor everywhere inside the square should be the same: s d d= F Lij iy jy, where L is the length of the edge and δ is

the Kronecker delta function. Then the intensity is p= s( )I I F f Lsin0
2 , which gives  =I 0. Therefore,

although the boundary force experienced by this square particle is not zero, the value ofG2 is zero. Consider if

the same forces are applied through point contacts; then the stressfieldwould be significantly different (similar

to disc cases). To verify these theoretical arguments, we experimentally compress a square photoelastic particle

using two point contact forces with the samemagnitude (figure 10(c)) and using two edge contact forces

resulting in a uniform stressfield (figure 10(d)). Figure 10(a) plotsG2 versus å


∣ ∣Fi i for point contacts (red circles)

and edge contacts (blue circles). In the two cases, the value ofG2 is significantly different even at the same å


∣ ∣Fi i .

For completeness we calculated the averaged intensity á ñI versus å


∣ ∣Fi i infigure 10(b), which also shows a

significant discrepancy between point and edge contact loading cases. Thus,G2 in angular particles, where edge

Figure 8. (a)G2 versus å


∣ ∣Fi i for particles with different parameters. Themeaning of symbols are shown in (b). (b)After proper
rescaling using equation (8) the linearly increasing part ofG2 collapses as expected.
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to edge contacts are possible, can not be used to determine the forces on the particle. However, we note that

calibrations fromprevious work show that the proportionality ofG2 and boundary stress holds at the global scale

even for such particles, whichmay due to the fact that in stable packings the ratio between edge–edge and point-

edge contacts ismore or less consistent [8].

6. Conclusion

Weprovide numerical and experimental tests forG2 as a particle-scale stressmeasurement. For disc particles,

numerical tests show thatG2 is proportional to the sumof contact forcemagnitude å


∣ ∣Fi i , instead of the pressure

experienced by the particle. The proportionality betweenG2 and pressure only roughly holds when tangential

forces are not large.We also show that the dependence betweenG2 and å


∣ ∣Fi i is independent of the number of

contacts as well as the directions of the contact forces when resolution is high and forces are small.We describe

Figure 9. (a)The photoelastic fringes of an experimental jammed packing captured by camera (same packing as shown in figure 4).
Thewhite circles are plotted to highlighted the particle boundaries. The system contains particles with two different radii
Rbig=0.56 cm andRsmall=0.44 cm. The friction coefficient between particles isμ≈1. (b)The relation between rescaled G R2 2

calculated from the experimental image and pressure calculated by fitted contact forces for each individual particle in the jammed

granular system. (c)The relation between rescaled G R2 2 calculated from experimental image and å


∣ ∣Fi i obtained from the fitted forces
for each individual particle in the jammed granular system. The data collapses slightly better than (b), but no significant improvement
can be evidenced.

Figure 10.Comparison between the point and edge contact on a square particle. (a)G2 versus å


∣ ∣Fi i for a single square particle under

point contact loading (red circle) and under uniform edge contact loading (blue circle). (b) á ñI versus å


∣ ∣Fi i under point and edge
loading. (c)The photoelastic pattern viewed under the polariscopewith point loading of 1.4 N. (d)The photoelastic pattern for edge
loadingwith the same forcemagnitude 1.4 N on the boundary.

9

New J. Phys. 21 (2019) 023009 YZhao et al



the parameters that determine the dependence betweenG2 and å


∣ ∣Fi i , and provide a general formula to predict

the linear slope k in the linear regime ofG2: = s( )k cI f R N0
2 2 . This formula is very useful to guide the design of

photoelastic granular experiments. It is particular useful in experiments with poly-disperse systems, where

multipleR value exist in one image, as well as in comparing experiments with different imaging systems, where I0
andN are usually different. The value of c obtained from experiments ismuch smaller than that obtained from

simulations. Since themeaning of c value is not clear, we suggest readers to performdiametric calibrations to

measure c in real experiments instead of just using the valuewe reported in this work.Nevertheless, the scaling

relation betweenG2 and other parameters still holds in experimental tests. Finally, using a square particle as an

example, we show thatG2 does notwork as particle scale stress indicator for particles with edge contacts. Our

work for thefirst time gives a complete analysis for an important experimental technique in granular physics,

which helps to guide future experiments.
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