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For future use in modeling photoexcited dynamics and intersystem crossing, we
calculate spin-adiabatic states and their analytical nuclear gradients within CIS the-
ory. These energies and forces should be immediately useful for surface hopping
dynamics, which are natural within an adiabatic framework. The resulting code has
been implemented within the Q-Chem software and preliminary results suggest that

the additional cost of including SOC within the singles-singles block is not large.

I. INTRODUCTION

Intersystem Crossing (ISC) is a key relaxation pathway for many photo-excited systems.
For instance, several aromatic ketones and aldehydes are known to undergo ISC phosphores-
cence with almost unity quantum efficiency [1]. As another example, organometallics with
heavy elements (e.g. platinum) are also known to undergo ISC very efficiently[2]. Moreover,
because of the long lifetimes of triplet states, recent work in photocatalyzed organic synthe-
sis has sought to isolate organic precursors with propensities to form excited state triplets,
so as to maximize yields of photocatalyzed product[3].

Now, in general, it is well known that triplets tend to be the lowest energy excited states
due to antisymmetry and exchange[4]. Thus, ISC is almost always thermodynamically ac-
cessible. Nevertheless, many molecules do not undergo ISC, highlighting that whether or
not a triplet forms after photoexcitation is dictated by dynamics and not by electronic
structure. Thus, to make predictions about triplet formation, we must run dynamics sim-
ulations. And, if we are to run nonadiabatic dynamics, the key question to ask is: what

is the coupling between the singlet and triplet states? There are many such operators for



only singlet to triplet intersystem crossing, including spin-orbit coupling (SOC), hyperfine
couplings, and spin-spin couplings. In the present paper, we will focus on ISC as induced
by SOC, for which El-Sayed’s rule is applicable[5]. A few words are now appropriate about
the exact form of the SOC operator.

Formally, the SOC operator is derived as a consequence of the Dirac equation and cannot
be derived with a non-relativistic theory of quantum mechanics. Nevertheless, up to a factor
of two[6], the form for the SOC operator can be rationalized with straightforward classical
electromagnetic arguments, and nowadays, it is standard within the quantum chemistry
community to use the so-called Breit-Pauli perturbative form of the SOC operator within
nonrelativistic quantum mechanics[7]. According to the Breit-Pauli form, the SOC is a vector
operator with one and two electron components. For efficiency, we will restrict ourselves
to the one-electron component of the SOC operator. Others have shown that a screened
one electron SOC term can capture many of the effects of the total SOC operator, either
through a mean-field approach or using effective nuclear charges[8]. In this paper, we will

focus on the original one electron component:
2
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where «q is the fine structure constant, and 7 and A index the electrons and nuclei, respec-
tively. Z4 is the charge of nucleus A, s; is the spin operator of the j electron, r;, is the
distance between electron j and nucleus A, and p; is the momentum of electron j.

Now, given an operator for the SOC, suppose we would like to run Tully’s Fewest Switches
Surface Hopping (FSSH)[9] to determine ISC rates and branching ratios. This problem has
been considered by several authors in recent years [10-15]. For the reader not familiar with
Tully’s algorithm, a few words about FSSH are now appropriate. The basic input to an
FSSH trajectory are 1. adiabatic potential energies surfaces, 2. nuclear gradients, and 3.
derivative couplings. The basic ansatz of FSSH is to run dynamics on adiabatic surfaces,
while hopping between surfaces to account for electronic relaxation. One key element of
surface hopping dynamics is that all dynamics are propagated along adiabatic surfaces.
This choice of surface ensures that barrier crossings (without tunneling) are correct and also
that detailed balance is preserved approximately[9, 16, 17]. This choice furthermore gives us
the correct choice of hopping direction — the derivative coupling[18-21]. In fact, the FSSH

algorithm can be justified approximately only when the dynamics are run along an adiabatic



basis[22]. Furthermore, while it was long thought that surface hopping in an adiabatic basis
required a very short time step in the limit of small or trivial diabatic couplings, where
crossings can occur almost accidentally, recent work has shown that one can overcome all
numerical issues even in this limit [23-26]. The most robust solution is simply to replace the
instantaneous derivative coupling with the time-averaged derivative coupling, which can be
obtained by taking the logarithm of U, the adiabatic transformation matrix from one step
to another[23, 27, 28]. Thus, in the end, dynamics in the adiabatic basis is both maximally
accurate and computationally stable.

Altogether, the evidence above suggests that, in order to run ISC dynamics with FSSH, we
should construct spin-adiabatic wavefunctions, i.e. the eigenstates of Hej+ Vo (see Eqn. 18
below)[29]. At this point, however, we must remind ourselves that the cost of diagonalizing
the supermatrix will be large. And in fact, we must also recall that mixing one singlet
and one triplet does not result in a system with two electronic states; instead, it results
in a system with four electronic states because the triplets are always triply degenerate; of
course all degeneracy is broken by SOC. Moreover, it would make no sense to include only
one of the three triplets (say ms = 0 triplet) because then the calculation would depend
spuriously on the artificial choice of lab frame and molecular orientation. And because the
phase of a coupling can be essential (e.g. near a conical intersection), it is not reasonable to
reduce the system to a single triplet with, e.g. |Vgol?, as an average (rotationally invariant)
perturbative matrix element. Instead, for a rotationally invariant calculation, one must
include all of the components of the triplet and diagonalize the full Hamiltonian (which also
includes all of the vector components of the SOC operator, see Eqn. 14)[10]. And yet, given
that the most expensive piece of a CIS calculation is multiplication of the trial amplitudes
by the two electron integrals, and given the fact that the two electron integrals do not mix
spin symmetry, it should be possible to compute spin-adiabat electronic states, as well as
spin-adiabatic gradients, with minimal cost[30].

With all of this background in mind, our goal for this paper is to derive and implement an
algorithm for quickly generating spin-adiabatic states and their gradients within the context
of configuration interaction singles (CIS), a popular and computationally efficient method
to generate excited spin-diabatic state energies and amplitudes. Similar previous work with
a semiempirical approach was performed by Granucci and Persico [31] and for MRCI-SD

for small molecules by Belcher[32]. One should note also that other groups have simulated



dynamics along spin-adiabats, but have neglected the SOC derivative terms[13, 33, 34].

II. THEORETICAL METHODS
A. Notation

Establishing correct notation will be essential for our problem with spatial and spin
degrees of freedom. Henceforward, lowercase Greek letters urAyw index atomic orbitals.
Lowercase Roman letters pgrs index general molecular orbitals from the Hartree-Fock ground
state (|p) = >_, Cup |11)); abed index specifically virtual orbitals, and ijklm index specifically
occupied orbitals. Spin orbitals are represented by bold type as p or p, or when explicitness
is required, with subscripts as follows: p, for up spin, pg for down spin, or p, for either
spin. A singly-excited determinant is defined by |®2) = ala; |®y:). The singlet spin-diabat
is indexed by (s) and triplet spin-diabats (¢) are indexed by ms; = —1,0,+1. The four spin-
diabats (one singlet and three triplets) can be indexed by € € {s,ms}. Finally, note that

some quantities below will be complex; an asterisk (x) will denote the complex conjugate.

B. Standard CIS

We begin by outlining standard configuration interaction singles (CIS) theory of excited
states. In this work, we use the closed-shell restricted form of the CIS equations. The
standard CIS algorithm calculates the eigenstates of the electronic Hamiltonian,

H, = Zh qa agq + — Z Hpqsra al 0r0s

qu‘S

= Z(plhlq ahaq + = Z (pql|sr) alafaras, (2)

Pa pqrs

projected into the space of all single excitations:

Aajp = (DF[Her| D)) (3)
= habdij — hjilab + 03 Z Hambm — dab Z imim + Hagib + Expdapds;. (4)

This quantity can be rewritten in terms of the Fock matrix,

Fpq = hpq + Z Hpmgm- (5)

= €pdpq (6)



The energy of orbital p is €,. By inserting Eqn. 5 into Eqn. 4, we recover the usual CIS

theory with “Hamiltonian”:

Aiajp = Fandij — Fjidab + ajib + Expdapdi; (7)

The CIS amplitudes X solve the following eigenvalue problem,

Z Aiajp Xv; = EXu (8)
bj
and are normalized such that,
> XaXa =1 (9)

The CIS Hamiltonian is block diagonal in the basis of spin-diabats (singlets and triplets).
A CIS singlet state has amplitudes such that

~ ~ 1
Xaaia = Xagig = ﬁsai (10)
A CIS triplet (ms = 0) state will have amplitudes
~ ~ 1
_ - (0)
Xaaia - _Xaﬁi[j — ﬁtaz (1]‘>
The remaining CIS triplet states will be degenerate with equivalent amplitudes
% — 4(+D)
Xaai,ﬁ = tai (12)
> -1
Xaﬁia = tgz : (13)

where tgl)-) = tf;{l) = tfgl).

C. The Breit-Pauli One-Electron Hamiltonian

A CIS-SOC Hamiltonian extends CIS by including the SOC through the one-electron

Breit-Pauli Hamiltonian Vgo (Eqn. 1), which we express here in second quantization nota-

tion:
\/vs()m = —%(2) Zl—:qu . g (afoaaqﬁ + CL;;BCan>
pq
2
Vso, = _% Nypq ) 2_hz <a;aaqﬁ — a;ﬁaqa>
pq
Vso. —%(2) Z Ezpq . g (aLaaqa — a;[,Ban> (14)



Here L captures the angular moment of an electron moving around all of the different nuclei

A with positions r. For example,

o ) - T2 e

One can permute coordinates to recover the L, and I~Jy terms. The L integrals and their
derivatives L are discussed in the appendix.

Finally, for convenience later on, let us define a compact notation for Vgo in the explicit

spin basis,
ho? -

%dqg/ = _TOLPJQU/ (16)
with the following components for L,

Lpoz(Ioz = Zpq

Lpﬁqﬂ = szq

. . 1.

Lpaqﬁ = Lf’?pq + 2Lypq

. - 1-

Ppqo = L-qu - gLypq (17)

D. The CIS-SOC Hamiltonian

The CIS-SOC Hamiltonian is the sum of the He; and Vgo projected into the space of all

single excitations:

(98] + Viola})
= Ajajp + <(I)?|VSO’(I)})>

= Ajajb + Vab0ij — Vjidab (18)

Ajajb

The A operator in Eqn 18 is the CIS operator (from Eqn. 7).
Let us construct a CIS-SOC stationary state[35], i.e. an eigenstate of A (not A) with

energy E:

ZAiajbij = EXg4 (19)
bj



The addition of Vgo mixes singlets and triplets. Thus, such a CIS-SOC eigenstate |¥) will

have both singlet and triplet contributions,
W) = Z){ai@a ZZXE) >
S (o)) T e - )
+Zt )+t o) (20)
As in standard CIS, the amplitudes are normalized over all contributions,

SOXGXa = Y shisait Y Y ) = (21)

ai ai  Mms

In the explicit spin basis, we can express X as,
1
Xaaia = —F= (Sai + tg?)
2

7
1 ©
Xagiy = NG <3ai — L4 )

L)
C’«aiB - taz
1

Xopin = 157 (22)

E. Hellmann-Feynman Theory for the CIS-SOC Gradient

We can now use Hellmann-Feynman Theory to find an analytical gradient for the CIS-

SOC state energy, E* given that the CIS-SOC state is an eigenstate of A:

Bl — Z (X[”” i Xg + X2 At X[z] + XA ij>

ai‘ “iajb
abij
=EY. (Xﬁ]*Xai + X;tiXEf]) + ) XGAL, X
ai abij
= ZX;AE‘]bij (23)
abij

As in Eqn. 18, the standard CIS electronic Hamiltonian can be separated from the new

SOC terms,

A[f]

iajb —

= Ak + Vs — Viloa (24)



so that,

B = N XEAL X+ > XaVa X — Y X5V X (25)

abij abi aij

So far we have been working in a molecular spin orbital basis, but quantum chemistry
algorithms are usually designed in the atomic spatial orbital basis to take advantage of real-
valued Gaussian-type orbitals with analytic two electron matrix elements. To this end, we
will now convert to an atomic spin orbital basis, and then later convert to an atomic spatial

orbital basis.

F. The Atomic Spin Orbital Basis

Molecular orbitals are linear combinations of AOs with coefficients C. Integrals in the
molecular orbital basis, such as Vgo, are sums over integrals calculated in the atomic orbital

basis,

= Z Cupvuucvq (26)

pv

For our purposes below, let us define some important terms in the AO basis,

Sw = (plv) (27)

P, = Zcuicui (28)

Py =Y CupCup=Pu+ > CuaCla (29)
- a

Ry = ZCMaXaiCui (30)

Buy = Y CuaXiiXpiCob — Y CuiXajX5C (31)
abi aij

The first three equations (27 - 29) define the overlap matrix, the ground state density matrix
and the formal inverse S™1, respectively. Eqn. 30 is the CIS amplitudes in the AO basis,
also known as the transition density. Eqn. 31 is very similar to the difference density matrix,
but the second term is transposed.

In order to convert the derivatives in Eqn. 25 from the MO basis to the AO basis, we

will use the Vgo!® term as an example. To start, we apply the derivative operator to Eqn.



26,
Vi ="V CLCoq + ) Vi (CHCuq + CupCl) (32)
pv mv
The V,Eaf,] term is easily dependent on the L) integrals, which are directly available, but
the C?l terms are not. Others have derived the form of the CI* derivatives[36] and we
summarize the main points here. The molecular orbital coefficients depend on the overlap
of the atomic orbitals (S) and the rotation matrix between the virtual and occupied space

(Op;), so the derivative can we written,

oC oC
=] _— Y pp gla] Yup 2]
chl =3 3o ST D 7gs Ou (33)
A v ck
The form of the partial derivatives can be written
0C,p 1~
K _ _°Pp 4
P Soa 9 1y Cap (34)
oC
WI:: = Cuk5Cp - Cucékp (35>
Inserting Eqns. 34 and 35 into Eqn. 33, we find
. 1 ~ x x
C}[L[}) Y Z Puvsa[y)]\okp + Z (Crxdep — Cpucdxp) 9[c11 (36)
A ck

Finally, inserting Eqn. 36 into Eqn. 32 gives
Vr%] - ZV;%O#PCVQ
pv

1 . p &
33 5 (CouCuaPo + CraCin i)

HUYA

+ Z @Lﬂvuu ((Cuk5CP - Cucékp) qu + Cup (Cvk5cq - Cvc5kq)) (37)

prck
Eqn. 37 is our final form for Vgo!®! in the atomic spin orbital basis. The same steps can
be applied to the standard CIS terms, the Fock term derivatives and two electron term
derivatives. See references [37, 38] for a more detailed review of the notation and formalism

for analytic gradient theory.

G. The CIS-SOC gradient in the Atomic Spin Orbital Basis

Now we have all the tools required to write the CIS-SOC gradient in the atomic spin

orbital basis. In an atomic spin orbital basis, E*! can naturally be written as the sum of
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four terms:

B = B+ By )04 (Yoo = Ya) + By (33)
ck

Let us now define these terms.
The first term E[X] is the standard CIS contribution without the ground state derivative

EE}F and without including orbital relaxation[37, 39]:

x] = ZBHVh[u/ + Z HIJ)\V'Y Bp,UPX'Y + RZVR}\'Y)

BUAY

— Z SH Py (Ba + Bua) B

uuwA

1 o
_5 Z St[scip)\épw"/ (BIJV + BV}L) Hp)\u"/
HrAyow

1 z) 5 * *
_5 Z S([Sipﬂé (Rqu’YA + RuwR)\’Y) HIJ)\V’Y

HUAYow
]- x| 15 * *
—5 Z S([su};P’Y(s (R“VRW}\ + RV“R)\w) Hu)xu—y (39)
purAydw

The second term is the contribution from Vg without including orbital relaxation[40]:

h
B = O‘OZLfﬂ]B

hal 2 7 = =
+220 3™ 55 P (L Baw + Eu B (40)
HUYA

The third term is the gradient component arising from orbital relaxation. Here, again,
there are two terms. The Y term arises from standard CIS theory [37].

k = Z C}\cc7k (B/u/ + Bup,) Hp,)\u'y

BUAY

+ Y CoiChu (X5Ryx + XegR2y) iy

JurAy

~ D CucCub (Roa X + R Xok) Wnry (41)

buv Ay
The Y®9C term arises from the SOC.

chiOC = _ Z (X*.Xaina + XciX:iVak)

Z (Vei X35 Xak + Vie Xai X i) (42)

The fourth term is the ground state derivative, EE]F
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H. The Atomic Spatial Orbital Basis

At this point, we have used only the usual tricks to evaluate the CIS gradient, from Ref.
[37]. The last and final step is to integrate over the spin degrees of freedom and evaluate
the gradient in Eqns. 38-42 in terms of atomic spatial orbitals. This requires explicit spin
information in our integrals.

We emphasize that most of the atomic orbital terms do not mix different spins. The

explicit spin information for these terms can be expressed easily as:

Cugpax = C,up(saa’ (43)

S,u,gugx - SLLV(SO'O'/ (44>

P,uglza/ = 500’ Z C/,LiOV’i (45)

Py, = G000 Y CrpClp (46)
p

When we integrate over spin, these terms will not contain any spin information. The terms

in an atomic spatial orbital basis that do have unique spin information are,

R,ugua/ = Z C,uaXagiU/ Cl/i (47)
Bup, = 3. Y CuaXy i X0 ,iCob— > Y CuiXa i Xs i Cli (48)
abi o atj o

Now, the IT tensor might appear more complicated than necessary in the explicit spin
basis. After all, IT is block diagonal in the spin-diabat basis, and so it will be convenient to
define the two different forms (depending on spin). When we integrate over singlet diabatic

states, the tensor takes the form,

%), =2 (u\vy) — (ulyw) (49)

When we integrate over triplet diabatic states, the tensor takes the form,

) (uAlyv) . (50)

pvy = 7

In this framework, the Fock matrix has a contribution from the singlet form of II, i.e.

Fugug/ = 600’ (huu + Z P)\WHLS)?V7> (51>

Ay
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For use below, we will also define R and B in the spin-diabatic basis,

RY) = ZCWX (52)
BY) = Z Cha X X0 =Y~ Cy X" X0, (53)
abi aij

Here, € € {s,m; = —1,0,+1}.
The last matrix element required in a spatial orbital basis is the rotation matrix between
the virtual and occupied space. Given that we assume the Hartree-Fock ground state will

always be a closed shell singlet, the molecular orbital basis never mixes spin, so that

G)co—k:g/ = Odo0’ (54>

I. The CIS-SOC gradient in the Atomic Spatial Orbital Basis
Using the above equations, we can construct a final working analytical gradient:

I IS s AR S
ck € o

As stated above, the electronic Hamiltonian components are all block diagonal in the spin-

diabatic basis, and we see the same behavior with the gradient. This means we can sum

over the independent contributions of the various spin-diabats (e € {s,ms = —1,0,+1}):
(€ (=] p(e ()[z] p(e)x
Ey Z B/W W Z ( MWBW)P Hu/\wR( R )
vy
[l p ()

__ZS . (BY) + BY) Fy,

yVWA
5 Z S([SZPMSPW'Y (B,ELU) + B(E)) H/(L)?l/’y

,uu)\v&,u

1 Wp (RO RO 4 RO

_5 Z S&upﬂé (R(EJIZ Rw)\ + R( R ) H,u)\u'y

,u,1/>\'y§w
_Z Z ( e)*R (€) |+ R(e)*R 6)) H/MV’V (56)

;U/)\'y&u
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Similarly, we can define the Y term,

Z CxeC Wk‘ E) + B( )> H;(j;w

L2291

3 o (XY + XRY) 1Y,
JurAy

= > CuC (ROXS + R X)) 1, (57)
buvy

For the E‘[f} term, we cannot simplify to spin-diabats, so we integrate over the spin degrees

of freedom and express the results explicitly here,

E[x - MOZZ Liav, Buovy

uv oo’

hao? o= (= -
+?0 Z Z SL)]P’YH (LHUVU/ B)\gua/ + LVU/MUBVU/)\J) (58)

uvyA oo’

The L integrals are defined in this basis in Eqn. 17. The B terms are defined in Eqn. 48,
using the X from Eqn. 22. From Eqn. 54, we know that the ®! term restricts the spin of

YS9C 50 we can write this quantity explicitly as,

SOC _ § : § : *
}/Co'ko' ( Co CL " /Vk()'a/ 7 + XCO—Z /Xa ,/7, /V;zguk:(,)

ai oo

- Z Z <‘/cgz /X; " ,)((JLU//I@7 + ‘/ia/chaa//z /X; ,,kc) (59)

ai o'o’

All of the terms in Eqns. 55-59 are available in standard quantum chemistry software,
except the L integrals and derivatives, which we have implemented. As is standard in
gradient theory, ®™ is not calculated directly, but rather through the coupled-perturbed
Hartree-Fock theory (CPHF) with a Z-vector scheme[41].

III. RESULTS

In a development version of the Q-Chem software package[42], we have implemented
our CIS-SOC algorithm and the nuclear gradients of these CIS-SOC states (Eqns. 55-59).
Our reference molecule is formaldehyde at the S;/Ts crossing geometry as calculated at the

CIS/STO-3G level of theory.
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A. States at a Singlet-Triplet Crossing

We have made use of a Davidson-inspired iterative diagonalization scheme for finding
stationary states of the complex CIS-SOC Hamiltonian (Eqn. 18) and satisfy Eqn. 19
[43, 44]. The method searches for the lowest eigenvalues of a matrix in a subspace of the
full basis. The number of iterations required to converge the eigenvalues depends greatly on
the initial guess of the subspace. Calculating standard CIS states scales formally as O(N?)
where N is the size of the matrix. When we mix singlets and triplets, one would naively
expect that the computational cost of CIS-SOC would go up by a factor of 16 relative to
standard CIS; and when one considers the transition from a real to complex Hermitian
Hamiltonian, the cost should go up by another factor of 2 (for a total factor of 32 times
the cost)[45]. Perhaps not surprisingly, we have found that the cost of CIS-SOC is reduced
dramatically if we use standard CIS singlets and triplets as an initial guess subspace.

For our small example of formaldehyde, all calculations were run in serial. When one
uses 1 singlet and 2 triplet standard CIS states as the initial guess (7 spin-diabats in total),
the CIS-SOC calculation requires only 8 iterations. Table I shows that the wall time for
this example is about two times the cost of standard CIS, while the CPU time is under five

times the cost.

Wall Time CPU Time Iterations

CIS 1185 ms  26.0 ms 12
CIS-SOC|249.0 ms 119.0 ms 8

TABLE I: Timing for CIS and CIS-SOC algorithms formaldehydeat the S;/T5 crossing geometry.
For this case, the CIS-SOC calculation adds slightly more than twice the wall time of the CIS

calculation and under five times the CPU time.

Figure 1 demonstrates the effect of including the SOC at the S; /Ty crossing geometry.
When one stretches formaldehyde along the carbon-oxygen bond, the CIS energies of the
S: and T, states cross at R, = 119.42pm and E(Rc) = —112.1909 E;. With SOC, the S;
singlet diabat and the three Ty triplet diabats mix, generating two mixed spin-adiabats and

two degenerate triplet adiabats.
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FIG. 1: The CIS and CIS-SOC potential energy surfaces at the S;/Ty crossing of formaldehyde
with HF/STO-3G as a function of the carbon-oxygen bond length relative to the energy of the
crossing point of the CIS states ( E(R = 119.42pm) = —112.1909 Ej,). The blue (red) dashed line
represents the singlet (triplet) CIS spin-diabat. The black lines are the CIS-SOC spin-adiabats

(states 4 — 7). The crossing point geometry is given in the appendix.

B. Comparison to Finite Difference

For the formaldehyde S;/Ty crossing in Fig. 1, we have used a five point stencil to

calculate energy gradients by finite difference at the crossing point.

Finite Difference Analytical
(En-ag") (En-ag")
Atom X y Z X y Z
C ]-0.27834 0.00000 -0.17888-0.27834 0.00000 -0.17888
H [0.00439 0.00000 0.01252 |0.00439 0.00000 0.01252
H |0.01322 0.00000 -0.00120|0.01322 0.00000 -0.00120
O 10.26072 0.00000 0.16755 |0.26072 0.00000 0.16755

TABLE II: Gradient of CIS-SOC state 7 of formaldehyde in atomic units. Note that the analytical
results agree with finite difference.The corresponding geometry is reported in the appendix in Table

I11.
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IV. DISCUSSION AND CONCLUSION

We have derived and implemented analytic gradients for the spin-adiabatic states corre-
sponding to a CIS Hamiltonian when we include SOC. As argued in the introduction, there
are many applications for which we believe this theory will be relevant, especially surface
hopping nonadiabatic dynamics. One might wonder if the math to get to Eqns. 55-59
was really necessary? After all, if we want spin-adiabats, one must wonder why we have
not implemented a less computationally demanding algorithm? Naively, we could calculate
the singlet and triplet states directly and then couple a smaller subset together through
SOC [10, 31, 46-48]. Of course, such an approach would be less accurate than finding the
eigenvectors in the full singles-singles space, especially in the case of larger SOC. Moreover,
we emphasize that Hellmann-Feynman theorem would not be applicable in such a scenario,
so that for a derivative, one would need to calculate explicitly how the singlet and triplet
states change as a function of nuclear coordinates[31]. If one uses coupled-perturbed CIS
theory[49] to address these wavefunction changes, i.e. one calculates the nuclear derivatives
of the amplitudes X, one would find that the response can be unstable if high energy in-
truder states appear (just as is true for adiabat to diabat rotation schemes[50]). By contrast,
the method presented above with spin-adiabats avoids all such difficulties; while we spend
somewhat more time on matrix diagonalization, we spend far less time on the gradient.

Looking forward, one big question is how to transfer all this technology from CIS to
time-dependent density functional theory within the Tamm-Dancoff approximation (TD-
DFT/TDA). After all, TD-DFT/TDA is known to correct the orbital energies relative to
Hartree-Fock and CIS, and yield much better excitation energies. Of course, there are prob-
lems with charge transfer states, but using TD-DFT/TDA, many problems can be resolved
if one uses a range corrected functional [51-63]. Now, when calculating spin-adiabats with
TD-DFT/TDA, the most obvious difficulty is how to treat the exchange-correlated func-
tional which looks like a two-electron matrix element in the singles-singles block. However,
unless we invoke noncollinear DFT[64], for the exchange-correlation functional to be nonzero
all electrons must have the same spin. Thus, formally, one should recover different excita-
tion energies for the my, = 1 or —1 triplets relative to the mg = 0 triplet (and the latter is
more accurate). Nevertheless, one solution to this quandary would be to simply include the

same exchange-correlation functional for all triplet terms, which will necessarily maintain
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the normal spin degeneracy and should produce better excitation energies.

There are many interesting questions that we would like to pursue in future studies. In
this work, we have not included the SOC operator when we optimize orbitals for the original
HF calculation; as is well known, such an approach would be unbounded[65]. That being
said, no such problem should arise if SOC is included only within a post-HF CIS calculation
using a finite atomic orbital basis. In fact, one could also safely include the HF ground state

in such a CI diagonalization and the resulting Hamiltonian would be of the form

H,, — Enr Vso (60)
Vso A
Unfortunately, the value of such an approach may be limited because the singlet GS is
treated at a different level of theory than the triplet excited states. This line of research has
not been pursued in the present paper, but will be addressed in a future project.

Beyond the issues listed above, our immediate next step is to implement an analytical
algorithm to compute the CIS-SOC nonadiabatic derivative couplings. Due to the complex
(i.e. not real) nature of the Hamiltonian and CIS-SOC amplitudes X, these couplings will
be complex, so there is an additional open question of the direction of momentum rescaling
direction in FSSH[45]. Furthermore, we have focused in this paper on the Breit-Pauli one-
electron SOC operator; one could also include effective nuclear charges in Eqn. 1 to simulate
the screening effect of the two-electron term[8, 66]. Or, if we use a mean-field method to
simulate the effects of the two-electron operator, we should also implement the gradient of
the mean-field effect.

Finally, once the questions of accurately simulating the two-electron contribution and
fully including the imaginary component of the derivative couplings are resolved, one can
imagine several applications worth exploring. With a fast enough ab initio code, an obvious
target is the photophysics of benzaldehyde and benzophenone and the resulting ISC and
phosphorescence [67, 68]. More generally, there have recently been interesting experiments
done by Vinogradov and coworkers, where two singlets converted to triplets in platinum
complexes and there have been few calculations [69]. These are just two out of many

possible future applications.
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VI. APPENDIX
A. Geometry of the S; /Ty Crossing Point of Formaldehyde

The S;/T; crossing point was found by optimizing the geometry of the ground state and
stretching the carbon-oxygen bond. Table III reports the geometry at the crossing point.

Atom| x (A) y (4) z (A)

C 0.00000000 0.00000000 0.00000000
H 0.00000000 0.00000000 1.10122400
H 1.00171657 0.00000000 -0.45744749
O | -1.00461935 0.00000000 -0.64564200

TABLE III: Geometry of formaldehyde at the S; /Ty Crossing Point

B. The Spin-Orbit Coupling Integrals and Their Derivatives

The CIS-SOC gradient requires access to the derivatives of the spin-orbit integrals in
the atomic orbital basis, L/ in Eqn. 58. To this end, we have implemented King and
Furlani’s algorithm [70] for spin-orbit integrals and extended the algorithm to integral nu-
clear derivatives. King and Furlani present recursion relations that express the spin-orbit
multidimensional integrals as products of one dimensional integrals summed over the roots
of the Rys polynomial [70]. Here, we will quickly outline the relevant formulas to evaluate

the nuclear derivatives of the integrals.
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1. Spin-orbit coupling in terms of nuclear attraction integrals

Atomic orbitals are linear combinations of Guassian primitive functions of the form,

n¥ ny n? _—agr?
Ma) = (¥ — 24)" (Y — Ya)" (2 — 24)"2€” " (61)
Here r, = |r — ry| is the distance from the center of the Gaussian and the exponents

{n*,nY,n*} are the angular momentum for each coordinate and are elements of the natural
numbers Ny. Consider the contribution of an atom C' to the L, term of the SOC (of course,
one can permute coordinates to recover the L, and L, terms).

nb> = hlﬁ V%@%—Z’ T—/na@_—g(j)% r} (62)

I'c I'c

<?7a L,

King and Furlani convert the integrals with 1/r® dependence to nuclear attraction integrals

R

8 a T xTr— xT
[nk) = S = | ~) - 200 ") (64)

,C

(1/r dependence) of the form,

WZe [/ .
(Na|Lz.c|mp) = 5 [<7IL]

where the derivative of the Gaussian can be defined as

1

— nz[f’]> — <77£y]
C

r

using short hand for increasing or decreasing the angular momentum in a coordinate x:

Yy
a

x — n¥ n n? —agr?
‘nai> = (‘73 - ma) ail(y - ya) (Z - Za) “e “ (65)

2.  Eaxtension to the Nuclear Derivative

The nuclear derivative for the ¢ coordinate of atom D of L, ¢ is

(1| Lz.c ) %) = <77a L[zg]

Lz,c’m[)q”]> + <77zz

77b> + <7IC[LqD] |L.c|m) (66)

The first (last) term only contributes if 7, (7,) is centered on atom D. The middle term only
contributes if C' = D. If all three contribute, the integral is zero by translational invariance.

If n, is centered on atom D, we use the properties of Gaussians (Eqn. 64) to write

<17(L/QD} ‘Lz,C‘nb> = - <77([lq] ‘LZ,C 77b>
—n (ni~ ’Lz,c’m> + 2ay, <7]g+|Lz,C|7]b> (67)
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The same can be said of 7.

To evaluate the LL‘{IE,] term, we can use the translational invariance of the integral:

(n

LYy

nb> - - <n[[qu]‘Lz,D|nb> - <7]a Lz,D‘nl[,qB}>
= <n([IQ]‘Lz,D|77b> + <77a Lz,D‘nl[)q]>
- ng <772_ ‘ Lz,C‘nb> - 206(1 <7)Z+ ‘ Lz,C ‘nb>

+nd (a| Lo nf™) — 204 (na| Lo |ni™) (68)

Thus, if one can evaluate the integrals with different values of angular momentum, one can
also easily evaluate the gradient.
Let us consider two examples. The first example is when C' = D and 7, and 7, are not

centered on atom C.

v

775>[qd = <77a 77b>

= (| L.c|m) + <77a

<77a|Lz,C

Lz,c‘n}f]> (69)

The second example is when C' = D and 7, is centered on C', but 7, is not.

(el L) ™ = (08| L) + (| L2 )
= — (9 L.c|m) + <<77£q]‘Lz,C ) + <nc Lz,c)m[,q]»

= (ma|Lec|?) (70)
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